WO2019156180A1 - Dissolution system for poorly water-soluble organic compound, method for dissolving poorly water-soluble organic compound, and odor detection system - Google Patents

Dissolution system for poorly water-soluble organic compound, method for dissolving poorly water-soluble organic compound, and odor detection system Download PDF

Info

Publication number
WO2019156180A1
WO2019156180A1 PCT/JP2019/004475 JP2019004475W WO2019156180A1 WO 2019156180 A1 WO2019156180 A1 WO 2019156180A1 JP 2019004475 W JP2019004475 W JP 2019004475W WO 2019156180 A1 WO2019156180 A1 WO 2019156180A1
Authority
WO
WIPO (PCT)
Prior art keywords
soluble organic
organic compound
aqueous solution
container
water
Prior art date
Application number
PCT/JP2019/004475
Other languages
French (fr)
Japanese (ja)
Inventor
大悟 照月
秀文 光野
健志 櫻井
亮平 神崎
暢之 間瀬
浩平 佐藤
Original Assignee
国立大学法人東京大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東京大学 filed Critical 国立大学法人東京大学
Priority to JP2019571154A priority Critical patent/JPWO2019156180A1/en
Publication of WO2019156180A1 publication Critical patent/WO2019156180A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F21/00Dissolving
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/50Circulation mixers, e.g. wherein at least part of the mixture is discharged from and reintroduced into a receptacle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/70Spray-mixers, e.g. for mixing intersecting sheets of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F31/00Mixers with shaking, oscillating, or vibrating mechanisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/90Heating or cooling systems
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • C12M1/34Measuring or testing with condition measuring or sensing means, e.g. colony counters

Definitions

  • the present invention relates to a dissolution technique, and relates to a dissolution system for a poorly water-soluble organic compound, a dissolution method for a poorly water-soluble organic compound, and an odor detection system.
  • an object of the present invention is to provide a dissolution system for a poorly water-soluble organic compound, a dissolution method for a poorly water-soluble organic compound, and an odor detection system that can dissolve a poorly water-soluble organic compound in the air.
  • droplets containing bubbles having a diameter of 1 ⁇ m or less are sprayed toward a container that can store a gaseous sparingly water-soluble organic compound and a gas containing the sparingly water-soluble organic compound in the container.
  • a dissolution system for a poorly water-soluble organic compound comprising a spraying device, and storing an aqueous solution containing the poorly water-soluble organic compound in a container.
  • the dissolution system of the slightly water-soluble organic compound described above further includes a suction device that sucks the aqueous solution stored in the container and sends it to the spray device, and the spray device generates droplets from the aqueous solution sent from the suction device. May be.
  • the suction device may continuously send the aqueous solution to the spray device.
  • the above-described system for dissolving a slightly water-soluble organic compound may further include an aqueous solution stirring element for stirring the aqueous solution in the container.
  • the above-described dissolution system for hardly water-soluble organic compounds may further include a heating device for heating the container so that the hardly water-soluble organic compounds in the gas are not condensed.
  • the heating device may include a hot tub for warming the container.
  • the above-mentioned dissolution system of a poorly water-soluble organic compound may further include a warm bath liquid stirring element for stirring the warm bath liquid in the warm bath.
  • the poorly water-soluble organic compound may be an odor substance.
  • the spray device may be configured to spray droplets containing bubbles having a diameter of 1 ⁇ m or less by ultrasonic vibration.
  • a liquid containing bubbles having a diameter of 1 ⁇ m or less toward the gas containing the poorly water-soluble organic compound in the container and storing the gaseous hardly water-soluble organic compound in the container.
  • a method for dissolving a poorly water-soluble organic compound comprising spraying droplets and storing an aqueous solution containing the poorly water-soluble organic compound in a container.
  • an aqueous solution stored in a container may be sucked to generate droplets from the aqueous solution.
  • the aqueous solution stored in the container may be continuously sucked to generate droplets from the aqueous solution.
  • the method for dissolving the slightly water-soluble organic compound may further include stirring the aqueous solution in the container.
  • the method for dissolving the hardly water-soluble organic compound may further include heating the container so that the hardly water-soluble organic compound in the gas is not condensed.
  • the container may be heated using a hot tub for warming the container.
  • the above-described method for dissolving a slightly water-soluble organic compound may further include stirring the warm bath liquid in the warm bath.
  • the poorly water-soluble organic compound may be an odor substance.
  • droplets containing bubbles having a diameter of 1 ⁇ m or less may be sprayed by ultrasonic vibration.
  • a container capable of storing a gaseous odor substance
  • a spray device that sprays droplets containing bubbles having a diameter of 1 ⁇ m or less toward the gas containing the odor substance in the container
  • an odor detection system including an odor sensor to which an aqueous solution containing an odor substance stored in a container is supplied.
  • the odor sensor may include a cell that reacts to an odor substance.
  • the cell may emit fluorescence in response to the odor substance.
  • the odor sensor includes a transistor having a gate electrode containing aluminum or aluminum oxide, an insect cell having an olfactory receptor disposed on the gate electrode, and the insect cell reacts to an odor substance in an aqueous solution. And a detection device for detecting a current generated in the transistor when the transistor is used.
  • the odor sensor includes a transistor having a gate electrode containing aluminum or aluminum oxide, a chamber for placing an insect cell having an olfactory receptor disposed on the transistor, and an insect on the gate electrode. And a detection device that detects a current generated in the transistor when the cell reacts to an odorous substance in the aqueous solution.
  • the insect cell may express an olfactory receptor by a transgene.
  • the insect cell may express an insect olfactory receptor.
  • the olfactory receptor may be an ion channel type receptor.
  • the olfactory receptor may be selected from BmOR1, BmOR3, Or13a, Or56a, Or85b, and PxOR1.
  • the insect cell may be a moth-derived cell.
  • the insect cell may be selected from Sf21, Sf9, High Five, and Tni-derived cells.
  • the insect cell may be a Drosophila-derived cell.
  • the insect cell may be a Drosophila S2 cell.
  • the insect cell may express a fluorescent protein whose fluorescence intensity changes according to the ion concentration.
  • the transistor may be a field effect transistor.
  • the gate electrode may be an extended gate electrode.
  • aluminum or aluminum oxide may be exposed on the surface of the gate electrode.
  • the odor detection system may further include a Faraday cage that covers the transistor.
  • the spray device may be configured to spray droplets containing bubbles having a diameter of 1 ⁇ m or less by ultrasonic vibration.
  • a dissolution system for a poorly water-soluble organic compound a dissolution method for a poorly water-soluble organic compound, and an odor detection system capable of dissolving a slightly water-soluble organic compound in the air in an aqueous solution.
  • FIG. 1 is a chemical formula of 1-octen-3-ol according to Example 1.
  • 3 is a graph showing the change over time of the concentration of 1-octen-3-ol in the air according to Example 1.
  • 6 is a graph showing the change over time of the concentration of 1-octen-3-ol in liquids according to Example 1 and Comparative Example 1.
  • Example 3 is a graph showing a change over time in the dissolution rate of 1-octen-3-ol according to Example 1 and Comparative Example 1.
  • 6 is a graph showing the change over time of the concentration of 1-octen-3-ol in the air according to Example 2.
  • 6 is a graph showing the change over time of the concentration of 1-octen-3-ol in the liquid according to Example 2.
  • 6 is a graph showing changes in the dissolved concentration of 1-octen-3-ol over a long period of time according to Example 3.
  • 10 is a table showing changes in the dissolution concentration of 1-octen-3-ol over a long period of time according to Example 3.
  • 10 is a graph showing the change over time of the concentration of 1-octen-3-ol in the air according to Example 4.
  • 10 is a graph showing the change over time of the concentration of 1-octen-3-ol in the liquid according to Example 4.
  • 10 is a graph showing changes over time in concentrations of 3-octaneone, 3-octanol and 1-octen-3-ol in the air according to Example 5.
  • 10 is a graph showing changes over time in the concentrations of 3-octaneone, 3-octanol and 1-octen-3-ol in a liquid according to Example 5. It is a graph which shows the relationship between the distance from the nozzle tip which concerns on Example 6, and the water surface of aqueous solution, and the number of particles.
  • 10 is a graph showing the fluorescence intensity generated in Sf21 cells in response to 1-octen-3-ol according to Example 7.
  • FIG. 10 is a graph showing the fluorescence intensity generated in Sf21 cells in response to 1-octen-3-ol according to Example 7. It is a microscope picture which shows the time-dependent change of the Sf21 cell on the aluminum substrate based on Example 8.
  • FIG. It is a graph which shows the time-dependent change of the survival rate of the Sf21 cell on the aluminum substrate based on Example 8.
  • It is a microscope picture which shows the time-dependent change of HEK293T cell on the aluminum substrate based on Example 8.
  • the dissolution system for a poorly water-soluble organic compound includes a container 1 that can store a gaseous hardly water-soluble organic compound, and the poorly water-soluble organic compound in the container 1.
  • a spraying device 20 that sprays droplets containing bubbles having a diameter of 1 ⁇ m or less toward the gas, and the aqueous solution 2 containing the poorly water-soluble organic compound is stored in the container 1.
  • the container 1 may be made of a transparent material such as glass and resin, or may be made of an opaque material.
  • the container 1 has, for example, a cylindrical shape, but is not particularly limited.
  • an aqueous solution 2 for dissolving the hardly water-soluble organic compound is placed on the bottom of the container 1.
  • the aqueous solution 2 is, for example, a buffer solution, a culture solution, and a fragrance solvent, but is not particularly limited.
  • the aqueous solution 2 includes water and pure water.
  • an index representing the water solubility of an organic compound is a partition coefficient.
  • the partition coefficient is a value obtained from the concentration ratio of the organic compound in each phase when the organic compound is dissolved in two phases of water and an organic solvent such as 1-octanol.
  • LogP Log 10 (C O / C W ) (1)
  • C 2 O represents the concentration of the organic compound in the organic solvent phase
  • C W represents the concentration of the organic compound in the aqueous phase.
  • the higher the partition coefficient the more fat the organic compound is and the lower the water solubility.
  • an organic compound having a partition coefficient of 2.0 or more is referred to as a hardly water-soluble compound.
  • the poorly water-soluble organic compound is, for example, an odor substance.
  • other examples of poorly water-soluble organic compounds include alcohols, aldehydes, ketones, amines, terpenes, aromatic compounds, esters, acids, hydrocarbons, ethers, lactones, amides, and lactams.
  • the gas containing the poorly water-soluble organic compound introduced into the container 1 is, for example, air, but is not particularly limited.
  • the container 1 is provided with an inlet for introducing a gas containing the aqueous solution 2 and the poorly water-soluble organic compound.
  • the inlet is sealed. Therefore, the container 1 can be sealed.
  • the spraying device 20 is provided on the upper surface or side surface of the container 1, for example.
  • the spraying device 20 includes, for example, a spray nozzle and a piezo that applies ultrasonic waves to the spray nozzle. Due to the ultrasonic vibration, droplets containing bubbles having a diameter of 1 ⁇ m or less are generated from the liquid supplied to the spray nozzle. Spraying using ultrasonic waves does not require pressurization and can be operated with a small amount of liquid feeding, and is also useful for miniaturization with low power consumption. However, the spraying method can be other than ultrasonic waves.
  • the spraying device 20 is not particularly limited as long as it can spray droplets containing bubbles having a diameter of 1 ⁇ m or less.
  • the droplets have the same composition as the aqueous solution 2.
  • Bubbles having a diameter of 1 ⁇ m or less contained in the droplet shown in FIG. 2 are also called ultrafine bubbles.
  • the diameter of the bubbles is, for example, 10 nm or more, 20 nm or more, or 30 nm or more.
  • the diameter of the bubbles is, for example, 700 nm or less, 800 nm or less, or 900 nm or less.
  • the bubble diameter may be not less than 100 nm and not more than 200 nm.
  • the droplet sprayed by the spray device 20 shown in FIG. 1 falls toward the aqueous solution 2 according to gravity. Bubbles having a diameter of 1 ⁇ m or less contained in the droplets falling on the aqueous solution 2 diffuse into the aqueous solution 2. Bubbles having a diameter of 1 ⁇ m or less cannot be visually observed in the droplet or in the aqueous solution 2. If the aqueous solution 2 before containing bubbles is colorless and transparent, the aqueous solution 2 remains colorless and transparent even if bubbles having a diameter of 1 ⁇ m or less are included. However, bubbles having a diameter of 1 ⁇ m or less can be observed with a liquid particle observation device. As a liquid particle observation apparatus, for example, Nanosite LM10 (Malvern Instruments Limited) can be used.
  • the surface of bubbles with a diameter of 1 ⁇ m or less is usually negatively charged. Therefore, aggregation of bubbles is difficult to occur.
  • the buoyancy of bubbles having a diameter of 1 ⁇ m or less is extremely small, the bubbles having a diameter of 1 ⁇ m or less do not float up to the surface of the aqueous solution 2, but Brown moves in the aqueous solution 2 and tends to stay in the aqueous solution 2 for a long time.
  • the slightly water-soluble organic compound dissolution system further includes a suction device 30 that sucks the aqueous solution 2 stored on the bottom of the container 1 and sends it to the spraying device 20.
  • the suction device 30 sucks the aqueous solution 2 in the container 1 through, for example, a pipe 31 connected to the side wall of the container 1.
  • the suction device 30 sends the aqueous solution 2 to the spraying device 20 via a pipe 32 connected to the spraying device 20.
  • the spray device 20 generates droplets from the aqueous solution 2 sent from the suction device 30.
  • the aqueous solution 2 circulates in the container 1 and the path including the suction device 30 and the spray device 20.
  • a pump can be used as the suction device 30, a pump can be used.
  • the pump include a tube pump such as a peristaltic pump (registered trademark), a roller pump, and a peristaltic pump. Or a ceramic pump is mentioned as an example of a pump.
  • the suction device 30 continuously sends liquid to the spray device 20, for example. Pumps that send the liquid in the tube by compressing the tube, such as a tube pump, a roller pump, and a peristaltic pump, are suitable for continuous liquid feeding.
  • the slightly water-soluble organic compound dissolution system may further include an aqueous solution stirrer 40 that stirs the aqueous solution 2 in the container 1 and a magnetic stirrer that rotates the aqueous solution stirrer 40.
  • an aqueous solution stirrer 40 that stirs the aqueous solution 2 in the container 1
  • a magnetic stirrer that rotates the aqueous solution stirrer 40.
  • the dissolution system of a hardly water-soluble organic compound according to the embodiment may further include a heating device 3 that heats the container 1 so that the hardly water-soluble organic compound in the gas in the container 1 is not condensed and liquefied.
  • the heating device 3 may include a hot tub 51 that warms the container 1.
  • the slightly water-soluble organic compound dissolution system may further include a warm bath agitator 4 that agitates the warm bath fluid 52 in the warm bathtub 51.
  • a warm bath agitator 4 that agitates the warm bath fluid 52 in the warm bathtub 51.
  • the odor detection system according to the second embodiment includes a container 1 capable of storing a gaseous odor substance shown in FIG. 1 and a droplet containing bubbles having a diameter of 1 ⁇ m or less toward the gas containing the odor substance in the container 1. 3, and a odor sensor 500 shown in FIG. 3 to which an aqueous solution containing an odor substance stored in the container 1 is supplied. Since the dissolution system of the slightly water-soluble organic compound according to the second embodiment is the same as that of the first embodiment, description thereof is omitted.
  • the odor sensor 500 includes a transistor 10 having a gate electrode 14 containing aluminum or aluminum oxide, an insect cell 50 having an olfactory receptor disposed on the gate electrode 14, and a transistor 10 when the insect cell 50 reacts to an odor. And a detection device 80 for detecting a current generated in the above.
  • the transistor 10 includes a semiconductor substrate 11.
  • the transistor 10 is, for example, a field effect transistor (FET), and may be a MOSFET.
  • FET field effect transistor
  • a source electrode 12 and a drain electrode 13 are provided at an interval.
  • a gate electrode 14 is disposed between the source electrode 12 and the drain electrode 13 of the semiconductor substrate 11 with an oxide insulating film interposed therebetween.
  • the gate electrode 14 may be an extended gate electrode.
  • the gate electrode 14 is made of aluminum, and an oxide film made of aluminum oxide (Al 2 O 3 ) is formed in the vicinity of the surface. An oxide film made of aluminum oxide (Al 2 O 3 ) may not be formed near the surface.
  • the gate electrode 14 which is an extended gate electrode has a region where the insect cells 50 are arranged. The size of the region where the insect cells 50 are arranged is, for example, 100 ⁇ m ⁇ 100 ⁇ m, but is not limited thereto. The number of insect cells 50 arranged on the gate electrode 14 is, for example, 10 or less, but is not limited thereto.
  • the insect cell 50 is disposed on the gate electrode 14 of the transistor 10.
  • the insect cell 50 adheres to the gate electrode 14 by giving a solution containing the insect cell 50 on the gate electrode 14 and allowing it to stand for several tens of minutes to several hours.
  • Insect cells 50 express olfactory receptors on their cell membranes.
  • the olfactory receptor may be naturally expressed or may be expressed by a transgene.
  • the insect cells may be cells derived from moths such as Spodoptera frugiperda and Trichoplusia ni.
  • Sf21 and Sf9 are mentioned as an example of a cell derived from a mushroom.
  • Sf21 cells are derived from ovarian cells. Sf21 cells can divide indefinitely and establish a stable expression line that permanently expresses the introduced gene. In addition, Sf21 cells can survive in a wide temperature range of 18 ° C. to 40 ° C., and carbon dioxide for adjusting the pH of the culture solution is unnecessary. Sf21 cells originally do not have olfactory receptors, but can express olfactory receptors by introducing olfactory receptor genes.
  • Sf9 cells are clones of Sf21. Examples of cells derived from nettle guava include High Five and Tni. Tni-derived cells are derived from ovarian cells.
  • the insect cell may be a Drosophila-derived cell.
  • Drosophila-derived cells include Drosophila S2 cells.
  • the olfactory receptor may be a G protein-coupled receptor or an ion channel receptor.
  • the ion channel type receptor has a part that interacts with a ligand that is an odor substance and a part into which ions flow.
  • a cation such as sodium ion or calcium ion flows into the insect cell 50.
  • ion influx can occur in the order of tens of milliseconds after ligand binding.
  • the amount of ions flowing in is large, and it is said that the amount of ions flowing into the cell is 10 7 with respect to the binding of one ligand.
  • certain types of olfactory receptors have specificity for certain odorants.
  • only one type of olfactory receptor corresponding to one type of odor substance may be expressed, or a plurality of types of olfactory receptors corresponding to a plurality of types of odor substances may be expressed.
  • the detection sensitivity of the odor sensor may be adjusted by adjusting the amount of the olfactory receptor to be expressed.
  • olfactory receptors examples include BmOR1, which is a Bombykol receptor for Bombykol, a BmOR3 receptor for Bombykal, a Drosophila receptor, which is a Bombykal pheromone.
  • Or13a which is a receptor for 1-octen-3-ol which is a musty odor
  • a receptor for Drosophila which is a receptor for a mold odor
  • ore 56a which is a receptor for Drosophila
  • Or85b which is a general odor receptor for Drosophila melanogaster
  • PxOR1 which is the female sex pheromone receptor, but is not limited to.
  • a gene encoding the olfactory receptor When expressing an olfactory receptor in insect cells 50 by genetic engineering, for example, a gene encoding the olfactory receptor is incorporated into a vector, and the constructed vector is transfected into a host cell.
  • a gene encoding an olfactory receptor can be isolated by, for example, extracting mRNA from an olfactory organ of an insect and synthesizing cDNA. From the isolated cDNA, it is possible to amplify a part of the gene encoding the olfactory receptor by PCR using PCR primers.
  • Part of the gene encoding the olfactory receptor can also be obtained by incorporating the synthesized double-stranded cDNA into an appropriate vector and transforming Escherichia coli etc. using the vector to prepare a cDNA library. it can.
  • the cDNA can be incorporated into the vector by a conventional method using a restriction enzyme and ligase, for example, by cleaving the obtained cDNA with a restriction enzyme, inserting it into a restriction enzyme site of vector DNA, and ligating it to the vector.
  • the fluorescent protein may be expressed together with the olfactory receptor.
  • ions such as calcium ions flow in the insect cell 50 when an odorant is bound to the ion channel type olfactory receptor. Therefore, by introducing into the insect cell 50 a gene that expresses a fluorescent protein whose fluorescence intensity changes according to the ions, it is confirmed whether the insect cell 50 detects an odor substance from the change in the fluorescence intensity. It becomes possible.
  • fluorescent proteins include GCaMP3, GCaMP6s and aequorin.
  • At least a part of the gate electrode 14 of the odor sensor according to the embodiment is disposed in the chamber 60.
  • An aqueous solution 70 that may contain an odorous substance to be detected is placed in the chamber 60.
  • the aqueous solution 70 may appropriately contain substances necessary for the survival of the insect cells 50.
  • the reference electrode 15 is disposed in the chamber 60 so as to be in contact with the aqueous solution 70.
  • the chamber 60 may be provided with an inlet for feeding an aqueous solution that may contain an odor substance into the chamber 60 and an outlet for discharging the aqueous solution in the chamber 60.
  • An introduction pump for feeding the aqueous solution into the chamber 60 is connected to the introduction port of the chamber 60.
  • a discharge pump for discharging the aqueous solution from the chamber 60 is connected to the discharge port of the chamber 60.
  • a fixed liquid feed pump can be used as the introduction pump and the discharge pump.
  • the insect cell 50 When an odorous substance corresponding to the olfactory receptor of the insect cell 50 is present in the aqueous solution 70, the insect cell 50 reacts with the odorous substance and the gate potential of the gate electrode 14 is displaced, so that the source electrode 12 and the drain electrode 13 Modulation occurs in the drain current flowing between them. Therefore, it is possible to detect the presence of an odorous substance by detecting the modulation of the drain current of the transistor 10.
  • the detection device 80 is connected to, for example, the source electrode 12, the drain electrode 13, the back gate 16, and the reference electrode 15 of the transistor 10, and detects modulation of the drain current of the transistor 10.
  • a source major unit (SMU) or the like can be used as the detection device 80.
  • the detection device 80 may be connected to a computer system 300 for analyzing the detected current or displaying it on a display.
  • the reason why the insect cell 50 reacts to the odor substance and the gate potential of the gate electrode 14 is displaced is considered to be that when the insect cell 50 reacts to the odor substance, an inward ion flow is generated in the insect cell 50. It is not bound by the theory.
  • the odor sensor according to the embodiment may include a Faraday cage that covers the transistor 10. Since the Faraday cage shields the transistor 10 from the electric field, it is possible to reduce the noise of the drain current in the odor sensor.
  • the electrode of the transistor is formed of gold or coated with a biocompatible material, and the cell is disposed thereon.
  • these methods are costly.
  • the present inventors have conducted intensive research, and insect cells are not damaged by aluminum or aluminum oxide and can survive for a long period of time even when placed on the electrode where aluminum or aluminum oxide is exposed. I found out. Therefore, according to the embodiment, it is possible to provide a highly reliable and low-cost odor sensor using, for example, a commercial CMOS foundry.
  • the insect cell 50 can survive for 5 days or longer, for example.
  • the odor sensor according to the embodiment can be reused repeatedly by cleaning the odor sensor after use.
  • a cleaning method for example, a commercially available detergent may be dropped on the surface of the transistor 10.
  • Example 1 A dissolution system for poorly water-soluble organic compounds as shown in FIG. 4 was prepared.
  • a liquid odor substance container 201 made of glass is placed in a 500 mL beaker 110, and 1 mL of liquid odor substance 1-octen-3-ol (Sigma Aldrich, content 98%) is placed in the liquid odor substance container 201.
  • 1-octen-3-ol has a smell of mold, a mushroom, and a person's sweat.
  • the chemical formula of 1-octen-3-ol is as shown in FIG. 1-octen-3-ol is a poorly water-soluble organic compound.
  • the liquid odor substance container 201 shown in FIG. 4 includes a lid, but has a structure that allows the odorous substance that has volatilized to communicate between the inside and outside of the container.
  • a stirrer 140 was placed in the beaker 110.
  • the beaker 110 was sealed with a lid 112.
  • the lid 112 is provided with an atomizer 120 (Sonaer Inc.) capable of spraying droplets containing bubbles having a diameter of 1 ⁇ m or less in the beaker 110. Further, a pipe 131 for sucking distilled water 111 in the beaker 110 was provided through the lid 112, and the pipe 131 was connected to the suction port of the ceramic pump 130 (CPA-2, ASONE). Further, a pipe 132 connecting the discharge port of the ceramic pump 130 and the liquid supply port of the atomizer 120 is disposed.
  • the beaker 110 was put in a hot tub 151 containing a warm bath solution 152 as water.
  • a stirrer 160 was placed in the warm bath liquid 152.
  • the hot tub 151 was placed on a hot magnet stirrer 153 (CMAGHS100 digital, IKA) having a temperature feedback function.
  • the room temperature was 21.5 ° C.
  • the hot bath liquid 152 was kept at 30 ° C. with a hot magnet stirrer 153 equipped with a temperature feedback function. In this state, the liquid 1-octen-3-ol in the liquid odor substance container 201 was volatilized in the beaker 110. Next, 50 mL of distilled water, which is the amount that does not allow the liquid odor substance container 201 to sink, is put into the beaker 110 by the syringe 210 provided on the lid 112, and the ceramic pump 130 is driven after rotating the stirring bars 140 and 160.
  • distilled water 111 in the beaker 110 was sucked at a flow rate of about 13 mL / min, supplied to the atomizer 120, and droplets containing bubbles having a diameter of 1 ⁇ m or less were sprayed from the atomizer 120.
  • an aqueous solution in which 1-octen-3-ol is dissolved in distilled water 111 in the beaker 110 is sucked with a syringe 210, and the sucked aqueous solution is analyzed with a gas chromatography device (GC-2010, Shimadzu Corporation).
  • the concentration of 1-octen-3-ol contained in the sucked aqueous solution was measured.
  • FIG. 7 1 minute after the start, the concentration of 1-octen-3-ol in the aqueous solution reached an average of 39 ⁇ mol / L, and thereafter, with the passage of time, 1-octen- It was confirmed that the concentration of 3-ol was increased.
  • the dissolution rate of 1-octen-3-ol in the aqueous solution reached nearly 20% 30 minutes after the start of spraying of droplets containing bubbles having a diameter of 1 ⁇ m or less.
  • a temperature-controlled water bath (Thermax, ASONE) with temperature feedback is used instead of the hot tub 151 and the hot magnet stirrer 153, and the ceramic pump 130 and the atomizer 120 are stopped.
  • 1-octen-3-ol was dissolved in distilled water 111, and the concentration of 1-octen-3-ol contained in the aqueous solution was measured.
  • a container placed in the beaker was charged with 2 mL of liquid 1-octen-3-ol.
  • the room temperature was 26 ° C.
  • the concentration of 1-octen-3-ol in the aqueous solution was not detected by the gas chromatography apparatus for the first 5 minutes.
  • the concentration of 1-octen-3-ol in the aqueous solution increased after 10 minutes, but was lower than that in Example 1.
  • the dissolution rate of 1-octen-3-ol in the aqueous solution was low compared to Example 1 even 30 minutes after the start of spraying of the droplets containing bubbles having a diameter of 1 ⁇ m or less.
  • Example 2 1 ⁇ L of 1-octen-3-ol (Sigma Aldrich, content 98%) was dissolved in 999 ⁇ L of distilled water and stirred with a vortex mixer to prepare 1 mL of diluted odorant solution.
  • the diluted odor substance solution was placed in the liquid odor substance container 201 shown in FIG. Except for this point and that the room temperature is 23 ° C., 1-octen-3-ol is dissolved in distilled water 111 in the same manner as in Example 1, and the concentration of 1-octen-3-ol contained in the aqueous solution is adjusted. Measured. As a result, as shown in FIG. 9, it was confirmed that the concentration of 1-octen-3-ol in the gas decreased with the passage of time.
  • Example 3 Using the system for dissolving poorly water-soluble organic compounds shown in Example 1, 1-octen-3-ol was dissolved in distilled water to obtain an odorant solution.
  • a gas chromatography apparatus GC-2010, Shimadzu Corporation
  • the concentration of 1-octen-3-ol in the odorant solution immediately after the odorant was dissolved was as shown in FIG. 11 and FIG. It was 418 ⁇ mol / L.
  • the concentration of 1-octen-3-ol in the odorant solution was high even after 2 and 6 months.
  • Example 4 4 except that the stirring bars 140 and 160 shown in FIG. 4 were not used, a temperature-controlled water bath with temperature feedback (Thermax, ASONE) was used instead of the hot tub 151 and the hot magnet stirrer 153, and the room temperature was 30.5 ° C.
  • distilled water 111 was supplied to the atomizer 120 using a ceramic pump, and 1-octen-3-ol was dissolved in the distilled water 111.
  • a thermostatic water bath with temperature feedback (Thermax, ASONE) is used, the room temperature is 30.0 ° C, and instead of the ceramic pump 1-octen-3-ol was dissolved in distilled water 111 in the same manner as in Example 1 except that a peristaltic pump (registered trademark, AC-2120 peristal biomini pump, ATTO) with a flow rate of 17 mL / min was used. It was. As a result, as shown in FIGS.
  • FIG. 4 shows 333 ⁇ L of 3-octaneone (Sigma Aldrich, content of 98% or more), 333 ⁇ L of 3-octanol (Sigma Aldrich, content of 99%), and 333 ⁇ L of 1-octen-3-ol (Sigma Aldrich, content of 98%).
  • a total of 999 ⁇ L of odorant mixed solution was prepared in the liquid odorant container 201 shown. Except for this point and the room temperature of 30.5 ° C., three kinds of odorous substances were dissolved in distilled water 111 in the same manner as in Example 1, and the concentration of each odorous substance contained in the aqueous solution was measured.
  • the concentration of odorous substance in the gas before the operation of the apparatus was highest at 1-4.7 ppm for 3-octaneone, 2.2 ppm for 3-octanol, and 2.7 ppm for 1-octen-3-ol.
  • FIG. 15 it was confirmed that the concentration of the odorous substance in the gas decreased with the passage of time.
  • FIG. 16 it was confirmed that all odorous substances were dissolved in the aqueous solution 1 minute after the operation of the apparatus, and the concentration increased with the passage of time.
  • the solution concentration in aqueous solution was highest for 3-octaneone, which has a large volatilization amount, and it was confirmed that 3-octanol and 1-octen-3-ol, which had the same volatilization amount, had the same dissolution concentration. It was. This indicates that not only the aliphatic unsaturated alcohol 1-octen-3-ol but also the aliphatic ketone 3-octaneone and the aliphatic saturated alcohol 3-octanol can be dissolved in an aqueous solution in a short time. . It also shows that various odorous substances are dissolved in an aqueous solution while maintaining the ratio existing in the air.
  • Example 6 It is expected that the larger the amount of bubbles contained in the droplets sprayed from the ultrasonic spray nozzle, the more efficient dissolution of the gaseous odor substance is expected. Therefore, the amount of bubbles contained in the droplets was investigated based on the difference in distance between the nozzle tip and the liquid level of the aqueous solution. Using a funnel, a glass bottle, a 200 mL beaker, and a 500 mL beaker, the distance from the nozzle tip to the liquid level of the aqueous solution was changed to 0 mm, 3.8 mm, and 11.7 mm in three stages for spraying. At the time of spraying, the aqueous solution was perfused using the ceramic pump 130 shown in FIG.
  • the hot tub 151 was not used, and the room temperature was 23 ° C. Moreover, it verified about the influence which stirring of aqueous solution with a stirring bar has on the quantity of the bubble which exists in aqueous solution.
  • a hot magnet stirrer 153 was used for stirring with a stir bar.
  • the ceramic pump 130 was driven at a flow rate similar to that of Example 1 for 5 minutes, distilled water was 50 mL, and the room temperature was about 23 ° C.
  • the distance between the nozzle tip and the liquid surface of the aqueous solution was 0 mm and stirring was performed, particles of 8.7 ⁇ 10 8 particles / mL were confirmed.
  • Sf21 cells expressing the Or13a receptor and the co-receptor DmOrco were obtained by the lipofection method.
  • the Or13a receptor is an olfactory receptor that responds to 1-octen-3-ol.
  • Sf21 cells were passaged from 1 to 3 days. Thereafter, using a cell counter, the concentration of Sf21 cells was adjusted from 1.0 ⁇ 10 6 cells / mL to 1.5 ⁇ 10 6 cells / mL, and Sf21 cells were adhered to a petri dish.
  • the room temperature is 25.5 ° C.
  • the amount of 1-octen-3-ol in the liquid odor substance container 201 is 2 mL
  • the stirrers 140 and 160 are not inserted, and a constant temperature water bath with temperature feedback (Thermax, ASONE 1-octen-3-ol was dissolved in distilled water 111 by the same method as in Example 1 except that the above was used.
  • the aqueous solution in which 1-octen-3-ol was dissolved was analyzed with a gas chromatography apparatus (GC-2010, Shimadzu Corporation), and the concentration of 1-octen-3-ol in the aqueous solution was determined. Based on the determined concentration, an aqueous solution in which 1-octen-3-ol is dissolved is diluted with an assay buffer solution, and the concentration of 1-octen-3-ol is 1 ⁇ mol / L, 3 ⁇ mol / L, 10 ⁇ mol / L, And 30 micromol / L aqueous solution was prepared as a sample.
  • a gas chromatography apparatus GC-2010, Shimadzu Corporation
  • the composition of the assay buffer was 140 mmol / L NaCl, 5.6 mmol / L KCl, 4.5 mmol / L CaCl 2 , 11.26 mmol / L MgCl 2 , 11.32 mmol / L MgSO 4 , 9.4 mmol / L D-glucose. And 5 mmol / L HEPES, and the pH of the assay buffer was 7.2.
  • DMSO dimethyl sulfoxide
  • the stirrers 140 and 160 shown in FIG. 4 are not put into the beaker 110 and the hot bath liquid 152, but a constant temperature water bath (Thermax, ASONE) with temperature feedback is used instead of the hot tub 151 and the hot magnet stirrer 153 to smell liquid.
  • Example 8 An aluminum film having a film thickness of 500 nm was formed on the surface of the silicon substrate by a sputtering apparatus to obtain an aluminum substrate. In addition, wild type Sf21 cells into which no olfactory receptor was introduced were prepared.
  • Sf21 cells on the aluminum substrate were subjected to life / death judgment every day for 5 days after the Sf21 cells were seeded on the aluminum substrate.
  • a dye exclusion test method using trypan blue was used for viability determination. According to the dye exclusion test method, dead cells are stained blue with the dye, so that the ratio of viable cells can be determined by microscopic observation.
  • HEK293T cells derived from human fetal kidney were prepared. As shown in FIG. 22, the viability of the HEK293T cells on the aluminum substrate was determined every day for 5 days after the HEK293T cells were seeded on the aluminum substrate. A dye exclusion test method using trypan blue (Wako Pure Chemical Industries, Ltd.) was used for viability determination. As a result, HEK293T cells were observed to grow slowly on the aluminum substrate over time, and the cells were killed by corrosion of the aluminum substrate.
  • FIG. 23 shows an increase curve of Sf21 cells and HEK293T cells on an aluminum substrate. Sf21 cells were confirmed to grow on the aluminum substrate. In contrast, the number of HEK293T cells increased or decreased on the aluminum substrate, and the number of cells was not stable.

Abstract

A dissolution system for a poorly water-soluble organic compound, which is provided with: a container 1 that is capable of containing a gas which contains a poorly water-soluble organic compound that is in the form of a gas; and a spray device 20 that sprays droplets containing air bubbles having a diameter of 1 μm or less toward the gas which contains a poorly water-soluble organic compound within the container 1. This dissolution system for a poorly water-soluble organic compound is configured such that an aqueous solution 2 which contains the poorly water-soluble organic compound is retained within the container 1.

Description

難水溶性有機化合物の溶解システム、難水溶性有機化合物の溶解方法、及び匂い検出システムDissolving system for sparingly water-soluble organic compounds, dissolving method for sparingly water-soluble organic compounds, and smell detection system
 本発明は溶解技術に関し、難水溶性有機化合物の溶解システム、難水溶性有機化合物の溶解方法、及び匂い検出システムに関する。 The present invention relates to a dissolution technique, and relates to a dissolution system for a poorly water-soluble organic compound, a dissolution method for a poorly water-soluble organic compound, and an odor detection system.
 近年、昆虫が匂いを受容し、識別する分子機構及び神経機構の解析が進み、感度が高く、識別力も高い、昆虫の匂い識別の仕組みが明らかになりつつある。そのため、昆虫の嗅覚機能を、人工的に再現することが可能となりつつある。昆虫は、匂い物質に対する応答選択性が異なる複数の嗅覚細胞の応答パターンの組み合わせにより、匂い物質を識別している。嗅覚細胞の匂い応答特性は、個々の細胞で発現している嗅覚受容体タンパク質の特性により決定される。したがって、匂い物質の情報は、嗅覚受容体の応答パターンの組み合わせとして表現される(例えば、特許文献1参照。)。 In recent years, the analysis of the molecular and neural mechanisms by which insects accept and identify odors has progressed, and the mechanism of insect odor identification with high sensitivity and high discrimination power is becoming clear. Therefore, it is becoming possible to artificially reproduce the olfactory function of insects. Insects identify odorous substances by combining response patterns of a plurality of olfactory cells having different response selectivity to odorous substances. The olfactory response characteristics of olfactory cells are determined by the characteristics of olfactory receptor proteins expressed in individual cells. Therefore, information on odor substances is expressed as a combination of response patterns of olfactory receptors (see, for example, Patent Document 1).
 天然の嗅覚細胞に限らず、嗅覚受容体を発現している細胞は、匂いセンサの検出素子として使用可能である。しかし、嗅覚受容体を発現している細胞は、液中に配置される必要があり、気中に配置されることはできない。そのため、嗅覚受容体を発現している細胞を備える匂いセンサで気中を漂う匂い物質を検出する際には、気中を漂う難水溶性有機化合物である匂い物質を、水溶液中に溶解する必要がある。また、匂いセンサへの応用に限らず、食品、飲料品、及び香料等の分野において、気中に存在する匂い物質に限らない難水溶性有機化合物を水溶液中に溶解することができる技術が望まれている。しかし、オゾン等の反応性ガスで溶液の含有成分を化学変化させる報告(例えば、特許文献2参照。)はあるものの、気中の難水溶性有機化合物を水溶液中に溶解可能な技術は報告されていない。 Not only natural olfactory cells but also cells expressing olfactory receptors can be used as detection elements for odor sensors. However, cells expressing olfactory receptors need to be placed in the liquid and cannot be placed in the air. Therefore, when detecting an odor substance floating in the air with an odor sensor equipped with cells expressing olfactory receptors, it is necessary to dissolve the odor substance, which is a poorly water-soluble organic compound floating in the air, in an aqueous solution. There is. In addition, not only for application to odor sensors, but also in the fields of food, beverages, and fragrances, a technology that can dissolve poorly water-soluble organic compounds, not limited to odorous substances present in the air, in an aqueous solution is desired. It is rare. However, although there is a report (for example, refer to Patent Document 2) that chemically changes the components of the solution with a reactive gas such as ozone, a technique that can dissolve a slightly water-soluble organic compound in the air in an aqueous solution has been reported. Not.
特開2013-27376号公報JP 2013-27376 A 特開2014-193466号公報JP 2014-193466 A
 そこで、本発明は、気中の難水溶性有機化合物を水溶液中に溶解可能な難水溶性有機化合物の溶解システム、難水溶性有機化合物の溶解方法、及び匂い検出システムを提供することを目的の一つとする。 Accordingly, an object of the present invention is to provide a dissolution system for a poorly water-soluble organic compound, a dissolution method for a poorly water-soluble organic compound, and an odor detection system that can dissolve a poorly water-soluble organic compound in the air. One.
 本発明の態様によれば、気体状の難水溶性有機化合物を格納可能な容器と、容器内の難水溶性有機化合物を含む気体に向けて、直径1μm以下の気泡を含む液滴を噴霧する噴霧装置と、を備え、容器内に、難水溶性有機化合物を含む水溶液を貯める、難水溶性有機化合物の溶解システムが提供される。 According to the aspect of the present invention, droplets containing bubbles having a diameter of 1 μm or less are sprayed toward a container that can store a gaseous sparingly water-soluble organic compound and a gas containing the sparingly water-soluble organic compound in the container. There is provided a dissolution system for a poorly water-soluble organic compound, comprising a spraying device, and storing an aqueous solution containing the poorly water-soluble organic compound in a container.
 上記の難水溶性有機化合物の溶解システムが、容器内に貯められた水溶液を吸引し、噴霧装置に送る吸引装置をさらに備え、噴霧装置が、吸引装置から送られた水溶液から液滴を生成してもよい。 The dissolution system of the slightly water-soluble organic compound described above further includes a suction device that sucks the aqueous solution stored in the container and sends it to the spray device, and the spray device generates droplets from the aqueous solution sent from the suction device. May be.
 上記の難水溶性有機化合物の溶解システムにおいて、吸引装置が、噴霧装置に水溶液を連続的に送ってもよい。 In the dissolution system for poorly water-soluble organic compounds, the suction device may continuously send the aqueous solution to the spray device.
 上記の難水溶性有機化合物の溶解システムが、容器内の水溶液を撹拌する水溶液撹拌子をさらに備えていてもよい。 The above-described system for dissolving a slightly water-soluble organic compound may further include an aqueous solution stirring element for stirring the aqueous solution in the container.
 上記の難水溶性有機化合物の溶解システムが、気体中の難水溶性有機化合物が凝縮しないように容器を加熱する加熱装置をさらに備えていてもよい。 The above-described dissolution system for hardly water-soluble organic compounds may further include a heating device for heating the container so that the hardly water-soluble organic compounds in the gas are not condensed.
 上記の難水溶性有機化合物の溶解システムにおいて、加熱装置が、容器を温浴する温浴槽を備えていてもよい。 In the above-described dissolution system for poorly water-soluble organic compounds, the heating device may include a hot tub for warming the container.
 上記の難水溶性有機化合物の溶解システムが、温浴槽内の温浴液を撹拌する温浴液撹拌子をさらに備えていてもよい。 The above-mentioned dissolution system of a poorly water-soluble organic compound may further include a warm bath liquid stirring element for stirring the warm bath liquid in the warm bath.
 上記の難水溶性有機化合物の溶解システムにおいて、難水溶性有機化合物が匂い物質であってもよい。 In the above-described dissolution system for poorly water-soluble organic compounds, the poorly water-soluble organic compound may be an odor substance.
 上記の難水溶性有機化合物の溶解システムにおいて、噴霧装置が、超音波振動によって、直径1μm以下の気泡を含む液滴を噴霧するよう構成されていてもよい。 In the dissolution system for poorly water-soluble organic compounds, the spray device may be configured to spray droplets containing bubbles having a diameter of 1 μm or less by ultrasonic vibration.
 また、本発明の態様によれば、容器内に気体状の難水溶性有機化合物を格納することと、容器内の難水溶性有機化合物を含む気体に向けて、直径1μm以下の気泡を含む液滴を噴霧し、容器内に、難水溶性有機化合物を含む水溶液を貯めることと、を含む、難水溶性有機化合物の溶解方法が提供される。 Moreover, according to the aspect of the present invention, a liquid containing bubbles having a diameter of 1 μm or less toward the gas containing the poorly water-soluble organic compound in the container and storing the gaseous hardly water-soluble organic compound in the container. There is provided a method for dissolving a poorly water-soluble organic compound, comprising spraying droplets and storing an aqueous solution containing the poorly water-soluble organic compound in a container.
 上記の難水溶性有機化合物の溶解方法において、容器内に貯められた水溶液を吸引し、水溶液から液滴を生成してもよい。 In the above-described method for dissolving a poorly water-soluble organic compound, an aqueous solution stored in a container may be sucked to generate droplets from the aqueous solution.
 上記の難水溶性有機化合物の溶解方法において、容器内に貯められた水溶液を連続的に吸引し、水溶液から液滴を生成してもよい。 In the above-described method for dissolving a slightly water-soluble organic compound, the aqueous solution stored in the container may be continuously sucked to generate droplets from the aqueous solution.
 上記の難水溶性有機化合物の溶解方法が、容器内の水溶液を撹拌することをさらに含んでいてもよい。 The method for dissolving the slightly water-soluble organic compound may further include stirring the aqueous solution in the container.
 上記の難水溶性有機化合物の溶解方法が、気体中の難水溶性有機化合物が凝縮しないように容器を加熱することをさらに含んでいてもよい。 The method for dissolving the hardly water-soluble organic compound may further include heating the container so that the hardly water-soluble organic compound in the gas is not condensed.
 上記の難水溶性有機化合物の溶解方法において、容器を温浴する温浴槽を用いて容器を加熱してもよい。 In the above-described method for dissolving a slightly water-soluble organic compound, the container may be heated using a hot tub for warming the container.
 上記の難水溶性有機化合物の溶解方法が、温浴槽内の温浴液を撹拌することをさらに含んでいてもよい。 The above-described method for dissolving a slightly water-soluble organic compound may further include stirring the warm bath liquid in the warm bath.
 上記の難水溶性有機化合物の溶解方法において、難水溶性有機化合物が匂い物質であってもよい。 In the above-described method for dissolving a poorly water-soluble organic compound, the poorly water-soluble organic compound may be an odor substance.
 上記の難水溶性有機化合物の溶解方法において、超音波振動によって、前記直径1μm以下の気泡を含む液滴を噴霧してもよい。 In the above-described method for dissolving a slightly water-soluble organic compound, droplets containing bubbles having a diameter of 1 μm or less may be sprayed by ultrasonic vibration.
 さらに、本発明の態様によれば、気体状の匂い物質を格納可能な容器と、容器内の匂い物質を含む気体に向けて、直径1μm以下の気泡を含む液滴を噴霧する噴霧装置と、容器内に貯められた匂い物質を含む水溶液が供給される匂いセンサと、を備える、匂い検出システムが提供される。 Furthermore, according to the aspect of the present invention, a container capable of storing a gaseous odor substance, a spray device that sprays droplets containing bubbles having a diameter of 1 μm or less toward the gas containing the odor substance in the container, There is provided an odor detection system including an odor sensor to which an aqueous solution containing an odor substance stored in a container is supplied.
 上記の匂い検出システムにおいて、匂いセンサが、匂い物質に反応する細胞を備えていてもよい。 In the odor detection system, the odor sensor may include a cell that reacts to an odor substance.
 上記の匂い検出システムにおいて、細胞が、匂い物質に反応して蛍光を発してもよい。 In the odor detection system, the cell may emit fluorescence in response to the odor substance.
 上記の匂い検出システムにおいて、匂いセンサが、アルミニウム又は酸化アルミニウムを含むゲート電極を備えるトランジスターと、ゲート電極上に配置された嗅覚受容体を有する昆虫細胞と、昆虫細胞が水溶液中の匂い物質に反応した際にトランジスターで生じる電流を検出する検出装置と、を備えていてもよい。 In the odor detection system described above, the odor sensor includes a transistor having a gate electrode containing aluminum or aluminum oxide, an insect cell having an olfactory receptor disposed on the gate electrode, and the insect cell reacts to an odor substance in an aqueous solution. And a detection device for detecting a current generated in the transistor when the transistor is used.
 上記の匂い検出システムにおいて、匂いセンサが、アルミニウム又は酸化アルミニウムを含むゲート電極を備えるトランジスターと、トランジスター上に配置された、嗅覚受容体を有する昆虫細胞を入れるためのチャンバーと、ゲート電極上の昆虫細胞が水溶液中の匂い物質に反応した際にトランジスターで生じる電流を検出する検出装置と、を備えていてもよい。 In the odor detection system described above, the odor sensor includes a transistor having a gate electrode containing aluminum or aluminum oxide, a chamber for placing an insect cell having an olfactory receptor disposed on the transistor, and an insect on the gate electrode. And a detection device that detects a current generated in the transistor when the cell reacts to an odorous substance in the aqueous solution.
 上記の匂い検出システムにおいて、昆虫細胞が、導入遺伝子によって嗅覚受容体を発現していてもよい。 In the above odor detection system, the insect cell may express an olfactory receptor by a transgene.
 上記の匂い検出システムにおいて、昆虫細胞が、昆虫の嗅覚受容体を発現していてもよい。 In the odor detection system, the insect cell may express an insect olfactory receptor.
 上記の匂い検出システムにおいて、嗅覚受容体が、イオンチャンネル型受容体であってもよい。 In the above odor detection system, the olfactory receptor may be an ion channel type receptor.
 上記の匂い検出システムにおいて、嗅覚受容体が、BmOR1、BmOR3、Or13a、Or56a、Or85b及びPxOR1から選択されてもよい。 In the odor detection system, the olfactory receptor may be selected from BmOR1, BmOR3, Or13a, Or56a, Or85b, and PxOR1.
 上記の匂い検出システムにおいて、昆虫細胞が、ガ由来の細胞であってもよい。 In the above odor detection system, the insect cell may be a moth-derived cell.
 上記の匂い検出システムにおいて、昆虫細胞が、Sf21、Sf9、High Five及びTni由来細胞から選択されてもよい。 In the odor detection system, the insect cell may be selected from Sf21, Sf9, High Five, and Tni-derived cells.
 上記の匂い検出システムにおいて、昆虫細胞が、ショウジョウバエ由来の細胞であってもよい。 In the above odor detection system, the insect cell may be a Drosophila-derived cell.
 上記の匂い検出システムにおいて、昆虫細胞が、Drosophila S2細胞であってもよい。 In the above odor detection system, the insect cell may be a Drosophila S2 cell.
 上記の匂い検出システムにおいて、昆虫細胞が、イオン濃度に応じて蛍光強度が変化する蛍光タンパク質を発現していてもよい。 In the odor detection system described above, the insect cell may express a fluorescent protein whose fluorescence intensity changes according to the ion concentration.
 上記の匂い検出システムにおいて、トランジスターが、電界効果トランジスターであってもよい。 In the above odor detection system, the transistor may be a field effect transistor.
 上記の匂い検出システムにおいて、ゲート電極が、伸長ゲート電極であってもよい。 In the above odor detection system, the gate electrode may be an extended gate electrode.
 上記の匂い検出システムにおいて、ゲート電極の表面に、アルミニウム又は酸化アルミニウムが露出していてもよい。 In the odor detection system, aluminum or aluminum oxide may be exposed on the surface of the gate electrode.
 上記の匂い検出システムが、トランジスターを覆うファラデーケージをさらに備えていてもよい。 The odor detection system may further include a Faraday cage that covers the transistor.
 上記の匂い検出システムにおいて、噴霧装置が、超音波振動によって、直径1μm以下の気泡を含む液滴を噴霧するよう構成されていてもよい。 In the above odor detection system, the spray device may be configured to spray droplets containing bubbles having a diameter of 1 μm or less by ultrasonic vibration.
 本発明によれば、気中の難水溶性有機化合物を水溶液中に溶解可能な難水溶性有機化合物の溶解システム、難水溶性有機化合物の溶解方法、及び匂い検出システムを提供可能である。 According to the present invention, it is possible to provide a dissolution system for a poorly water-soluble organic compound, a dissolution method for a poorly water-soluble organic compound, and an odor detection system capable of dissolving a slightly water-soluble organic compound in the air in an aqueous solution.
第1実施形態に係る難水溶性有機化合物の溶解システムの模式図である。It is a schematic diagram of the melt | dissolution system of the slightly water-soluble organic compound which concerns on 1st Embodiment. 第1実施形態に係る難水溶性有機化合物の溶解システムの一部の模式図である。It is a partial schematic diagram of the melt | dissolution system of the slightly water-soluble organic compound which concerns on 1st Embodiment. 第2実施形態に係る匂いセンサの模式図である。It is a schematic diagram of the odor sensor which concerns on 2nd Embodiment. 実施例1に係る難水溶性有機化合物の溶解システムの模式図である。1 is a schematic diagram of a slightly water-soluble organic compound dissolution system according to Example 1. FIG. 実施例1に係る1-octen-3-olの化学式である。1 is a chemical formula of 1-octen-3-ol according to Example 1. 実施例1に係る気中の1-octen-3-olの濃度の時間変化を示すグラフである。3 is a graph showing the change over time of the concentration of 1-octen-3-ol in the air according to Example 1. 実施例1及び比較例1に係る液中の1-octen-3-olの濃度の時間変化を示すグラフである。6 is a graph showing the change over time of the concentration of 1-octen-3-ol in liquids according to Example 1 and Comparative Example 1. 実施例1及び比較例1に係る1-octen-3-olの溶解率の時間変化を示すグラフである。3 is a graph showing a change over time in the dissolution rate of 1-octen-3-ol according to Example 1 and Comparative Example 1. 実施例2に係る気中の1-octen-3-olの濃度の時間変化を示すグラフである。6 is a graph showing the change over time of the concentration of 1-octen-3-ol in the air according to Example 2. 実施例2に係る液中の1-octen-3-olの濃度の時間変化を示すグラフである。6 is a graph showing the change over time of the concentration of 1-octen-3-ol in the liquid according to Example 2. 実施例3に係る長期にわたる1-octen-3-olの溶解濃度の変化を示すグラフである。6 is a graph showing changes in the dissolved concentration of 1-octen-3-ol over a long period of time according to Example 3. 実施例3に係る長期にわたる1-octen-3-olの溶解濃度の変化を示す表である。10 is a table showing changes in the dissolution concentration of 1-octen-3-ol over a long period of time according to Example 3. 実施例4に係る気中の1-octen-3-olの濃度の時間変化を示すグラフである。10 is a graph showing the change over time of the concentration of 1-octen-3-ol in the air according to Example 4. 実施例4に係る液中の1-octen-3-olの濃度の時間変化を示すグラフである。10 is a graph showing the change over time of the concentration of 1-octen-3-ol in the liquid according to Example 4. 実施例5に係る気中の3-octanone、3-octanol及び1-octen-3-olの濃度の時間変化を示すグラフである。10 is a graph showing changes over time in concentrations of 3-octaneone, 3-octanol and 1-octen-3-ol in the air according to Example 5. 実施例5に係る液中の3-octanone、3-octanol及び1-octen-3-olの濃度の時間変化を示すグラフである。10 is a graph showing changes over time in the concentrations of 3-octaneone, 3-octanol and 1-octen-3-ol in a liquid according to Example 5. 実施例6に係るノズル先端と水溶液の水面までの距離と、粒子数と、の関係を示すグラフである。It is a graph which shows the relationship between the distance from the nozzle tip which concerns on Example 6, and the water surface of aqueous solution, and the number of particles. 実施例7に係る1-octen-3-olに応答したSf21細胞で生じた蛍光強度を示すグラフである。10 is a graph showing the fluorescence intensity generated in Sf21 cells in response to 1-octen-3-ol according to Example 7. 実施例7に係る1-octen-3-olに応答したSf21細胞で生じた蛍光強度を示すグラフである。10 is a graph showing the fluorescence intensity generated in Sf21 cells in response to 1-octen-3-ol according to Example 7. 実施例8に係る、アルミニウム基板上におけるSf21細胞の経時変化を示す顕微鏡写真である。It is a microscope picture which shows the time-dependent change of the Sf21 cell on the aluminum substrate based on Example 8. FIG. 実施例8に係る、アルミニウム基板上におけるSf21細胞の生存割合の経時変化を示すグラフである。It is a graph which shows the time-dependent change of the survival rate of the Sf21 cell on the aluminum substrate based on Example 8. 実施例8に係る、アルミニウム基板上におけるHEK293T細胞の経時変化を示す顕微鏡写真である。It is a microscope picture which shows the time-dependent change of HEK293T cell on the aluminum substrate based on Example 8. FIG. アルミニウム基板上におけるSf21細胞とHEK293T細胞の増加曲線を示すグラフである。It is a graph which shows the increase curve of Sf21 cell and HEK293T cell on an aluminum substrate.
 以下に本発明の実施形態を説明する。以下の図面の記載において、同一又は類似の部分には同一又は類似の符号で表している。ただし、図面は模式的なものである。したがって、具体的な寸法等は以下の説明を照らし合わせて判断するべきものである。また、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることはもちろんである。 Embodiments of the present invention will be described below. In the following description of the drawings, the same or similar parts are denoted by the same or similar reference numerals. However, the drawings are schematic. Therefore, specific dimensions and the like should be determined in light of the following description. Moreover, it is a matter of course that portions having different dimensional relationships and ratios are included between the drawings.
 [第1実施形態]
 第1実施形態に係る難水溶性有機化合物の溶解システムは、図1に示すように、気体状の難水溶性有機化合物を格納可能な容器1と、容器1内の難水溶性有機化合物を含む気体に向けて、直径1μm以下の気泡を含む液滴を噴霧する噴霧装置20と、を備え、容器1内に、難水溶性有機化合物を含む水溶液2を貯める。
[First Embodiment]
As shown in FIG. 1, the dissolution system for a poorly water-soluble organic compound according to the first embodiment includes a container 1 that can store a gaseous hardly water-soluble organic compound, and the poorly water-soluble organic compound in the container 1. A spraying device 20 that sprays droplets containing bubbles having a diameter of 1 μm or less toward the gas, and the aqueous solution 2 containing the poorly water-soluble organic compound is stored in the container 1.
 容器1は、例えば、ガラス及び樹脂等の透明材料からなっていてもよいし、不透明材料からなっていてもよい。容器1には、例えば、円筒形であるが、特に限定されない。容器1の底上には、難水溶性有機化合物を溶解させるための水溶液2が入れられる。水溶液2は、例えば、緩衝液、培養液、及び香料の溶媒であるが、特に限定されない。また、本開示においては、水溶液2は、水及び純水を含む。 The container 1 may be made of a transparent material such as glass and resin, or may be made of an opaque material. The container 1 has, for example, a cylindrical shape, but is not particularly limited. On the bottom of the container 1, an aqueous solution 2 for dissolving the hardly water-soluble organic compound is placed. The aqueous solution 2 is, for example, a buffer solution, a culture solution, and a fragrance solvent, but is not particularly limited. In the present disclosure, the aqueous solution 2 includes water and pure water.
 有機化合物の水溶性を表す指標の例としては、分配係数が挙げられる。分配係数は、有機化合物が、水と、1-オクタノール等の有機溶媒と、の二相に溶解したときの、それぞれの相における有機化合物の濃度比から得られる値であり、下記(1)式で与えられる。
  LogP=Log10(CO/CW)   (1)
 ここで、LogPは分配係数を、COは有機溶媒相における有機化合物の濃度を、CWは水相における有機化合物の濃度を表す。分配係数が高いほど有機化合物は脂溶性であり、水溶性が低い。本開示では、例えば分配係数が2.0以上の有機化合物を難水溶性化合物という。難水溶性有機化合物は、例えば、匂い物質である。あるいは、難水溶性有機化合物の他の例としては、アルコール、アルデヒド、ケトン、アミン、テルペン、芳香族化合物、エステル、酸、炭化水素、エーテル、ラクトン、アミド、及びラクタム等が挙げられる。容器1内に導入される難水溶性有機化合物を含む気体は、例えば空気であるが、特に限定されない。容器1には、例えば、水溶液2及び難水溶性有機化合物を含む気体を導入するための導入口が設けられている。しかし、例えば、水溶液2及び難水溶性有機化合物を含む気体を容器1内に導入した後、導入口は密閉される。したがって、容器1は、密閉可能である。
An example of an index representing the water solubility of an organic compound is a partition coefficient. The partition coefficient is a value obtained from the concentration ratio of the organic compound in each phase when the organic compound is dissolved in two phases of water and an organic solvent such as 1-octanol. Given in.
LogP = Log 10 (C O / C W ) (1)
Here, LogP represents the partition coefficient, C 2 O represents the concentration of the organic compound in the organic solvent phase, and C W represents the concentration of the organic compound in the aqueous phase. The higher the partition coefficient, the more fat the organic compound is and the lower the water solubility. In the present disclosure, for example, an organic compound having a partition coefficient of 2.0 or more is referred to as a hardly water-soluble compound. The poorly water-soluble organic compound is, for example, an odor substance. Alternatively, other examples of poorly water-soluble organic compounds include alcohols, aldehydes, ketones, amines, terpenes, aromatic compounds, esters, acids, hydrocarbons, ethers, lactones, amides, and lactams. The gas containing the poorly water-soluble organic compound introduced into the container 1 is, for example, air, but is not particularly limited. For example, the container 1 is provided with an inlet for introducing a gas containing the aqueous solution 2 and the poorly water-soluble organic compound. However, for example, after the gas containing the aqueous solution 2 and the poorly water-soluble organic compound is introduced into the container 1, the inlet is sealed. Therefore, the container 1 can be sealed.
 噴霧装置20は、例えば、容器1の上面又は側面に設けられる。噴霧装置20は、例えば、スプレーノズルと、スプレーノズルに超音波を与えるピエゾと、を備える。超音波振動により、スプレーノズルに供給される液体から、直径1μm以下の気泡を含む液滴が生成される。超音波による噴霧は、加圧が不要かつ少量の送液で動作可能であり、低消費電力で小型化にも有用である。しかし、噴霧方法は超音波以外によっても可能である。噴霧装置20は、直径1μm以下の気泡を含む液滴を噴霧可能であれば、特に限定されない。液滴は、例えば、水溶液2と組成が同じである。図2に示す液滴に含まれる直径1μm以下の気泡は、ウルトラファインバブルとも呼ばれる。気泡の直径は、例えば、10nm以上、20nm以上、あるいは30nm以上である。また、気泡の直径は、例えば、700nm以下、800nm以下、あるいは900nm以下である。気泡の直径は、100nm以上200nm以下であってもよい。 The spraying device 20 is provided on the upper surface or side surface of the container 1, for example. The spraying device 20 includes, for example, a spray nozzle and a piezo that applies ultrasonic waves to the spray nozzle. Due to the ultrasonic vibration, droplets containing bubbles having a diameter of 1 μm or less are generated from the liquid supplied to the spray nozzle. Spraying using ultrasonic waves does not require pressurization and can be operated with a small amount of liquid feeding, and is also useful for miniaturization with low power consumption. However, the spraying method can be other than ultrasonic waves. The spraying device 20 is not particularly limited as long as it can spray droplets containing bubbles having a diameter of 1 μm or less. For example, the droplets have the same composition as the aqueous solution 2. Bubbles having a diameter of 1 μm or less contained in the droplet shown in FIG. 2 are also called ultrafine bubbles. The diameter of the bubbles is, for example, 10 nm or more, 20 nm or more, or 30 nm or more. The diameter of the bubbles is, for example, 700 nm or less, 800 nm or less, or 900 nm or less. The bubble diameter may be not less than 100 nm and not more than 200 nm.
 図1に示す噴霧装置20が噴霧した液滴は、重力に従って水溶液2に向かって落下する。水溶液2に落下した液滴に含まれていた直径1μm以下の気泡は、水溶液2中に拡散する。直径1μm以下の気泡は、液滴中においても、水溶液2中においても、目視することは不可能である。気泡を含む前の水溶液2が無色透明であれば、直径1μm以下の気泡を含ませても、水溶液2は無色透明のままである。ただし、直径1μm以下の気泡は、液中粒子観察装置で観察可能である。液中粒子観察装置としては、例えば、ナノサイトLM10(Malvern Instruments Limited)が使用可能である。 The droplet sprayed by the spray device 20 shown in FIG. 1 falls toward the aqueous solution 2 according to gravity. Bubbles having a diameter of 1 μm or less contained in the droplets falling on the aqueous solution 2 diffuse into the aqueous solution 2. Bubbles having a diameter of 1 μm or less cannot be visually observed in the droplet or in the aqueous solution 2. If the aqueous solution 2 before containing bubbles is colorless and transparent, the aqueous solution 2 remains colorless and transparent even if bubbles having a diameter of 1 μm or less are included. However, bubbles having a diameter of 1 μm or less can be observed with a liquid particle observation device. As a liquid particle observation apparatus, for example, Nanosite LM10 (Malvern Instruments Limited) can be used.
 直径1μm以下の気泡の表面は、通常、負の電荷を帯びている。そのため、気泡どうしの凝集が生じにくい。また、直径1μm以下の気泡の浮力は極めて小さいため、直径1μm以下の気泡は水溶液2の表面まで浮上せずに、水溶液2内でブラウン運動し、水溶液2中に長く留まる傾向にある。 The surface of bubbles with a diameter of 1 μm or less is usually negatively charged. Therefore, aggregation of bubbles is difficult to occur. In addition, since the buoyancy of bubbles having a diameter of 1 μm or less is extremely small, the bubbles having a diameter of 1 μm or less do not float up to the surface of the aqueous solution 2, but Brown moves in the aqueous solution 2 and tends to stay in the aqueous solution 2 for a long time.
 原理は必ずしも明らかではないが、直径1μm以下の気泡を内包する液滴を噴霧すると、液滴の周囲に存在する気体に含まれる匂い物質等の難水溶性有機化合物の水溶液2への効率的な溶解が促進される。理論に拘束されるものではないが、直径1μm以下の気泡を含む液滴を噴霧することにより、気体と液体の界面が増大し、気体に含まれる難水溶性有機化合物の水溶液2への効率的な溶解が促進されると考えることができる。 Although the principle is not necessarily clear, when a droplet containing bubbles having a diameter of 1 μm or less is sprayed, an efficient solution to the aqueous solution 2 of a poorly water-soluble organic compound such as an odor substance contained in the gas present around the droplet Dissolution is promoted. Without being bound by theory, by spraying droplets containing bubbles having a diameter of 1 μm or less, the interface between the gas and the liquid is increased, and the aqueous solution 2 of the poorly water-soluble organic compound contained in the gas is efficiently produced. It can be considered that proper dissolution is promoted.
 実施形態に係る難水溶性有機化合物の溶解システムは、容器1の底上に貯められた水溶液2を吸引し、噴霧装置20に送る吸引装置30をさらに備える。吸引装置30は、例えば、容器1の側壁に接続された管31を介して、容器1内の水溶液2を吸引する。また、吸引装置30は、噴霧装置20に接続された管32を介して、水溶液2を噴霧装置20に送る。この場合、噴霧装置20は、吸引装置30から送られた水溶液2から液滴を生成する。これにより、水溶液2が、容器1内と、吸引装置30及び噴霧装置20を含む経路と、を循環する。 The slightly water-soluble organic compound dissolution system according to the embodiment further includes a suction device 30 that sucks the aqueous solution 2 stored on the bottom of the container 1 and sends it to the spraying device 20. The suction device 30 sucks the aqueous solution 2 in the container 1 through, for example, a pipe 31 connected to the side wall of the container 1. In addition, the suction device 30 sends the aqueous solution 2 to the spraying device 20 via a pipe 32 connected to the spraying device 20. In this case, the spray device 20 generates droplets from the aqueous solution 2 sent from the suction device 30. Thereby, the aqueous solution 2 circulates in the container 1 and the path including the suction device 30 and the spray device 20.
 吸引装置30としては、ポンプが使用可能である。ポンプの例としては、ペリスタポンプ(登録商標)等のチューブポンプ、ローラーポンプ、及びペリスタルティックポンプが挙げられる。あるいは、ポンプの例としては、セラミックポンプが挙げられる。吸引装置30は、例えば、噴霧装置20に液体を連続的に送る。チューブポンプ、ローラーポンプ、及びペリスタルティックポンプのようにチューブを圧縮することによりチューブ内の液体を送液するポンプは、連続的な送液に適している。 As the suction device 30, a pump can be used. Examples of the pump include a tube pump such as a peristaltic pump (registered trademark), a roller pump, and a peristaltic pump. Or a ceramic pump is mentioned as an example of a pump. The suction device 30 continuously sends liquid to the spray device 20, for example. Pumps that send the liquid in the tube by compressing the tube, such as a tube pump, a roller pump, and a peristaltic pump, are suitable for continuous liquid feeding.
 実施形態に係る難水溶性有機化合物の溶解システムは、容器1内の水溶液2を撹拌する水溶液撹拌子40と、水溶液撹拌子40を回転させるマグネティックスターラーと、をさらに備えていてもよい。容器1内の水溶液2を撹拌することにより、容器1内の気体及び水溶液2中における難水溶性有機化合物の分散が均一化される。また、水溶液2への難水溶性有機化合物の溶解が促進される。 The slightly water-soluble organic compound dissolution system according to the embodiment may further include an aqueous solution stirrer 40 that stirs the aqueous solution 2 in the container 1 and a magnetic stirrer that rotates the aqueous solution stirrer 40. By stirring the aqueous solution 2 in the container 1, the dispersion of the hardly water-soluble organic compound in the gas in the container 1 and the aqueous solution 2 is made uniform. Moreover, dissolution of the poorly water-soluble organic compound in the aqueous solution 2 is promoted.
 実施形態に係る難水溶性有機化合物の溶解システムは、容器1内の気体中の難水溶性有機化合物が凝縮して液化しないように容器1を加熱する加熱装置3をさらに備えていてもよい。加熱装置3が、容器1を温浴する温浴槽51を備えていてもよい。容器1を加熱することにより、容器1内の気体及び水溶液2中における難水溶性有機化合物の分散が均一化される。また、水溶液2への難水溶性有機化合物の溶解が促進される。 The dissolution system of a hardly water-soluble organic compound according to the embodiment may further include a heating device 3 that heats the container 1 so that the hardly water-soluble organic compound in the gas in the container 1 is not condensed and liquefied. The heating device 3 may include a hot tub 51 that warms the container 1. By heating the container 1, the dispersion of the hardly water-soluble organic compound in the gas in the container 1 and the aqueous solution 2 is made uniform. Moreover, dissolution of the poorly water-soluble organic compound in the aqueous solution 2 is promoted.
 実施形態に係る難水溶性有機化合物の溶解システムは、温浴槽51内の温浴液52を撹拌する温浴液撹拌子4をさらに備えていてもよい。温浴槽51内の温浴液52を撹拌することにより、容器1内の気体及び水溶液2中における難水溶性有機化合物の分散が均一化される。また、水溶液2への難水溶性有機化合物の溶解が促進される。 The slightly water-soluble organic compound dissolution system according to the embodiment may further include a warm bath agitator 4 that agitates the warm bath fluid 52 in the warm bathtub 51. By stirring the warm bath liquid 52 in the hot tub 51, the gas in the container 1 and the dispersion of the poorly water-soluble organic compound in the aqueous solution 2 are made uniform. Moreover, dissolution of the poorly water-soluble organic compound in the aqueous solution 2 is promoted.
 [第2実施形態]
 第2実施形態に係る匂い検出システムは、図1に示す気体状の匂い物質を格納可能な容器1と、容器1内の匂い物質を含む気体に向けて、直径1μm以下の気泡を含む液滴を噴霧する噴霧装置20と、を備える難水溶性有機化合物の溶解システムと、容器1内に貯められた匂い物質を含む水溶液が供給される図3に示す匂いセンサ500と、を備える。第2実施形態に係る難水溶性有機化合物の溶解システムは、第1実施形態と同様であるので、説明は省略する。
[Second Embodiment]
The odor detection system according to the second embodiment includes a container 1 capable of storing a gaseous odor substance shown in FIG. 1 and a droplet containing bubbles having a diameter of 1 μm or less toward the gas containing the odor substance in the container 1. 3, and a odor sensor 500 shown in FIG. 3 to which an aqueous solution containing an odor substance stored in the container 1 is supplied. Since the dissolution system of the slightly water-soluble organic compound according to the second embodiment is the same as that of the first embodiment, description thereof is omitted.
 匂いセンサ500は、アルミニウム又は酸化アルミニウムを含むゲート電極14を備えるトランジスター10と、ゲート電極14上に配置された嗅覚受容体を有する昆虫細胞50と、昆虫細胞50が匂いに反応した際にトランジスター10で生じる電流を検出する検出装置80と、を備える。 The odor sensor 500 includes a transistor 10 having a gate electrode 14 containing aluminum or aluminum oxide, an insect cell 50 having an olfactory receptor disposed on the gate electrode 14, and a transistor 10 when the insect cell 50 reacts to an odor. And a detection device 80 for detecting a current generated in the above.
 トランジスター10は、半導体基板11を備える。トランジスター10は、例えば、電界効果トランジスター(FET)であり、MOSFETであってもよい。半導体基板11内の表面近傍には、ソース電極12及びドレイン電極13が、間隔をおいて設けられている。半導体基板11のソース電極12及びドレイン電極13の間の上に、酸化絶縁膜を挟んでゲート電極14が配置されている。ゲート電極14には、伸長(Extended)ゲート電極であってもよい。 The transistor 10 includes a semiconductor substrate 11. The transistor 10 is, for example, a field effect transistor (FET), and may be a MOSFET. In the vicinity of the surface in the semiconductor substrate 11, a source electrode 12 and a drain electrode 13 are provided at an interval. A gate electrode 14 is disposed between the source electrode 12 and the drain electrode 13 of the semiconductor substrate 11 with an oxide insulating film interposed therebetween. The gate electrode 14 may be an extended gate electrode.
 ゲート電極14の表面には、アルミニウム又は酸化アルミニウムが露出している。例えば、ゲート電極14は、アルミニウムからなり、表面近傍に酸化アルミニウム(Al23)からなる酸化膜が形成されている。表面近傍に酸化アルミニウム(Al23)からなる酸化膜が形成されていなくてもよい。伸長ゲート電極であるゲート電極14は、昆虫細胞50が配置される領域を有する。昆虫細胞50が配置される領域の大きさは、例えば100μm×100μmであるが、これに限定されない。ゲート電極14に配置される昆虫細胞50の数は、例えば10個以下であるが、これに限定されない。 Aluminum or aluminum oxide is exposed on the surface of the gate electrode 14. For example, the gate electrode 14 is made of aluminum, and an oxide film made of aluminum oxide (Al 2 O 3 ) is formed in the vicinity of the surface. An oxide film made of aluminum oxide (Al 2 O 3 ) may not be formed near the surface. The gate electrode 14 which is an extended gate electrode has a region where the insect cells 50 are arranged. The size of the region where the insect cells 50 are arranged is, for example, 100 μm × 100 μm, but is not limited thereto. The number of insect cells 50 arranged on the gate electrode 14 is, for example, 10 or less, but is not limited thereto.
 昆虫細胞50は、トランジスター10のゲート電極14上に配置されている。ゲート電極14上に昆虫細胞50を含む溶液を与え、数十分から数時間静置することにより、昆虫細胞50は、ゲート電極14に接着する。昆虫細胞50は、細胞膜に嗅覚受容体を発現している。昆虫細胞50において、嗅覚受容体は天然に発現されていてもよいし、導入遺伝子によって発現されていてもよい。 The insect cell 50 is disposed on the gate electrode 14 of the transistor 10. The insect cell 50 adheres to the gate electrode 14 by giving a solution containing the insect cell 50 on the gate electrode 14 and allowing it to stand for several tens of minutes to several hours. Insect cells 50 express olfactory receptors on their cell membranes. In insect cell 50, the olfactory receptor may be naturally expressed or may be expressed by a transgene.
 昆虫細胞は、ヨトウガ(Spodoptera frugiperda)及びイラクサギンウワバ(Trichoplusia ni)等のガ由来の細胞であってもよい。ヨトウガ由来の細胞の例としては、Sf21及びSf9が挙げられる。Sf21細胞は、卵巣細胞由来である。Sf21細胞は、無限分裂し、導入した遺伝子を永続的に発現する安定発現系統を樹立することが可能である。また、Sf21細胞は、18℃から40℃の広い温度範囲で生存可能であり、培養液のpHを調整するための二酸化炭素も不要である。Sf21細胞は、本来、嗅覚受容体を有しないが、嗅覚受容体の遺伝子を導入することにより、嗅覚受容体を発現させることが可能である。Sf9細胞は、Sf21のクローンである。イラクサギンウワバ由来の細胞の例としては、High Five及びTniが挙げられる。Tni由来細胞は、卵巣細胞由来である。 The insect cells may be cells derived from moths such as Spodoptera frugiperda and Trichoplusia ni. Sf21 and Sf9 are mentioned as an example of a cell derived from a mushroom. Sf21 cells are derived from ovarian cells. Sf21 cells can divide indefinitely and establish a stable expression line that permanently expresses the introduced gene. In addition, Sf21 cells can survive in a wide temperature range of 18 ° C. to 40 ° C., and carbon dioxide for adjusting the pH of the culture solution is unnecessary. Sf21 cells originally do not have olfactory receptors, but can express olfactory receptors by introducing olfactory receptor genes. Sf9 cells are clones of Sf21. Examples of cells derived from nettle guava include High Five and Tni. Tni-derived cells are derived from ovarian cells.
 あるいは、昆虫細胞は、ショウジョウバエ由来の細胞であってもよい。ショウジョウバエ由来の細胞の例としては、Drosophila S2細胞が挙げられる。 Alternatively, the insect cell may be a Drosophila-derived cell. Examples of Drosophila-derived cells include Drosophila S2 cells.
 嗅覚受容体は、Gタンパク質共役型受容体であってもよいし、イオンチャンネル型受容体であってもよい。イオンチャネル型受容体は、匂い物質であるリガンドと相互作用する部位と、イオンが流入する部位と、を有する。昆虫細胞50のイオンチャンネル型受容体がリガンドと結合すると、昆虫細胞50内にナトリウムイオンやカルシウムイオン等の陽イオンが流入する。昆虫細胞50において、イオンの流入は、リガンドの結合から数10ミリ秒程度で生じ得る。流入するイオンの量は多く、1個のリガンドの結合に対し、細胞内に流入するイオンの量は107個ともいわれている。 The olfactory receptor may be a G protein-coupled receptor or an ion channel receptor. The ion channel type receptor has a part that interacts with a ligand that is an odor substance and a part into which ions flow. When the ion channel type receptor of the insect cell 50 binds to the ligand, a cation such as sodium ion or calcium ion flows into the insect cell 50. In insect cells 50, ion influx can occur in the order of tens of milliseconds after ligand binding. The amount of ions flowing in is large, and it is said that the amount of ions flowing into the cell is 10 7 with respect to the binding of one ligand.
 一般に、特定の種類の嗅覚受容体は、特定の匂い物質に対する特異性を有する。昆虫細胞50において、1種類の匂い物質に対応する1種類の嗅覚受容体のみを発現させてもよいし、複数種類の匂い物質に対応する複数種類の嗅覚受容体を発現させてもよい。また、発現させる嗅覚受容体の量を調整して、匂いセンサの検出感度を調整してもよい。 In general, certain types of olfactory receptors have specificity for certain odorants. In the insect cell 50, only one type of olfactory receptor corresponding to one type of odor substance may be expressed, or a plurality of types of olfactory receptors corresponding to a plurality of types of odor substances may be expressed. Further, the detection sensitivity of the odor sensor may be adjusted by adjusting the amount of the olfactory receptor to be expressed.
 嗅覚受容体の例としては、カイコガの性フェロモンであるボンビコール(Bombykol)の受容体であるBmOR1、カイコガの性フェロモンであるボンビカール(Bombykal)の受容体であるBmOR3、ショウジョウバエの受容体であって、カビ臭である1-octen-3-olの受容体であるOr13a、ショウジョウバエの受容体であって、カビ臭であるgeosminの受容体であるOr56a、キイロショウジョウバエの一般臭受容体であるOr85b、及びコナガの性フェロモン受容体であるPxOR1が挙げられるが、これらに限定されない。 Examples of olfactory receptors include BmOR1, which is a Bombykol receptor for Bombykol, a BmOR3 receptor for Bombykal, a Drosophila receptor, which is a Bombykal pheromone. Or13a which is a receptor for 1-octen-3-ol which is a musty odor, a receptor for Drosophila, which is a receptor for a mold odor, ore 56a which is a receptor for Drosophila, Or85b which is a general odor receptor for Drosophila melanogaster And PxOR1, which is the female sex pheromone receptor, but is not limited to.
 遺伝子工学的に嗅覚受容体を昆虫細胞50に発現させる場合は、例えば、嗅覚受容体をコードする遺伝子をベクターに組み込み、構築されたベクターを宿主細胞にトランスフェクトさせる。嗅覚受容体をコードする遺伝子は、例えば、昆虫の嗅覚器官からmRNAを抽出し、cDNAを合成して単離することができる。単離されたcDNAから、PCRプライマーを用いて、嗅覚受容体をコードする遺伝子の一部をPCR法にて増幅することが可能である。 When expressing an olfactory receptor in insect cells 50 by genetic engineering, for example, a gene encoding the olfactory receptor is incorporated into a vector, and the constructed vector is transfected into a host cell. A gene encoding an olfactory receptor can be isolated by, for example, extracting mRNA from an olfactory organ of an insect and synthesizing cDNA. From the isolated cDNA, it is possible to amplify a part of the gene encoding the olfactory receptor by PCR using PCR primers.
 嗅覚受容体をコードする遺伝子の一部は、合成した二本鎖cDNAを適当なベクターに組み込み、当該ベクターを用いて大腸菌等を形質転換してcDNAライブラリーを作製することによっても取得することができる。cDNAは、制限酵素とリガーゼを用いる通常の方法、例えば、得られたcDNAを制限酵素で切断し、ベクターDNAの制限酵素部位に挿入してベクターに連結する方法によって、ベクターに組込むことができる。 Part of the gene encoding the olfactory receptor can also be obtained by incorporating the synthesized double-stranded cDNA into an appropriate vector and transforming Escherichia coli etc. using the vector to prepare a cDNA library. it can. The cDNA can be incorporated into the vector by a conventional method using a restriction enzyme and ligase, for example, by cleaving the obtained cDNA with a restriction enzyme, inserting it into a restriction enzyme site of vector DNA, and ligating it to the vector.
 昆虫細胞50において、嗅覚受容体とともに蛍光タンパク質が発現されていてもよい。例えば昆虫細胞50において、イオンチャンネル型嗅覚受容体に匂い物質が結合すると、昆虫細胞50内にカルシウムイオン等のイオンが流れる。したがって、イオンに応じて蛍光強度が変化する蛍光タンパク質を発現させる遺伝子を昆虫細胞50に導入することにより、蛍光強度の変化からも、昆虫細胞50が匂い物質を検出しているか否かを確認することが可能となる。蛍光タンパク質の例としては、GCaMP3、GCaMP6s及びエクオリンが挙げられる。 In the insect cell 50, the fluorescent protein may be expressed together with the olfactory receptor. For example, in the insect cell 50, ions such as calcium ions flow in the insect cell 50 when an odorant is bound to the ion channel type olfactory receptor. Therefore, by introducing into the insect cell 50 a gene that expresses a fluorescent protein whose fluorescence intensity changes according to the ions, it is confirmed whether the insect cell 50 detects an odor substance from the change in the fluorescence intensity. It becomes possible. Examples of fluorescent proteins include GCaMP3, GCaMP6s and aequorin.
 実施形態に係る匂いセンサのゲート電極14の少なくとも一部は、チャンバー60中に配置される。チャンバー60には、検出対象となる匂い物質を含む可能性がある水溶液70が入れられる。水溶液70は、昆虫細胞50の生存に必要な物質を適宜含んでいてもよい。また、チャンバー60内には、水溶液70と接触するように、参照電極15が配置される。 At least a part of the gate electrode 14 of the odor sensor according to the embodiment is disposed in the chamber 60. An aqueous solution 70 that may contain an odorous substance to be detected is placed in the chamber 60. The aqueous solution 70 may appropriately contain substances necessary for the survival of the insect cells 50. In addition, the reference electrode 15 is disposed in the chamber 60 so as to be in contact with the aqueous solution 70.
 チャンバー60には、匂い物質を含む可能性のある水溶液をチャンバー60内に送り込むための導入口と、チャンバー60内の水溶液を排出するための排出口と、が設けられていてもよい。チャンバー60の導入口には、水溶液をチャンバー60内に送り込むための導入ポンプが接続される。また、チャンバー60の排出口には、水溶液をチャンバー60から排出するための排出ポンプが接続される。導入ポンプ及び排出ポンプとしては、例えば定量送液ポンプが使用可能である。 The chamber 60 may be provided with an inlet for feeding an aqueous solution that may contain an odor substance into the chamber 60 and an outlet for discharging the aqueous solution in the chamber 60. An introduction pump for feeding the aqueous solution into the chamber 60 is connected to the introduction port of the chamber 60. A discharge pump for discharging the aqueous solution from the chamber 60 is connected to the discharge port of the chamber 60. As the introduction pump and the discharge pump, for example, a fixed liquid feed pump can be used.
 水溶液70に、昆虫細胞50が有する嗅覚受容体に対応する匂い物質が存在する場合、昆虫細胞50が匂い物質に反応してゲート電極14のゲート電位が変位し、ソース電極12及びドレイン電極13の間を流れるドレイン電流に変調が生じる。したがって、トランジスター10のドレイン電流の変調を検出することによって、匂い物質の存在を検出することが可能である。 When an odorous substance corresponding to the olfactory receptor of the insect cell 50 is present in the aqueous solution 70, the insect cell 50 reacts with the odorous substance and the gate potential of the gate electrode 14 is displaced, so that the source electrode 12 and the drain electrode 13 Modulation occurs in the drain current flowing between them. Therefore, it is possible to detect the presence of an odorous substance by detecting the modulation of the drain current of the transistor 10.
 検出装置80は、例えば、トランジスター10のソース電極12、ドレイン電極13、バックゲート16、及び参照電極15に接続されており、トランジスター10のドレイン電流の変調を検出する。検出装置80としては、ソースメジャーユニット(SMU)等が使用可能である。検出装置80には、検出された電流を分析したり、ディスプレイに表示したりするためのコンピュータシステム300が接続されていてもよい。 The detection device 80 is connected to, for example, the source electrode 12, the drain electrode 13, the back gate 16, and the reference electrode 15 of the transistor 10, and detects modulation of the drain current of the transistor 10. As the detection device 80, a source major unit (SMU) or the like can be used. The detection device 80 may be connected to a computer system 300 for analyzing the detected current or displaying it on a display.
 昆虫細胞50が匂い物質に反応してゲート電極14のゲート電位が変位する理由としては、昆虫細胞50が匂い物質に反応すると、昆虫細胞50において内向きのイオン流が生じるためと考えられるが、当該理論に拘束されるものではない。 The reason why the insect cell 50 reacts to the odor substance and the gate potential of the gate electrode 14 is displaced is considered to be that when the insect cell 50 reacts to the odor substance, an inward ion flow is generated in the insect cell 50. It is not bound by the theory.
 実施形態に係る匂いセンサをアレイ状に配置し、個々の匂いセンサの細胞に異なる嗅覚受容体を発現させることにより、異なる匂い物質を検出することも可能である。 It is also possible to detect different odor substances by arranging the odor sensors according to the embodiment in an array and expressing different olfactory receptors in the cells of the individual odor sensors.
 実施形態に係る匂いセンサは、トランジスター10を覆うファラデーケージを備えていてもよい。ファラデーケージは、電場からトランジスター10を遮蔽するため、匂いセンサにおけるドレイン電流のノイズを低下させることが可能である。 The odor sensor according to the embodiment may include a Faraday cage that covers the transistor 10. Since the Faraday cage shields the transistor 10 from the electric field, it is possible to reduce the noise of the drain current in the odor sensor.
 従来、アルミニウム及び酸化アルミニウムは、細胞にとって有害と考えられていた。そのため、従来、トランジスターと細胞とを組み合わせた匂いセンサを製造する際には、トランジスターの電極を金で形成したり、生体適合物質でコーティングしたりして、その上に細胞を配置していた。しかし、これらの手法は、コストがかかる。これに対し、本発明者らは、鋭意研究の末、昆虫細胞は、アルミニウム又は酸化アルミニウムが表出する電極の上に配置されても、アルミニウム又は酸化アルミニウムによってダメージを受けず、長期にわたって生存可能であることを見出した。したがって、実施形態によれば、例えば商用のCMOSファウンドリなどを利用して、高信頼性かつコストの低い匂いセンサを提供可能である。 Conventionally, aluminum and aluminum oxide have been considered harmful to cells. Therefore, conventionally, when manufacturing an odor sensor in which a transistor and a cell are combined, the electrode of the transistor is formed of gold or coated with a biocompatible material, and the cell is disposed thereon. However, these methods are costly. On the other hand, the present inventors have conducted intensive research, and insect cells are not damaged by aluminum or aluminum oxide and can survive for a long period of time even when placed on the electrode where aluminum or aluminum oxide is exposed. I found out. Therefore, according to the embodiment, it is possible to provide a highly reliable and low-cost odor sensor using, for example, a commercial CMOS foundry.
 アルミニウム又は酸化アルミニウムを含むゲート電極14上で、昆虫細胞50は、例えば5日以上生存可能である。 On the gate electrode 14 containing aluminum or aluminum oxide, the insect cell 50 can survive for 5 days or longer, for example.
 実施形態に係る匂いセンサは、使用後、洗浄することにより、トランジスター10の部分を繰り返し再使用することが可能である。洗浄方法としては、例えば、トランジスター10の表面に、市販の洗剤を滴下すればよい。 The odor sensor according to the embodiment can be reused repeatedly by cleaning the odor sensor after use. As a cleaning method, for example, a commercially available detergent may be dropped on the surface of the transistor 10.
 [実施例1]
 図4に示すような難水溶性有機化合物の溶解システムを用意した。500mLビーカー110内に、ガラス製の液体匂い物質容器201を配置し、液体匂い物質容器201の中に、液体の匂い物質である1-octen-3-ol(シグマアルドリッチ、含量98%)を1mL入れた。1-octen-3-olは、カビの匂い、キノコの匂い、及び人の汗に含まれる匂いをなす。1-octen-3-olの化学式は、図5に示すとおりである。1-octen-3-olは、難水溶性の有機化合物であり、従来、水に液状の1-octen-3-olを攪拌したときの溶解量は、25℃で、2.6g/Lであると報告されている。また、1-octen-3-olのCLogPは、2.6である。なお、CLogPとは、コンピューターで予測されたLogPである。
[Example 1]
A dissolution system for poorly water-soluble organic compounds as shown in FIG. 4 was prepared. A liquid odor substance container 201 made of glass is placed in a 500 mL beaker 110, and 1 mL of liquid odor substance 1-octen-3-ol (Sigma Aldrich, content 98%) is placed in the liquid odor substance container 201. I put it in. 1-octen-3-ol has a smell of mold, a mushroom, and a person's sweat. The chemical formula of 1-octen-3-ol is as shown in FIG. 1-octen-3-ol is a poorly water-soluble organic compound. Conventionally, when 1-octen-3-ol, which is liquid in water, is stirred, the dissolved amount is 2.6 g / L at 25 ° C. It has been reported. The ClogP of 1-octen-3-ol is 2.6. Note that CLogP is LogP predicted by a computer.
 図4に示す液体匂い物質容器201は、蓋を備えるが、蓋をしても揮発した匂い物質が容器内外を連通可能な構造を有していた。ビーカー110内には、撹拌子140を入れた。ビーカー110は蓋112で密閉した。 The liquid odor substance container 201 shown in FIG. 4 includes a lid, but has a structure that allows the odorous substance that has volatilized to communicate between the inside and outside of the container. A stirrer 140 was placed in the beaker 110. The beaker 110 was sealed with a lid 112.
 蓋112には、ビーカー110内に直径1μm以下の気泡を含む液滴を噴霧できるアトマイザー120(Sonaer Inc.)を配置した。また、蓋112を貫通し、ビーカー110内の蒸留水111を吸引するための管131を設け、管131をセラミックポンプ130(CPA-2、アズワン)の吸引口に接続した。さらに、セラミックポンプ130の排出口とアトマイザー120の液体供給口を接続する管132を配置した。 The lid 112 is provided with an atomizer 120 (Sonaer Inc.) capable of spraying droplets containing bubbles having a diameter of 1 μm or less in the beaker 110. Further, a pipe 131 for sucking distilled water 111 in the beaker 110 was provided through the lid 112, and the pipe 131 was connected to the suction port of the ceramic pump 130 (CPA-2, ASONE). Further, a pipe 132 connecting the discharge port of the ceramic pump 130 and the liquid supply port of the atomizer 120 is disposed.
 内部に水である温浴液152を入れた温浴槽151内にビーカー110を入れた。また、温浴液152に、撹拌子160を入れた。温浴槽151は、温度フィードバック機能を備えるホットマグネットスターラー153(CMAGHS100デジタル、IKA)上に配置した。室温は21.5℃であった。 The beaker 110 was put in a hot tub 151 containing a warm bath solution 152 as water. A stirrer 160 was placed in the warm bath liquid 152. The hot tub 151 was placed on a hot magnet stirrer 153 (CMAGHS100 digital, IKA) having a temperature feedback function. The room temperature was 21.5 ° C.
 温度フィードバック機能を備えるホットマグネットスターラー153で温浴液152を30℃に保った。その状態で30分間放置し、液体匂い物質容器201内の液体状の1-octen-3-olをビーカー110内に揮発させた。次に、蓋112に設けられたシリンジ210によって液体匂い物質容器201が沈まない量である50mLの蒸留水をビーカー110に入れ、撹拌子140、160を回転させた後、セラミックポンプ130を駆動して、約13mL/分の流量でビーカー110内の蒸留水111を吸引し、アトマイザー120に供給して、アトマイザー120から直径1μm以下の気泡を含む液滴を噴霧した。 The hot bath liquid 152 was kept at 30 ° C. with a hot magnet stirrer 153 equipped with a temperature feedback function. In this state, the liquid 1-octen-3-ol in the liquid odor substance container 201 was volatilized in the beaker 110. Next, 50 mL of distilled water, which is the amount that does not allow the liquid odor substance container 201 to sink, is put into the beaker 110 by the syringe 210 provided on the lid 112, and the ceramic pump 130 is driven after rotating the stirring bars 140 and 160. Then, distilled water 111 in the beaker 110 was sucked at a flow rate of about 13 mL / min, supplied to the atomizer 120, and droplets containing bubbles having a diameter of 1 μm or less were sprayed from the atomizer 120.
 液滴の噴霧を開始してから、蓋112に設けられたガスタイトシリンジ220(1002LTN、ハミルトン)でビーカー110内の気体を1mL吸引し、吸引した気体をガスクロマトグラフィー装置(GC-2010、島津製作所)で分析して、吸引した気体に含まれる1-octen-3-olの濃度を計測した。その結果、図6に示すように、気体中の1-octen-3-olの濃度は、時間を経過するごとに減少していることが確認された。このことは、時間を経過するごとに、ビーカー110内に揮発した1-octen-3-olが、蒸留水111に溶解していったことを示している。 After spraying the liquid droplets, 1 mL of gas in the beaker 110 is sucked with a gas tight syringe 220 (1002LTN, Hamilton) provided on the lid 112, and the sucked gas is gas chromatograph (GC-2010, Shimadzu). The concentration of 1-octen-3-ol contained in the sucked gas was measured. As a result, as shown in FIG. 6, it was confirmed that the concentration of 1-octen-3-ol in the gas decreased with the passage of time. This indicates that 1-octen-3-ol volatilized in the beaker 110 was dissolved in the distilled water 111 as time passed.
 また、シリンジ210で、ビーカー110内の蒸留水111に1-octen-3-olが溶解した水溶液を吸引し、吸引した水溶液をガスクロマトグラフィー装置(GC-2010、島津製作所)で分析して、吸引した水溶液に含まれる1-octen-3-olの濃度を計測した。その結果、図7に示すように、開始1分後で、水溶液における1-octen-3-olの濃度が平均39μmol/Lに達し、その後、時間が経過するごとに、水溶液における1-octen-3-olの濃度が上昇していることが確認された。図8に示すように、水溶液への1-octen-3-olの溶解率は、直径1μm以下の気泡を含む液滴の噴霧開始30分後には、20%近くに達した。 Further, an aqueous solution in which 1-octen-3-ol is dissolved in distilled water 111 in the beaker 110 is sucked with a syringe 210, and the sucked aqueous solution is analyzed with a gas chromatography device (GC-2010, Shimadzu Corporation). The concentration of 1-octen-3-ol contained in the sucked aqueous solution was measured. As a result, as shown in FIG. 7, 1 minute after the start, the concentration of 1-octen-3-ol in the aqueous solution reached an average of 39 μmol / L, and thereafter, with the passage of time, 1-octen- It was confirmed that the concentration of 3-ol was increased. As shown in FIG. 8, the dissolution rate of 1-octen-3-ol in the aqueous solution reached nearly 20% 30 minutes after the start of spraying of droplets containing bubbles having a diameter of 1 μm or less.
 [比較例1]
 図4に示す撹拌子140、160を入れず、温浴槽151とホットマグネットスターラー153の代わりに温度フィードバックつき恒温水槽(サーマックス、アズワン)を使用し、セラミックポンプ130及びアトマイザー120を停止した以外は、実施例1と同様に、蒸留水111に1-octen-3-olを溶解させ、水溶液に含まれる1-octen-3-olの濃度を計測した。ビーカー内に設置した容器には2mLの液体1-octen-3-olを入れた。室温は26℃であった。その結果、図7に示すように、水溶液における1-octen-3-olの濃度は、最初の5分間はガスクロマトグラフィー装置によって検出されなかった。10分経過後から水溶液における1-octen-3-olの濃度は上昇したが、実施例1と比較して低かった。図8に示すように、水溶液への1-octen-3-olの溶解率は、直径1μm以下の気泡を含む液滴の噴霧開始30分後でも、実施例1と比較して低かった。
[Comparative Example 1]
4 except that the stirring bars 140 and 160 shown in FIG. 4 are not used, a temperature-controlled water bath (Thermax, ASONE) with temperature feedback is used instead of the hot tub 151 and the hot magnet stirrer 153, and the ceramic pump 130 and the atomizer 120 are stopped. As in Example 1, 1-octen-3-ol was dissolved in distilled water 111, and the concentration of 1-octen-3-ol contained in the aqueous solution was measured. A container placed in the beaker was charged with 2 mL of liquid 1-octen-3-ol. The room temperature was 26 ° C. As a result, as shown in FIG. 7, the concentration of 1-octen-3-ol in the aqueous solution was not detected by the gas chromatography apparatus for the first 5 minutes. The concentration of 1-octen-3-ol in the aqueous solution increased after 10 minutes, but was lower than that in Example 1. As shown in FIG. 8, the dissolution rate of 1-octen-3-ol in the aqueous solution was low compared to Example 1 even 30 minutes after the start of spraying of the droplets containing bubbles having a diameter of 1 μm or less.
 [実施例2]
 1μLの1-octen-3-ol(シグマアルドリッチ、含量98%)を999μLの蒸留水に溶解し、ボルテックスミキサーで撹拌して、希釈した匂い物質溶液を1mL用意した。希釈した匂い物質溶液を図4に示す液体匂い物質容器201に入れた。この点と、室温が23℃であること以外は、実施例1と同様に、蒸留水111に1-octen-3-olを溶解させ、水溶液に含まれる1-octen-3-olの濃度を計測した。その結果、図9に示すように、気体中の1-octen-3-olの濃度は、時間を経過するごとに減少していることが確認された。また、平均1.7ppmの気体状の1-octen-3-olがビーカー110内に存在する場合、図10に示すように、直径1μm以下の気泡を含む液滴の噴霧開始20分後に、水溶液中に平均10μmol/Lの1-octen-3-olが溶解したことが確認された。このことは、気体中の匂い物質の濃度が低くても、水溶液に匂い物質を溶解させることができたことを示している。
[Example 2]
1 μL of 1-octen-3-ol (Sigma Aldrich, content 98%) was dissolved in 999 μL of distilled water and stirred with a vortex mixer to prepare 1 mL of diluted odorant solution. The diluted odor substance solution was placed in the liquid odor substance container 201 shown in FIG. Except for this point and that the room temperature is 23 ° C., 1-octen-3-ol is dissolved in distilled water 111 in the same manner as in Example 1, and the concentration of 1-octen-3-ol contained in the aqueous solution is adjusted. Measured. As a result, as shown in FIG. 9, it was confirmed that the concentration of 1-octen-3-ol in the gas decreased with the passage of time. Further, when 1-octen-3-ol in the form of gas having an average of 1.7 ppm is present in the beaker 110, as shown in FIG. 10, 20 minutes after the start of spraying droplets containing bubbles having a diameter of 1 μm or less, the aqueous solution It was confirmed that 10 μmol / L of 1-octen-3-ol was dissolved therein. This indicates that the odor substance can be dissolved in the aqueous solution even when the concentration of the odor substance in the gas is low.
 [実施例3]
 実施例1で示した難水溶性有機化合物の溶解システムを用いて、蒸留水に1-octen-3-olを溶解させて、匂い物質溶液を得た。ガスクロマトグラフィー装置(GC-2010、島津製作所)で分析したところ、匂い物質を溶解させた直後の匂い物質溶液における1-octen-3-olの濃度は、図11及び図12に示すように、418μmol/Lであった。また、匂い物質溶液をバイアルに入れて4℃で保管したところ、2か月及び6か月経過後においても、匂い物質溶液における1-octen-3-olの濃度は高かった。
[Example 3]
Using the system for dissolving poorly water-soluble organic compounds shown in Example 1, 1-octen-3-ol was dissolved in distilled water to obtain an odorant solution. When analyzed with a gas chromatography apparatus (GC-2010, Shimadzu Corporation), the concentration of 1-octen-3-ol in the odorant solution immediately after the odorant was dissolved was as shown in FIG. 11 and FIG. It was 418 μmol / L. Further, when the odorant solution was placed in a vial and stored at 4 ° C., the concentration of 1-octen-3-ol in the odorant solution was high even after 2 and 6 months.
 [実施例4]
 図4に示す撹拌子140、160を入れず、温浴槽151とホットマグネットスターラー153の代わりに温度フィードバックつき恒温水槽(サーマックス、アズワン)を使用し、室温が30.5℃であった以外は、実施例1と同様に、セラミックポンプを用いて蒸留水111をアトマイザー120に供給し、蒸留水111に1-octen-3-olを溶解させた。また、撹拌子140、160を入れず、温浴槽151とホットマグネットスターラー153の代わりに温度フィードバックつき恒温水槽(サーマックス、アズワン)を使用し、室温が30.0℃であり、セラミックポンプの代わりに流量が17mL/分であるペリスタポンプ(登録商標、AC-2120ペリスタ・バイオミニポンプ、アトー)を用いた以外は、実施例1と同様に、蒸留水111に1-octen-3-olを溶解させた。その結果、図13及び図14に示すように、非連続的に蒸留水111をアトマイザー120に供給するセラミックポンプよりも、連続的に蒸留水111をアトマイザー120に供給するペリスタポンプを用いたほうが、1-octen-3-olを蒸留水111中に効率的に溶解させることができた。
[Example 4]
4 except that the stirring bars 140 and 160 shown in FIG. 4 were not used, a temperature-controlled water bath with temperature feedback (Thermax, ASONE) was used instead of the hot tub 151 and the hot magnet stirrer 153, and the room temperature was 30.5 ° C. As in Example 1, distilled water 111 was supplied to the atomizer 120 using a ceramic pump, and 1-octen-3-ol was dissolved in the distilled water 111. Also, without using the stirrers 140 and 160, instead of the hot tub 151 and the hot magnet stirrer 153, a thermostatic water bath with temperature feedback (Thermax, ASONE) is used, the room temperature is 30.0 ° C, and instead of the ceramic pump 1-octen-3-ol was dissolved in distilled water 111 in the same manner as in Example 1 except that a peristaltic pump (registered trademark, AC-2120 peristal biomini pump, ATTO) with a flow rate of 17 mL / min was used. It was. As a result, as shown in FIGS. 13 and 14, it is better to use a peristaltic pump that continuously supplies distilled water 111 to the atomizer 120 than a ceramic pump that discontinuously supplies distilled water 111 to the atomizer 120. -Octen-3-ol could be efficiently dissolved in distilled water 111.
 [実施例5]
 333μLの3-octanone(シグマアルドリッチ、含量98%以上)、333μLの3-octanol(シグマアルドリッチ、含量99%)、333μLの1-octen-3-ol(シグマアルドリッチ、含量98%)を図4に示す液体匂い物質容器201に入れ、合計999μLの匂い物質混合溶液を用意した。この点と、室温が30.5℃であること以外は、実施例1と同様に、蒸留水111に3種類の匂い物質を溶解させ、水溶液に含まれる各匂い物質の濃度を計測した。装置作動前の気体中の匂い物質濃度は3-octanoneが14.7ppmと最も高く、3-octanolは2.2ppm、1-octen-3-olは2.7ppmであった。その結果、図15に示すように、気体中の匂い物質の濃度は、時間を経過するごとに減少していることが確認された。また、図16に示すように、全ての匂い物質が装置作動後1分で水溶液中に溶解され、時間を経過するごとに濃度が増加することが確認された。水溶液中への溶解濃度は、揮発量の大きい3-octanoneが最も高く、揮発量が同程度であった3-octanolと1-octen-3-olは溶解濃度も同程度であることが確認された。このことは、脂肪族不飽和アルコールの1-octen-3-olのみならず、脂肪族ケトンの3-octanone、脂肪族飽和アルコールの3-octanolも水溶液中に短時間で溶解できることを示している。また、多種の匂い物質を、気中に存在する比率を維持したまま水溶液に溶解させることを示している。
[Example 5]
FIG. 4 shows 333 μL of 3-octaneone (Sigma Aldrich, content of 98% or more), 333 μL of 3-octanol (Sigma Aldrich, content of 99%), and 333 μL of 1-octen-3-ol (Sigma Aldrich, content of 98%). A total of 999 μL of odorant mixed solution was prepared in the liquid odorant container 201 shown. Except for this point and the room temperature of 30.5 ° C., three kinds of odorous substances were dissolved in distilled water 111 in the same manner as in Example 1, and the concentration of each odorous substance contained in the aqueous solution was measured. The concentration of odorous substance in the gas before the operation of the apparatus was highest at 1-4.7 ppm for 3-octaneone, 2.2 ppm for 3-octanol, and 2.7 ppm for 1-octen-3-ol. As a result, as shown in FIG. 15, it was confirmed that the concentration of the odorous substance in the gas decreased with the passage of time. Further, as shown in FIG. 16, it was confirmed that all odorous substances were dissolved in the aqueous solution 1 minute after the operation of the apparatus, and the concentration increased with the passage of time. The solution concentration in aqueous solution was highest for 3-octaneone, which has a large volatilization amount, and it was confirmed that 3-octanol and 1-octen-3-ol, which had the same volatilization amount, had the same dissolution concentration. It was. This indicates that not only the aliphatic unsaturated alcohol 1-octen-3-ol but also the aliphatic ketone 3-octaneone and the aliphatic saturated alcohol 3-octanol can be dissolved in an aqueous solution in a short time. . It also shows that various odorous substances are dissolved in an aqueous solution while maintaining the ratio existing in the air.
 [実施例6]
 超音波スプレーノズルから噴霧される液滴に含有される気泡の量が多いほど、気体状の匂い物質のより効率的な溶解に有利であると予想される。そこで、ノズル先端と水溶液の液面までの距離の違いによって、液滴に含有される気泡の量を調査した。漏斗とガラスビン、200mLビーカー、500mLビーカーを用いて、ノズル先端と水溶液の液面までの距離を、0mm、3.8mm、11.7mmと3段階に変化させて噴霧を行った。噴霧時には、図4に示すセラミックポンプ130を用いて水溶液を灌流した。このとき温浴槽151は使用せず、室温は23℃であった。また、撹拌子による水溶液の撹拌が、水溶液中に存在する気泡の量に与える影響についても検証した。撹拌子による撹拌にはホットマグネットスターラー153を用いた。全ての実験でセラミックポンプ130は実施例1と同程度の流量で5分間駆動し、蒸留水は50mLで室温は約23℃であった。ナノサイトによる分析の結果、図17に示すように、ノズル先端と水溶液の液面までの距離を0mmとして撹拌した場合には、8.7×10粒子数/mLの粒子が確認された。撹拌がない場合には15.7×10粒子数/mLの粒子が確認された。水溶液の液面までの距離を3.8mmとして撹拌した場合には、2.3×10粒子数/mLの粒子が確認された。撹拌がない場合には0.4×10粒子数/mLの粒子が確認された。水溶液の液面までの距離を11.7mmとして撹拌した場合には、1.3×10粒子数/mLの粒子が確認された。撹拌がない場合には0.9×10粒子数/mLの粒子が確認された。このことは、ノズル先端と水溶液の水面までの距離が近い方が、水溶液中により多くの気泡を生成できることを示唆している。また、装置全体を小型化しても水溶液中に多量の気泡を生成できることを示唆している。さらに、撹拌を行うことが、水溶液中の気泡量を増加させることを示している。また、アトマイザー120を用いることで、数センチ角のサイズであるにもかかわらず、10オーダーの極めて多量の気泡を生成することが可能であり、小型かつ低消費電力の匂いセンサの構築に有用であることが示された。
[Example 6]
It is expected that the larger the amount of bubbles contained in the droplets sprayed from the ultrasonic spray nozzle, the more efficient dissolution of the gaseous odor substance is expected. Therefore, the amount of bubbles contained in the droplets was investigated based on the difference in distance between the nozzle tip and the liquid level of the aqueous solution. Using a funnel, a glass bottle, a 200 mL beaker, and a 500 mL beaker, the distance from the nozzle tip to the liquid level of the aqueous solution was changed to 0 mm, 3.8 mm, and 11.7 mm in three stages for spraying. At the time of spraying, the aqueous solution was perfused using the ceramic pump 130 shown in FIG. At this time, the hot tub 151 was not used, and the room temperature was 23 ° C. Moreover, it verified about the influence which stirring of aqueous solution with a stirring bar has on the quantity of the bubble which exists in aqueous solution. A hot magnet stirrer 153 was used for stirring with a stir bar. In all experiments, the ceramic pump 130 was driven at a flow rate similar to that of Example 1 for 5 minutes, distilled water was 50 mL, and the room temperature was about 23 ° C. As a result of the analysis by the nanosite, as shown in FIG. 17, when the distance between the nozzle tip and the liquid surface of the aqueous solution was 0 mm and stirring was performed, particles of 8.7 × 10 8 particles / mL were confirmed. In the absence of stirring, 15.7 × 10 8 particles / mL were confirmed. When the distance to the liquid surface of the aqueous solution was 3.8 mm and stirring was performed, particles of 2.3 × 10 8 particles / mL were confirmed. In the absence of stirring, 0.4 × 10 8 particles / mL particles were confirmed. When the distance to the liquid surface of the aqueous solution was 11.7 mm and stirring was performed, particles of 1.3 × 10 8 particles / mL were confirmed. In the absence of stirring, 0.9 × 10 8 particles / mL was confirmed. This suggests that the closer the distance between the nozzle tip and the water surface of the aqueous solution is, the more bubbles can be generated in the aqueous solution. Further, it is suggested that a large amount of bubbles can be generated in the aqueous solution even if the entire apparatus is downsized. Furthermore, it is shown that stirring increases the amount of bubbles in the aqueous solution. Further, by using an atomizer 120, despite the size of several cm square, it is possible to produce extremely large amount of bubbles 10 9 order useful in the construction of small and odor sensor with low power consumption It was shown that.
 [実施例7]
 リポフェクション法により、Or13a受容体及び共受容体DmOrcoを発現しているSf21細胞を得た。Or13a受容体は、1-octen-3-olに反応する嗅覚受容体である。Sf21細胞は、1日間から3日間継代した。その後、セルカウンターを用いて、Sf21細胞の濃度が1.0×106cells/mLから1.5×106cells/mLとなるよう調整し、Sf21細胞をシャーレに接着させた。
[Example 7]
Sf21 cells expressing the Or13a receptor and the co-receptor DmOrco were obtained by the lipofection method. The Or13a receptor is an olfactory receptor that responds to 1-octen-3-ol. Sf21 cells were passaged from 1 to 3 days. Thereafter, using a cell counter, the concentration of Sf21 cells was adjusted from 1.0 × 10 6 cells / mL to 1.5 × 10 6 cells / mL, and Sf21 cells were adhered to a petri dish.
 室温が25.5℃であり、液体匂い物質容器201の中の1-octen-3-olの量が2mLであり、撹拌子140、160を入れず、温度フィードバックつき恒温水槽(サーマックス、アズワン)を使用した以外は実施例1と同じ方法により、蒸留水111に1-octen-3-olを溶解させた。 The room temperature is 25.5 ° C., the amount of 1-octen-3-ol in the liquid odor substance container 201 is 2 mL, the stirrers 140 and 160 are not inserted, and a constant temperature water bath with temperature feedback (Thermax, ASONE 1-octen-3-ol was dissolved in distilled water 111 by the same method as in Example 1 except that the above was used.
 1-octen-3-olが溶解している水溶液をガスクロマトグラフィー装置(GC-2010、島津製作所)で分析し、水溶液における1-octen-3-olの濃度を決定した。決定した濃度に基づき、1-octen-3-olが溶解している水溶液をアッセイバッファー溶液で希釈して、1-octen-3-olの濃度が1μmol/L、3μmol/L、10μmol/L、及び30μmol/Lの水溶液をサンプルとして用意した。アッセイバッファーの組成は、140mmol/L NaCl、5.6mmol/L KCl、 4.5mmol/L CaCl2、11.26mmol/L MgCl2、11.32mmol/L MgSO4、9.4mmol/L D-glucose、及び5mmol/L HEPESであり、アッセイバッファーのpHは7.2であった。 The aqueous solution in which 1-octen-3-ol was dissolved was analyzed with a gas chromatography apparatus (GC-2010, Shimadzu Corporation), and the concentration of 1-octen-3-ol in the aqueous solution was determined. Based on the determined concentration, an aqueous solution in which 1-octen-3-ol is dissolved is diluted with an assay buffer solution, and the concentration of 1-octen-3-ol is 1 μmol / L, 3 μmol / L, 10 μmol / L, And 30 micromol / L aqueous solution was prepared as a sample. The composition of the assay buffer was 140 mmol / L NaCl, 5.6 mmol / L KCl, 4.5 mmol / L CaCl 2 , 11.26 mmol / L MgCl 2 , 11.32 mmol / L MgSO 4 , 9.4 mmol / L D-glucose. And 5 mmol / L HEPES, and the pH of the assay buffer was 7.2.
 また、有機溶媒であるジメチルスルホキシド(DMSO)を用いて、1-octen-3-olの濃度が1μmol/L、3μmol/L、10μmol/L、及び30μmol/Lである刺激液を比較サンプルとして用意した。 In addition, using dimethyl sulfoxide (DMSO), which is an organic solvent, stimulating solutions having 1-octen-3-ol concentrations of 1 μmol / L, 3 μmol / L, 10 μmol / L, and 30 μmol / L are prepared as comparative samples. did.
 図4に示す撹拌子140、160をビーカー110内及び温浴液152内に入れず、温浴槽151とホットマグネットスターラー153の代わりに温度フィードバックつき恒温水槽(サーマックス、アズワン)を使用し、液体匂い物質容器201の中の1-octen-3-olの量が2mLであり、室温が25.5℃であった以外は実施例1と同様にビーカー110に50mLの蒸留水を入れて溶解したサンプルを調製して11日後、Sf21細胞を接着したシャーレに1.5mL/分でアッセイバッファーを灌流しながら、灌流液にサンプルを加えたところ、図18に示すように、1-octen-3-olの濃度に応じた強度の蛍光応答が観察された。灌流液に比較サンプルを加えた場合も、1-octen-3-olの濃度に応じた強度の蛍光応答が観察された。ここで、△F/F0はベースラインからの蛍光強度変化を示す。また、図19に示すように、サンプルを加えた場合の蛍光強度と、比較サンプルを加えた場合の蛍光強度と、の間には、有意差は確認されなかった。 The stirrers 140 and 160 shown in FIG. 4 are not put into the beaker 110 and the hot bath liquid 152, but a constant temperature water bath (Thermax, ASONE) with temperature feedback is used instead of the hot tub 151 and the hot magnet stirrer 153 to smell liquid. Sample dissolved in 50 mL of distilled water in beaker 110 as in Example 1 except that the amount of 1-octen-3-ol in substance container 201 was 2 mL and the room temperature was 25.5 ° C. 11 days after the preparation, the sample was added to the perfusate while perfusing the assay buffer at 1.5 mL / min to the petri dish to which the Sf21 cells were adhered. As shown in FIG. 18, 1-octen-3-ol was added. A fluorescent response with an intensity depending on the concentration of was observed. When a comparative sample was added to the perfusate, a strong fluorescence response was observed depending on the concentration of 1-octen-3-ol. Here, ΔF / F0 indicates the change in fluorescence intensity from the baseline. Further, as shown in FIG. 19, no significant difference was confirmed between the fluorescence intensity when the sample was added and the fluorescence intensity when the comparative sample was added.
 [実施例8]
 スパッタリング装置によって、シリコン基板の表面に膜厚500nmのアルミニウム膜を形成し、アルミニウム基板を得た。また、嗅覚受容体を導入していない、ワイルドタイプのSf21細胞を用意した。
[Example 8]
An aluminum film having a film thickness of 500 nm was formed on the surface of the silicon substrate by a sputtering apparatus to obtain an aluminum substrate. In addition, wild type Sf21 cells into which no olfactory receptor was introduced were prepared.
 図20に示すように、Sf21細胞をアルミニウム基板上に播種してから5日間、毎日、アルミニウム基板上のSf21細胞の生死判定を行った。生死判定には、トリパンブルー(和光純薬)を用いた色素排除試験法を用いた。色素排除試験法によれば、死細胞は色素によって青く染色されるため、顕微鏡観察により、生存細胞の割合を求めることが可能である。 As shown in FIG. 20, Sf21 cells on the aluminum substrate were subjected to life / death judgment every day for 5 days after the Sf21 cells were seeded on the aluminum substrate. A dye exclusion test method using trypan blue (Wako Pure Chemical Industries, Ltd.) was used for viability determination. According to the dye exclusion test method, dead cells are stained blue with the dye, so that the ratio of viable cells can be determined by microscopic observation.
 その結果、図21に示すように、5日間にわたって、97%以上のSf21細胞が、アルミニウム基板上で生存していることが確認された。さらに、図20に示した顕微鏡観察の結果から、Sf21細胞は、アルミニウム基板上でも成長し、細胞密度が増加したことが確認された。 As a result, as shown in FIG. 21, it was confirmed that 97% or more of Sf21 cells survived on the aluminum substrate over 5 days. Furthermore, from the result of microscopic observation shown in FIG. 20, it was confirmed that Sf21 cells grew on the aluminum substrate and the cell density increased.
 次に、ヒト胎児腎由来のHEK293T細胞を用意した。図22に示すように、HEK293T細胞をアルミニウム基板上に播種してから5日間、毎日、アルミニウム基板上のHEK293T細胞の生死判定を行った。生死判定には、トリパンブルー(和光純薬)を用いた色素排除試験法を用いた。その結果、HEK293T細胞は、アルミニウム基板上では時間が経っても細胞成長が遅く、アルミニウム基板の腐食により細胞が死滅する場合も観察された。 Next, HEK293T cells derived from human fetal kidney were prepared. As shown in FIG. 22, the viability of the HEK293T cells on the aluminum substrate was determined every day for 5 days after the HEK293T cells were seeded on the aluminum substrate. A dye exclusion test method using trypan blue (Wako Pure Chemical Industries, Ltd.) was used for viability determination. As a result, HEK293T cells were observed to grow slowly on the aluminum substrate over time, and the cells were killed by corrosion of the aluminum substrate.
 アルミニウム基板上におけるSf21細胞とHEK293T細胞の増加曲線を図23に示す。Sf21細胞は、アルミニウム基板上で成長することが確認された。これに対し、HEK293T細胞は、アルミニウム基板上で数が増減し、細胞数が安定しなかった。 FIG. 23 shows an increase curve of Sf21 cells and HEK293T cells on an aluminum substrate. Sf21 cells were confirmed to grow on the aluminum substrate. In contrast, the number of HEK293T cells increased or decreased on the aluminum substrate, and the number of cells was not stable.
 以上の結果は、昆虫細胞は、アルミニウム基板に対する適合性を有するが、哺乳類細胞は、アルミニウム基板に対する適合性を有しないことを示していた。 The above results showed that insect cells have compatibility with aluminum substrates, but mammalian cells do not have compatibility with aluminum substrates.
 1・・・容器、2・・・水溶液、3・・・加熱装置、4・・・温浴液撹拌子、10・・・トランジスター、11・・・半導体基板、12・・・ソース電極、13・・・ドレイン電極、14・・・ゲート電極、15・・・参照電極、16・・・バックゲート、20・・・噴霧装置、30・・・吸引装置、31・・・管、32・・・管、40・・・水溶液撹拌子、50・・・昆虫細胞、51・・・温浴槽、52・・・温浴液、60・・・チャンバー、70・・・水溶液、80・・・検出装置、110・・・ビーカー、111・・・蒸留水、112・・・蓋、120・・・アトマイザー、130・・・セラミックポンプ、131・・・管、132・・・管、140・・・撹拌子、151・・・温浴槽、152・・・温浴液、153・・・ホットマグネットスターラー、160・・・撹拌子、201・・・物質容器、210・・・シリンジ、220・・・ガスタイトシリンジ、300・・・コンピュータシステム、500・・・センサ
 
DESCRIPTION OF SYMBOLS 1 ... Container, 2 ... Aqueous solution, 3 ... Heating device, 4 ... Warm bath liquid stirring element, 10 ... Transistor, 11 ... Semiconductor substrate, 12 ... Source electrode, 13 * ..Drain electrode, 14 ... gate electrode, 15 ... reference electrode, 16 ... back gate, 20 ... spraying device, 30 ... suction device, 31 ... pipe, 32 ... Tube 40 aqueous solution stirrer 50 insect cell 51 hot bath 52 hot bath liquid 60 chamber 70 aqueous solution 80 detector DESCRIPTION OF SYMBOLS 110 ... Beaker, 111 ... Distilled water, 112 ... Lid, 120 ... Atomizer, 130 ... Ceramic pump, 131 ... Pipe, 132 ... Pipe, 140 ... Stirrer 151 ... Hot bath, 152 ... Hot bath solution, 153 ... Hot mug Ttosutara, 160 ... stirrer, 201 ... substance container, 210 ... syringe, 220 ... gas-tight syringe, 300 ... computer system, 500 ... sensor

Claims (24)

  1.  気体状の難水溶性有機化合物を格納可能な容器と、
     前記容器内の前記難水溶性有機化合物を含む気体に向けて、直径1μm以下の気泡を含む液滴を噴霧する噴霧装置と、
     を備え、
     前記容器内に、前記難水溶性有機化合物を含む水溶液を貯める、
     難水溶性有機化合物の溶解システム。
    A container capable of storing a gaseous water-insoluble organic compound;
    A spraying device for spraying droplets containing bubbles having a diameter of 1 μm or less toward the gas containing the poorly water-soluble organic compound in the container;
    With
    Storing the aqueous solution containing the poorly water-soluble organic compound in the container;
    Dissolving system for poorly water-soluble organic compounds.
  2.  前記容器内に貯められた水溶液を吸引し、前記噴霧装置に送る吸引装置をさらに備え、
     前記噴霧装置が、前記吸引装置から送られた水溶液から前記液滴を生成する、
     請求項1に記載の難水溶性有機化合物の溶解システム。
    A suction device for sucking the aqueous solution stored in the container and sending it to the spray device;
    The spray device generates the droplets from the aqueous solution sent from the suction device;
    The dissolution system of the poorly water-soluble organic compound according to claim 1.
  3.  前記吸引装置が、前記噴霧装置に前記水溶液を連続的に送る、請求項2に記載の難水溶性有機化合物の溶解システム。 The dissolution system for poorly water-soluble organic compounds according to claim 2, wherein the suction device continuously sends the aqueous solution to the spray device.
  4.  前記容器内の前記水溶液を撹拌する水溶液撹拌子をさらに備える、請求項1から3のいずれか1項に記載の難水溶性有機化合物の溶解システム。 The dissolution system of a poorly water-soluble organic compound according to any one of claims 1 to 3, further comprising an aqueous solution stirrer for stirring the aqueous solution in the container.
  5.  前記気体中の難水溶性有機化合物が凝縮しないように前記容器を加熱する加熱装置をさらに備える、請求項1から4のいずれか1項に記載の難水溶性有機化合物の溶解システム。 The dissolution system of a hardly water-soluble organic compound according to any one of claims 1 to 4, further comprising a heating device that heats the container so that the hardly water-soluble organic compound in the gas does not condense.
  6.  前記加熱装置が、前記容器を温浴する温浴槽を備える、請求項5に記載の難水溶性有機化合物の溶解システム。 The dissolution system for poorly water-soluble organic compounds according to claim 5, wherein the heating device comprises a hot tub for warming the container.
  7.  前記温浴槽内の温浴液を撹拌する温浴液撹拌子をさらに備える、請求項6に記載の難水溶性有機化合物の溶解システム。 The dissolution system for poorly water-soluble organic compounds according to claim 6, further comprising a warm bath fluid stirrer for stirring the warm bath fluid in the hot tub.
  8.  前記難水溶性有機化合物が匂い物質である、請求項1から7のいずれか1項に記載の難水溶性有機化合物の溶解システム。 The hardly water-soluble organic compound dissolving system according to any one of claims 1 to 7, wherein the hardly water-soluble organic compound is an odor substance.
  9.  前記噴霧装置が、超音波振動によって、前記直径1μm以下の気泡を含む液滴を噴霧するよう構成されている、請求項1から8のいずれか1項に記載の難水溶性有機化合物の溶解システム。 The dissolution system for poorly water-soluble organic compounds according to any one of claims 1 to 8, wherein the spraying device is configured to spray droplets containing bubbles having a diameter of 1 µm or less by ultrasonic vibration. .
  10.  容器内に気体状の難水溶性有機化合物を格納することと、
     前記容器内の前記難水溶性有機化合物を含む気体に向けて、直径1μm以下の気泡を含む液滴を噴霧し、前記容器内に、前記難水溶性有機化合物を含む水溶液を貯めることと、
     を含む、難水溶性有機化合物の溶解方法。
    Storing a gaseous poorly water-soluble organic compound in a container;
    Spraying droplets containing bubbles having a diameter of 1 μm or less toward the gas containing the poorly water-soluble organic compound in the container, and storing the aqueous solution containing the poorly water-soluble organic compound in the container;
    A method for dissolving a slightly water-soluble organic compound, comprising:
  11.  前記容器内に貯められた水溶液を吸引し、前記水溶液から前記液滴を生成する、請求項10に記載の難水溶性有機化合物の溶解方法。 The method for dissolving a slightly water-soluble organic compound according to claim 10, wherein the aqueous solution stored in the container is sucked to generate the droplets from the aqueous solution.
  12.  前記容器内に貯められた水溶液を連続的に吸引し、前記水溶液から前記液滴を生成する、請求項10に記載の難水溶性有機化合物の溶解方法。 The method for dissolving a slightly water-soluble organic compound according to claim 10, wherein the aqueous solution stored in the container is continuously sucked to produce the droplets from the aqueous solution.
  13.  前記容器内の前記水溶液を撹拌することをさらに含む、請求項10から12のいずれか1項に記載の難水溶性有機化合物の溶解方法。 The method for dissolving a poorly water-soluble organic compound according to any one of claims 10 to 12, further comprising stirring the aqueous solution in the container.
  14.  前記気体中の難水溶性有機化合物が凝縮しないように前記容器を加熱することをさらに含む、請求項10から13のいずれか1項に記載の難水溶性有機化合物の溶解方法。 The method for dissolving a hardly water-soluble organic compound according to any one of claims 10 to 13, further comprising heating the container so that the hardly water-soluble organic compound in the gas does not condense.
  15.  前記容器を温浴する温浴槽を用いて前記容器を加熱する、請求項14に記載の難水溶性有機化合物の溶解方法。 The method for dissolving a hardly water-soluble organic compound according to claim 14, wherein the container is heated using a hot tub for warming the container.
  16.  前記温浴槽内の温浴液を撹拌することをさらに含む、請求項15に記載の難水溶性有機化合物の溶解方法。 The method for dissolving a hardly water-soluble organic compound according to claim 15, further comprising stirring the warm bath liquid in the warm bath.
  17.  前記難水溶性有機化合物が匂い物質である、請求項10から16のいずれか1項に記載の難水溶性有機化合物の溶解方法。 The method for dissolving a hardly water-soluble organic compound according to any one of claims 10 to 16, wherein the hardly water-soluble organic compound is an odor substance.
  18.  超音波振動によって、前記直径1μm以下の気泡を含む液滴を噴霧する、請求項10から17のいずれか1項に記載の難水溶性有機化合物の溶解方法。 The method for dissolving a hardly water-soluble organic compound according to any one of claims 10 to 17, wherein droplets containing bubbles having a diameter of 1 µm or less are sprayed by ultrasonic vibration.
  19.  気体状の匂い物質を格納可能な容器と、
     前記容器内の前記匂い物質を含む気体に向けて、直径1μm以下の気泡を含む液滴を噴霧する噴霧装置と、
     前記容器内に貯められた前記匂い物質を含む水溶液が供給される匂いセンサと、
     を備える、
     匂い検出システム。
    A container capable of storing a gaseous odor substance;
    A spraying device for spraying droplets containing bubbles having a diameter of 1 μm or less toward the gas containing the odorous substance in the container;
    An odor sensor to which an aqueous solution containing the odor substance stored in the container is supplied;
    Comprising
    Odor detection system.
  20.  前記匂いセンサが、前記匂い物質に反応する細胞を備える、請求項19に記載の匂い検出システム。 20. The odor detection system according to claim 19, wherein the odor sensor includes a cell that reacts with the odor substance.
  21.  前記細胞が、前記匂い物質に反応して蛍光を発する、請求項20に記載の匂い検出システム。 21. The odor detection system according to claim 20, wherein the cell emits fluorescence in response to the odor substance.
  22.  前記匂いセンサが、
     アルミニウム又は酸化アルミニウムを含むゲート電極を備えるトランジスターと、
     前記ゲート電極上に配置された嗅覚受容体を有する昆虫細胞と、
     前記昆虫細胞が前記水溶液中の匂い物質に反応した際に前記トランジスターで生じる電流を検出する検出装置と、
     を備える、
     請求項19に記載の匂い検出システム。
    The odor sensor is
    A transistor comprising a gate electrode comprising aluminum or aluminum oxide;
    Insect cells having an olfactory receptor disposed on the gate electrode;
    A detection device for detecting a current generated in the transistor when the insect cell reacts with an odorous substance in the aqueous solution;
    Comprising
    The odor detection system according to claim 19.
  23.  前記匂いセンサが、
     アルミニウム又は酸化アルミニウムを含むゲート電極を備えるトランジスターと、
     前記トランジスター上に配置された、嗅覚受容体を有する昆虫細胞を入れるためのチャンバーと、
     前記ゲート電極上の前記昆虫細胞が前記水溶液中の匂い物質に反応した際に前記トランジスターで生じる電流を検出する検出装置と、
     を備える、
     請求項19に記載の匂い検出システム。
    The odor sensor is
    A transistor comprising a gate electrode comprising aluminum or aluminum oxide;
    A chamber for placing an insect cell having an olfactory receptor disposed on the transistor;
    A detection device for detecting a current generated in the transistor when the insect cell on the gate electrode reacts with an odorous substance in the aqueous solution;
    Comprising
    The odor detection system according to claim 19.
  24.  前記噴霧装置が、超音波振動によって、前記直径1μm以下の気泡を含む液滴を噴霧するよう構成されている、請求項19から23のいずれか1項に記載の匂い検出システム。 The odor detection system according to any one of claims 19 to 23, wherein the spraying device is configured to spray droplets containing bubbles having a diameter of 1 µm or less by ultrasonic vibration.
PCT/JP2019/004475 2018-02-09 2019-02-07 Dissolution system for poorly water-soluble organic compound, method for dissolving poorly water-soluble organic compound, and odor detection system WO2019156180A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019571154A JPWO2019156180A1 (en) 2018-02-09 2019-02-07 Dissolution system for poorly water-soluble organic compounds, dissolution method for poorly water-soluble organic compounds, and odor detection system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-022267 2018-02-09
JP2018022267 2018-02-09

Publications (1)

Publication Number Publication Date
WO2019156180A1 true WO2019156180A1 (en) 2019-08-15

Family

ID=67548316

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/004475 WO2019156180A1 (en) 2018-02-09 2019-02-07 Dissolution system for poorly water-soluble organic compound, method for dissolving poorly water-soluble organic compound, and odor detection system

Country Status (2)

Country Link
JP (1) JPWO2019156180A1 (en)
WO (1) WO2019156180A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021045233A1 (en) * 2019-09-06 2021-03-11 国立大学法人東京大学 Odor detection kit, odor detection kit manufacturing method, and odor detection method
WO2024034377A1 (en) * 2022-08-10 2024-02-15 キヤノン株式会社 Manufacturing method and manufacturing device for liquid containing fine bubbles

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006150221A (en) * 2004-11-29 2006-06-15 Riko Kagaku Sangyo Kk Magnetic driving stirring apparatus
JP2008198974A (en) * 2007-01-15 2008-08-28 Shibaura Mechatronics Corp Apparatus and method for processing substrate
JP2008255209A (en) * 2007-04-04 2008-10-23 Japan Steel Works Ltd:The Method and apparatus for concentrating methane gas
JP2012096216A (en) * 2010-11-04 2012-05-24 Yasutaka Sakamoto Bubble micronizing nozzle, microbubble generator using the same, method for producing microbubble-containing water, article washing apparatus, article washing method, method for culturing marine product, hydroponic culture method, and shower apparatus
JP2012177686A (en) * 2011-01-31 2012-09-13 Nokodai Tlo Kk Cell analyzer and cell analysis method
JP2014018641A (en) * 2012-07-21 2014-02-03 Yamaguchi Kogyo:Kk Air cleaner by cavitation bubbled water stream
WO2017122338A1 (en) * 2016-01-15 2017-07-20 株式会社日立製作所 Artificial olfactory sensing system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006150221A (en) * 2004-11-29 2006-06-15 Riko Kagaku Sangyo Kk Magnetic driving stirring apparatus
JP2008198974A (en) * 2007-01-15 2008-08-28 Shibaura Mechatronics Corp Apparatus and method for processing substrate
JP2008255209A (en) * 2007-04-04 2008-10-23 Japan Steel Works Ltd:The Method and apparatus for concentrating methane gas
JP2012096216A (en) * 2010-11-04 2012-05-24 Yasutaka Sakamoto Bubble micronizing nozzle, microbubble generator using the same, method for producing microbubble-containing water, article washing apparatus, article washing method, method for culturing marine product, hydroponic culture method, and shower apparatus
JP2012177686A (en) * 2011-01-31 2012-09-13 Nokodai Tlo Kk Cell analyzer and cell analysis method
JP2014018641A (en) * 2012-07-21 2014-02-03 Yamaguchi Kogyo:Kk Air cleaner by cavitation bubbled water stream
WO2017122338A1 (en) * 2016-01-15 2017-07-20 株式会社日立製作所 Artificial olfactory sensing system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021045233A1 (en) * 2019-09-06 2021-03-11 国立大学法人東京大学 Odor detection kit, odor detection kit manufacturing method, and odor detection method
WO2024034377A1 (en) * 2022-08-10 2024-02-15 キヤノン株式会社 Manufacturing method and manufacturing device for liquid containing fine bubbles

Also Published As

Publication number Publication date
JPWO2019156180A1 (en) 2021-04-30

Similar Documents

Publication Publication Date Title
WO2019156180A1 (en) Dissolution system for poorly water-soluble organic compound, method for dissolving poorly water-soluble organic compound, and odor detection system
Al Nahas et al. A microfluidic platform for the characterisation of membrane active antimicrobials
Ruokonen et al. Effect of ionic liquids on zebrafish (Danio rerio) viability, behavior, and histology; correlation between toxicity and ionic liquid aggregation
Chen et al. Detection, occurrence, and fate of fluorotelomer alcohols in municipal wastewater treatment plants
Misawa et al. Membrane protein-based biosensors
JP6846345B2 (en) Destruction and field delivery of compounds and compositions to cells
Song et al. All-aqueous electrosprayed emulsion for templated fabrication of cytocompatible microcapsules
US9004743B2 (en) Mixing device for creating an output mixture by mixing a first material and a second material
CN104350374B (en) Method, system and equipment for multiple unicellular captures and processing using microfluid
CN103513021B (en) Containing the disposal route of the sample of blood constituent
EP2875078A2 (en) Modification of surfaces for simulataneous repellency and targeted binding of desired moieties
KR20100103460A (en) Sample preparation devices and analyzers
CN106457196B (en) The operating method and magnetisable material particle manipulation device of magnetisable material particle
AU2008323984A1 (en) A method and apparatus for increasing the sensitivity of a biosensor used in a planar waveguide
Kojima et al. Microscale determination of aqueous two phase system binodals by droplet dehydration in oil
Wu et al. A thermosetting oil for droplet‐based real‐time monitoring of digital PCR and cell culture
Terutsuki et al. Highly effective volatile organic compound dissolving strategy based on mist atomization for odorant biosensors
Veiksina et al. Homogeneous Fluorescence Anisotropy-Based Assay for Characterization of Ligand Binding Dynamics to GPCRs in Budded Baculoviruses: The Case of Cy3B-NDP-α-MSH Binding to MC 4 Receptors
Barmaki et al. A microfluidic oxygen sink to create a targeted cellular hypoxic microenvironment under ambient atmospheric conditions
US20200216862A1 (en) Payload delivery across cell membranes using continuous flow fluidic system
CN106144240A (en) A kind of portable tissue samples case
Nakanishi et al. Membrane fusion and infection abilities of baculovirus virions are preserved during freezing and thawing in the presence of trehalose
JP6973772B2 (en) Smell sensor
JP2019080575A (en) Somatic cell production system
JP2024012184A (en) Screening method for inhibitor of insect odor response, inhibitor of insect odor response, insect inhibition system, and insect inhibition method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19750399

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019571154

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19750399

Country of ref document: EP

Kind code of ref document: A1