JP2014018731A - Apparatus and method for regenerating used activated carbon - Google Patents

Apparatus and method for regenerating used activated carbon Download PDF

Info

Publication number
JP2014018731A
JP2014018731A JP2012159348A JP2012159348A JP2014018731A JP 2014018731 A JP2014018731 A JP 2014018731A JP 2012159348 A JP2012159348 A JP 2012159348A JP 2012159348 A JP2012159348 A JP 2012159348A JP 2014018731 A JP2014018731 A JP 2014018731A
Authority
JP
Japan
Prior art keywords
activated carbon
solvent
furnace
regeneration
continuous heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012159348A
Other languages
Japanese (ja)
Inventor
Tomitaka Toyama
外山富孝
Takamitsu Ito
伊藤崇充
Akinori Sahashi
佐橋晃周
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MET KK
Original Assignee
MET KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MET KK filed Critical MET KK
Priority to JP2012159348A priority Critical patent/JP2014018731A/en
Publication of JP2014018731A publication Critical patent/JP2014018731A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an apparatus for regenerating activated carbon, in which used activated carbon, which is used for purifying a cleaning solvent and on which a contaminant is adsorbed, can be regenerated in high production efficiency and further in high energy efficiency.SOLUTION: The apparatus 1 for regenerating activated carbon includes: a hopper 2 into which the used activated carbon is thrown; a plurality of continuous heating furnaces 3 for separating and desorbing a solvent from the used activated carbon; a regeneration furnace 4 for regenerating the solvent-desorbed activated carbon; a solvent liquefaction recovery tank 5 for liquefying/recovering the solvent vapor to be generated from the plurality of continuous heating furnaces 3; and a hot air generator 6 so that the solvent is vaporized/separated stepwise from the activated carbon at different temperatures and then the adsorbed contaminant is removed therefrom to regenerate the activated carbon.

Description

本発明は、洗浄溶媒の再生に使われた、汚染物質を含んだ使用済活性炭を効率よく再生する再生方法及び再生装置である。   The present invention relates to a regeneration method and a regeneration apparatus for efficiently regenerating spent activated carbon containing contaminants used for regeneration of a cleaning solvent.

現在、洗浄溶媒は、金属工業や精密機器工業、ドライクリーニング業等、多岐の業種に渡り使用されており、環境上及び経済上の観点から溶媒を浄化し繰り返し使用することが多く、溶媒の浄化剤として活性炭が多く利用されている。   Currently, cleaning solvents are used in a wide variety of industries, such as the metal industry, precision equipment industry, and dry cleaning industry, and the solvent is often purified and reused from an environmental and economic point of view. Activated carbon is often used as an agent.

例えば、ドライクリーニングにおいて、洗浄液として塩素系または石油系の洗浄溶媒が使われているが、この洗浄液を繰り返し使用していくと、洗浄毎に被洗浄物から除去される汚染物質により洗浄液は劣化していく。該汚染物質を洗浄液から吸着除去するための活性炭フィルターを装着したドライクリーニング用洗濯機が多く使用されている。   For example, in dry cleaning, chlorine-based or petroleum-based cleaning solvents are used as cleaning liquids. However, if this cleaning liquid is used repeatedly, the cleaning liquid deteriorates due to contaminants removed from the object to be cleaned at each cleaning. To go. A dry cleaning washing machine equipped with an activated carbon filter for adsorbing and removing the contaminants from the cleaning liquid is often used.

活性炭フィルターを構成している活性炭においては、洗浄液からの汚染物質吸着量に伴い吸着性能が徐々に低下する。吸着量が一定量を超えると吸着能力は激減し、もはや洗浄液の劣化を止めることができなくなる。この為に活性炭フィルターは定期的に交換され洗浄液の洗浄能力を維持することが行われている。使用済活性炭フィルターから活性炭を取り出し再生処理を経て繰り返し使用する発明が提案されている。   In the activated carbon constituting the activated carbon filter, the adsorption performance gradually decreases with the amount of contaminant adsorbed from the cleaning liquid. When the amount of adsorption exceeds a certain amount, the adsorption capacity is drastically reduced, and it is no longer possible to stop the deterioration of the cleaning liquid. For this purpose, the activated carbon filter is periodically replaced to maintain the cleaning ability of the cleaning liquid. There has been proposed an invention in which activated carbon is taken out from a used activated carbon filter and repeatedly used through a regeneration process.

活性炭に吸着された洗浄溶媒の活性炭への吸着状態は、活性炭の表面に吸着されている状態(以下、表面吸着)と活性炭が持つ細孔に吸着されている状態(以下、細孔吸着)に大別され、活性炭からの溶媒分離に必要とされるエネルギーは細孔吸着の方が多く必要とされる。   The adsorption state of the cleaning solvent adsorbed on the activated carbon can be divided into a state where it is adsorbed on the surface of the activated carbon (hereinafter referred to as surface adsorption) and a state where it is adsorbed into the pores of the activated carbon (hereinafter referred to as pore adsorption). Broadly speaking, the energy required for solvent separation from activated carbon is more required for pore adsorption.

特許文献1にドライクリーニング用溶媒を使用した使用済活性炭のバッチ式再生方法が開示されている。   Patent Document 1 discloses a batch-type regeneration method of used activated carbon using a dry cleaning solvent.

特開平7−256098JP-A-7-256098

活性炭を再生する従来の方法として、溶媒洗浄抽出、熱再生等による方法があり、例えば熱再生として、800℃〜1000℃の再生炉を使用する方法が一般的に知られている。使用済活性炭には汚染物質のみならず洗浄溶媒を多く含んでいる(ドライクリーニングの場合、通常、使用済活性炭の重量の5〜7割)ため、使用済活性炭を大量に同時に再生処理すると大量の溶媒がガスとして分離し、このガスを液化回収するための液化回収装置が大型化する傾向となる。また、再生用加熱エネルギーと回収用冷却エネルギーが大量に必要となり、設備が大型化する傾向になる。   As a conventional method for regenerating activated carbon, there is a method by solvent washing extraction, heat regeneration, and the like. For example, a method using a regeneration furnace at 800 ° C. to 1000 ° C. is generally known as heat regeneration. Spent activated carbon contains not only pollutants but also a lot of washing solvent (in the case of dry cleaning, usually 50 to 70% of the weight of the used activated carbon). The solvent is separated as a gas, and the liquefaction recovery apparatus for liquefying and recovering this gas tends to be enlarged. In addition, a large amount of heating energy for regeneration and cooling energy for recovery are required, and the equipment tends to increase in size.

分離された溶媒ガスを燃焼して再生用熱エネルギー源として再利用する方法も知られているが、溶媒ガスが大量である場合、その燃焼エネルギーは再生に必要とする熱エネルギーを大きく上回り、一度に汚染物質を含む溶媒が大量に出るため、温度が上がり過ぎ、温度制御が困難となる。そのため、使用済活性炭の時間当たりの再生量を減らさざるを得ないので、再生能力が低い。もしくは発生した熱エネルギーを廃棄せざるをえない。   There is also known a method of combusting the separated solvent gas and reusing it as a heat energy source for regeneration. However, when the solvent gas is in a large amount, the combustion energy greatly exceeds the heat energy required for regeneration. Since a large amount of solvent containing pollutants comes out, the temperature rises too much and temperature control becomes difficult. For this reason, the regeneration amount per hour of the used activated carbon has to be reduced, so that the regeneration capability is low. Or the generated heat energy must be discarded.

特許文献1の方法は、バッチ方式であり、上記で指摘した通り、生産効率が低い問題がある。   The method of Patent Document 1 is a batch method, and as pointed out above, there is a problem of low production efficiency.

本発明の目的は、洗浄溶媒の浄化に使用された汚染物質を吸着した使用済活性炭を、生産効率よく、さらに、エネルギー効率よく、再生できる活性炭再生装置を提供する。   An object of the present invention is to provide an activated carbon regenerator that can regenerate spent activated carbon adsorbing contaminants used for cleaning cleaning solvents with high production efficiency and energy efficiency.

本発明者は、加熱(溶媒の回収)と、再生(汚染物質の除去)を分けることにより、活性炭中の溶媒を少なくしてから、再生(賦活処理)をすることにより、単位時間あたりの処理量を多くできることに着目し、本発明に至ったものである。   The present inventor separates heating (recovery of solvent) and regeneration (removal of contaminants) to reduce the amount of solvent in the activated carbon, and then regenerates (activation process), thereby processing per unit time. Focusing on the fact that the amount can be increased, the present invention has been achieved.

すなわち、上記課題を解決するために、請求項1に記載の活性炭再生装置1は、連続式に使用済活性炭から溶媒を分離及び脱着する各々温度設定が可能な複数の連続加熱炉3と、溶媒が分離された活性炭を再生する再生炉4と、を備えたことを特徴とする。請求1に記載の活性炭再生装置1では、溶媒を分離する為の加熱炉を複数備えているため、加熱炉ごとに溶媒の分離条件を設定でき、段階的、選択的かつ効率的に連続で分離できることが特徴である。なぜならば活性炭に表面吸着している溶媒は溶媒の気化温度に近い温度にて分離できるが、活性炭に細孔吸着している溶媒の細孔からの脱着には気化温度よりも高い温度が必要である。よって溶媒の分離を一つの装置で行う場合は細孔吸着している溶媒の分離に必要な温度を使用しなくてはならず、表面吸着している溶媒と細孔吸着している溶媒が同時に分離することとなり、大量の溶媒ガスが発生する。   That is, in order to solve the above-mentioned problem, the activated carbon regenerator 1 according to claim 1 includes a plurality of continuous heating furnaces 3 each capable of temperature setting for separating and desorbing the solvent from the used activated carbon in a continuous manner, and a solvent And a regeneration furnace 4 for regenerating the activated carbon from which the carbon is separated. Since the activated carbon regeneration apparatus 1 according to claim 1 includes a plurality of heating furnaces for separating the solvent, it is possible to set solvent separation conditions for each heating furnace, and to perform continuous separation stepwise, selectively and efficiently. It is a feature that can be done. This is because the solvent adsorbed on the activated carbon can be separated at a temperature close to the vaporization temperature of the solvent, but desorption from the pores of the solvent adsorbed on the activated carbon requires a temperature higher than the vaporization temperature. is there. Therefore, when performing the separation of the solvent with one apparatus, the temperature necessary for the separation of the pore-adsorbing solvent must be used, and the surface-adsorbing solvent and the pore-adsorbing solvent are simultaneously used. A large amount of solvent gas is generated.

ここでいう「溶媒を分離」とは表面吸着されている溶媒を活性炭から離脱させることをいう。通常、溶媒の気化温度で処理できる。「溶媒を脱着」とは、細孔吸着されている溶媒を活性炭から離脱させることをいう。脱着温度は通常、溶媒の気化温度よりも高い温度となる。活性炭の再生順序は、まず、溶媒を分離し、それから、それよりも高い温度領域で溶媒を脱着する。脱着温度では活性炭に吸着されている汚染物質の熱分解も同時に起こる。汚染物質の熱分解残渣は炭素となり活性炭細孔内に残る。加熱炉に続く再生炉にて該熱分解残渣を賦活反応によりガス化して除去する。このようにして活性炭を再生することができる。   Here, “separation of solvent” means that the surface adsorbed solvent is separated from the activated carbon. Usually, it can be processed at the vaporization temperature of the solvent. “Desorbing the solvent” means desorbing the pore-adsorbed solvent from the activated carbon. The desorption temperature is usually higher than the vaporization temperature of the solvent. The regeneration sequence of the activated carbon first separates the solvent, and then desorbs the solvent in a higher temperature range. At the desorption temperature, thermal decomposition of contaminants adsorbed on the activated carbon also occurs. The thermal decomposition residue of the pollutant becomes carbon and remains in the activated carbon pores. The pyrolysis residue is gasified and removed by an activation reaction in a regeneration furnace following the heating furnace. In this way, the activated carbon can be regenerated.

請求項2に記載の溶媒液化回収槽5は、前記連続加熱炉3で分離された溶媒ガスを冷却し液化する冷却装置5aと溶媒回収槽5bを備えたことを特徴とする。   The solvent liquefaction recovery tank 5 according to claim 2 includes a cooling device 5a for cooling and liquefying the solvent gas separated in the continuous heating furnace 3, and a solvent recovery tank 5b.

請求項3に記載の活性炭再生方法において、連続式に使用済活性炭を複数の温度帯で処理することにより表面吸着している溶媒と、細孔吸着している溶媒とを分離及び脱着する複数の加熱工程と、溶媒分離済活性炭を再生する再生工程と、を持つことを特徴とする。   The activated carbon regeneration method according to claim 3, wherein the activated carbon is continuously treated at a plurality of temperature zones to separate and desorb the solvent adsorbed on the surface and the solvent adsorbed on the pores. It has a heating process and the regeneration process which reproduces | regenerates solvent-separated activated carbon, It is characterized by the above-mentioned.

請求項4に記載の活性炭再生方法において、分離及び脱着された溶媒ガスを液化回収することを特徴とする。   5. The activated carbon regeneration method according to claim 4, wherein the separated and desorbed solvent gas is liquefied and recovered.

本発明によれば、洗浄溶媒と汚染物質を含んだ使用済活性炭を効率的に再生でき、分離、脱着された溶媒を回収し再利用することができる活性炭再生装置を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the activated carbon reproduction | regeneration apparatus which can reproduce | regenerate the used activated carbon containing a washing | cleaning solvent and a contaminant efficiently, and can collect | recover and reuse the isolate | separated and desorbed solvent can be provided.

本発明実施形態1の活性炭再生装置1のブロック図である。It is a block diagram of activated carbon reproduction device 1 of Embodiment 1 of the present invention. 本発明実施形態2の活性炭再生装置101のブロック図である。It is a block diagram of the activated carbon reproduction | regeneration apparatus 101 of Embodiment 2 of this invention. 本発明により再生された活性炭のヨウ素吸着等温線図である。1 is an iodine adsorption isotherm of activated carbon regenerated according to the present invention. 本発明により再生された活性炭のメチレンブルー吸着等温線図である。1 is a methylene blue adsorption isotherm of activated carbon regenerated according to the present invention.

以下、図面を参照して本発明の好適な実施形態を例示的に詳しく説明する。図1に示す通り、実施形態1の活性炭再生装置1は、使用済活性炭を投入するためのホッパ2と、使用済活性炭から溶媒を分離及び脱着する複数からなる連続加熱炉3と、溶媒脱着済活性炭を再生する再生炉4と、連続加熱炉3から発生する溶媒ガスを液化回収する溶媒液化回収槽5と、熱風発生炉6とを備えている。   Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the drawings. As shown in FIG. 1, the activated carbon regenerator 1 of Embodiment 1 includes a hopper 2 for introducing used activated carbon, a continuous heating furnace 3 composed of a plurality of components for separating and desorbing a solvent from the used activated carbon, and a solvent desorbed A regeneration furnace 4 for regenerating activated carbon, a solvent liquefaction recovery tank 5 for liquefying and recovering solvent gas generated from the continuous heating furnace 3, and a hot air generator 6 are provided.

連続加熱炉3は、使用済活性炭から洗浄溶媒の分離及び脱着と、汚染物質の炭化が行われる部分であり、1区分の連続加熱炉は、加熱炉本体3aと、加熱室3bと、排出口3cとを備えている。図1では2区分の連続加熱炉が図示されているが、3区分以上備えていても何等問題ない。加熱室3bには熱風発生炉6より高温の熱風が供給され、加熱炉本体3a内の処理物を間接的に加熱する。また、加熱炉本体3aは回転可能に支持されている。加熱炉本体3a前部の炉内温度は溶媒気化温度に近い温度が設定されており、活性炭に表面吸着している溶媒の分離が行われる。加熱炉3a後部の炉内温度は溶媒気化温度よりも高い温度に設定され細孔吸着している溶媒の脱着が行われると同時に活性炭に吸着されている汚染物質の熱分解が行われる。熱分解により汚染物質は細孔内で炭素として残留する。連続加熱炉にて処理されたのち使用済活性炭は再生炉4へ移送される。   The continuous heating furnace 3 is a part where the cleaning solvent is separated and desorbed from the used activated carbon, and the carbonization of the pollutants is performed. The continuous heating furnace in one section includes a heating furnace body 3a, a heating chamber 3b, and a discharge port. 3c. FIG. 1 shows a two-section continuous heating furnace, but there is no problem even if three or more sections are provided. Hot air having a temperature higher than that of the hot air generating furnace 6 is supplied to the heating chamber 3b to indirectly heat the processed material in the heating furnace body 3a. Moreover, the heating furnace body 3a is rotatably supported. The furnace temperature at the front of the heating furnace body 3a is set to a temperature close to the solvent vaporization temperature, and the solvent adsorbed on the surface of the activated carbon is separated. The furnace temperature at the rear of the heating furnace 3a is set to a temperature higher than the solvent vaporization temperature, and the solvent adsorbed on the pores is desorbed, and at the same time, the contaminants adsorbed on the activated carbon are thermally decomposed. Due to pyrolysis, the contaminants remain as carbon in the pores. After being processed in the continuous heating furnace, the used activated carbon is transferred to the regeneration furnace 4.

再生炉4は、溶媒を分離脱着した使用済活性炭の再生を行う部分であり、再生炉本体4aと、再生炉加熱室4bと、排出口4cとを備えている。再生炉加熱室4bには熱風発生炉6より高温の熱風が供給され、再生炉本体4aの中の処理物を間接的に加熱する。再生炉本体4aは回転可能に支持されている。賦活ガス注入管4dは再生炉本体4aに配管されている。これにより、再生炉本体4aに対して、設定量の賦活ガスが賦活ガス注入管4dを経由して、定量的に送られる。賦活ガスとしては水蒸気、二酸化炭素、酸素、空気、若しくはそれらの2種類以上の混合ガスなどが使用できる。   The regeneration furnace 4 is a part that regenerates the used activated carbon from which the solvent is separated and desorbed, and includes a regeneration furnace body 4a, a regeneration furnace heating chamber 4b, and a discharge port 4c. High-temperature hot air is supplied to the regenerative furnace heating chamber 4b from the hot air generating furnace 6 to indirectly heat the processed material in the regenerative furnace main body 4a. The regenerative furnace main body 4a is rotatably supported. The activation gas injection pipe 4d is connected to the regeneration furnace body 4a. Thereby, a set amount of activation gas is quantitatively sent to the regeneration furnace body 4a via the activation gas injection pipe 4d. As the activation gas, water vapor, carbon dioxide, oxygen, air, or a mixed gas of two or more thereof can be used.

加熱炉3aにて熱処理されて炭化された汚染物質は、再生炉本体4aにて賦活ガスと反応して一酸化炭素もしくは二酸化炭素となりガス化され活性炭から分離し、再生炉本体4aから賦活生成ガス移送管4eを経由して熱風発生炉6に送られる。   The contaminant carbonized by heat treatment in the heating furnace 3a reacts with the activation gas in the regeneration furnace body 4a to become carbon monoxide or carbon dioxide, which is gasified and separated from the activated carbon, and is activated from the regeneration furnace body 4a. It is sent to the hot air generating furnace 6 via the transfer pipe 4e.

溶媒液化回収槽5は、冷却装置5aと溶媒回収槽5bと補助用バーナー燃料移送管5cを備えている。それぞれの加熱炉3の排出口3cには加熱炉にて発生した溶媒ガスの移送管3dがそれぞれ備えられており、溶媒液化回収槽5に接続されている。加熱炉本体3aで発生する溶媒ガスなどは、排出口3c、溶媒ガス移送管3d、冷却装置5a、を経由して溶媒回収槽5bにそれぞれ送られるように設定されている。なお溶媒ガスを冷却する装置は熱交換機や冷却器等、特定されるものではなく、どの装置を用いても何等問題ない。   The solvent liquefaction recovery tank 5 includes a cooling device 5a, a solvent recovery tank 5b, and an auxiliary burner fuel transfer pipe 5c. Each discharge port 3c of the heating furnace 3 is provided with a transfer pipe 3d for solvent gas generated in the heating furnace, and is connected to the solvent liquefaction recovery tank 5. The solvent gas generated in the heating furnace body 3a is set to be sent to the solvent recovery tank 5b via the discharge port 3c, the solvent gas transfer pipe 3d, and the cooling device 5a. In addition, the apparatus which cools solvent gas is not specified, such as a heat exchanger and a cooler, and there is no problem even if it uses which apparatus.

また、図1では溶媒液化回収槽5は加熱炉3a毎にそれぞれに付帯しているが、指定するものではなく、例えば、詳細は実施形態2で説明するが加熱炉2区分の溶媒ガスを一括で冷却回収する方法や、図示は略すが加熱炉3区分以上の溶媒ガスの冷却回収の組合せも溶媒ガスの性質、量、再利用方法により選択できる。   Further, in FIG. 1, the solvent liquefaction recovery tank 5 is attached to each heating furnace 3a, but is not specified. For example, although details will be described in the second embodiment, the solvent gases of the two heating furnaces are collectively shown. The method of cooling recovery and the combination of cooling recovery of solvent gas in three or more sections of the heating furnace can be selected depending on the nature, amount, and recycling method of the solvent gas.

溶媒回収槽5bに回収された溶媒は、溶媒の性能に応じて再利用される。図示の通り、必要に応じて、熱風発生炉6の補助用バーナー6aの燃料として補助用バーナー燃料移送管5cを介して移送され、熱エネルギー源としても使用できる。   The solvent recovered in the solvent recovery tank 5b is reused according to the performance of the solvent. As shown in the drawing, as necessary, the fuel is transferred as fuel for the auxiliary burner 6a of the hot air generating furnace 6 through the auxiliary burner fuel transfer pipe 5c and can also be used as a heat energy source.

熱風発生炉6内は、前記供給される賦活生成ガスを完全燃焼させるものであり、熱風発生炉6内のガス温度は、溶媒回収槽5bから供給される燃料を主とする補助用バーナー6aと燃焼用空気注入管6bから注入される空気量によって調整される。熱風発生炉6と再生炉加熱室4bとは、熱風配管7を介して接続され、熱風発生炉6で発生した熱風が熱風配管7を経由して再生炉加熱室4bに送られ、再生炉本体4aの温度を所定温度に保つように構成されている。再生炉加熱室4bと加熱炉加熱室3bは、熱風配管7を介して接続され、熱風は再生炉加熱室4bから加熱炉加熱室3bへ移動し加熱炉本体3aを所定の温度に保つように設定されている。使用済活性炭・溶媒分離済活性炭・再生活性炭などは、熱風発生炉6から供給される熱風とは直接に接することがない構造である。   The hot air generating furnace 6 completely burns the supplied activated product gas, and the gas temperature in the hot air generating furnace 6 is set to an auxiliary burner 6a mainly composed of fuel supplied from the solvent recovery tank 5b. It is adjusted by the amount of air injected from the combustion air injection pipe 6b. The hot air generating furnace 6 and the regenerative furnace heating chamber 4b are connected via a hot air pipe 7, and the hot air generated in the hot air generating furnace 6 is sent to the regenerative furnace heating chamber 4b via the hot air pipe 7, and the regenerative furnace main body. It is configured to keep the temperature of 4a at a predetermined temperature. The regenerative furnace heating chamber 4b and the heating furnace heating chamber 3b are connected via a hot air pipe 7, so that the hot air moves from the regenerative furnace heating chamber 4b to the heating furnace heating chamber 3b to keep the heating furnace main body 3a at a predetermined temperature. Is set. Used activated carbon, solvent-separated activated carbon, regenerated activated carbon, and the like have a structure that does not come into direct contact with hot air supplied from the hot air generating furnace 6.

次に本発明実施形態の活性炭再生装置1による活性炭再生方法を説明する。ホッパ2に搬入された使用済活性炭は加熱炉本体3aへ連続的に供給される。複数ある連続加熱炉本体3a毎に加熱温度が設定される。例えば、ドライクリーニングの石油系溶媒の再生に使われる活性炭においては、加熱炉を2区分にした場合、第1加熱炉本体(図1の左側の加熱炉本体3a)の温度、即ち、第1加熱温度は100〜300℃、望ましくは200〜300℃の任意の温度に調節され、第2加熱炉本体(図1の右側の加熱炉本体3a)の温度即ち第2加熱温度は300〜500℃、望ましくは400〜450℃の任意の温度に調節される。第1加熱温度で表面吸着された溶媒を、第2加熱温度で細孔吸着されている溶媒を、分離及び脱着することとなる。第2加熱炉本体3aでは表面吸着や細孔吸着されている汚染物質の熱分解も発生し、溶媒だけでなく汚染物質が熱分解したものが出てくる。加熱炉で処理された溶媒分離済の活性炭は、再生炉4に移送される。ここまでの工程は連続的に行われる。   Next, the activated carbon regeneration method by the activated carbon regeneration apparatus 1 of the embodiment of the present invention will be described. The used activated carbon carried into the hopper 2 is continuously supplied to the heating furnace body 3a. A heating temperature is set for each of a plurality of continuous heating furnace bodies 3a. For example, in the case of activated carbon used for regeneration of petroleum solvent for dry cleaning, when the heating furnace is divided into two sections, the temperature of the first heating furnace main body (the heating furnace main body 3a on the left side in FIG. 1), that is, the first heating. The temperature is adjusted to an arbitrary temperature of 100 to 300 ° C., preferably 200 to 300 ° C., and the temperature of the second heating furnace body (the heating furnace body 3a on the right side in FIG. 1), that is, the second heating temperature is 300 to 500 ° C. Desirably, the temperature is adjusted to an arbitrary temperature of 400 to 450 ° C. The solvent having the surface adsorbed at the first heating temperature and the solvent having the pores adsorbed at the second heating temperature are separated and desorbed. In the second heating furnace main body 3a, the thermal decomposition of the contaminants adsorbed on the surface and the pores also occurs, and not only the solvent but also the contaminants are thermally decomposed. The solvent-separated activated carbon treated in the heating furnace is transferred to the regeneration furnace 4. The steps so far are performed continuously.

再生炉本体4aは、再生炉加熱室4bにより加温され、再生炉本体4a内部の温度は600〜1,500℃、望ましくは800〜1,000℃の任意の温度に調整される。水蒸気、二酸化炭素、空気、酸素、などの賦活ガスの一種類もしくは複数種が賦活ガス注入管4dによって再生炉本体4aに供給され、賦活反応が始まる。供給した溶媒分離済活性炭に対し均一な再生を行う為に、再生炉本体4aは回転する。賦活時間は、5〜2400分、望ましくは5〜600分にて加工されるが、使用済活性炭が吸着している汚染物質の量により賦活時間は変更できる。賦活ガスの種類、賦活ガス供給量、再生炉本体4a内部の温度、賦活時間、などにより再生活性炭の吸着性能を調整することができる。これにより、活性炭の細孔内に残留していた汚染物質の熱分解残渣をも除去でき、再生能力を格段に高めることができる。再生炉は処理時間により連続式にしてもよく、またバッチ式にしても良い。   The regeneration furnace body 4a is heated by the regeneration furnace heating chamber 4b, and the temperature inside the regeneration furnace body 4a is adjusted to an arbitrary temperature of 600 to 1,500 ° C., desirably 800 to 1,000 ° C. One or more kinds of activation gases such as water vapor, carbon dioxide, air, and oxygen are supplied to the regeneration furnace body 4a through the activation gas injection pipe 4d, and the activation reaction starts. The regeneration furnace body 4a rotates in order to perform uniform regeneration on the supplied solvent-separated activated carbon. The activation time is 5 to 2400 minutes, preferably 5 to 600 minutes, and the activation time can be changed depending on the amount of the contaminant adsorbed by the used activated carbon. The adsorption performance of the regenerated activated carbon can be adjusted by the type of the activated gas, the activated gas supply amount, the temperature inside the regeneration furnace main body 4a, the activation time, and the like. Thereby, the thermal decomposition residue of the pollutant remaining in the pores of the activated carbon can also be removed, and the regeneration ability can be greatly enhanced. The regeneration furnace may be a continuous type or a batch type depending on the processing time.

それぞれの加熱炉本体3aで分離及び脱着された溶媒ガスなどは、それぞれ、溶媒ガス移送管3dを介して、冷却装置5aを経由して冷却され、溶媒回収槽5bに送られる。第1の加熱炉本体3aからは純粋の溶媒ガスを受け入れて液化し回収し、第2の加熱炉本体3aから汚染物質の熱分解ガスを含む溶媒ガスを受け入れて液化回収し、回収した溶媒の利用の便宜も考慮したものである。なお、溶媒ガスを冷却する方法は熱交換器を用いる方法や冷却器を使用する方法等、どの冷却方法を用いても何等問題はない。   The solvent gas separated and desorbed in each heating furnace body 3a is cooled via the solvent gas transfer pipe 3d via the cooling device 5a and sent to the solvent recovery tank 5b. From the first heating furnace body 3a, pure solvent gas is received and liquefied and recovered, and from the second heating furnace body 3a, solvent gas containing pyrolysis gas of pollutants is received and liquefied and recovered. This also takes into account the convenience of use. The method for cooling the solvent gas has no problem no matter which cooling method is used, such as a method using a heat exchanger or a method using a cooler.

水蒸気を賦活ガスとして用いる場合に賦活反応によって生じる、一酸化炭素及び水素ガスを含む生成ガスは、再生炉本体4aから賦活生成ガス移送管4eを経由して熱風発生炉6に送られる。   The product gas containing carbon monoxide and hydrogen gas generated by the activation reaction when steam is used as the activation gas is sent from the regeneration furnace body 4a to the hot air generation furnace 6 via the activation product gas transfer pipe 4e.

賦活生成ガスは、熱風発生炉6にて完全燃焼した後、補助用バーナー6a、あるいは燃焼用空気注入管6bから注入する空気量、などにより温度調節された後、熱風配管7を経由して再生炉加熱室4bに送られ、再生炉本体4aの温度を所定温度に保つ。次に熱風は再生炉加熱室4bから熱風配管7により再生炉加熱室3bへ順次送られ、再生炉本体3aを所定の温度に保つ。その後、熱風は排気管3eより排出される。補助用バーナー燃料移送管5cからの液化溶媒が主熱源、賦活生成ガス移送管4eからの賦活生成ガスが副次的な熱源として利用される。   The activated product gas is completely burned in the hot air generating furnace 6, adjusted in temperature by the amount of air injected from the auxiliary burner 6 a or the combustion air injection pipe 6 b, etc., and then regenerated through the hot air pipe 7. It is sent to the furnace heating chamber 4b, and the temperature of the regeneration furnace body 4a is kept at a predetermined temperature. Next, the hot air is sequentially sent from the regenerative furnace heating chamber 4b to the regenerative furnace heating chamber 3b through the hot air pipe 7 to keep the regenerative furnace main body 3a at a predetermined temperature. Thereafter, the hot air is discharged from the exhaust pipe 3e. The liquefied solvent from the auxiliary burner fuel transfer pipe 5c is used as a main heat source, and the activated product gas from the activated product gas transfer pipe 4e is used as a secondary heat source.

以上、説明した実施形態1によれば、洗浄溶媒と汚染物質を含む使用済活性炭を複数の加熱炉3aにより段階的に溶媒を分離及び脱着することで高い燃焼熱を持つ溶媒を装置全体から分離することができる。使用済み活性炭から分離される溶媒をすべて燃焼する方式であった従来の活性炭再生装置では、単位時間当たりの使用済み活性炭の投入量を調整して装置の温度制御をする必要があったため、生産性が悪かった。本実施形態1によれば溶媒は液化分離され燃焼されることがないことから使用済み活性炭の単位時間当たりの投入量を増加させることができる。よって、装置の小型化、温度制御の容易化ができ、効率的に使用済活性炭を再生することができる。   As described above, according to the first embodiment described above, the solvent having high combustion heat is separated from the entire apparatus by separating and desorbing the used activated carbon containing the cleaning solvent and the contaminants in stages by the plurality of heating furnaces 3a. can do. In the conventional activated carbon regenerator that burns all the solvent separated from the used activated carbon, it is necessary to adjust the amount of used activated carbon per unit time to control the temperature of the device. Was bad. According to the first embodiment, since the solvent is not liquefied and separated and burned, the input amount of used activated carbon per unit time can be increased. Therefore, the apparatus can be reduced in size and temperature control can be facilitated, and the used activated carbon can be efficiently regenerated.

また、回収した溶媒を性能に応じて再利用することができる一方、賦活生成ガスとともに溶媒の一部を熱エネルギーの燃料としても使用することもできるため、エネルギー効率を向上させることができる。   In addition, while the recovered solvent can be reused according to performance, a part of the solvent can be used as a fuel of thermal energy together with the activation product gas, so that energy efficiency can be improved.

なお、本発明は、上述の実施形態に限定されるものではなく、本発明の技術的思想を逸脱しない範囲において、改変等を加えることが出来るものであり、それらの改変、均等物等も本発明の技術的範囲に含まれる。例えば、熱風を再生炉加熱室4bから加熱炉加熱室3bへ直列に供給しているが、熱風発生炉6からの熱風を再生炉加熱室4bと加熱炉加熱室3bに対して並列に供給してもよい。また、例えば、再生炉本体4aを再生炉加熱室4bにて間接的に加熱保温しているが、再生炉本体4aで発生する賦活生成ガスを、再生炉本体4a内に制御された空気量を導入することにより、燃焼して再生炉本体4a内の処理物を直接的に加熱してもよく、また併用にしてもよい。第1実施形態では、溶媒回収槽5bからそれぞれ流出する液化溶媒を合流させて再利用しているが、これを分離させたままで、別々の用途に再利用することもできる。   The present invention is not limited to the above-described embodiment, and modifications and the like can be made without departing from the technical idea of the present invention. It is included in the technical scope of the invention. For example, hot air is supplied in series from the regenerative furnace heating chamber 4b to the heating furnace heating chamber 3b, but hot air from the hot air generating furnace 6 is supplied in parallel to the regenerative furnace heating chamber 4b and the heating furnace heating chamber 3b. May be. Further, for example, the regenerative furnace main body 4a is indirectly heated and kept in the regenerative furnace heating chamber 4b, but the activated product gas generated in the regenerative furnace main body 4a is changed to a controlled amount of air in the regenerative furnace main body 4a. By introducing, the processed material in the regenerative furnace main body 4a may be heated directly or may be used in combination. In the first embodiment, the liquefied solvents respectively flowing out from the solvent recovery tank 5b are joined and reused, but can be reused for different purposes while being separated.

クリーニング業者より提供された石油溶媒系クリーニングで使用された使用済活性炭を用いた活性炭再生方法の実施例を説明する。   An embodiment of an activated carbon regeneration method using spent activated carbon used in petroleum solvent-based cleaning provided by a cleaning company will be described.

(実施例1)使用済活性炭を第1加熱処理210℃で150分、第2加熱処理550℃で30分、再賦活処理850℃で80分、を行なった。第1及び第2加熱処理で発生した溶媒ガスを各々冷却した第1及び第2分離溶媒、最終処理品として再生物Aを得た。   (Example 1) The used activated carbon was subjected to a first heat treatment at 210 ° C for 150 minutes, a second heat treatment at 550 ° C for 30 minutes, and a reactivation treatment at 850 ° C for 80 minutes. Regenerated product A was obtained as the first and second separation solvents and the final processed product, each of which was cooled by the solvent gas generated in the first and second heat treatments.

(実施例2)使用済活性炭を第1加熱処理210℃で150分、第2加熱処理550℃で30分、再賦活処理850℃で150分、を行なった。第1及び第2加熱処理で発生した溶媒ガスを各々冷却した第1及び第2分離溶媒、最終処理品として再生物Bを得た。   (Example 2) The used activated carbon was subjected to a first heat treatment at 210 ° C for 150 minutes, a second heat treatment at 550 ° C for 30 minutes, and a reactivation treatment at 850 ° C for 150 minutes. Recycled material B was obtained as the first and second separation solvents and the final treated product, each of which was obtained by cooling the solvent gas generated in the first and second heat treatments.

(比較例1)使用済活性炭を第1加熱処理210℃で150分、第2加熱処理550℃で30分、を行なった。第1及び第2加熱処理で発生した溶媒ガスを各々冷却した第1及び第2分離溶媒、最終処理品として再生物Cを得た。 (Comparative Example 1) The used activated carbon was subjected to a first heat treatment at 210 ° C for 150 minutes and a second heat treatment at 550 ° C for 30 minutes. Regenerated product C was obtained as the first and second separation solvents and the final treated product, each of which was cooled by the solvent gas generated in the first and second heat treatments.

(比較例2)使用済活性炭を一般的な方法である[0008]記載の方法により分離された溶媒ガスを燃焼して再生用熱エネルギー源として再利用する方法で、550℃×120分、を行なった。脱着ガスは全て燃焼に利用され溶媒回収はなく、最終処理品として再生物Dを得た。 (Comparative Example 2) 550 ° C. × 120 minutes in a method in which used activated carbon is burned with a solvent gas separated by the method described in [0008], which is a general method, and reused as a thermal energy source for regeneration. I did it. All of the desorbed gas was used for combustion and there was no solvent recovery, and a regenerated product D was obtained as a final processed product.

未使用活性炭と再生物Aと再生物Bと再生物C及び再生物Dについて、JIS K1474に準じたヨウ素吸着試験、メチレンブルー吸着試験を行い、図3及び図4に示す吸着等温線図を作成した。各々の吸着等温線より求めた吸着量を表1にまとめた。再生物Cは溶媒分離・脱着と炭化のみであるために吸着能力が低い結果を得た。一方、再生物Aと再生物Bは溶媒分離・脱着と炭化さらに再生処理として再賦活を行っているために従来法である再生物Dより吸着能力が高くなっている。さらに再生物Aと再生物Bの結果から再賦活条件を変化させる事により再生品の吸着能力を調整することが可能になることが明らかになった。
(表1) 吸着性能表

Figure 2014018731
The unused activated carbon, regenerated material A, regenerated material B, regenerated material C and regenerated material D were subjected to iodine adsorption test and methylene blue adsorption test according to JIS K1474, and the adsorption isotherms shown in FIGS. 3 and 4 were prepared. . The amount of adsorption determined from each adsorption isotherm is summarized in Table 1. Since the regenerated product C was only solvent separation / desorption and carbonization, the adsorption ability was low. On the other hand, the regenerated product A and the regenerated product B have higher adsorption capacity than the regenerated product D, which is a conventional method, because the reactivation is performed as solvent separation / desorption, carbonization and regeneration treatment. Furthermore, it became clear from the results of the regenerated product A and the regenerated product B that the adsorption capacity of the regenerated product can be adjusted by changing the reactivation conditions.
(Table 1) Adsorption performance table
Figure 2014018731

実施形態2の活性炭再生装置101は、実施形態1の活性炭再生装置1と概ね構成が共通するが、連続加熱炉3から発生する溶媒ガスを回収し液化する溶媒液化回収槽105が単一である点で相違し、相違点について説明する。実施形態2において、実施形態1と共通する要素については100番台として図示し説明は援用する。これにより、活性炭再生装置101がシンプルになる一方で、実施形態1のように2個の冷却装置5a及び2個の溶媒回収槽5bで溶媒の性能に応じて別々に2系統で回収することができず、冷却装置105a及び溶媒回収槽105bにより一系統で単純に回収している点で相違する。用途等の諸般の事情に応じて、実施形態1、2を、適宜、選択すればよい。   The activated carbon regenerator 101 of the second embodiment has substantially the same configuration as the activated carbon regenerator 1 of the first embodiment, but has a single solvent liquefaction recovery tank 105 that recovers and liquefies the solvent gas generated from the continuous heating furnace 3. It is different in a point and a difference is demonstrated. In the second embodiment, elements that are the same as those in the first embodiment are illustrated as 100s and the description is incorporated. As a result, the activated carbon regenerator 101 is simplified, while the two cooling devices 5a and the two solvent recovery tanks 5b can be separately recovered in two systems according to the performance of the solvent as in the first embodiment. However, it is different in that it is simply recovered in one system by the cooling device 105a and the solvent recovery tank 105b. The first and second embodiments may be appropriately selected according to various circumstances such as the use.

1,101 活性炭再生装置 4e 賦活生成ガス移送管
2 ホッパ 5,105 溶媒液化回収槽
3 連続加熱炉 5a 冷却装置
3a 加熱炉本体 5b 溶媒回収槽
3b 加熱炉加熱室 5c 補助用バーナー燃料移送管
3c 排出口 6 熱風発生炉
3d 溶媒ガス移送管 6a 補助用バーナー
3e 排気管 6b 燃焼用空気注入管
4 再生炉 7 熱風配管
4a 再生炉本体
4b 再生炉加熱室
4c 排出口
4d 賦活ガス注入管
1,101 Activated carbon regenerating apparatus 4e Activation product gas transfer pipe 2 Hopper 5,105 Solvent liquefaction recovery tank 3 Continuous heating furnace 5a Cooling apparatus 3a Heating furnace body 5b Solvent recovery tank 3b Heating furnace heating chamber 5c Auxiliary burner fuel transfer pipe 3c Exhaust Outlet 6 Hot-air generating furnace 3d Solvent gas transfer pipe 6a Auxiliary burner 3e Exhaust pipe 6b Combustion air injection pipe 4 Regeneration furnace 7 Hot-air pipe 4a Regeneration furnace body 4b Regeneration furnace heating chamber 4c Exhaust port 4d Activation gas injection pipe

Claims (4)

異なる処理温度にて使用済活性炭から溶媒を分離及び脱着する複数の連続加熱炉と、該連続加熱炉にて処理された使用済活性炭から被吸着汚染物質を取り除いて使用済活性炭を再生する再生炉と、を備える事を特徴とする活性炭再生装置。   A plurality of continuous heating furnaces for separating and desorbing the solvent from the used activated carbon at different processing temperatures, and a regeneration furnace for regenerating the used activated carbon by removing adsorbed contaminants from the used activated carbon treated in the continuous heating furnace And an activated carbon regenerator. 前記連続加熱炉にて使用済活性炭から分離及び脱着されガス化した溶媒ガスをそれぞれ別に液化回収する複数の溶媒液化回収槽、または、前記溶媒ガスを同時に回収する一つ溶媒液化回収槽を備えたことを特徴とする請求項1の活性炭再生装置。   A plurality of solvent liquefaction recovery tanks for separately liquefying and recovering the solvent gas separated and desorbed from the used activated carbon in the continuous heating furnace, or one solvent liquefaction recovery tank for simultaneously recovering the solvent gas The activated carbon regenerator according to claim 1. 異なる処理温度帯にて連続的に使用済活性炭から溶媒を分離及び脱着する複数の連続加熱工程と、該連続加熱工程にて処理された使用済活性炭から被吸着汚染物質を取り除いて使用済活性炭を再生する再生工程と、を備える事を特徴とする活性炭再生方法。   A plurality of continuous heating steps for continuously separating and desorbing the solvent from the used activated carbon in different treatment temperature zones, and removing the adsorbed contaminants from the used activated carbon treated in the continuous heating step, And a regeneration step for regenerating the activated carbon regeneration method. 前記連続加熱炉にて使用済活性炭から分離及び脱着されガス化した溶媒ガスをそれぞれ別にまたは同時に液化回収する複数または一つの溶媒液化回収工程を備えたことを特徴とする請求項3の活性炭再生方法。 The activated carbon regeneration method according to claim 3, further comprising a plurality of or one solvent liquefaction recovery step of liquefying and recovering the solvent gas separated and desorbed from the used activated carbon in the continuous heating furnace and separately or simultaneously. .
JP2012159348A 2012-07-18 2012-07-18 Apparatus and method for regenerating used activated carbon Pending JP2014018731A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012159348A JP2014018731A (en) 2012-07-18 2012-07-18 Apparatus and method for regenerating used activated carbon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012159348A JP2014018731A (en) 2012-07-18 2012-07-18 Apparatus and method for regenerating used activated carbon

Publications (1)

Publication Number Publication Date
JP2014018731A true JP2014018731A (en) 2014-02-03

Family

ID=50194232

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012159348A Pending JP2014018731A (en) 2012-07-18 2012-07-18 Apparatus and method for regenerating used activated carbon

Country Status (1)

Country Link
JP (1) JP2014018731A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020028831A (en) * 2018-08-21 2020-02-27 株式会社フジタ Manufacturing method of metal carrying carbide, and carbide manufacturing device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51119697A (en) * 1975-04-15 1976-10-20 Nippon Furnace Kogyo Kaisha Ltd Method and equipment for regeneration of active carbon
JPS51153748U (en) * 1975-05-31 1976-12-08
WO1982003619A1 (en) * 1981-04-10 1982-10-28 Sasaki Yoshiki Apparatus for regenerating activated carbon

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51119697A (en) * 1975-04-15 1976-10-20 Nippon Furnace Kogyo Kaisha Ltd Method and equipment for regeneration of active carbon
JPS51153748U (en) * 1975-05-31 1976-12-08
WO1982003619A1 (en) * 1981-04-10 1982-10-28 Sasaki Yoshiki Apparatus for regenerating activated carbon

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020028831A (en) * 2018-08-21 2020-02-27 株式会社フジタ Manufacturing method of metal carrying carbide, and carbide manufacturing device
JP2022163103A (en) * 2018-08-21 2022-10-25 株式会社フジタ Manufacturing method of metal-carrying carbide
JP7311954B2 (en) 2018-08-21 2023-07-20 株式会社フジタ Method for producing adsorbent of phosphorus or arsenic

Similar Documents

Publication Publication Date Title
CN106179287B (en) Adsorbent reactivation and regeneration off gases processing method during coke-stove gas temp.-changing adsorption desulfurization
RU2432315C2 (en) Method and apparatus for converting hydrogen sulphide to hydrogen and sulphur
JP4875522B2 (en) CO2 recovery device and waste extraction method
JP6305868B2 (en) Hydrogen gas purification method and purification apparatus
WO2013084394A1 (en) Carbon dioxide-separating equipment
JP2007061777A (en) Co2 recovery apparatus and co2 recovery method
JP2015000381A (en) Organic solvent recovery system
JP2011056399A (en) Carbon dioxide recovery apparatus
JP2014057941A (en) Carbon dioxide separation and recovery system and carbon dioxide separation and recovery method
CN111889088A (en) Desorption regeneration activation process and system for adsorbent
US5405812A (en) Method and arrangement for purifying a carbon-containing adsorption medium
JP5184061B2 (en) Method for separating and recovering carbon dioxide from blast furnace gas
JP2008133327A (en) Purifying apparatus and purifying method for gasification gas
JP2007177779A (en) Treatment method for volatile organic compound (voc gas)
JP2011062645A (en) Organic solvent-containing gas recovery system
JP2019136640A (en) Method for determining performance recovery possibility of active charcoal, active charcoal regeneration method and active charcoal reuse system
CN106378120B (en) Regenerating active carbon system and regeneration method
WO2009116674A1 (en) Method for separating blast furnace gas
CN101314098B (en) Purification method for polysilicon tail gas and purifier employing the method
JP2014018731A (en) Apparatus and method for regenerating used activated carbon
JP4838000B2 (en) Method for removing siloxane in digestion gas
JP2013086024A (en) Organic solvent desorption method and organic solvent desorbing device
JP2009022859A (en) Method for recycling copper-based absorbent, and method for removing mercury from raw material gas
JP6332586B2 (en) Water treatment device and water treatment system
JP2010255420A (en) Gas power generation system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150618

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160426

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20161025