JP2014016642A - 液晶表示装置 - Google Patents

液晶表示装置 Download PDF

Info

Publication number
JP2014016642A
JP2014016642A JP2013198416A JP2013198416A JP2014016642A JP 2014016642 A JP2014016642 A JP 2014016642A JP 2013198416 A JP2013198416 A JP 2013198416A JP 2013198416 A JP2013198416 A JP 2013198416A JP 2014016642 A JP2014016642 A JP 2014016642A
Authority
JP
Japan
Prior art keywords
liquid crystal
rth
pixel
optical compensation
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013198416A
Other languages
English (en)
Other versions
JP5710724B2 (ja
Inventor
Kentaro Oshima
健太郎 尾島
Daisuke Kajita
大介 梶田
Ikuo Hiyama
郁夫 檜山
Masahiro Ishii
正宏 石井
Yasushi Tomioka
冨岡  安
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Liquid Crystal Display Co Ltd
Japan Display Inc
Original Assignee
Panasonic Liquid Crystal Display Co Ltd
Japan Display Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Liquid Crystal Display Co Ltd, Japan Display Inc filed Critical Panasonic Liquid Crystal Display Co Ltd
Priority to JP2013198416A priority Critical patent/JP5710724B2/ja
Publication of JP2014016642A publication Critical patent/JP2014016642A/ja
Application granted granted Critical
Publication of JP5710724B2 publication Critical patent/JP5710724B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Liquid Crystal (AREA)

Abstract

【課題】IPSモードの液晶表示装置にて斜め方向の輝度浮きと色付きを低減する。
【解決手段】光入射側の偏光板11を備えた基板13ともう一方の偏光板12を備えた基板14間のそれぞれの吸収軸が略垂直で、液晶分子が基板に略平行となる液晶層15と、照明装置50を有する液晶表示装置であって、偏光板11の吸収軸と液晶層15の光学軸とが略平行となり、偏光板12と液晶層15の間に光学補償部材17,18が配置され、偏光板11と液晶層15の間は略等方性であり、偏光板11の吸収軸と光学補償部材17,18の遅相軸が略垂直であり、各画素はnx≒ny≠nzを満たし、Rth(R)>0nmを満足し、光学補償部材17のNz係数であるNz1が、Nz1>0.5を、光学補償部材18におけるNz係数であるNz2が、Nz2<0.5を満たし、Rth(B)が、|Rth(B)|≦30nmを満足する液晶表示装置。
【選択図】図1

Description

本発明は、液晶ディスプレイに関するもので、特に黒表示時に液晶分子がホモジニアス配向であり、これに横方向の電界を印加することにより光の透過・遮断を制御するインプレーンスイッチング(IPS)モードの液晶表示装置に関し、その視野角特性(特に黒表示及び低階調表示時)の改善に関するものである。
液晶に印加する電界の方向を基板に対して平行な方向にする方式(以下、横電界方式またはIPSモード)として、1枚の基板上に設けた櫛歯電極を用いた方式が、[特許文献1]特公昭63−21907号公報,[特許文献2]特開平9−80424号公報,[特許文献3]特開2001−056476号公報に提案されている。この方式により、液晶分子は主に基板に対して平行な面内で回転するので、斜めから見た場合の電界印加時と非印加時における複屈折率の度合の相違が小さく、視野角が広いことが知られている。
しかしながら、IPSモードは、液晶自体の複屈折率の変化は小さいものの、偏光板の特性により偏光板の吸収軸からずれた方位の斜め方向から見た場合に光が漏れることがわかっている。このような偏光板の斜め方向の光漏れを無くすために位相差板を用いる方式が[特許文献4]特開2001−350022号公報に開示されている。しかしながら、この文献は、基本的には偏光板のみの視野角改善で、VAモードについては液晶の影響を考慮しているが、IPSモードについては液晶層による影響を補償する方式については何ら開示されていない。
また、[特許文献5]特許公報3204182号には、観察方向により白の色変化が生じるのを解決する手段が開示されている。しかしながら、黒表示特性改善については言及されていない。
これに対し、[特許文献6]特許公報2982869号には、黒表示の視野角特性を改善するために、偏光板の一方の内側に位相差板を配置する構成が開示されている。この方式は、偏光板の両側に配置された支持基材TACの影響も考慮しているが、片側に1枚の位相補償では、斜め視野角において十分に黒が沈まないばかりか、液晶層の波長分散による色付きを低減する構成にはなっていないことが、我々の検討で判明した。また、黒表示時の液晶分子の配向軸(遅相軸)が入射側の偏光板の吸収軸に平行か、垂直かによる位相補償の違いについては開示されていない。前述した公知例では、視野角特性を輝度特性のみで議論しており、この色変化への対処法は何ら開示されていない。
更に、[特許文献7]特開2005−208356号公報では、黒表示の斜め輝度浮き、斜め色付きを改善する為に、一方の偏光板の支持基材を略光学的等方性にし、もう一方に位相差板を配置する構成が開示されている。この方式は、液晶層の波長分散による影響を低減することができるが、位相差板の波長分散による色付きを低減する構成にはなっていないことが、我々の検討で判明した。
また、[特許文献8]特開2008−242041号公報には、黒表示の斜め色付きを改善する為に、厚さ方向のリタデーションRthがR,G,B各色で異なるカラーフィルタ(CF)を配置した構成が開示されている。しかしながら、黒表示の斜め輝度浮きを改善するために必要な位相差板の構成に関しては言及されていない。それに加え、黒表示時の液晶分子の配向軸(遅相軸)が入射側の偏光板の吸収軸に平行か、垂直かによる位相補償の違いについては開示されていない。
特公昭63−21907号公報 特開平9−80424号公報 特開2001−056476号公報 特開2001−350022号公報 特許公報3204182号 特許公報2982869号 特開2005−208356号公報 特開2008−242041号公報 特開平2005−3733号公報
応用物理学会光学懇話会編「結晶光学」森北出版株式会社出版198 4年第1版第4刷発行、第5章p102〜p163 「基礎工学」現代工学社1999年第3版発行、第4章p210〜p217 J.Opt.Soc.Am.の論文タイトル"Optical in Stratified and Anisotropic Media: 4×4−Matrix Formulation" D.W.Berreman著 1972年、volume62、NO4、p502〜p510
黒表示時に液晶分子がホモジニアス配向であり、これに横方向の電界を印加することにより光の透過・遮断を制御するインプレーンスイッチング(IPS)モードの液晶表示装置においては、黒表示時に斜め方向において輝度浮きや色付きが生じる。
IPSモードは、ホモジニアス配向をした液晶分子と、吸収軸が画面正面に対して上下と左右の方向をさして直交するように配置した2枚の偏光板を用いており、上下左右方向から画面を斜めに見るときには、2枚の偏光板の吸収軸は直交して見る位置関係にあり、ホモジニアス配向の液晶分子と一方の偏光板吸収軸は平行であるため、十分に黒輝度を小さくできる。これに対して方位角45°の方向から画面を斜めに見ると、2枚の偏光板の吸収軸の成す角度が90°からずれるため、透過光が複屈折を生じ光が漏れるために十分に黒輝度を小さくできない。更には、波長により斜め方向の光漏れ量が異なり、色付きを生じる。そこで、本発明は、IPSモードにおいて黒表示についても、全方位のあらゆる角度で良好な表示を得るために、斜め方向から見た際の黒表示時の輝度上昇と色付きが共に低減されたIPSモードの液晶表示装置を提供することを目的とする。
上記課題を解決するため、本発明に係る液晶表示装置は、光入射側の第一の偏光層を備えた第一基板ともう一方の第二の偏光層を備えた第二基板間のそれぞれの吸収軸が略垂直で、液晶分子が前記基板に略平行に配置された液晶層と、前記第一基板又は前記第二基板のいずれか一方の基板の前記液晶層に近い側に、各画素に対向して一対の電極を有するマトリクス駆動の電極群が設けられ、背面照明装置を有する液晶表示装置であって、前記第一の偏光層の吸収軸と前記液晶層の光学軸が略垂直の場合は、前記第一の偏光層と前記液晶層との間に1又は複数の光学補償部材が配置され、前記第二の偏光層と前記液晶層との間は屈折率が略等方性であり、前記第一の偏光層の吸収軸と前記液晶層の光学軸が略平行の場合は、前記第二の偏光層と前記液晶層との間に1又は複数の光学補償部材が配置され、前記第一の偏光層と前記液晶層との間は屈折率が略等方性であり、前記第一の偏光層の吸収軸と前記1又は複数の光学補償部材の遅相軸が略垂直であり、前記第一基板と前記第二基板との間に配置されたカラーフィルタ層がnx≒ny≠nzを満たし、赤(R)画素、緑(G)画素、青(B)画素それぞれの厚さ方向リタデーションRth(R)、Rth(G)、Rth(B)、のうち少なくとも1つがその他の画素と異なり、赤(R)画素のRthが下記式を満足することを特徴とする。Rth(R)>0nm
詳しくは、下記の実施形態で説明する。
本発明の液晶表示装置によれば、偏光板、液晶層、CF、光学補償部材による構成、およびそれぞれの光学部材の光学定数を規定することにより、斜め視野における液晶層や光学補償部材の影響を低減し、斜め方向の黒輝度や色付きを低減できる。
本発明の液晶表示装置の一実施例を示した構成図である。 本発明の液晶表示装置の一実施例を示した構成図である。 本発明の液晶表示装置を説明する為の定義図である。 本発明の液晶表示装置を説明する為の概念図である。 本発明の液晶表示装置を説明する為の一般的なポアンカレ球表示である。 本発明の液晶表示装置を説明する為のポアンカレ球表示である。 本発明の液晶表示装置を説明する為の構成図である。 本発明の液晶表示装置を説明する為のポアンカレ球表示である。 本発明の液晶表示装置の一実施例を示した構成図である。 本発明の液晶表示装置を説明する為のポアンカレ球表示である。 本発明の液晶表示装置を説明する為のポアンカレ球表示である。 本発明の液晶表示装置を説明する為のポアンカレ球表示である。 本発明の液晶表示装置の一実施例を示した構成図である。 本発明の液晶表示装置を説明する為のポアンカレ球表示である。 本発明の液晶表示装置の一実施例を示した構成図である。 本発明の液晶表示装置を説明する為のポアンカレ球表示である。 本発明の液晶表示装置の一実施例を示した構成図である。 本発明の液晶表示装置を説明する為のポアンカレ球表示である。 本発明に用いた評価指標を説明する為の概念図である。 本発明に用いた評価指標を説明する為の概念図である。 本発明の液晶表示装置の比較例の特性図である。 本発明の液晶表示装置の比較例の特性図である。 本発明の液晶表示装置の一実施例の特性図である。 本発明の液晶表示装置の一実施例の特性図である。 本発明の液晶表示装置の一実施例の特性図である。 本発明の液晶表示装置の一実施例の特性図である。 本発明の液晶表示装置の一実施例の特性図である。 本発明の液晶表示装置の一実施例の特性図である。 本発明の液晶表示装置の一実施例の特性図である。 本発明の液晶表示装置の一実施例の特性図である。 本発明の液晶表示装置の一実施例の特性図である。 本発明の液晶表示装置の一実施例の特性図である。 本発明の液晶表示装置の一実施例の特性図である。 本発明の液晶表示装置の一実施例の特性図である。 本発明の液晶表示装置の一実施例の特性図である。 本発明の液晶表示装置の一実施例の特性図である。 本発明の液晶表示装置の一実施例の特性図である。 本発明の液晶表示装置の一実施例の特性図である。 本発明の液晶表示装置の一実施例の特性図である。 本発明の液晶表示装置の一実施例の特性図である。 本発明の液晶表示装置の一実施例の特性図である。
以下、本発明に係る一実施形態の液晶表示装置を具体的に説明する。
液晶TVが台頭する中、自発光でない液晶ディスプレイは、白表示時は、如何に照明装置からの光を透過し、黒表示時は如何に光を遮断するかが重要である。本実施形態は、黒表示時において斜めから見たときに輝度を低減し、同時に色付きを無くす液晶表示装置に関するものである。
まず、黒表示時に斜め方向から見た場合、何故輝度が上昇し、色付きが生じるかについて説明する前に、図3を用いて定義を示す。照明装置からの光60が入射し、液晶素子で光が変調され、表示面10Dから光が出射する時、表示面10Dの法線方向を80N、水平方向を70H、垂直上下方向を70Vとし、視認方向80Vの表示面10Dへの射影を80Aとすると、水平方向70Hとの成す角を方位角81としてφで示し、法線方向80Nと視認方向80Vとの成す角を極角θで示す。
次に、直交する一対の偏光板において、極角θ、方位角φを、θ≠0°、φ≠0°,180°±90°として、光漏れの理由について考える。図4.1に示すように2枚の偏光板の吸収軸11BAと12BA(または透過軸11BTと12BT)を直交させた場合、偏光板の法線方向から入射した光は、入射側の偏光板で直線偏光となり、出射側の偏光板により吸収され、黒表示をすることができる。一方、図4.2に示すように、斜め方向から見た場合(θ≠0°、φ≠0°,180°±90°)は、反対側の偏光板の透過軸と平行な成分を有し、反対側の偏光板で光が完全には遮断されずに光漏れを生じる。更に、直交する偏光板間に平行配向の液晶層が配置された場合、液晶層の光学軸が入射側偏光板の吸収軸に平行であれば液晶層の影響を受けないが、液晶層の光学軸がずれる、若しくは2枚の偏光板が直交からずれると液晶層の影響を受けることが我々の検討で判明した。
これらの偏光状態を理解する為には、ポアンカレ球表示を使用すると非常にわかり易い。ポアンカレ球表示については、[非特許文献1]応用物理学会光学懇話会編「結晶光学」森北出版株式会社出版1984年第1版第4刷発行、第5章p102〜163に開示されている。ストークスパラメータS0、S1、S2、S3は、光の進行方向に対し垂直な面でx、y軸をとり、その電界振幅をそれぞれEx,Eyとし、ExとEyの相対的位相差をδ(=δy−δx)とすると、下記の式(1)のようになる。
Figure 2014016642
完全偏光の場合は、S0=S1+S2+S3となる。また、これをポアンカレ球上に表示すると、図5に示すようになる。つまり、空間直交座標系の各軸にS1,S2,S3軸を取り、偏光状態を表すS点は、強度S0の半径とする球面上に位置する。ある偏光状態Sの点を取り、緯度La及び経度Loを用いて表示すると、完全偏光の場合はS0=S1+S2+S3であるため、半径1の球を考えると、下記の式(2)のようになる。
Figure 2014016642
ここで、ポアンカレ球上では、上半球は右回りの偏光、下半球は左回りの偏光、赤道上は直線偏光、上下両極はそれぞれ右円偏光、左円偏光が配置される。
図4.2の状態をポアンカレ球上で考えると図6に示すようになる。ここで、図6は、方位角φ=45°、θ=60°で見た場合で、図6.1はS1−S3面への、図6.2はS1−S2面への射影を示す。光の入射側の偏光透過軸11BTの偏光状態は200T、吸収軸11BAに偏光成分を持つ直線偏光は200A、出射側の偏光透過軸12BTは201T、吸収軸12BAに偏光成分を有する直線偏光は201Aで示される。つまり、200Tと201Aの距離311が光漏れとなる。従って、200Tの偏光状態を201Aの偏光状態へ、変換300を行うことで光漏れを無くす事ができる事がわかる。
図6は、偏光層のみの理想状態を考えたが、通常の偏光板は、偏光層の両側に支持基材が配置されており、その支持基材が通常トリアセチルセルロース(TAC)から成る。TACは複屈折性を有する為、斜め方向から光が入射し、出射する場合、偏光状態が変化する。複屈折性媒体による偏光状態の変化は、ポアンカレ球上では、入射光に関する値(方位角、視野角)で決まる特定の軸の回りに、その複屈折性媒体の物性値(屈折率、厚さ)及び入射光に関する値(方位角、視野角)で決まる斜め方向の複屈折性を表す傾斜リタデーションにより特定の角度回転させることで表される。
以上より、垂直入射では偏光状態に影響を受けないが斜め入射時に支持基材の影響を受けて偏光状態が変化する。ここで、図7に示す光学的な層構成で偏光状態の変化を考える。液晶層15の両側に偏光板11,12が配置され、入射側偏光板11の内側には支持基材11C、出射側偏光板12は内側に支持基材12Cが配置されている。ここで、液晶層の光学軸15Sは、入射側偏光板11の吸収軸11BAに垂直、透過軸11BTに平行で、出射側偏光板12の吸収軸12BAに平行、透過軸12BTに垂直に配置し、これをe−modeと呼び、上下偏光板の軸が90°回転している場合、つまり、液晶層の光学軸15Sは、入射側偏光板11の吸収軸11BAに平行、透過軸11BTに垂直で、出射側偏光板12の吸収軸12BAに垂直、透過軸12BTに平行に配置した場合をo−modeと呼ぶ。また、通常は、偏光層11B、12Bの外側に図1に示すように支持基材11A、12Aが配置されるが偏光状態を考える上では必要無い為に省略した。
この図7の構成について、ポアンカレ球上で偏光状態の変化を図8.1を用いて考える。以下断りが無い場合には、各物性値は波長550nm光の値として考える。図6と同様に方位角φ=45°、視野角θ=60°から見た場合の光について考えると、偏光層11Bの透過軸11BTを透過した光の偏光状態は200Tとなり、支持基材11Cにより偏光状態202に変換される。更に、液晶層15により偏光状態203に変換301される。更に出射側偏光板12の支持基材12Cによって偏光状態204に変換される。ここで、出射側の偏光層12Bの吸収軸12BAに一致する偏光状態は201Aであり、偏光状態204と201Aの距離310分だけ光が漏れることになる。
更には、図8.1では、550nmの光について考えたが、図8.2で図7の構成について、可視光領域(B:450nm,G:550nm,R:620nm)に関する偏光状態変化を示す。ここでは、一般的な3原色カラーフィルタに関する偏光状態変化を考える為、上記のような可視光波長を選択した。図6と同様に方位角φ=45°、視野角θ=60°から見た場合の光について考えると、透過軸11BTを透過した光の偏光状態は200Tとなり、支持基材11Cにより偏光状態212R,G,Bに変換される。更に、液晶層15により、偏光状態213R,G,Bに変換される。更に出射側偏光板12の支持基材12Cにより偏光状態214R,G,Bに変換される。ここで、出射側の偏光層12Bの吸収軸12BAに一致する偏光状態は201Aであり、214R,G,Bと201Aを見ればわかる通り、波長により光の漏れ量が異なる事が分かった。従って斜めから見た場合、色付きが生じることが理解できる。
本実施形態に係る液晶表示装置の構成を図1に示す。光入射側の第一の偏光板11を備えた第一基板13ともう一方の第二の偏光板12を備えた第二基板14間のそれぞれの吸収軸が略垂直で、液晶分子が前記基板に略平行且つ、前記第一の偏光層の吸収軸に略垂直あるいは略平行方向に配向され、前記第一の基板に対して平行な方向に電界を印加することにより前記液晶分子が前記第一の基板に対して平行な面内で回転する液晶層15と、前記第一基板又は前記第二基板のいずれか一方の基板の前記液晶層に近い側に、各画素に対向して一対の電極を有するマトリクス駆動の電極群が設けられ、背面照明装置が配置されている。
図1左は、液晶層15の光学軸が偏光層11Bの吸収軸に略垂直であるe−modeの場合を示している。この場合、光学補償部材17、18は液晶層15と偏光層11Bの間に挟持され、支持基材としての役割も兼ねる。
図1は偏光板支持基材11A、12Aおよび基板13、14を含むが、これらは偏光状態を考える場合無視できる。これらを省略し、各部材の基板平行面内の遅相軸方向を明示した光学的構成図を考えると、図9のようになる。光学補償部材17および18の遅相軸は入射側偏光板吸収軸に直交もしくは平行のどちらでも良いが、図9では直交となるよう例示した。このような光学的構成において、斜め方向からの光漏れをカラーフィルタ16,光学補償部材17および18により低減する方法を考える。
図10にポアンカレ球を用いて偏光状態変化を示す。図10.1において、方位角φ=45°、視野角θ=60°から見た場合の光について考えると、偏光層11Bの透過軸11BTを透過した光の偏光状態は200Tとなり、光学補償部材17により偏光状態517に変換417される。次に、光学補償部材18により偏光状態201Aに変換418される。液晶層15による偏光状態変換は201Aを中心とした回転変換415で表現される。よって、偏光状態が201Aである場合、偏光状態変換は生じない。このように550nmの光についてのみ考えた場合、液晶層の影響が排され、良好な黒表示が得られることとなる。
これに対し、図10.2に可視光領域(B:450nm,G:550nm,R:620nm)に関する偏光状態変化を示す。ここでは、一般的な3原色カラーフィルタに関する偏光状態変化を考える為、上記のような可視光波長を選択した。光学補償部材17によって変換された光は光学補償部材17の波長分散特性により偏光状態617R,617G,617Bのように広がりを持つ。その後、光学補償部材18によって偏光状態617Gは光学補償部材18により偏光状態201Aに変換されるが、617R,617Bは光学補償部材18の波長分散特性により偏光状態618R,618Bに変換される。さらに、偏光状態618R,618Gは液晶層によって偏光状態615R,615Bに変換される。ここまでで理解できる通り、この状態では光学補償部材の波長分散特性により赤、青、緑各色で光漏れ量が異なり、斜めから見た場合、色付きが生じる。ここで、カラーフィルタ16のRthを各色で独立に制御すると、偏光状態615R,615Bは偏光状態616R,616Bに変換され、カラーフィルタ16のRthを考慮しない場合と比較して、斜め色付きを抑えることが可能となる。
図10.2では光学補償部材17、18と液晶層15の関係で、カラーフィルタ16の青画素はRth(B)>0nmとなっている。これに対し、光学補償部材17、18の組合せを変更し、液晶層Reを小さくした場合を考える。図11.1において、方位角φ=45°、視野角θ=60°から見た場合の光について考えると、図10.1同様に550nmの光についてのみ考えた場合、液晶層の影響が排され、良好な黒表示が得られることとなる。
これに対し、図11.2に可視光領域(B:450nm,G:550nm,R:620nm)に関する偏光状態変化を示す。ここでは、一般的な3原色カラーフィルタに関する偏光状態変化を考える為、上記のような可視光波長を選択した。光学補償部材17によって変換された光は光学補償部材17の波長分散特性により偏光状態617R,617G,617Bのように広がりを持つ。その後、光学補償部材18によって偏光状態617Gは光学補償部材18により偏光状態201Aに変換されるが、617R,617Bは光学補償部材18の波長分散特性により偏光状態618R,618Bに変換される。さらに、偏光状態618R,618Gは液晶層によって偏光状態615R,615Bに変換される。ここで、カラーフィルタ16のRthを各色で独立に制御すると、偏光状態615R,615Bは偏光状態616R,616Bに変換される。この場合、カラーフィルタ16の青画素はRth(B)<0nmとなる。
ここで、図10.2及び図11.2で示すように、カラーフィルタの赤(R)画素領域の偏光状態615RはS3方向成分が正である。よって、赤色の光漏れを低減するには、赤画素のRth(R)が式(3)を満足する必要がある。
Figure 2014016642
上記のように、偏光層11Bの吸収軸と、光学補償部材17および18の遅相軸が略垂直である場合であって、カラーフィルタに入射する550nm付近の光が偏光状態201Aに近くなるように光学補償部材17及び18等の光学定数が決定されている場合には、赤(R)画素領域の偏光状態615Rは、S3方向成分が正となる傾向にある。したがって、赤色の光漏れを低減するために、赤画素のRth(R)を0nmよりも大きくすることで赤色の光漏れを低減できる。
これに対し、カラーフィルタの青画素領域の偏光状態615Bは光学補償部材の組合せによってS3成分は正にも負にも変化するが、液晶層の偏光状態変化415が201Aを中心とした回転変換である為、その回転変換の半径は光学補償部材の組合せ、波長分散特性により、Rth(B)は、式(4)で示すような範囲となる。
Figure 2014016642
ここで、Nz1は光学補償部材17におけるNz係数であり、Nz2は光学補償部材18におけるNz係数であり、Nz1≧1、かつ、Nz2≦0を満たす。
ここまでは斜め方向の黒輝度を低減し、その条件下で色付きの低減を図る方法を示してきた。これに対し、図12では斜め方向の色付きを大幅に低減することが可能な方法に関して説明する。図12.1を見てわかる通り、図10の場合と同様の構成を考える。
図10.2ではカラーフィルタの緑画素領域はRthが0nmに近いものとして図示していたが、ここで、赤、緑、青各色の光漏れが同程度になるようカラーフィルタの赤、緑、青画素領域のRthを正、もしくは負の値に調節する。つまり、図12.2に示すように偏光状態616R,616G,616Bと201Aとの距離が略同一(半径320の円上)となるようすれば、光漏れ量が均一になり、色付きを大幅に低減することが可能となる。
以上のように、光学補償部材、液晶層の波長分散特性に合せてカラーフィルタのRthを独立に制御することにより、これまで以上に斜め方向の黒輝度、色付き低減両立を図ることが可能となる。さらにカラーフィルタのRthを独立に制御することにより斜め方向の色付きを大幅に低減した構成が可能になる為、光学補償部材のみで位相補償を検討した場合と比較し、選択の幅を広げることが可能になる。
次に、図1左において、光学補償部材17および18の遅相軸が入射側偏光板吸収軸に平行な場合を考える。図1は偏光板支持基材11A、12Aおよび基板13、14を含むが、これらは偏光状態を考える場合無視できる。これらを省略し、各部材の基板平行面内の遅相軸方向を明示した光学的構成図を考えると、図13のようになる。
このような光学的構成において、斜め方向からの光漏れをカラーフィルタ16,光学補償部材17および18により低減する方法を考える。
図14にポアンカレ球を用いて偏光状態変化を示す。図14.1において、方位角φ=45°、視野角θ=60°から見た場合の光について考えると、偏光層11Bの透過軸11BTを透過した光の偏光状態は200Tとなり、光学補償部材17により偏光状態517に変換417される。次に、光学補償部材18により偏光状態201Aに変換418される。液晶層15による偏光状態変換は201Aを中心とした回転変換415で表現される。よって、偏光状態が201Aである場合、偏光状態変換は生じない。このように550nmの光についてのみ考えた場合、液晶層の影響が排され、良好な黒表示が得られることとなる。
これに対し、図14.2に可視光領域(B:450nm,G:550nm,R:620nm)に関する偏光状態変化を示す。ここでは、一般的な3原色カラーフィルタに関する偏光状態変化を考える為、上記のような可視光波長を選択した。光学補償部材17によって変換された光は光学補償部材17の波長分散特性により偏光状態617R,617G,617Bのように広がりを持つ。その後、光学補償部材18によって偏光状態617Gは光学補償部材18により偏光状態201Aに変換されるが、617R,617Bは光学補償部材18の波長分散特性により偏光状態618R,618Bに変換される。さらに、偏光状態618R,618Gは液晶層によって偏光状態615R,615Bに変換される。ここまでで理解できる通り、この状態では光学補償部材の波長分散特性により赤、緑、青各色で光漏れ量が異なり、斜めから見た場合、色付きが生じる。ここで、カラーフィルタ16のRthを各色で独立に制御すると、偏光状態615R,615Bは偏光状態616R,616Bに変換され、カラーフィルタ16のRthを考慮しない場合と比較して、斜め色付きを抑えることが可能となる。
図14からわかる通り、光学補償部材の遅相軸が入射側偏光板吸収軸に垂直な場合は、平行な場合とで偏光状態変化は大きく異なり、S3方向で考えれば、正負が逆転している。よって、カラーフィルタの赤画素領域の偏光状態615RはS3方向成分が負である為、赤色の光漏れを低減するには、赤画素のRth(R)が式(5)を満足する必要がある。
Figure 2014016642
とする必要がある。
このように光学補償部材の遅相軸が入射側偏光板吸収軸に平行な場合でも、光漏れ低減の原理は垂直な場合と同様である。よって、図12で説明した通り、平行な場合でも、偏光状態616R,616G,616Bと201Aとの距離が略同一となるようすれば、光漏れ量が均一になり、色付きを大幅に低減することが可能となる。
次に、図1右のo−modeについて考える。o−modeでは、液晶層15の光学軸が偏光層11Bの吸収軸に略平行となっている。この場合、光学補償部材17,18は液晶層15と偏光層12Bの間に挟持され、支持基材としての役割も兼ねる。
図15にその光学的構成を示す。ここでは、光学補償部材17および18の遅相軸が入射側偏光板吸収軸に平行な場合を考える。この場合の偏光状態変化をポアンカレ球により図16に示す。図16.1で示された通り、o−modeにおいては偏光層11Bの透過軸11BTを透過した光の偏光状態は200Tとなる。液晶層15による偏光状態変換は200Tを中心とした回転変換415で表現される。よって、偏光状態が200Tである場合、つまり、偏光層11Bの吸収軸11BAと液晶層の遅相軸15Sが略平行である場合、偏光状態変換は生じない。次に、光学補償部材17により偏光状態517に変換417される。更に、光学補償部材18により偏光状態201Aに変換418される。このように550nmの光についてのみ考えた場合、液晶層の影響が排され、良好な黒表示が得られることとなる。
これに対し、図16.2に可視光領域(B:450nm,G:550nm,R:620nm)に関する偏光状態変化を示す。ここでは、一般的な3原色カラーフィルタに関する偏光状態変化を考える為、上記のような可視光波長を選択した。e−modeで説明した通り、光学補償部材17,18には波長分散特性がある。よって、これを補償するようカラーフィルタのRthを独立に制御する。まず、このカラーフィルタ16により、偏光状態616R,616G,616Bのように偏光状態変換される。その後、光学補償部材17により偏光状態617R,617G,617Bへ、光学補償部材18により偏光状態618R,618G,618Bと偏光状態変換される。これにより光学補償部材の波長分散特性を補償することが可能となり、カラーフィルタ16のRthを考慮しない場合と比較して、斜め色付きを抑えることが可能となる。
この場合、赤色の光漏れを低減するには、赤画素のRth(R)が式(6)を満足する必要がある。
Figure 2014016642
次に、図1右において、光学補償部材17および18の遅相軸が入射側偏光板吸収軸に直交な場合を考える。図1は偏光板支持基材11A、12Aおよび基板13、14を含むが、これらは偏光状態を考える場合無視できる。これらを省略し、各部材の基板平行面内の遅相軸方向を明示した光学的構成図を考えると、図17のようになる。
図18にポアンカレ球を用いて偏光状態変化を示す。図18.1で示された通り、o−modeにおいては偏光層11Bの透過軸11BTを透過した光の偏光状態は200Tとなる。液晶層15による偏光状態変換は200Tを中心とした回転変換415で表現される。よって、偏光状態が200Tである場合、つまり、偏光層11Bの吸収軸11BAと液晶層の光学軸15Sが略平行である場合、偏光状態変換は生じない。次に、光学補償部材17により偏光状態517に変換417される。更に、光学補償部材18により偏光状態201Aに変換418される。このように550nmの光についてのみ考えた場合、液晶層の影響が排され、良好な黒表示が得られることとなる。
これに対し、図18.2に可視光領域(B:450nm,G:550nm,R:620nm)に関する偏光状態変化を示す。ここでは、一般的な3原色カラーフィルタに関する偏光状態変化を考える為、上記のような可視光波長を選択した。e−modeで説明した通り、光学補償部材17,18には波長分散特性がある。よって、これを補償するようカラーフィルタのRthを独立に制御する。まず、このカラーフィルタ16により、偏光状態616R,616G,616Bのように偏光状態変換される。その後、光学補償部材17により偏光状態617R,617G,617Bへ、光学補償部材18により偏光状態618R,618G,618Bと偏光状態変換される。これにより光学補償部材の波長分散特性を補償することが可能となり、カラーフィルタ16のRthを考慮しない場合と比較して、斜め色付きを抑えることが可能となる。
この場合、赤色の光漏れを低減するには、赤画素のRth(R)が式(7)を満足する必要がある。
Figure 2014016642
これまでe−mode、o−modeの2種類、その中でさらに光学補償部材17、18の遅相軸方向を直交、平行とした場合2種類の全4種類は、略同一の視角性能を有すると考えられてきた。しかし、偏光状態変換はそれぞれ異なっており、液晶層、光学補償部材の波長分散特性による赤、緑、青色光の偏光状態もまた大きく異なっている。つまり、CFのRthによって波長分散特性を補償するには、それぞれの場合において、上記のように条件を変更する必要がある。これにより、斜め視野における液晶層や光学補償部材の影響を低減し、斜め方向の黒輝度および色付きの低減を両立できる。なお、Rth(B)については、偏光層11Bの吸収軸と、光学補償部材17および18の遅相軸が略平行である場合も略垂直である場合と同様に、Nz1≦0、かつ、Nz2≧1を満たして、式(4)の範囲とすることで、青色の漏れ光を低減することができる。
以上述べた考え方の詳細な例は、以下実施例に示す。
以下に具体的な実施例を示して、本発明の内容をさらに詳細に説明する。以下の実施例は本発明の内容の具体例を示すものであり、本発明がこれらの実施例に限定されるものではない。なお、本実施例においては、[非特許文献3]に開示されている4×4マトリクス法を用いた光学シミュレーションを用いて数値計算し検討した結果も含まれる。ここで、シミュレーションにおいては、一般的構成を想定し、通常のバックライトに使用されている3波長冷陰極管の分光特性、赤、緑、青の3原色カラーフィルタの分光透過特性、偏光板偏光層としては、日東電工製1224DUの分光特性を使用した。さらに、液晶層に含まれる液晶分子としては、異常光屈折率1.573、常光屈折率1.484のネマティック液晶を想定し、液晶層の厚みは3.7μmとした。また、光学補償部材の波長分散はポリカーボネート(PC)、ポリスチレン、ノルボルネン系材料等、あるいは液晶性高分子材料のものを用いたがこれらに限定されるものではない。
また、上述の実施形態においてはカラーフィルタが一軸性を有して、そのRthを調整することで斜め方向の黒輝度および色付きの低減の両立を実現しているが、Rthを調整する材料としては、メラミン樹脂、ポリフィリン化合物、および重合性液晶化合物等が知られているがこれらに限定されるものではない。
また上記の実施形態においては、第一基板と第二基板間に光学補償部材を配置することも想定しているが、このような技術は例えば、[特許文献9]特開平2005−3733号公報等において開示されている。我々の検討によると、このような技術の課題の一つは表面の平坦性にある。第一基板と第二基板間に光学補償部材を配置した場合、光学補償部材の表面に凹凸があると、これが液晶層厚みのばらつきとなり、面内表示むらやコントラスト低下を招く。しかし、我々の検討によると、[特許文献3]特開2001−056476号公報で提案されているようなフリンジフィールド電界を用いたIPSモードでは、液晶層厚みばらつきに対して、面内表示むらやコントラスト低下が生じにくいため、第一基板と第二基板間に光学補償部材を配置する技術と容易に組み合わせることが可能である。
更に、光学補償部材および偏光層が、基板上に材料が塗布され、配向処理が行われることにより形成されてもよい。ただしこの場合、実施例中で示した構成は変化する場合がある。具体的には、偏光層は基板の液晶層側に配置される場合が考えられる。また、実施例中では図1を構造例として示しているが、図2等のような構造でも問題は無い。本発明は、光学的構成に重きを置くものであり、本発明で示した光学的構成が実現されれば、本発明の効果は達成可能である。このため実施例中では、適宜光学的構成を示している。
液晶セルや電極構造、基板、偏光板の偏光層、及び照明装置はIPSとして従来から用いられるものがそのまま適用できる。本発明は、光学部材の仕様、構成に関するものである。
液晶層に対して電圧無印加時における液晶層光学軸の基板に対する小さい方の角度(プレチルト角)は、実施例において示すシミュレーションでは0°としたが、±3°の範囲では本実施例で示した傾向に大きな差は生じなかった。ただし、プレチルト角0°の場合が最も良好な特性を示した。
ここで用いられる用語の説明を行う。・略垂直:小さい方のなす角が88°〜90°・略平行:小さい方のなす角が0°〜2°・略水平:小さい方のなす角が0°〜3°・e−mode:第一の偏光板11の吸収軸11BAと電圧無印加時の液晶分子の配向軸15Sの方向が略垂直の場合。・o−mode:第一の偏光板11の吸収軸11BAと電圧無印加時の液晶分子の配向軸15Sの方向が略水平(小さい方のなす角が0°〜2°)の場合。・nx:基板平行面内における遅相軸方向の屈折率・ny:基板平行面内における進相軸方向の屈折率・nz:厚さ方向の屈折率・d:光学補償部材の厚さ・Re:基板平行面内のリタデーション。Re=(nx−ny)d・Rth:厚さ方向のリタデーション。Rth=((nx+ny)/2−nz)d・Nz係数:Nz=(nx−nz)/(nx−ny)・複屈折性を有する:ReまたはRthの絶対値が約10nmより大きい場合。・略等方性を有する:ReおよびRthの絶対値が約10nm以下の場合。・ポジティブa−plate:nx>ny≒nz・ネガティブa−plate:nx≒nz>ny・ポジティブc−plate:nz>nx≒ny・ネガティブc−plate:nx≒ny>nz・Rth(R):カラーフィルタ赤(R)画素の、透過率最大値を示す波長RでのRth・Rth(G):カラーフィルタ赤(G)画素の、透過率最大値を示す波長GでのRth・Rth(B):カラーフィルタ赤(B)画素の、透過率最大値を示す波長BでのRth
また、本実施例ではこの一軸異方性光学補償部材を使用しているが、我々の検討では必ずしもポジティブa−plateや、ネガティブa−plate、ポジティブc−plate、ネガティブc−plateである必要はなく、これらのNz係数であるNzが、ポジティブa−plateは0.8<Nz<1.2、ネガティブa−plateは−0.2<Nz<0.2、ポジティブc−plateはNz<−5、ネガティブc−plateはNz>5と考えても問題はない。
本実施例の構造を図1左に、e−modeの光学的構成を図9に示す。本実施例では光学補償部材17としてのNz係数であるNz1が、Nz1=1(Nz≧1)、光学補償部材18としてのNz係数であるNz2が、Nz2=−1(Nz≦0)の光学補償部材を使用する。ここで使用するNz≧1、Nz≦0の光学補償部材は0<Nz<1と比較して容易に作製できる為、材料選択時にも選択肢が非常に広い。よって、この範囲の光学補償部材を使用することで、様々な材料を使用することが可能である。
ここで、評価指標を定める必要がある。本発明は、黒表示時の視野角を変化させたときの輝度変化や色度変化の低減が目的である為、それぞれの評価指標を導入する。
輝度変化の指標としては、視野角を変化させたときの透過率最大値を導入する。ここで透過率とは、入射光波長400〜700nmにおいて視感度を考慮して求めたものである。図19によりこれを説明する。同図は、光学補償部材の仕様が異なる三種類の液晶表示装置において、黒表示時の透過率視野角特性を評価したもので、方位角を固定して、極角のみを変化させた場合である。同図により、仕様3が最も輝度変化の特性が良好となる。ここで、それぞれの仕様における透過率最大値を比較しても同様の結果が得られることが分かる。451T1,451T2,451T3はそれぞれ仕様1,2,3の透過率最大値である。このように、透過率最大値が小さいならば、視野角変化に伴う輝度変化も小さいと言える。図7のような光学補償部材を配置しない構成をとった場合、黒表示時の最大透過率はおよそ1.2%程度であった。
次に、色度変化の指標としてはΔu´v´を導入する。図20に説明図を示す。図20は図7の構成において、黒表示時の色をu´v´色度図にプロットしたものであり、全方位角,全極角方向から見た全ての色度座標をプロットしている。結果として、同図に示す楕円領域が得られる。視野角変化に伴う色度変化を低減することは、同図における楕円領域を小さくすることに相当する。そこで、この楕円長軸の長さを評価指標とする。これがΔu´v´である。図7のような光学補償部材を配置しない構成をとった場合、黒表示時のΔu´v´はおよそ0.13程度であった。
これに対し、光学補償部材17としてNz1=1、光学補償部材18としてNz2=−1の光学補償部材を使用し、カラーフィルタ層のRthを考慮しない(0nm)場合の最大透過率を図21に、Δu´v´を図22に示す。このように、最大透過率とΔu´v´はトレードオフの関係にあり、Δu´v´が0.13以下となる中で最大透過率が最も小さくなる場合は、光学補償部材17のReが130nm、光学補償部材18のReが30nmのときで、最大透過率が0.29%となる。これに対し、最大透過率を優先した場合、光学補償部材17のReが115nm、光学補償部材18のReが45nmのときで、Δu´v´は0.18となる。光学補償部材を上記数値に固定し、カラーフィルタ層のRthを変化させたときの最大透過率を図23に、Δu´v´を図24に示す。1例として、Rth(R)を5nmとした。図からもわかる通り、カラーフィルタ層のRthを変化させることで、最大透過率、Δu´v´の低減を両立することが可能となる。ここで、Δu´v´が0.13以下、最大透過率が0.29%以下となる領域を図25に示す。Rth(R)が15,25,35,45nmの場合に関しても、図26,27,28,29に示す。この中でRth(R)=5nm,Rth(G)=−20nm,Rth(B)=0nmのとき、Δu´v´が0.13以下、最大透過率が0.13%と最も性能良好であった。これらの図において示されるように、Rth(R)が、0nmよりも大きく50nmよりも小さい範囲において、Δu´v´が0.13以下、最大透過率が0.29%以下となるような条件が存在する。また、Rth(R)は、好適には、5nm以上35nm以下である。また、上記のようなNz係数の範囲において、他の値(光学補償部材17,18のRe値や液晶分子の光学定数など)を適宜調整する場合にも、Rth(R)が0nmよりも大きく50nmよりも小さい範囲において、最大透過率やΔu´v´を低減できる。なお、上記のようなNz係数の範囲以外となる場合においても、同様にRth(R)を0nmよりも大きく50nmよりも小さくすることでの範囲で、最大透過率やΔu´v´を低減でき、Rth(R)を5nm以上35nm以下とするのが好適である。このことは、図17のような光学的構成をとる場合においても同様である。なお、図13や図15のような光学的構成をとる場合においても、同様に、Rth(R)を、0nmよりも小さく−50nmよりも大きい範囲として、Rth(R)は、−5nm以下−35nm以上とするのが好適である。
次に、Rth(R)=5nm,Rth(G)=−20nm,Rth(B)=0nmに固定し、光学補償部材のReを変化させたとき、Δu´v´が0.13以下、最大透過率が0.29%以下となる領域を図30に示す。このように、カラーフィルタ層のRthを変化させることで、これまで使用できなかった広範囲の光学補償部材を使用できるようになる。
本実施例の概略構造を図1左に、e−modeの光学的構成の概略を図9に示す。ここで、本実施例では光学補償部材としてNz=0.5(0.4<Nz<0.6)の1つの光学補償部材を使用するため、図1左および図9においては光学補償部材17と18とが表示されているが、本実施例では1つの光学補償部材である。カラーフィルタ層のRthを考慮しない(0nm)場合、Δu´v´が0.13以下となる中で最大透過率が最も小さくなる場合は、光学補償部材のReが250nmのときで、最大透過率が0.10%となる。これに対し、最大透過率を優先した場合、光学補償部材のReが260nmのとき、Δu´v´は0.15、最大透過率は0.09%となる。光学補償部材を上記数値に固定し、カラーフィルタ層のRthを変化させたとき、ここで、Δu´v´が0.13以下、最大透過率が0.10%以下となる領域を図31に示す。1例として、Rth(R)を10nmとした。図からもわかる通り、カラーフィルタ層のRthを変化させることで、最大透過率、Δu´v´の低減を両立することが可能となる。この中でRth(R)=10nm,Rth(G)=0nm,Rth(B)=15nmのとき、Δu´v´が0.13以下、最大透過率が0.08%と最も性能良好であった。上記の範囲のNz係数となる光学補償部材を用いる場合に、他の値(光学補償部材17,18のRe値や液晶分子の光学定数など)が適宜調整される範囲においては、0nm<Rth(B)≦30nmとすることでΔu´v´や最大透過率を低減できる。
本実施例の構造を図1左に、e−modeの光学的構成を図9に示す。本実施例では光学補償部材17としてNz1=0.7(0.5<Nz1<1)、光学補償部材18としてNz2=−6(Nz2<0.5)の光学補償部材を使用する。カラーフィルタ層のRthを考慮しない(0nm)場合、Δu´v´が0.13以下となる中で最大透過率が最も小さくなる場合は、光学補償部材17のReが185nm、光学補償部材18のReが5nmのときで、最大透過率が0.17%となる。これに対し、最大透過率を優先した場合、光学補償部材17のReが170nm、光学補償部材18のReが8nmのときで、Δu´v´は0.16、最大透過率は0.07%となる。光学補償部材を上記数値に固定し、カラーフィルタ層のRthを変化させたとき、ここで、Δu´v´が0.13以下、最大透過率が0.17%以下となる領域を図32に示す。1例として、Rth(R)を10nmとした。図からもわかる通り、カラーフィルタ層のRthを変化させることで、最大透過率、Δu´v´の低減を両立することが可能となる。この中でRth(R)=10nm,Rth(G)=−10nm,Rth(B)=5nmのとき、Δu´v´が0.13以下、最大透過率が0.08%と最も性能良好であった。上記の範囲のNz係数となる光学補償部材を用いる場合に、他の値(光学補償部材17,18のRe値や液晶分子の光学定数など)が適宜調整される範囲においては、|Rth(B)|≦30nmとすることで、Δu´v´や最大透過率を低減できる。
本実施例の構造を図1左に、e−modeの光学的構成を図9に示す。本実施例では光学補償部材17としてNz1=6(Nz1>0.5)、光学補償部材18としてNz2=0.3(0<Nz2<0.5)の光学補償部材を使用する。カラーフィルタ層のRthを考慮しない(0nm)場合、Δu´v´が0.13以下となる中で最大透過率が最も小さくなる場合は、光学補償部材17のReが9nm、光学補償部材18のReが155nmのときで、最大透過率が0.11%となる。これに対し、最大透過率を優先した場合、光学補償部材17のReが9nm、光学補償部材18のReが160nmのときで、Δu´v´は0.15、最大透過率は0.10%となる。光学補償部材を上記数値に固定し、カラーフィルタ層のRthを変化させたとき、ここで、Δu´v´が0.13以下、最大透過率が0.11%以下となる領域を図33に示す。1例として、Rth(R)を10nmとした。図からもわかる通り、カラーフィルタ層のRthを変化させることで、最大透過率、Δu´v´の低減を両立することが可能となる。この中でRth(R)=10nm,Rth(G)=0nm,Rth(B)=10nmのとき、Δu´v´が0.13以下、最大透過率が0.09%と最も性能良好であった。上記の範囲のNz係数となる光学補償部材を用いる場合に、他の値(光学補償部材17,18のRe値や液晶分子の光学定数など)が適宜調整される範囲においては、0nm<Rth(B)≦25nmとすることで、Δu´v´や最大透過率を低減できる。
本実施例の構造を図1右に、o−modeの光学的構成を図17に示す。本実施例では光学補償部材17としてNz1=1(Nz1>0.5)、光学補償部材18としてNz2=−1(Nz2<0.5)の光学補償部材を使用する。カラーフィルタ層のRthを考慮しない(0nm)場合、Δu´v´が0.13以下となる中で最大透過率が最も小さくなる場合は、光学補償部材17のReが95nm、光学補償部材18のReが50nmのときで、最大透過率が0.23%となる。これに対し、最大透過率を優先した場合、光学補償部材17のReが110nm、光学補償部材18のReが40nmのときで、Δu´v´は0.14、最大透過率は0.10%となる。光学補償部材を上記数値に固定し、カラーフィルタ層のRthを変化させたとき、ここで、Δu´v´が0.13以下、最大透過率が0.10%以下となる領域を図34に示す。1例として、Rth(R)を10nmとした。図からもわかる通り、カラーフィルタ層のRthを変化させることで、最大透過率、Δu´v´の低減を両立することが可能となる。この中でRth(R)=10nm,Rth(G)=−5nm,Rth(B)=0nmのとき、Δu´v´が0.13以下、最大透過率が0.09%と最も性能良好であった。上記の範囲のNz係数となる光学補償部材を用いる場合に、他の値(光学補償部材17,18のRe値や液晶分子の光学定数など)が適宜調整される範囲においては、|Rth(B)|≦30nmとすることで、Δu´v´や最大透過率を低減できる。
本実施例の概略構造を図1右に、o−modeの光学的構成の概略を図17に示す。本実施例では光学補償部材としてNz=0.5(0.4<Nz<0.6)の1つの光学補償部材を使用するため、図1右および図17においては光学補償部材17と18とが表示されているが、本実施例では1つの光学補償部材である。カラーフィルタ層のRthを考慮しない(0nm)場合、Δu´v´が0.13以下となる中で最大透過率が最も小さくなる場合は、光学補償部材のReが245nmのときで、最大透過率が0.12%となる。これに対し、最大透過率を優先した場合、光学補償部材のReが260nmのとき、Δu´v´は0.15、最大透過率は0.10%となる。光学補償部材を上記数値に固定し、カラーフィルタ層のRthを変化させたとき、ここで、Δu´v´が0.13以下、最大透過率が0.10%以下となる領域を図35に示す。1例として、Rth(R)を10nmとした。図からもわかる通り、カラーフィルタ層のRthを変化させることで、最大透過率、Δu´v´の低減を両立することが可能となる。この中でRth(R)=10nm,Rth(G)=−5nm,Rth(B)=−30nmのとき、Δu´v´が0.13以下、最大透過率が0.07%と最も性能良好であった。上記の範囲のNz係数となる光学補償部材を用いる場合に、他の値(光学補償部材17,18のRe値や液晶分子の光学定数など)が適宜調整される範囲においては、−50nm≦Rth(B)≦0nmとすることで、Δu´v´や最大透過率を低減できる。
本実施例の構造を図1左に、e−modeの光学的構成を図13に示す。本実施例では光学補償部材17としてNz1=−1(Nz1≦0)、光学補償部材18としてNz2=1(Nz2≧1)の光学補償部材を使用する。カラーフィルタ層のRthを考慮しない(0nm)場合、Δu´v´が0.13以下となる中で最大透過率が最も小さくなる場合は、光学補償部材17のReが30nm、光学補償部材18のReが120nmのときで、最大透過率が0.30%となる。これに対し、最大透過率を優先した場合、光学補償部材17のReが45nm、光学補償部材18のReが110nmのときで、Δu´v´は0.18、最大透過率は0.10%となる。光学補償部材を上記数値に固定し、カラーフィルタ層のRthを変化させたとき、ここで、Δu´v´が0.13以下、最大透過率が0.30%以下となる領域を図36に示す。1例として、Rth(R)を−40nmとした。図からもわかる通り、カラーフィルタ層のRthを変化させることで、最大透過率、Δu´v´の低減を両立することが可能となる。この中でRth(R)=−40nm,Rth(G)=20nm,Rth(B)=−5nmのとき、Δu´v´が0.13以下、最大透過率が0.15%と最も性能良好であった。上記の範囲のNz係数となる光学補償部材を用いる場合に、他の値(光学補償部材17,18のRe値や液晶分子の光学定数など)が適宜調整される範囲においては、|Rth(B)|≦40nmとすることで、Δu´v´や最大透過率を低減できる。
なお、図1左の構造、図9のe−modeの光学的構成をとる場合には、光学補償部材17としてNz1≧1、光学補償部材18としてNz2≦0の光学補償部材を使用する。このような範囲のNz係数となる光学補償部材を用いる場合に、他の値(光学補償部材17,18のRe値や液晶分子の光学定数など)が適宜調整される範囲においては、|Rth(B)|≦40nmとすることで、Δu´v´や最大透過率を低減できる。
本実施例の概略構造を図1左に、e−modeの光学的構成の概略を図13に示す。本実施例では光学補償部材としてNz=0.5(0.4<Nz<0.6)の1つの光学補償部材を使用するため、図1左および図13においては光学補償部材17と18とが表示されているが、本実施例では1つの光学補償部材である。カラーフィルタ層のRthを考慮しない(0nm)場合、Δu´v´が0.13以下となる中で最大透過率が最も小さくなる場合は、光学補償部材のReが245nmのときで、最大透過率が0.12%となる。これに対し、最大透過率を優先した場合、光学補償部材のReが260nmのとき、Δu´v´は0.15、最大透過率は0.10%となる。光学補償部材を上記数値に固定し、カラーフィルタ層のRthを変化させたとき、ここで、Δu´v´が0.13以下、最大透過率が0.12%以下となる領域を図37に示す。1例として、Rth(R)を−25nmとした。図からもわかる通り、カラーフィルタ層のRthを変化させることで、最大透過率、Δu´v´の低減を両立することが可能となる。この中でRth(R)=−25nm,Rth(G)=15nm,Rth(B)=−5nmのとき、Δu´v´が0.13以下、最大透過率が0.11%と最も性能良好であった。上記の範囲のNz係数となる光学補償部材を用いる場合に、他の値(光学補償部材17,18のRe値や液晶分子の光学定数など)が適宜調整される範囲においては、−30nm≦Rth(B)≦0nmとすることで、Δu´v´や最大透過率を低減できる。
本実施例の構造を図1左に、e−modeの光学的構成を図13に示す。本実施例では光学補償部材17としてNz1=0.3(0<Nz1<0.5)、光学補償部材18としてNz2=6(Nz2>0.5)の光学補償部材を使用する。カラーフィルタ層のRthを考慮しない(0nm)場合、Δu´v´が0.13以下となる中で最大透過率が最も小さくなる場合は、光学補償部材17のReが190nm、光学補償部材18のReが5nmのときで、最大透過率が0.20%となる。これに対し、最大透過率を優先した場合、光学補償部材17のReが165nm、光学補償部材18のReが9nmのときで、Δu´v´は0.15、最大透過率は0.07%となる。光学補償部材を上記数値に固定し、カラーフィルタ層のRthを変化させたとき、ここで、Δu´v´が0.13以下、最大透過率が0.20%以下となる領域を図38に示す。1例として、Rth(R)を−30nmとした。図からもわかる通り、カラーフィルタ層のRthを変化させることで、最大透過率、Δu´v´の低減を両立することが可能となる。この中でRth(R)=−30nm,Rth(G)=10nm,Rth(B)=0nmのとき、Δu´v´が0.13以下、最大透過率が0.08%と最も性能良好であった。上記の範囲のNz係数となる光学補償部材を用いる場合に、他の値(光学補償部材17,18のRe値や液晶分子の光学定数など)が適宜調整される範囲においては、|Rth(B)|≦30nmとすることで、Δu´v´や最大透過率を低減できる。
本実施例の構造を図1左に、e−modeの光学的構成を図13に示す。本実施例では光学補償部材17としてNz1=−6(Nz1<0.5)、光学補償部材18としてNz2=0.7(0.5<Nz2<1)の光学補償部材を使用する。カラーフィルタ層のRthを考慮しない(0nm)場合、Δu´v´が0.13以下となる中で最大透過率が最も小さくなる場合は、光学補償部材17のReが8nm、光学補償部材18のReが150nmのときで、最大透過率が0.13%となる。これに対し、最大透過率を優先した場合、光学補償部材17のReが8nm、光学補償部材18のReが160nmのときで、Δu´v´は0.15、最大透過率は0.10%となる。光学補償部材を上記数値に固定し、カラーフィルタ層のRthを変化させたとき、ここで、Δu´v´が0.13以下、最大透過率が0.13%以下となる領域を図39に示す。1例として、Rth(R)を−25nmとした。図からもわかる通り、カラーフィルタ層のRthを変化させることで、最大透過率、Δu´v´の低減を両立することが可能となる。この中でRth(R)=−25nm,Rth(G)=15nm,Rth(B)=−5nmのとき、Δu´v´が0.13以下、最大透過率が0.12%と最も性能良好であった。上記の範囲のNz係数となる光学補償部材を用いる場合に、他の値(光学補償部材17,18のRe値や液晶分子の光学定数など)が適宜調整される範囲においては、−25nm≦Rth(B)≦0nmとすることで、Δu´v´や最大透過率を低減できる。
本実施例の構造を図1右に、o−modeの光学的構成を図15に示す。本実施例では光学補償部材17としてNz1=−1(Nz1<0.5)、光学補償部材18としてNz2=1(Nz2>0.5)の光学補償部材を使用する。カラーフィルタ層のRthを考慮しない(0nm)場合、Δu´v´が0.13以下となる中で最大透過率が最も小さくなる場合は、光学補償部材17のReが35nm、光学補償部材18のReが120nmのときで、最大透過率が0.22%となる。これに対し、最大透過率を優先した場合、光学補償部材17のReが45nm、光学補償部材18のReが110nmのときで、Δu´v´は0.17、最大透過率は0.10%となる。光学補償部材を上記数値に固定し、カラーフィルタ層のRthを変化させたとき、ここで、Δu´v´が0.13以下、最大透過率が0.22%以下となる領域を図40に示す。1例として、Rth(R)を−15nmとした。図からもわかる通り、カラーフィルタ層のRthを変化させることで、最大透過率、Δu´v´の低減を両立することが可能となる。この中でRth(R)=−15nm,Rth(G)=20nm,Rth(B)=10nmのとき、Δu´v´が0.13以下、最大透過率が0.13%と最も性能良好であった。上記の範囲のNz係数となる光学補償部材を用いる場合に、他の値(光学補償部材17,18のRe値や液晶分子の光学定数など)が適宜調整される範囲においては、|Rth(B)|≦30nmとすることで、Δu´v´や最大透過率を低減できる。
本実施例の概略構造を図1右に、o−modeの光学的構成の概略を図15に示す。本実施例では光学補償部材としてNz=0.5(0.4<Nz<0.6)の1つの光学補償部材を使用するため、図1右および図15においては光学補償部材17と18とが表示されているが、本実施例では1つの光学補償部材である。カラーフィルタ層のRthを考慮しない(0nm)場合、Δu´v´が0.13以下となる中で最大透過率が最も小さくなる場合は、光学補償部材のReが250nmのときで、最大透過率が0.11%となる。これに対し、最大透過率を優先した場合、光学補償部材のReが260nmのとき、Δu´v´は0.15、最大透過率は0.10%となる。光学補償部材を上記数値に固定し、カラーフィルタ層のRthを変化させたとき、ここで、Δu´v´が0.13以下、最大透過率が0.11%以下となる領域を図41に示す。1例として、Rth(R)を−15nmとした。図からもわかる通り、カラーフィルタ層のRthを変化させることで、最大透過率、Δu´v´の低減を両立することが可能となる。この中でRth(R)=−15nm,Rth(G)=5nm,Rth(B)=30nmのとき、Δu´v´が0.13以下、最大透過率が0.06%と最も性能良好であった。上記の範囲のNz係数となる光学補償部材を用いる場合に、他の値(光学補償部材17,18のRe値や液晶分子の光学定数など)が適宜調整される範囲においては、0nm≦Rth(B)≦50nmとすることで、Δu´v´や最大透過率を低減できる。
なお、上記の実施例2以降の各実施例においても、Rth(R)は実施例1で述べたような値をとる。したがって、赤画素と青画素の厚さ方向リタデーションが与えられて、赤画素と青画素の漏れ光が低減されつつ、青の漏れ光と赤の漏れ光のバランスがとられて色つきも低減されることとなる。上記の各実施形態における緑画素の厚さ方向リタデーションRth(G)は、上述したように550nmの光については液晶層の影響が排されるように光学補償部材等が設けられるため漏れ光は少なくなるが、赤や青との漏れ光とのバランスを考慮して|Rth(G)|≦30nmとするのが望ましい。特に、複数の光学補償部材を用いる場合には、Rth(R)とRth(B)とを調整するのみでは、色つきを低減するのが困難となるため、5nm≦|Rth(G)|≦40nmの範囲とするのが望ましい。
本発明は、液晶ディスプレイに関するもので、特に黒表示時に液晶分子がホモジニアス配向であり、これに横方向の電界を印加することにより光の透過・遮断を制御するインプレーンスイッチング(IPS)モードの液晶表示装置に関し、その視野角特性(特に黒表示及び低階調表示時)の大幅な改善に関するものであり、IPSモード全ての液晶ディスプレイに適用できる。
10 液晶表示素子、10D 表示面、11 入射側偏光板、12 出射側偏光板、11A,11C,12A,12C 支持基材、11B,12B 偏光層、11BA,12BA 吸収軸、11BT,12BT 透過軸、13,14 基板、15 液晶層、15S 液晶配向軸(液晶光学軸)、16 カラーフィルタ、17,18 光学補償部材、17S,18S 光学補償部材遅相軸、50 照明装置、51 反射板、52 ランプ、53 拡散板、60 入射光、70H 表示面水平方向、70V 表示面垂直方向、80A 視認方向の表示面への射影方向、80N 表示面法線方向、80V 視認方向、81 方位角、82 極角。

Claims (7)

  1. 光入射側の第一の偏光層を備えた第一基板ともう一方の第二の偏光層を備えた第二基板間のそれぞれの吸収軸が略垂直で、液晶分子が前記基板に略平行に配置された液晶層と、
    前記第一基板又は前記第二基板のいずれか一方の基板の前記液晶層に近い側に、各画素に対向して一対の電極を有するマトリクス駆動の電極群が設けられ、
    背面照明装置を有する液晶表示装置であって、
    前記第一の偏光層の吸収軸と前記液晶層の光学軸が略平行であって、
    前記第二の偏光層と前記液晶層との間に前記液晶層側から第一および第二の光学補償部材が配置され、
    前記第一の偏光層と前記液晶層との間は屈折率が略等方性であり、
    前記第一の偏光層の吸収軸と前記第一および第二の光学補償部材の遅相軸が略垂直であり、
    前記第一基板と前記第二基板との間に配置されたカラーフィルタ層が、赤(R)画素、緑(G)画素、青(B)画素それぞれにおいてnx≒ny≠nzを満たし、
    赤(R)画素、緑(G)画素、青(B)画素それぞれの厚さ方向リタデーションRth(R)、Rth(G)、Rth(B)、のうち少なくとも1つがその他の画素と異なり、
    赤(R)画素のRth(R)が、Rth(R)>0nmを満足し、
    前記第一の光学補償部材におけるNz係数であるNz1が、Nz1>0.5を、
    前記第二の光学補償部材におけるNz係数であるNz2が、Nz2<0.5を満たし、
    前記カラーフィルタ層の青(B)画素のRth(B)が、|Rth(B)|≦30nmを満足する、
    ことを特徴とする液晶表示装置。
  2. 光入射側の第一の偏光層を備えた第一基板ともう一方の第二の偏光層を備えた第二基板間のそれぞれの吸収軸が略垂直で、液晶分子が前記基板に略平行に配置された液晶層と、
    前記第一基板又は前記第二基板のいずれか一方の基板の前記液晶層に近い側に、各画素に対向して一対の電極を有するマトリクス駆動の電極群が設けられ、
    背面照明装置を有する液晶表示装置であって、
    前記第一の偏光層の吸収軸と前記液晶層の光学軸が略平行であって、
    前記第二の偏光層と前記液晶層との間に1の光学補償部材が配置され、
    前記第一の偏光層と前記液晶層との間は屈折率が略等方性であり、
    前記第一の偏光層の吸収軸と前記1の光学補償部材の遅相軸が略垂直であり、
    前記第一基板と前記第二基板との間に配置されたカラーフィルタ層が、赤(R)画素、緑(G)画素、青(B)画素それぞれにおいてnx≒ny≠nzを満たし、
    赤(R)画素、緑(G)画素、青(B)画素それぞれの厚さ方向リタデーションRth(R)、Rth(G)、Rth(B)、のうち少なくとも1つがその他の画素と異なり、
    赤(R)画素のRth(R)が、Rth(R)>0nmを満足し、
    前記光学補償部材におけるNz係数であるNzが、0.4<Nz<0.6を満たし、
    前記カラーフィルタ層の青(B)画素のRth(B)が、−50nm≦Rth(B)≦0nmを満足する、
    ことを特徴とする液晶表示装置。
  3. 光入射側の第一の偏光層を備えた第一基板ともう一方の第二の偏光層を備えた第二基板間のそれぞれの吸収軸が略垂直で、液晶分子が前記基板に略平行に配置された液晶層と、
    前記第一基板又は前記第二基板のいずれか一方の基板の前記液晶層に近い側に、各画素に対向して一対の電極を有するマトリクス駆動の電極群が設けられ、
    背面照明装置を有する液晶表示装置であって、
    前記第一の偏光層の吸収軸と前記液晶層の光学軸が略平行であって、
    前記第二の偏光層と前記液晶層との間に前記液晶層側から第一および第二の光学補償部材が配置され、
    前記第一の偏光層と前記液晶層との間は屈折率が略等方性であり、
    前記第一の偏光層の吸収軸と前記第一および第二の光学補償部材の遅相軸が略平行であり、
    前記第一基板と前記第二基板との間に配置されたカラーフィルタ層が、赤(R)画素、緑(G)画素、青(B)画素それぞれにおいてnx≒ny≠nzを満たし、
    赤(R)画素、緑(G)画素、青(B)画素それぞれの厚さ方向リタデーションRth(R)、Rth(G)、Rth(B)、のうち少なくとも1つがその他の画素と異なり、
    赤(R)画素のRth(R)が、Rth(R)<0nmを満足し、
    前記第一の光学補償部材におけるNz係数であるNz1が、Nz1<0.5を、
    前記第二の光学補償部材におけるNz係数であるNz2が、Nz2>0.5を満たし、
    前記カラーフィルタ層の青(B)画素のRth(B)が、|Rth(B)|≦30nmを満足する、
    ことを特徴とする液晶表示装置。
  4. 光入射側の第一の偏光層を備えた第一基板ともう一方の第二の偏光層を備えた第二基板間のそれぞれの吸収軸が略垂直で、液晶分子が前記基板に略平行に配置された液晶層と、
    前記第一基板又は前記第二基板のいずれか一方の基板の前記液晶層に近い側に、各画素に対向して一対の電極を有するマトリクス駆動の電極群が設けられ、
    背面照明装置を有する液晶表示装置であって、
    前記第一の偏光層の吸収軸と前記液晶層の光学軸が略平行であって、
    前記第二の偏光層と前記液晶層との間に1の光学補償部材が配置され、
    前記第一の偏光層と前記液晶層との間は屈折率が略等方性であり、
    前記第一の偏光層の吸収軸と前記1の光学補償部材の遅相軸が略平行であり、
    前記第一基板と前記第二基板との間に配置されたカラーフィルタ層が、赤(R)画素、緑(G)画素、青(B)画素それぞれにおいてnx≒ny≠nzを満たし、
    赤(R)画素、緑(G)画素、青(B)画素それぞれの厚さ方向リタデーションRth(R)、Rth(G)、Rth(B)、のうち少なくとも1つがその他の画素と異なり、
    赤(R)画素のRth(R)が、Rth(R)<0nmを満足し、
    前記光学補償部材におけるNz係数であるNzが、0.4<Nz<0.6を満たし、
    前記カラーフィルタ層の青(B)画素のRth(B)が、0nm≦Rth(B)≦50nmを満足する、
    ことを特徴とする液晶表示装置。
  5. 光入射側の第一の偏光層を備えた第一基板ともう一方の第二の偏光層を備えた第二基板間のそれぞれの吸収軸が略垂直で、液晶分子が前記基板に略平行に配置された液晶層と、
    前記第一基板又は前記第二基板のいずれか一方の基板の前記液晶層に近い側に、各画素に対向して一対の電極を有するマトリクス駆動の電極群が設けられ、
    背面照明装置を有する液晶表示装置であって、
    前記第一の偏光層の吸収軸と前記液晶層の光学軸が略平行であって、
    前記第二の偏光層と前記液晶層との間に前記液晶層側から第一および第二の光学補償部材が配置され、
    前記第一の偏光層と前記液晶層との間は屈折率が略等方性であり、
    前記第一の偏光層の吸収軸と前記第一および第二の光学補償部材の遅相軸が略垂直であり、
    前記第一基板と前記第二基板との間に配置されたカラーフィルタ層が、赤(R)画素、緑(G)画素、青(B)画素それぞれにおいてnx≒ny≠nzを満たし、
    赤(R)画素、緑(G)画素、青(B)画素それぞれの厚さ方向リタデーションRth(R)、Rth(G)、Rth(B)、のうち少なくとも1つがその他の画素と異なり、
    赤(R)画素のRth(R)が、Rth(R)>0nmを満足し、
    前記第一の光学補償部材におけるNz係数であるNz1が、Nz1≧1を、
    前記第二の光学補償部材におけるNz係数であるNz2が、Nz2≦0を満たし、
    前記カラーフィルタ層の青(B)画素のRth(B)が、
    |Rth(B)|≦10.1Ln(|Nz1−0.5|・|Nz2−0.5|)+33.1を満足する、
    ことを特徴とする液晶表示装置。
  6. 光入射側の第一の偏光層を備えた第一基板ともう一方の第二の偏光層を備えた第二基板間のそれぞれの吸収軸が略垂直で、液晶分子が前記基板に略平行に配置された液晶層と、
    前記第一基板又は前記第二基板のいずれか一方の基板の前記液晶層に近い側に、各画素に対向して一対の電極を有するマトリクス駆動の電極群が設けられ、
    背面照明装置を有する液晶表示装置であって、
    前記第一の偏光層の吸収軸と前記液晶層の光学軸が略平行であって、
    前記第二の偏光層と前記液晶層との間に前記液晶層側から第一および第二の光学補償部材が配置され、
    前記第一の偏光層と前記液晶層との間は屈折率が略等方性であり、
    前記第一の偏光層の吸収軸と前記第一および第二の光学補償部材の遅相軸が略平行であり、
    前記第一基板と前記第二基板との間に配置されたカラーフィルタ層が、赤(R)画素、緑(G)画素、青(B)画素それぞれにおいてnx≒ny≠nzを満たし、
    赤(R)画素、緑(G)画素、青(B)画素それぞれの厚さ方向リタデーションRth(R)、Rth(G)、Rth(B)、のうち少なくとも1つがその他の画素と異なり、
    赤(R)画素のRth(R)が、Rth(R)<0nmを満足し、
    前記第一の光学補償部材におけるNz係数であるNz1が、Nz1≦0を、
    前記第二の光学補償部材におけるNz係数であるNz2が、Nz2≧1を満たし、
    前記カラーフィルタ層の青(B)画素のRth(B)が、
    |Rth(B)|≦10.1Ln(|Nz1−0.5|・|Nz2−0.5|)+33.1を満足する、
    ことを特徴とする液晶表示装置。
  7. 請求項1〜6のいずれかに記載の液晶表示装置において、
    前記カラーフィルタ層の緑(G)画素のRth(G)が下記式を満足する
    ことを特徴とする液晶表示装置。|Rth(G)|≦30nm
JP2013198416A 2013-09-25 2013-09-25 液晶表示装置 Active JP5710724B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013198416A JP5710724B2 (ja) 2013-09-25 2013-09-25 液晶表示装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013198416A JP5710724B2 (ja) 2013-09-25 2013-09-25 液晶表示装置

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2009109965A Division JP5378054B2 (ja) 2009-04-28 2009-04-28 液晶表示装置

Publications (2)

Publication Number Publication Date
JP2014016642A true JP2014016642A (ja) 2014-01-30
JP5710724B2 JP5710724B2 (ja) 2015-04-30

Family

ID=50111318

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013198416A Active JP5710724B2 (ja) 2013-09-25 2013-09-25 液晶表示装置

Country Status (1)

Country Link
JP (1) JP5710724B2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190131575A (ko) 2017-05-08 2019-11-26 후지필름 가부시키가이샤 액정 표시 장치
KR20190131576A (ko) 2017-05-08 2019-11-26 후지필름 가부시키가이샤 액정 표시 장치
US11137638B2 (en) 2018-09-12 2021-10-05 Fujifilm Corporation Liquid crystal display device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005208356A (ja) * 2004-01-23 2005-08-04 Hitachi Ltd 偏光板及びそれを用いた液晶表示装置
JP2006220680A (ja) * 2005-02-08 2006-08-24 Hitachi Displays Ltd 液晶表示装置
JP2007163894A (ja) * 2005-12-14 2007-06-28 Fujifilm Corp 液晶表示装置
JP2007298597A (ja) * 2006-04-28 2007-11-15 Fujifilm Corp 液晶表示装置
JP2008009436A (ja) * 2006-06-29 2008-01-17 Lg Philips Lcd Co Ltd 液晶表示装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005208356A (ja) * 2004-01-23 2005-08-04 Hitachi Ltd 偏光板及びそれを用いた液晶表示装置
JP2006220680A (ja) * 2005-02-08 2006-08-24 Hitachi Displays Ltd 液晶表示装置
JP2007163894A (ja) * 2005-12-14 2007-06-28 Fujifilm Corp 液晶表示装置
JP2007298597A (ja) * 2006-04-28 2007-11-15 Fujifilm Corp 液晶表示装置
JP2008009436A (ja) * 2006-06-29 2008-01-17 Lg Philips Lcd Co Ltd 液晶表示装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190131575A (ko) 2017-05-08 2019-11-26 후지필름 가부시키가이샤 액정 표시 장치
KR20190131576A (ko) 2017-05-08 2019-11-26 후지필름 가부시키가이샤 액정 표시 장치
US10739641B2 (en) 2017-05-08 2020-08-11 Fujifilm Corporation Liquid crystal display device
US11243436B2 (en) 2017-05-08 2022-02-08 Fujifilm Corporation Liquid crystal display device
US11137638B2 (en) 2018-09-12 2021-10-05 Fujifilm Corporation Liquid crystal display device

Also Published As

Publication number Publication date
JP5710724B2 (ja) 2015-04-30

Similar Documents

Publication Publication Date Title
JP4564795B2 (ja) 液晶表示装置
JP4536543B2 (ja) 液晶表示装置
JP4383903B2 (ja) 偏光板及びそれを用いた液晶表示装置
JP4479928B2 (ja) 液晶表示装置
JP5378054B2 (ja) 液晶表示装置
JP4878306B2 (ja) 液晶表示装置
JP2010072658A (ja) 位相差フィルム、偏光フィルム、液晶表示装置、及び、位相差フィルムの設計方法
US10473980B2 (en) In-plane switching mode liquid crystal display device comprising an in-cell retarder and first and second optical compensation films
US20120120349A1 (en) Liquid crystal display device
US7973882B2 (en) Liquid crystal display device
JP2008197192A (ja) 液晶表示装置
JP2004317714A (ja) 液晶表示装置および積層位相差板
JP5710724B2 (ja) 液晶表示装置
KR102280078B1 (ko) 액정표시장치
JP5491966B2 (ja) 液晶表示装置
JP4500361B2 (ja) 偏光板及びそれを用いた液晶表示装置
KR20090070053A (ko) 광학 보상필름을 포함하는 횡전계방식 액정표시장치
KR102249166B1 (ko) 광학 보상필름을 포함하는 인-플레인 스위칭 방식의 액정표시장치
KR20100080033A (ko) 블루 페이즈 모드 횡전계방식 액정표시장치
KR20170058759A (ko) 광학 보상필름을 포함하는 편광판 및 이를 구비한 액정표시장치
KR20090070054A (ko) 광학 보상필름을 포함하는 횡전계방식 액정표시장치
JP2010156989A (ja) 液晶表示素子
KR20090073866A (ko) 광학 보상필름을 포함하는 횡전계방식 액정표시장치

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140812

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141010

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150304

R150 Certificate of patent or registration of utility model

Ref document number: 5710724

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250