JP2014018641A - Air cleaner by cavitation bubbled water stream - Google Patents

Air cleaner by cavitation bubbled water stream Download PDF

Info

Publication number
JP2014018641A
JP2014018641A JP2012175398A JP2012175398A JP2014018641A JP 2014018641 A JP2014018641 A JP 2014018641A JP 2012175398 A JP2012175398 A JP 2012175398A JP 2012175398 A JP2012175398 A JP 2012175398A JP 2014018641 A JP2014018641 A JP 2014018641A
Authority
JP
Japan
Prior art keywords
cyclone chamber
air
cavitation bubble
flow
cavitation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012175398A
Other languages
Japanese (ja)
Inventor
Fumio Yamaguchi
文男 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YAMAGUCHI KOGYO KK
Original Assignee
YAMAGUCHI KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YAMAGUCHI KOGYO KK filed Critical YAMAGUCHI KOGYO KK
Priority to JP2012175398A priority Critical patent/JP2014018641A/en
Publication of JP2014018641A publication Critical patent/JP2014018641A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a cleaner of air polluted by bad smell or harmful components.SOLUTION: A mild swirling flow is generated in a cylindrical cyclone chamber by a discharge fan in the degree of a household ventilation fan, while a strong suction fan is required in a cyclone dust collector, and a cavitation bubble nozzle is faced to an upper part in the cyclone chamber, and a microbubble-involving waterdrop group sprayed from the nozzle is dispersed into the swirling air flow. Hereby, bad smell/harmful components in the air falling down slowly and spirally are captured by the waterdrop group, and oxidized/decomposed by extinction of microbubble.

Description

大気中の揮発性有機化合物や悪異臭成分、そして気化した油性成分などを、マイクロバブル含有の水滴群により、吸着分解する、空気浄化装置に関する。  The present invention relates to an air purification apparatus that adsorbs and decomposes volatile organic compounds, bad odor components, vaporized oily components, and the like in the atmosphere with a group of water droplets containing microbubbles.

マイクロバブルの働き。
円筒2内を流れる流体に超音波4を照射してキャビテーションバブルを発生する方式は、米国特許7,718,073号公報に開示されており、図6に示す。エミッター3から粒径50以下のマイクロバブルバブルを発生して、バブル発生効率の向上を図る。同公報4欄55行目ないし5欄23行目には、「本発明によると、マイクロ有機組織はラジカルH.OH、HOO.により除去できる。これらのラジカルはマイクロ有機組織には有害である。high−frequency ultrasound(超音波)により酸素雰囲気下で下式の反応を起こす。
O → H.+.OH
H.+ O → HOO.
HOO.+HOO.→ H + O
.OH + .OH → H
これらラジカル等(toxic species)製造に要するエネルキーは、マイクロバブルの併用により低下する。超音波により形成されるキャビテーション・バブル(cavitat−ion bubbles)に、マイクロバブルが重ね合わさることで、蛍光現象(sonoluminescence)の増加をもたらすためである。この蛍光現象によりラジカル種は増加する。つまり、超音波4中を通過する際に、マイクロバブル5は破砕(fragmentation)され、蛍光現象は活発になる。特に、複数の超音波発信源をマイクロバブル通路中に配置すると破砕は一層活発になる。」
Microbubbles work.
A method of generating cavitation bubbles by irradiating the fluid flowing in the cylinder 2 with ultrasonic waves 4 is disclosed in US Pat. No. 7,718,073, and is shown in FIG. Microbubble bubbles having a particle size of 50 or less are generated from the emitter 3 to improve bubble generation efficiency. According to the publication, column 4, line 55 to column 5, line 23, “According to the present invention, the micro organic structure can be removed by radicals H.OH and HOO. These radicals are harmful to the micro organic structure. The reaction of the following formula is caused in an oxygen atmosphere by high-frequency ultrasound (ultrasound).
H 2 O → H. +. OH
H. + O 2 → HOO.
HOO. + HOO. → H 2 O 2 + O 2
. OH +. OH → H 2 O 2
The energy required for the production of these radicals and the like decreases with the use of microbubbles. This is because the microbubbles are superimposed on cavitation-ion bubbles formed by ultrasonic waves, thereby increasing the fluorescence phenomenon. This fluorescent phenomenon increases radical species. That is, when passing through the ultrasonic wave 4, the microbubbles 5 are fragmented and the fluorescence phenomenon becomes active. In particular, when a plurality of ultrasonic wave transmission sources are arranged in the microbubble passage, crushing becomes more active. "

マイクロバブルを水中に発生するには、気泡を細断する方法よりも、前項のように、キャビテーション方式が省エネであり、キャビテーション気泡ノズルとして空気浄化装置に採用されている(特開2011−581号、特願2011−176381号)。  In order to generate microbubbles in water, the cavitation method is more energy-saving than the method of chopping bubbles, as described in the previous section, and is employed in an air purification device as a cavitation bubble nozzle (Japanese Patent Laid-Open No. 2011-581). , Japanese Patent Application No. 2011-176281).

サイクロン集塵機
フィルター不要なサイクロン集塵機が普及している。円筒サイクロン室の上部接線方向に吸気管2を臨ませ、排気管4から吸引排気する(図5−−特開2008−29769号)。吸気管2を経て、接線方向に円筒3内に吸引された塵埃気流100は、円筒3内壁面に沿う旋回気流として降下し、底隔壁10に達してから反転上昇し、排気管4から排出される。旋回時の遠心力により塵埃は円筒3壁面に押し付けられ、重力により底隔壁10に溜まる。この出願発明は、抗菌剤を含んだ水滴流を誘導管9を経て、旋回気流と混流し、塵埃をこの水滴群により捕捉し、塵埃凝集物300として底隔壁10に貯める。抗菌作用により凝集物の殺菌や脱臭を行う。
Cyclone dust collectors Cyclone dust collectors that do not require filters are in widespread use. The intake pipe 2 faces in the upper tangential direction of the cylindrical cyclone chamber, and is sucked and exhausted from the exhaust pipe 4 (FIG. 5—Japanese Patent Laid-Open No. 2008-29769). The dust airflow 100 sucked into the cylinder 3 in the tangential direction through the intake pipe 2 descends as a swirl airflow along the inner wall surface of the cylinder 3, reaches the bottom partition 10, rises in reverse, and is discharged from the exhaust pipe 4. The The dust is pressed against the wall surface of the cylinder 3 by the centrifugal force at the time of turning, and accumulates in the bottom partition wall 10 by gravity. In the present invention, a water droplet flow containing an antibacterial agent is mixed with the swirling airflow through the induction tube 9, dust is captured by the water droplet group, and is stored in the bottom partition 10 as a dust aggregate 300. Sterilizes and deodorizes aggregates by antibacterial action.

塗装ガンからの揮発性有機化合物や有機樹脂塗料をマイクロバブル水滴流で捕捉するには、円筒内の上昇気流と、下方向きのスプレー水滴流により、旋回向流流域を発生させている(特開2011−581号)。向流ではない平行流方式では、処理経路が長くならざるをえない(特願2011−176381号)。有機樹脂塗料フリーの軽い気流を低ファン容量で脱臭・洗浄しようと、サイクロン空気洗浄方式に着眼した。  In order to capture volatile organic compounds and organic resin paints from a paint gun with microbubble water droplets, a swirling counterflow region is generated by the upward airflow in the cylinder and the downward spraying waterdrop (JP, A, JP) 2011-581). In the parallel flow method that is not counterflow, the processing path must be long (Japanese Patent Application No. 2011-176181). We focused on the cyclone air cleaning method to deodorize and clean organic resin paint-free light airflow with low fan capacity.

経路断面が急拡大する乱流領域を有するキャビテーション気泡ノズルを採用し、乱流領域で発生したキャビテーション気泡核を成長させ、先端ノズルから大気に触れて減圧する噴流内でマイクロバブル(50〜2μm)へとこの気泡を成長させる。 このキャビテーション気泡ノズルを円筒サイクロン室内の上部に下向きに臨ませる。ノズルからスプレー(噴霧)される水滴群に、脱臭・浄化すべき空気気流との接触時間を長くすべく、サイクロン室内の上部に空気導入口を配置し、サイクロン室の下部に内部の空気を排出する排出口を配置し、上部導入口からサイクロン室内に吸引される気流を内周壁面に沿ってをゆっくりと旋回させる。マイクロバブル内包の飛散水滴群は、旋回気流と共にゆっくりと降下し、気流内の異臭成分、揮発化合物などを水滴群により捕捉し、マイクロバブル消滅により分解する。  A cavitation bubble nozzle with a turbulent flow region with a rapidly expanding path cross section is used to grow cavitation bubble nuclei generated in the turbulent flow region, and microbubbles (50 to 2 μm) in a jet that depressurizes by touching the atmosphere from the tip nozzle Grow this bubble. This cavitation bubble nozzle faces downward in the upper part of the cylindrical cyclone chamber. In order to extend the contact time of the water droplets sprayed from the nozzle with the air flow to be deodorized and purified, an air inlet is arranged at the top of the cyclone chamber and the air inside the cyclone chamber is discharged. A discharge port is arranged, and the airflow sucked into the cyclone chamber from the upper introduction port is slowly swung along the inner peripheral wall surface. The scattered water droplets contained in the microbubbles descend slowly along with the swirling airflow, trapping off-odor components, volatile compounds, etc. in the airflow by the water droplets and decomposing by the disappearance of the microbubbles.

サイクロン室内をゆっくりと旋回しつつ降下する気流は、マイクロバブルを内包する噴霧水滴群に接触する。気流内の揮発化合物や異臭成分の多くはこの水滴群に吸着される。マイクロバブル消滅時の水酸基ラジカルなどによりこれらの吸着物質は分解される。旋回降下する気流中の水滴群は弱い遠心力により壁面に付着しやすい。特に、サイクロン室下部に絞り部を設けておけば、更なる遠心力により水滴群は壁面に付着する。サイクロン集塵機のように強力な吸引ファンは必要なく、家庭用換気ファンで気流を吸引するのが特徴である。  The airflow descending while slowly swirling in the cyclone chamber contacts the sprayed water droplet group containing the microbubbles. Most of the volatile compounds and off-flavor components in the airflow are adsorbed by the water droplet group. These adsorbed substances are decomposed by hydroxyl radicals or the like when the microbubbles disappear. Water droplets in the swirling airflow tend to adhere to the wall surface due to weak centrifugal force. In particular, if a constricted part is provided at the lower part of the cyclone chamber, the water droplet group adheres to the wall surface by further centrifugal force. Unlike a cyclone dust collector, there is no need for a powerful suction fan, and it is characterized by sucking airflow with a home ventilation fan.

サイクロン室の断面図である。  It is sectional drawing of a cyclone chamber. キャビテーション気泡ノズルの断面図である。  It is sectional drawing of a cavitation bubble nozzle. キャビテーション気泡ノズルからのマイクロバブル噴流を、サブミクロン気泡飛散流へと分解する、飛散プレートを配置した実施例の説明図である。  It is explanatory drawing of the Example which has arrange | positioned the scattering plate which decomposes | disassembles the microbubble jet from a cavitation bubble nozzle into a submicron bubble scattering flow. 図3の実施例でのサブミクロン気泡の粒径分布グラフである。  It is a particle size distribution graph of the submicron bubble in the Example of FIG. 特開2008−29769号に開示されているサイクロン集塵機の説明図であり、サイクロン室底部には噴霧した抗菌水滴が滞っている。  It is explanatory drawing of the cyclone dust collector currently disclosed by Unexamined-Japanese-Patent No. 2008-29769, The sprayed antibacterial water droplet is staying in the cyclone chamber bottom part. 米国特許7,718,073号公報のキャビテーション気泡を超音波により生成する公知技術の説明図である。  It is explanatory drawing of the well-known technique which produces | generates the cavitation bubble of US Patent 7,718,073 by an ultrasonic wave.

経路断面が急拡大する乱流領域11を有するキャビテーション気泡ノズル2を採用する(図2)。水道水圧の循環水流は流路10を通過し、乱流領域11内でキャビテーション気泡を発生する。このキャビテーション気泡は気泡成長流路12を通過し、水流を扇カーテン状に噴霧する周知のデフレクタ13を経て、拡散噴霧される。この噴霧水滴流内の気泡粒径分布は、気泡径分布は、10ないし20μm(ミクロン)にピーク特性を有し、2μm付近にもピークを呈する。デフレクタ13を除去し、ノズル先端から10cmほど離れた位置に、凹凸面を有する飛散プレート14を置く(図3)。キャビテーション気泡を含んだ水流はこの凹凸面にて衝撃力を受け、微細な水滴群として激しく四方へと飛散する。飛散水滴群の気泡粒径分布を図4に示す。10ないし20μmのピーク特性は半減し、その分、2μmのピークが突出している。10ないし20μmの気泡が衝撃エネルギーを受けて2μmへと細断された、と解釈できる。また、使用した気泡径測定器がサブミクロン(1μm以下)を検出できないことを鑑みると、1μm以下のサブミクロン気泡の大量発生の可能性は高い。事実、飛散水滴群の近くではオゾン臭を感じ、有機塗装物質の変色を招く。水酸基などのフリーラジカル大量発生を推測させる。  A cavitation bubble nozzle 2 having a turbulent flow region 11 in which the path cross section rapidly expands is employed (FIG. 2). The circulating water flow at the tap water pressure passes through the flow path 10 and generates cavitation bubbles in the turbulent flow region 11. This cavitation bubble passes through the bubble growth channel 12, and is diffused and sprayed through a well-known deflector 13 that sprays a water flow in a fan curtain shape. The bubble particle size distribution in the sprayed water droplet flow has a peak characteristic at 10 to 20 μm (micron) and a peak at around 2 μm. The deflector 13 is removed, and a scattering plate 14 having an uneven surface is placed at a position about 10 cm away from the nozzle tip (FIG. 3). The water stream containing cavitation bubbles receives an impact force on this uneven surface and violently scatters in all directions as fine water droplets. The bubble particle size distribution of the scattered water droplet group is shown in FIG. The peak characteristic of 10 to 20 μm is halved, and the peak of 2 μm protrudes accordingly. It can be interpreted that 10 to 20 μm bubbles were shredded to 2 μm upon receiving impact energy. In addition, considering that the bubble diameter measuring instrument used cannot detect submicron (1 μm or less), there is a high possibility of generating a large amount of submicron bubbles of 1 μm or less. In fact, ozone odor is felt near the scattered water droplets, causing discoloration of the organic coating material. Let us guess the generation of free radicals such as hydroxyl groups.

このキャビテーション気泡ノズル2を、円筒サイクロン室1内の上部に下向きに臨ませる(図1)。外壁筒4の底部に溜まる循環水をポンプ6にてキャビテーション気泡ノズル2へと循環させる。ノズル2へは4kgほどの水圧力が加わり、デフレクタ13を経て、扇カーテン状にマイクロバブル内包の水滴群が噴霧される。
この円筒サイクロン室1内の上部に、異臭成分や有害物質を含んだ空気を導く、空気流入管3を臨ませる。円筒の接線方向にその端部を臨ませるのが好ましい。円筒サイクロン室1の下部をテーパー形状にする。この下部排出口よりサイクロン室1内の空気を強制排出するために、空気流入管3から室1内に流入した気流は旋回しながら降下するが、テーパー内壁面に沿って旋回流が流速を増すので、サイクロン室1内の旋回流は一層活発になる。恰も、洗面台内の水が、その底栓口に近づくにつれて急速に渦流速を増し、ここでの渦流が洗面台内全体にゆっくりとした渦流を惹起するように。円筒サイクロン室1内をゆっくりと旋回しながら降下する旋回気流と共に、噴霧水滴群もゆっくりと降下し、気流内の異臭成分や揮発・蒸発物質を吸着する。水滴内のマイクロバブルはその消滅時に水酸基ラジカラなどのフリーラジカル種を発生して、これら吸着物質を酸化あるいは分解する。酸素雰囲気下でのフリーラジカル発生は。過酸化水素やオゾンを生成する。これらの強い酸化力で、塗装工場内での揮発性有機化合物や、家庭新建材に含まれるホルムアルデヒド、旋盤作業中での蒸発した機械油、食品工場での異臭、などを酸化処理する。
This cavitation bubble nozzle 2 is caused to face downward in the upper part of the cylindrical cyclone chamber 1 (FIG. 1). Circulating water accumulated at the bottom of the outer wall cylinder 4 is circulated to the cavitation bubble nozzle 2 by the pump 6. A water pressure of about 4 kg is applied to the nozzle 2, and a group of water droplets containing microbubbles is sprayed in a fan curtain shape through the deflector 13.
An air inflow pipe 3 that guides air containing a strange odor component or a harmful substance is allowed to face the upper portion of the cylindrical cyclone chamber 1. It is preferable to have the end face in the tangential direction of the cylinder. The lower part of the cylindrical cyclone chamber 1 is tapered. In order to forcibly discharge the air in the cyclone chamber 1 from the lower discharge port, the airflow flowing into the chamber 1 from the air inflow pipe 3 descends while swirling, but the swirling flow increases the flow velocity along the tapered inner wall surface. Therefore, the swirl flow in the cyclone chamber 1 becomes more active. Also, the vortex flow rapidly increases as the water in the wash basin approaches the bottom plug, and the vortex here causes a slow vortex throughout the wash basin. Along with the swirling airflow that descends while slowly swirling in the cylindrical cyclone chamber 1, the spray water droplet group also descends slowly, adsorbing the off-flavor components and volatile / evaporated substances in the airflow. When the microbubbles in the water droplets disappear, free radical species such as hydroxyl radicals are generated to oxidize or decompose these adsorbed substances. Free radical generation in an oxygen atmosphere. Produces hydrogen peroxide and ozone. These strong oxidizing powers oxidize volatile organic compounds in paint factories, formaldehyde contained in new home building materials, machine oil evaporated during lathe operations, and off-flavors in food factories.

円筒サイクロン室1のテーパー部での旋回流の流速増加は、遠心力を増加させ、水滴群をテーパー内壁面に付着させる。重力により内壁面に沿って降下する水滴群は、外壁筒4の底に溜まる。外壁筒4の上部に、排出ファン5を取り付ける。排出ファン5の空気取り入れ口を、この外壁筒4ではなく、円筒サイクロン室1内に臨ませても良い。この場合は、外壁筒4は不要になる。
図3のように、デフレクタ13を廃して、飛散プレート14をキャビテーション気泡ノズル2の下流には配置すれば、水滴内のマイクロバブルはこのプレートから受ける衝撃エネルギーにより更に細かいサブミクロン気泡へと細断され、強い酸化力を有する水滴群を得ることができる。
The increase in the flow velocity of the swirling flow at the tapered portion of the cylindrical cyclone chamber 1 increases the centrifugal force and causes the water droplets to adhere to the tapered inner wall surface. A group of water drops that fall along the inner wall surface due to gravity accumulates at the bottom of the outer wall cylinder 4. A discharge fan 5 is attached to the upper part of the outer wall cylinder 4. The air intake port of the exhaust fan 5 may face the cylindrical cyclone chamber 1 instead of the outer wall cylinder 4. In this case, the outer wall cylinder 4 becomes unnecessary.
If the deflector 13 is eliminated and the scattering plate 14 is disposed downstream of the cavitation bubble nozzle 2 as shown in FIG. 3, the microbubbles in the water droplets are shredded into finer submicron bubbles by the impact energy received from the plate. Thus, a water droplet group having a strong oxidizing power can be obtained.

符合の説明Explanation of sign

1 円筒サイクロン室
2 キャビテーション気泡ノズル
3 空気流入管
4 外壁筒
5 排出ファン
6 ポンプ
DESCRIPTION OF SYMBOLS 1 Cylindrical cyclone chamber 2 Cavitation bubble nozzle 3 Air inflow pipe 4 Outer wall cylinder 5 Exhaust fan 6 Pump

Claims (2)

乱流領域を設けてキャビテーション気泡を発生するキャビテーション気泡ノズルと、旋回流を発生させるサイクロン室と、このサイクロン室内の上部にその先端を臨ませる空気流入管と、サイクロン室内の空気を排出する排出ファンと、からなり、上記キャビテーション気泡ノズルをサイクロン室内の上部に臨ませ、噴霧される水滴群を、旋回気流とともにゆっくり降下させる、キャビテーション気泡水流による空気浄化装置。    A cavitation bubble nozzle that generates a cavitation bubble by providing a turbulent flow region, a cyclone chamber that generates a swirl flow, an air inflow pipe that faces the top of the cyclone chamber, and an exhaust fan that discharges air in the cyclone chamber An air purification apparatus using a cavitation bubble water flow, wherein the cavitation bubble nozzle faces the upper part of the cyclone chamber and the sprayed water droplets slowly descend together with the swirling air flow. 流路断面が急拡大する乱流領域を有するキャビテーション気泡ノズルと、下部出口にテーパーを具えるサイクロン室と、このサイクロン室内の上部にその先端を臨ませる空気流入管と、サイクロン室内の空気をテーバーから排出する排出ファンと、からなり、上記キャビテーション気泡ノズルをサイクロン室内の上部に臨ませ、噴霧される水滴群を、旋回気流とともにゆっくり降下させる、キャビテーション気泡水流による空気浄化装置。    A cavitation bubble nozzle having a turbulent flow area with a rapidly expanding cross section, a cyclone chamber having a taper at the lower outlet, an air inflow pipe with its tip facing the upper part of the cyclone chamber, and air in the cyclone chamber An air purification device using a cavitation bubble water flow comprising a discharge fan for discharging air from the cavitation bubble water flow, which causes the cavitation bubble nozzle to face the upper part of the cyclone chamber and slowly drops the sprayed water droplets together with the swirling air flow.
JP2012175398A 2012-07-21 2012-07-21 Air cleaner by cavitation bubbled water stream Pending JP2014018641A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012175398A JP2014018641A (en) 2012-07-21 2012-07-21 Air cleaner by cavitation bubbled water stream

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012175398A JP2014018641A (en) 2012-07-21 2012-07-21 Air cleaner by cavitation bubbled water stream

Publications (1)

Publication Number Publication Date
JP2014018641A true JP2014018641A (en) 2014-02-03

Family

ID=50194174

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012175398A Pending JP2014018641A (en) 2012-07-21 2012-07-21 Air cleaner by cavitation bubbled water stream

Country Status (1)

Country Link
JP (1) JP2014018641A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5934974B1 (en) * 2015-11-18 2016-06-15 大村塗料株式会社 Production method of bionanofiber
JP2018158330A (en) * 2017-03-21 2018-10-11 昆山納諾新材料科技有限公司 Waste gas treatment method applying nano-bubbles and treatment system of the same
JP2018168558A (en) * 2017-03-29 2018-11-01 株式会社奥村組 Dust scattering suppression material and dust scattering suppression method
CN108917018A (en) * 2018-05-21 2018-11-30 老肯医疗科技股份有限公司 A kind of medical air purifier
KR101955158B1 (en) * 2018-08-09 2019-06-11 주식회사 드림이엔지 apparatus for removing malodor with eco bubble generator by cavitation
WO2019156180A1 (en) * 2018-02-09 2019-08-15 国立大学法人東京大学 Dissolution system for poorly water-soluble organic compound, method for dissolving poorly water-soluble organic compound, and odor detection system
CN110917378A (en) * 2019-12-15 2020-03-27 徐承玉 Air sterilization device for livestock breeding pen

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5934974B1 (en) * 2015-11-18 2016-06-15 大村塗料株式会社 Production method of bionanofiber
JP2017094218A (en) * 2015-11-18 2017-06-01 大村塗料株式会社 Manufacturing method of bio-nanofiber
JP2018158330A (en) * 2017-03-21 2018-10-11 昆山納諾新材料科技有限公司 Waste gas treatment method applying nano-bubbles and treatment system of the same
JP2018168558A (en) * 2017-03-29 2018-11-01 株式会社奥村組 Dust scattering suppression material and dust scattering suppression method
WO2019156180A1 (en) * 2018-02-09 2019-08-15 国立大学法人東京大学 Dissolution system for poorly water-soluble organic compound, method for dissolving poorly water-soluble organic compound, and odor detection system
JPWO2019156180A1 (en) * 2018-02-09 2021-04-30 国立大学法人 東京大学 Dissolution system for poorly water-soluble organic compounds, dissolution method for poorly water-soluble organic compounds, and odor detection system
CN108917018A (en) * 2018-05-21 2018-11-30 老肯医疗科技股份有限公司 A kind of medical air purifier
KR101955158B1 (en) * 2018-08-09 2019-06-11 주식회사 드림이엔지 apparatus for removing malodor with eco bubble generator by cavitation
CN110917378A (en) * 2019-12-15 2020-03-27 徐承玉 Air sterilization device for livestock breeding pen

Similar Documents

Publication Publication Date Title
JP2014018641A (en) Air cleaner by cavitation bubbled water stream
US6391100B1 (en) Method and apparatus for cleaning a gas
JP2009136864A (en) Microbubble generator
KR20120095489A (en) Centrifugal wet type sweeper
KR101918005B1 (en) Hybrid two step cleaning apparatus using multistage deodorising filter
US5417920A (en) Odor control method
JP2011000581A (en) Microbubble device
JP2010036148A (en) Removal system for volatile organic compound by gas absorption tower
WO2006129807A1 (en) Apparatus for reacting solution and reaction method
CN208771202U (en) Novel organic waste gas treatment equipment with ultrasonic coagulation function
JP2009297698A (en) Removal apparatus for volatile organic compound and removal method for volatile organic compound
KR101611538B1 (en) A Scrubber for Collecting Contaminator from Gas with Swirl Generating Structure
JP7291211B2 (en) Contaminant collector and equipment for manufacturing electrical steel sheets including the same
CN2911514Y (en) Air curtain shielded smoke, dust and flue exhausting and purifying apparatus
CN102389679B (en) Lampblack smell-removing method and lampblack smell-removing device using method
JP6894159B2 (en) Exhaust gas purification device and exhaust gas abatement device using it
CN208574477U (en) Novel photocatalysis equipment with centrifugation oil mist removal function
JP2014198333A (en) Liquid atomization method and atomization and mixing device
KR102266049B1 (en) air purifying device of gas-liquid contact type
JPH06269491A (en) Air cleaner
JP2567364B2 (en) Gas purifier
JP3334895B2 (en) Anion production equipment
EP4247527A2 (en) Method and system for generating nano- and microbubbles
KR101450061B1 (en) Voc oxidation treatment apparatus
CN208998220U (en) A kind of air purifier with perfume sprayer