JP2014016096A - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP2014016096A
JP2014016096A JP2012153761A JP2012153761A JP2014016096A JP 2014016096 A JP2014016096 A JP 2014016096A JP 2012153761 A JP2012153761 A JP 2012153761A JP 2012153761 A JP2012153761 A JP 2012153761A JP 2014016096 A JP2014016096 A JP 2014016096A
Authority
JP
Japan
Prior art keywords
refrigerant
outdoor
heat exchanger
temperature
indoor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012153761A
Other languages
Japanese (ja)
Other versions
JP5928202B2 (en
Inventor
Hideya Tamura
秀哉 田村
Takahiro Matsunaga
隆廣 松永
Masatoshi Watanabe
真寿 渡邊
Keito Kawai
圭人 川合
Takashi Kimura
隆志 木村
Kotaro Toya
廣太郎 戸矢
Yasuhiro Oka
康弘 岡
Takeshi Nakajima
健 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu General Ltd
Original Assignee
Fujitsu General Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu General Ltd filed Critical Fujitsu General Ltd
Priority to JP2012153761A priority Critical patent/JP5928202B2/en
Publication of JP2014016096A publication Critical patent/JP2014016096A/en
Application granted granted Critical
Publication of JP5928202B2 publication Critical patent/JP5928202B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an air conditioner that eliminates a deficiency in heating capacity by reducing stagnation of a liquid refrigerant in a liquid pipe.SOLUTION: When recognizing that a refrigerant stagnates in a liquid pipe, CPUs 110a, 110b make opening degrees of first outdoor expansion valves 40a, 40b and second outdoor expansion valves 41a, 41b larger by a predetermined change amount or more. The predetermined change amount indicates a predetermined rate at which the opening degrees of the first outdoor expansion valves 40a, 40b and second outdoor expansion valves 41, 41b are increased at certain intervals, and when the number of pulses supplied to the first outdoor expansion valves 40a, 40b and second outdoor expansion valves 41, 41b is increased by two or more under opening degree control corresponding to a found refrigerant overheating degree, the first outdoor expansion valves 40a, 40b and second outdoor expansion valves 41, 41b are made larger in opening degree Vo.

Description

本発明は、少なくとも1台の室外機と複数の室内機とが複数の冷媒配管で接続された空気調和装置に係わり、より詳細には、冷媒配管への冷媒の滞留を解消する空気調和装置に関する。   The present invention relates to an air conditioner in which at least one outdoor unit and a plurality of indoor units are connected by a plurality of refrigerant pipes, and more particularly to an air conditioner that eliminates the retention of refrigerant in the refrigerant pipes. .

従来、少なくとも1台の室外機に複数の室内機が複数の冷媒配管で並列接続された空気調和装置として、全ての室内機で同時に冷房運転または暖房運転を行えるマルチ型空気調和装置や、同時に室内機毎に冷房運転と暖房運転とを選択して行える、所謂冷暖房フリー運転を行うことができる空気調和装置が知られている。   Conventionally, as an air conditioner in which a plurality of indoor units are connected in parallel to a plurality of refrigerant pipes to at least one outdoor unit, a multi-type air conditioner that can simultaneously perform cooling operation or heating operation in all indoor units, There is known an air conditioner capable of performing a so-called cooling / heating-free operation that can be performed by selecting a cooling operation and a heating operation for each machine.

例えば、特許文献1に記載の空気調和装置は、圧縮機と、アキュムレータと、オイルセパレータと、レシーバタンクと、2台の室外熱交換器と、各々の室外熱交換器に接続される室外膨張弁、吐出弁および吸入弁とを備えた1台の室外機と、各々に室内熱交換器を備えた2台の室内機と、2つの電磁弁を備え各室内熱交換器の接続を圧縮機の吐出側(高圧側)/吸入側(低圧側)に切り換える2台の電磁弁ユニットとを備えている。   For example, an air conditioner described in Patent Literature 1 includes a compressor, an accumulator, an oil separator, a receiver tank, two outdoor heat exchangers, and an outdoor expansion valve connected to each outdoor heat exchanger. , One outdoor unit provided with a discharge valve and a suction valve, two indoor units each provided with an indoor heat exchanger, and two electromagnetic valves connected to each indoor heat exchanger. And two solenoid valve units that switch between the discharge side (high pressure side) and the suction side (low pressure side).

これら室外機、室内機および電磁弁ユニットの冷媒配管による接続は次の通りである。圧縮機の吐出側に接続される吐出管はオイルセパレータに接続した後に分岐され、一方の分岐管が吐出弁を介して室外熱交換器に接続され、他方の分岐管が各電磁弁ユニットを介して室内熱交換器に接続される。これら吐出管や分岐管が高圧ガス管を構成する。   These outdoor units, indoor units, and solenoid valve units are connected by refrigerant piping as follows. The discharge pipe connected to the discharge side of the compressor is branched after connecting to the oil separator, one branch pipe is connected to the outdoor heat exchanger via the discharge valve, and the other branch pipe is connected to each solenoid valve unit. Connected to the indoor heat exchanger. These discharge pipes and branch pipes constitute a high-pressure gas pipe.

また、圧縮機の吸入側に接続される吸入管はアキュムレータに接続した後に分岐され、一方の分岐管が吸入弁を介して室外熱交換器に接続され、他方の分岐管が各電磁弁ユニットを介して室内熱交換器に接続される。これら吸入管や分岐管が低圧ガス管を構成する。   Also, the suction pipe connected to the suction side of the compressor is branched after being connected to the accumulator, one branch pipe is connected to the outdoor heat exchanger via the suction valve, and the other branch pipe is connected to each solenoid valve unit. To the indoor heat exchanger. These suction pipes and branch pipes constitute a low-pressure gas pipe.

さらには、室外熱交換器における吐出弁や吸入弁が接続されている接続ポートと反対側の接続ポートには、室外膨張弁を介して冷媒配管の一端が分岐して接続されており、この冷媒配管の他端はレシーバタンクに接続した後に分岐し、各々の分岐管は各室内熱交換器における電磁弁ユニットが接続されている接続ポートと反対側の接続ポートに接続される。これら冷媒配管や分岐管が液管を構成する。   Furthermore, one end of the refrigerant pipe is branched and connected to the connection port on the side opposite to the connection port to which the discharge valve and the suction valve in the outdoor heat exchanger are connected. The other end of the pipe branches after being connected to the receiver tank, and each branch pipe is connected to a connection port opposite to the connection port to which the electromagnetic valve unit in each indoor heat exchanger is connected. These refrigerant pipes and branch pipes constitute a liquid pipe.

以上説明した空気調和装置では、電磁弁ユニットの各電磁弁を開閉することで室内熱交換器を圧縮機の吐出側あるいは吸入側に接続するように切り換えることによって、各室内熱交換器を個別に凝縮器として機能させるもしくは蒸発器として機能させることができ、各室内機において同時に冷房運転や暖房運転を行うことができる。   In the air conditioner described above, each indoor heat exchanger is individually switched by switching the indoor heat exchanger to be connected to the discharge side or suction side of the compressor by opening and closing each solenoid valve of the solenoid valve unit. It can function as a condenser or an evaporator, and can perform cooling operation and heating operation simultaneously in each indoor unit.

特開2004−286253号公報(第6〜7頁、第1図)JP 2004-286253 A (pages 6-7, FIG. 1)

上述した空気調和装置では、全て(2台)の室内機が暖房運転を行う場合や、1台が暖房運転を行い残りが冷房運転を行うときに暖房運転を行っている室内機で要求される能力が冷房運転を行っている室内機で要求される能力より高い場合(以下、暖房主体運転と記載)は、室外熱交換器が蒸発器として機能するように各種弁類を開閉制御する。   In the above-described air conditioner, when all (two) indoor units perform the heating operation, or when one unit performs the heating operation and the rest performs the cooling operation, it is required for the indoor unit that performs the heating operation. When the capacity is higher than the capacity required for the indoor unit performing the cooling operation (hereinafter referred to as heating main operation), various valves are controlled to open and close so that the outdoor heat exchanger functions as an evaporator.

暖房運転や暖房主体運転を行っているとき、蒸発器として機能している室外熱交換器に対応する室外膨張弁の開度は、例えば、室外熱交換器の冷媒出口における冷媒過熱度によって制御がなされている。そして、冷媒過熱度は、室外熱交換器の冷媒出口における冷媒温度から低圧ガス管を流れる冷媒の圧力(以下、低圧と記載)を用いて算出した低圧飽和温度を引くことによって求めることができる。   When performing a heating operation or a heating main operation, the opening degree of the outdoor expansion valve corresponding to the outdoor heat exchanger functioning as an evaporator is controlled by, for example, the degree of refrigerant superheat at the refrigerant outlet of the outdoor heat exchanger. Has been made. The refrigerant superheat degree can be obtained by subtracting the low-pressure saturation temperature calculated using the pressure of the refrigerant flowing through the low-pressure gas pipe (hereinafter referred to as low pressure) from the refrigerant temperature at the refrigerant outlet of the outdoor heat exchanger.

具体的には、冷媒過熱度が予め定めた目標冷媒過熱度となるように、室外膨張弁の開度制御を行う。目標冷媒過熱度に対し算出した冷媒加熱度が小さい場合は、室外膨張弁の開度を小さくして室外熱交換器に流れる冷媒量を減少させることで低圧を低下させる。これにより、低圧飽和温度が低下するとともに室外熱交換器の冷媒出口における冷媒温度が上昇するので冷媒過熱度が大きくなる。また、目標冷媒過熱度に対し算出した冷媒加熱度が大きい場合は、室外膨張弁の開度を大きくして室外熱交換器に流れる冷媒量を増加させることで低圧を上昇させる。これにより、低圧飽和温度が上昇するとともに室外熱交換器の冷媒出口における冷媒温度が低下するので冷媒過熱度が小さくなる。   Specifically, the opening degree control of the outdoor expansion valve is performed so that the refrigerant superheat degree becomes a predetermined target refrigerant superheat degree. When the refrigerant heating degree calculated with respect to the target refrigerant superheat degree is small, the low pressure is lowered by reducing the opening amount of the outdoor expansion valve and reducing the amount of refrigerant flowing to the outdoor heat exchanger. As a result, the low pressure saturation temperature is lowered and the refrigerant temperature at the refrigerant outlet of the outdoor heat exchanger is raised, so that the degree of refrigerant superheat increases. Moreover, when the refrigerant | coolant heating degree calculated with respect to the target refrigerant | coolant superheat degree is large, the low pressure is raised by increasing the opening degree of an outdoor expansion valve and increasing the refrigerant | coolant amount which flows into an outdoor heat exchanger. As a result, the low-pressure saturation temperature rises and the refrigerant temperature at the refrigerant outlet of the outdoor heat exchanger decreases, so that the degree of refrigerant superheat decreases.

ところで、空気調和装置が暖房運転や暖房主体運転を行っているときに外気温度が高い(例えば、10℃以上)場合は、高圧ガス管を流れる冷媒の圧力(以下、高圧と記載)が高くなって、圧縮機で許容される吐出圧力の上限値を超える虞がある。このような場合は、例えば、高圧ガス管と低圧ガス管とを連通するように設けられたホットガスバイパス管や、圧縮機の吐出側に設けられたオイルセパレータと低圧ガス管とを連通するように設けられた油戻し管を使用して高圧を下げる、あるいは、圧縮機の回転数を低下させることによって高圧を下げる。   By the way, when the outside air temperature is high (for example, 10 ° C. or higher) when the air conditioner performs the heating operation or the heating main operation, the pressure of the refrigerant flowing through the high-pressure gas pipe (hereinafter referred to as high pressure) becomes high. As a result, the upper limit of the discharge pressure allowed in the compressor may be exceeded. In such a case, for example, a hot gas bypass pipe provided so as to communicate the high pressure gas pipe and the low pressure gas pipe, or an oil separator provided on the discharge side of the compressor and the low pressure gas pipe are communicated. The high pressure is lowered by reducing the high pressure using the oil return pipe provided in the compressor or by reducing the rotational speed of the compressor.

一方、ホットガスバイパス管や油戻し管を使用して高圧を下げたり、圧縮機の回転数を低下させて高圧を下げた場合は、これらに伴って低圧が上昇する。低圧が上昇すれば低圧飽和温度も上昇するので、低圧飽和温度を用いて算出する冷媒加熱度は小さくなる。この場合、上述したように冷媒過熱度を目標冷媒過熱度に近づけるために、室外膨張弁の開度を小さくして冷媒過熱度が大きくなるよう制御を行う。しかし、高圧が高い状態が長時間(例えば、10分以上)継続し、ホットガスバイパス管等を使用して高圧を低下させる制御が長時間となった場合は、低圧が高い状態も長時間継続するので、室外膨張弁の開度が小さい状態も長時間継続する。   On the other hand, when the high pressure is lowered using a hot gas bypass pipe or an oil return pipe, or when the high pressure is lowered by lowering the rotational speed of the compressor, the low pressure rises accordingly. If the low pressure rises, the low pressure saturation temperature also rises, so the refrigerant heating degree calculated using the low pressure saturation temperature becomes small. In this case, as described above, in order to make the refrigerant superheat degree close to the target refrigerant superheat degree, control is performed so that the degree of refrigerant superheat becomes large by reducing the opening degree of the outdoor expansion valve. However, if the high pressure continues for a long time (for example, 10 minutes or more) and the control for reducing the high pressure using a hot gas bypass pipe or the like becomes a long time, the low pressure continues for a long time. Therefore, the state where the opening degree of the outdoor expansion valve is small continues for a long time.

室外膨張弁の開度を小さくすれば、暖房運転を行っている室内機の室内熱交換器と室外機の室外膨張弁とを接続する液管に、暖房運転を行っている室内機の室内熱交換器(凝縮器として機能)で室内空気と熱交換を行った気液二相状態の冷媒が滞留するが、室外膨張弁の開度が小さい状態が長時間継続すれば、液管に滞留する冷媒量が増加するとともに液管内での冷媒圧力が上昇して滞留する気液二相状態の冷媒が凝縮して液冷媒となる。そして、液管が液冷媒により充満されると、室内熱交換器にまで液冷媒が溜まることとなり、当該室内熱交換器における凝縮能力が低下して暖房能力が不足するという問題があった。   If the opening degree of the outdoor expansion valve is reduced, the indoor heat of the indoor unit that is performing the heating operation is connected to the liquid pipe that connects the indoor heat exchanger of the indoor unit that is performing the heating operation and the outdoor expansion valve of the outdoor unit. Gas-liquid two-phase refrigerant that has exchanged heat with room air in the exchanger (functioning as a condenser) stays in the liquid pipe, but stays in the liquid pipe if the outdoor expansion valve is kept open for a long time. As the amount of refrigerant increases, the refrigerant pressure in the liquid pipe rises and the gas-liquid two-phase refrigerant that stays condenses to become liquid refrigerant. When the liquid pipe is filled with the liquid refrigerant, the liquid refrigerant is accumulated in the indoor heat exchanger, and there is a problem that the condensation capacity in the indoor heat exchanger is reduced and the heating capacity is insufficient.

本発明は以上述べた問題点を解決するものであって、液管への液冷媒の滞留を低減することによって暖房能力の不足を解消する空気調和装置を提供することを目的とする。   The present invention solves the above-described problems, and an object of the present invention is to provide an air conditioner that solves the shortage of heating capacity by reducing the retention of liquid refrigerant in the liquid pipe.

上記の課題を解決するために、本発明の空気調和装置は、圧縮機と、室外熱交換器と、室外熱交換器の一方の冷媒出入口に接続されて圧縮機の冷媒吐出口あるいは冷媒吸入口への室外熱交換器の接続を切り換える流路切換手段と、室外熱交換器の他方の冷媒出入口に接続されて室外熱交換器での冷媒流量を調整する流量調整手段と、流路切換手段や流量調整手段の制御を行う制御手段とを備えた少なくとも1台の室外機と、室外機に、1本の液管と少なくとも1本のガス管とで接続され、室内熱交換器を備えた複数の室内機とを備えたものであって、流量調整手段と室内熱交換器とが液管で接続され、液管における流量調整手段側には、室外熱交換器が蒸発器として機能しているときの室外熱交換器の冷媒流入側に室外機側冷媒温度検出手段が設けられ、また、液管における室内熱交換器側には、室内熱交換器が凝縮器として機能しているときの室内熱交換器の冷媒流出側に室内機側冷媒温度検出手段が設けられたものである。そして、制御手段は、流路切換手段を制御して室外熱交換器を蒸発器として機能させているときに、室外機側冷媒温度検出手段から取り込んだ室外機側冷媒温度と室内機側冷媒温度検出手段から取り込んだ室内機側冷媒温度との温度差が所定値以内であれば、流量調整手段の開度を所定の変化量で大きくするものである。   In order to solve the above-described problems, an air conditioner according to the present invention includes a compressor, an outdoor heat exchanger, and a refrigerant discharge port or a refrigerant suction port of the compressor connected to one refrigerant inlet / outlet of the outdoor heat exchanger. A flow path switching means for switching the connection of the outdoor heat exchanger to the flow path, a flow rate adjusting means for adjusting a refrigerant flow rate in the outdoor heat exchanger connected to the other refrigerant inlet / outlet of the outdoor heat exchanger, a flow path switching means, A plurality of outdoor units having control means for controlling the flow rate adjusting means, and a plurality of indoor units connected to the outdoor unit by one liquid pipe and at least one gas pipe. The flow rate adjusting means and the indoor heat exchanger are connected by a liquid pipe, and the outdoor heat exchanger functions as an evaporator on the flow rate adjusting means side in the liquid pipe. Outdoor unit side refrigerant temperature detection means on the refrigerant inflow side of the outdoor heat exchanger The indoor unit-side refrigerant temperature detecting means is provided on the refrigerant outflow side of the indoor heat exchanger when the indoor heat exchanger functions as a condenser, on the indoor heat exchanger side of the liquid pipe. Is. Then, the control means controls the flow path switching means to cause the outdoor heat exchanger to function as an evaporator, and the outdoor unit side refrigerant temperature and the indoor unit side refrigerant temperature taken in from the outdoor unit side refrigerant temperature detection means. If the temperature difference from the indoor unit side refrigerant temperature taken in from the detection means is within a predetermined value, the opening degree of the flow rate adjustment means is increased by a predetermined change amount.

上記のように構成した本発明の空気調和装置によれば、室外熱交換器を蒸発器として機能させる、すなわち、暖房運転や暖房主体運転を行っているときに、検出した室外機側冷媒温度と室内機側冷媒温度とを比較することによって液管に液冷媒が滞留しているか否かを判断し、液管に液冷媒が滞留していると判断すれば、液管に備えられた流量調整手段の開度を所定の変化量で大きくすることで、液管に滞留している液冷媒を室外熱交換器側に流すことができる。これにより、液管に液冷媒が充満することによって室内熱交換器で凝縮能力が低下することを防ぎ、暖房運転を行っている室内機での暖房能力不足を抑制することができる。   According to the air conditioner of the present invention configured as described above, the outdoor heat exchanger functions as an evaporator, that is, when the outdoor unit side refrigerant temperature detected during the heating operation or the heating main operation is performed. By comparing the indoor unit side refrigerant temperature with the liquid pipe, it is determined whether or not the liquid refrigerant is staying in the liquid pipe, and if it is determined that the liquid refrigerant is staying in the liquid pipe, the flow rate adjustment provided in the liquid pipe By increasing the opening degree of the means by a predetermined change amount, the liquid refrigerant staying in the liquid pipe can flow to the outdoor heat exchanger side. Thereby, it can prevent that a condensation capacity falls by an indoor heat exchanger by filling a liquid refrigerant with a liquid pipe, and can suppress the shortage of the heating capacity in the indoor unit which is performing heating operation.

本発明の実施例である空気調和装置の冷媒回路図であり、暖房運転を行う場合の冷媒の流れを説明する冷媒回路図である。It is a refrigerant circuit diagram of the air conditioning apparatus which is an Example of this invention, and is a refrigerant circuit diagram explaining the flow of the refrigerant | coolant in the case of performing heating operation. 本発明の他の実施例における、制御手段での処理を説明するフローチャートである。It is a flowchart explaining the process in a control means in the other Example of this invention.

以下、本発明の実施の形態を、添付図面に基づいて詳細に説明する。実施例としては、2台の室外機に5台の室内機が並列に接続され、室内機毎に冷房運転と暖房運転とを選択して運転できる、所謂冷暖房フリーの運転が行える空気調和装置を例に挙げて説明する。尚、本発明は以下の実施形態に限定されることはなく、本発明の主旨を逸脱しない範囲で種々変形することが可能である。   Embodiments of the present invention will be described below in detail with reference to the accompanying drawings. As an embodiment, there is provided an air conditioner in which five indoor units are connected in parallel to two outdoor units and can be operated by selecting a cooling operation and a heating operation for each indoor unit. An example will be described. The present invention is not limited to the following embodiments, and can be variously modified without departing from the gist of the present invention.

図1に示すように、本実施例における空気調和装置1は、2台の室外機2a、2bと、5台の室内機8a〜8eと、5台の切換ユニット6a〜6eと、分岐器70、71、72とを備えている。これら室外機2a、2bと室内機8a〜8eと切換ユニット6a〜6eと分岐器70、71、72とが、高圧ガス管30と、高圧ガス分管30a、30bと、低圧ガス管31と、低圧ガス分管31a、31bと、液管32と、液分管32a、32bとで相互に接続されることによって、空気調和装置1の冷媒回路が構成される。尚、高圧ガス管30と高圧ガス分管30a、30b、および、低圧ガス管31と低圧ガス分管31a、31bで本発明のガス管が構成され、液管32と液分管32a、32bとで本発明の液管が構成される。   As shown in FIG. 1, the air conditioner 1 in this embodiment includes two outdoor units 2a and 2b, five indoor units 8a to 8e, five switching units 6a to 6e, and a branching unit 70. , 71, 72. The outdoor units 2a and 2b, the indoor units 8a to 8e, the switching units 6a to 6e, the branching units 70, 71 and 72, the high pressure gas pipe 30, the high pressure gas branch pipes 30a and 30b, the low pressure gas pipe 31, and the low pressure The refrigerant circuit of the air conditioner 1 is comprised by mutually connecting with the gas distribution pipes 31a and 31b, the liquid pipe 32, and the liquid distribution pipes 32a and 32b. The high pressure gas pipe 30 and the high pressure gas distribution pipes 30a and 30b, and the low pressure gas pipe 31 and the low pressure gas distribution pipes 31a and 31b constitute the gas pipe of the present invention, and the liquid pipe 32 and the liquid distribution pipes 32a and 32b of the present invention. The liquid pipe is constructed.

空気調和装置1では、室外機2a、2bや切換ユニット6a〜6eに備えられた各種弁類の開閉状態に応じて、暖房運転(全ての室内機が暖房運転)、暖房主体運転(暖房運転を行っている室内機で要求される能力全体が冷房運転を行っている室内機で要求される能力全体を上回る場合)、冷房運転(全ての室内機が冷房運転)、冷房主体運転(冷房運転を行っている室内機で要求される能力全体が暖房運転を行っている室内機で要求される能力全体を上回る場合)等、様々な運転動作が可能である。以下の説明では、これら運転動作の中から暖房運転を行っている場合を例に挙げ、図1を用いて説明する。   In the air conditioner 1, according to the open / closed state of various valves provided in the outdoor units 2a and 2b and the switching units 6a to 6e, heating operation (all indoor units are heating operation), heating main operation (heating operation is performed). If the overall capacity required for the indoor unit being used exceeds the overall capacity required for the indoor unit performing cooling operation), cooling operation (all indoor units are cooling operation), cooling-main operation (cooling operation Various operation operations are possible, such as when the entire capacity required for the indoor unit being performed exceeds the total capacity required for the indoor unit performing the heating operation. In the following description, the case where the heating operation is performed from among these operation operations will be described as an example and described with reference to FIG.

図1は、全ての室内機8a〜8eが暖房運転を行っている場合の冷媒回路図である。まずは、室外機2a、2bについて説明するが、室外機2a、2bの構成は全て同じであるため、以下の説明では室外機2aの構成についてのみ説明を行い、室外機2bについては詳細な説明は省略する。   FIG. 1 is a refrigerant circuit diagram when all the indoor units 8a to 8e are performing the heating operation. First, the outdoor units 2a and 2b will be described. Since the configurations of the outdoor units 2a and 2b are all the same, only the configuration of the outdoor unit 2a will be described in the following description, and a detailed description of the outdoor unit 2b will not be given. Omitted.

図1に示すように、室外機2aは、圧縮機21aと、流路切換手段である第1三方弁22aおよび第2三方弁23aと、第1室外熱交換器24aと、第2室外熱交換器25aと、室外ファン26aと、アキュムレータ27aと、オイルセパレータ28aと、レシーバタンク29aと、第1室外熱交換器24aに接続された第1室外膨張弁40aと、第2室外熱交換器25aに接続された第2室外膨張弁41aと、ホットガスバイパス管36aと、ホットガスバイパス管36aに備えられた第1電磁弁42aと、油戻し管37aと、油戻し管37aに備えられた第2電磁弁43aと、閉鎖弁44a〜46aとを備えている。尚、第1室外膨張弁40aと第2室外膨張弁41aとが、本発明における流量調整手段である。   As shown in FIG. 1, the outdoor unit 2a includes a compressor 21a, a first three-way valve 22a and a second three-way valve 23a that are flow path switching means, a first outdoor heat exchanger 24a, and a second outdoor heat exchange. 25a, outdoor fan 26a, accumulator 27a, oil separator 28a, receiver tank 29a, first outdoor expansion valve 40a connected to the first outdoor heat exchanger 24a, and second outdoor heat exchanger 25a. The connected second outdoor expansion valve 41a, the hot gas bypass pipe 36a, the first electromagnetic valve 42a provided in the hot gas bypass pipe 36a, the oil return pipe 37a, and the second provided in the oil return pipe 37a. An electromagnetic valve 43a and closing valves 44a to 46a are provided. The first outdoor expansion valve 40a and the second outdoor expansion valve 41a are the flow rate adjusting means in the present invention.

圧縮機21aは、インバータにより回転数が制御される図示しないモータによって駆動されることで運転容量を可変できる能力可変型圧縮機である。図1に示すように、圧縮機21aの吐出側は、オイルセパレータ28aの流入側に冷媒配管で接続されており、オイルセパレータ28aの流出側は室外機高圧ガス管33aで閉鎖弁44aに接続されている。また、圧縮機21aの吸入側は、アキュムレータ27aの流出側に冷媒配管で接続されており、アキュムレータ27aの流入側は、室外機低圧ガス管34aで閉鎖弁45aに接続されている。   The compressor 21a is a variable capacity compressor that can vary the operating capacity by being driven by a motor (not shown) whose rotation speed is controlled by an inverter. As shown in FIG. 1, the discharge side of the compressor 21a is connected to the inflow side of the oil separator 28a by a refrigerant pipe, and the outflow side of the oil separator 28a is connected to the closing valve 44a by an outdoor unit high-pressure gas pipe 33a. ing. The suction side of the compressor 21a is connected to the outflow side of the accumulator 27a by a refrigerant pipe, and the inflow side of the accumulator 27a is connected to the closing valve 45a by an outdoor unit low-pressure gas pipe 34a.

第1三方弁22aおよび第2三方弁23aは、冷媒の流れる方向を切り換えるための弁であり、第1三方弁22aはa、b、cの3つのポートを、第2三方弁23aはd、e、fの3つのポートをそれぞれ備えている。第1三方弁22aでは、ポートaに接続された冷媒配管が接続点Aで室外機高圧ガス管33aに接続されている。また、ポートbと第1室外熱交換器24aとが冷媒配管で接続され、ポートcに接続された冷媒配管が接続点Dで室外機低圧ガス管34aに接続されている。   The first three-way valve 22a and the second three-way valve 23a are valves for switching the flow direction of the refrigerant. The first three-way valve 22a has three ports a, b, and c, and the second three-way valve 23a has d, Each of the three ports e and f is provided. In the first three-way valve 22a, the refrigerant pipe connected to the port a is connected to the outdoor unit high-pressure gas pipe 33a at the connection point A. The port b and the first outdoor heat exchanger 24a are connected by a refrigerant pipe, and the refrigerant pipe connected to the port c is connected to the outdoor unit low-pressure gas pipe 34a at a connection point D.

第2三方弁23では、ポートdに接続された冷媒配管が接続点Aで室外機高圧ガス管33aおよび第1三方弁22aのポートaに接続された冷媒配管に接続されている。またポートeと第2室外熱交換器25aとが冷媒配管で接続され、ポートfに接続された冷媒配管が接続点Cで第1三方弁22aのポートcに接続された冷媒配管と接続されている。   In the second three-way valve 23, the refrigerant pipe connected to the port d is connected at the connection point A to the refrigerant pipe connected to the outdoor unit high-pressure gas pipe 33a and the port a of the first three-way valve 22a. Further, the port e and the second outdoor heat exchanger 25a are connected by a refrigerant pipe, and the refrigerant pipe connected to the port f is connected to the refrigerant pipe connected to the port c of the first three-way valve 22a at the connection point C. Yes.

第1室外熱交換器24aおよび第2室外熱交換器25aは、アルミ材で形成された図示しない多数のフィンと、内部に冷媒を流通させる図示しない複数の銅管とで構成されている。第1室外熱交換器24aの一方の冷媒出入口は上述したように第1三方弁22aのポートbに接続され、他方の冷媒出入口は冷媒配管を介して第1室外膨張弁40aの一方のポートに接続されている。尚、第1室外膨張弁40aの他方のポートは、閉鎖弁46aと室外機液管35aで接続されている。   The 1st outdoor heat exchanger 24a and the 2nd outdoor heat exchanger 25a are comprised by many fins (not shown) formed with the aluminum material, and several copper pipes (not shown) which distribute | circulate a refrigerant | coolant inside. As described above, one refrigerant inlet / outlet of the first outdoor heat exchanger 24a is connected to the port b of the first three-way valve 22a, and the other refrigerant inlet / outlet is connected to one port of the first outdoor expansion valve 40a via the refrigerant pipe. It is connected. The other port of the first outdoor expansion valve 40a is connected to the closing valve 46a and the outdoor unit liquid pipe 35a.

第2室外熱交換器25aの一方の冷媒出入口は上述したように冷媒配管を介して第2三方弁23aのポートeに接続され、他方の冷媒出入口は冷媒配管を介して第2室外膨張弁41aの一方のポートに接続されている。尚、第2室外膨張弁41aの他方のポートは、室外機液管35aにおける接続点Bに冷媒配管で接続されている。   As described above, one refrigerant inlet / outlet of the second outdoor heat exchanger 25a is connected to the port e of the second three-way valve 23a via the refrigerant pipe, and the other refrigerant inlet / outlet is connected to the second outdoor expansion valve 41a via the refrigerant pipe. Is connected to one of the ports. The other port of the second outdoor expansion valve 41a is connected to a connection point B in the outdoor unit liquid pipe 35a by a refrigerant pipe.

第1室外膨張弁40aおよび第2室外膨張弁41aは、図示しないパルスモータにより駆動される電動膨張弁であり、パルスモータに与えるパルス数によって各々の開度が調整される。   The first outdoor expansion valve 40a and the second outdoor expansion valve 41a are electric expansion valves that are driven by a pulse motor (not shown), and each opening degree is adjusted by the number of pulses applied to the pulse motor.

室外ファン26aは、第1室外熱交換器24aや第2室外熱交換器25aの近傍に配置される樹脂材で形成されたプロペラファンであり、図示しないファンモータによって回転することで、室外機2a内に外気を取り込み、第1室外熱交換器24aや第2室外熱交換器25aにおいて冷媒と熱交換させた後、熱交換した外気を室外機2a外部へ放出する。   The outdoor fan 26a is a propeller fan formed of a resin material disposed in the vicinity of the first outdoor heat exchanger 24a and the second outdoor heat exchanger 25a, and is rotated by a fan motor (not shown), so that the outdoor unit 2a The outside air is taken in and exchanged heat with the refrigerant in the first outdoor heat exchanger 24a and the second outdoor heat exchanger 25a, and then the heat-exchanged outdoor air is released to the outside of the outdoor unit 2a.

アキュムレータ27aは、流入側が室外機低圧ガス管34aに接続され、流出側が圧縮機21aの吸入側と冷媒配管で接続されている。アキュムレータ27aは、流入した冷媒をガス冷媒と液冷媒とに分離し、ガス冷媒のみを圧縮機21aに吸入させる。   The accumulator 27a has an inflow side connected to the outdoor unit low-pressure gas pipe 34a, and an outflow side connected to the suction side of the compressor 21a through a refrigerant pipe. The accumulator 27a separates the inflowing refrigerant into a gas refrigerant and a liquid refrigerant, and causes only the gas refrigerant to be sucked into the compressor 21a.

オイルセパレータ28aは、流入側が圧縮機21aの吐出側に冷媒配管で接続され、流出側が室外機高圧ガス管33aに接続されている。オイルセパレータ28aは、圧縮機21aから吐出された冷媒に含まれる圧縮機21aの冷凍機油を冷媒から分離する。尚、分離された冷凍機油は、後述する油戻し管37aを介して圧縮機21aに吸入される。   The oil separator 28a has an inflow side connected to the discharge side of the compressor 21a by a refrigerant pipe, and an outflow side connected to the outdoor unit high-pressure gas pipe 33a. The oil separator 28a separates the refrigerating machine oil of the compressor 21a included in the refrigerant discharged from the compressor 21a from the refrigerant. The separated refrigerating machine oil is sucked into the compressor 21a through an oil return pipe 37a described later.

レシーバタンク29aは、室外機液管35aにおける接続点Bと閉鎖弁46aとの間に設けられており、冷媒を収容することが可能な容器である。レシーバタンク29aは、第1室外熱交換器24aおよび第2室外熱交換器25a内部における冷媒量を調整するバッファとしての役割を果たす、冷媒の気液分離を行う、レシーバタンク29a内に設けた図示しないフィルタで冷媒中の水分や異物を除去したりする、といった機能を有する。   The receiver tank 29a is provided between the connection point B in the outdoor unit liquid pipe 35a and the closing valve 46a, and is a container capable of storing a refrigerant. The receiver tank 29a is provided in the receiver tank 29a for performing gas-liquid separation of the refrigerant, which serves as a buffer for adjusting the amount of refrigerant in the first outdoor heat exchanger 24a and the second outdoor heat exchanger 25a. It has a function of removing moisture and foreign matters in the refrigerant with a filter that does not.

ホットガスバイパス管36aは、一端が室外機高圧ガス管33aに接続点Eで接続され、他端が室外機低圧ガス管34aに接続点Fで接続されている。ホットガスバイパス管36aには、第1電磁弁42aが備えられており、第1電磁弁42aを開閉することによってホットガスバイパス管36aを冷媒が流れる状態あるいは流れない状態とできる。   One end of the hot gas bypass pipe 36a is connected to the outdoor unit high-pressure gas pipe 33a at a connection point E, and the other end is connected to the outdoor unit low-pressure gas pipe 34a at a connection point F. The hot gas bypass pipe 36a is provided with a first electromagnetic valve 42a. By opening and closing the first electromagnetic valve 42a, the hot gas bypass pipe 36a can be in a state where the refrigerant flows or does not flow.

油戻し管37aは、一端がオイルセパレータ28aの油戻し口に接続され、他端が圧縮機21aの吸入側とアキュムレータ27aの流出側とを接続する冷媒配管に接続点Gで接続されている。油戻し管37aには、第2電磁弁43aが備えられており、第2電磁弁43aを開閉することによって油戻し管37aを冷媒が流れる状態あるいは流れない状態とできる。   One end of the oil return pipe 37a is connected to the oil return port of the oil separator 28a, and the other end is connected to a refrigerant pipe connecting the suction side of the compressor 21a and the outflow side of the accumulator 27a at a connection point G. The oil return pipe 37a is provided with a second electromagnetic valve 43a. By opening and closing the second electromagnetic valve 43a, the oil return pipe 37a can be in a state where the refrigerant flows or does not flow.

以上説明した構成の他に、室外機2aには各種のセンサが設けられている。図1に示すように、圧縮機21aの吐出側とオイルセパレータ28aとを接続する冷媒配管には、圧縮機21aから吐出される冷媒の圧力を検出する高圧センサ50aと、圧縮機21aから吐出される冷媒の温度を検出する吐出温度検出手段である吐出温度センサ53aとが設けられている。また、室外機低圧ガス管34aにおける接続点Fとアキュムレータ27aの流入側との間には、圧縮機21aに吸入される冷媒の圧力を検出する低圧センサ51aと、圧縮機21aに吸入される冷媒の温度を検出する吸入温度センサ54aとが設けられている。また、室外機液管32aにおける接続点Bと閉鎖弁46aとの間には、室外機液管35aを流れる冷媒の圧力を検出する中間圧センサ52aと、室外機液管35aを流れる冷媒の温度を検出する室外機側冷媒温度検出手段である冷媒温度センサ55aとが設けられている。   In addition to the configuration described above, the outdoor unit 2a is provided with various sensors. As shown in FIG. 1, a refrigerant pipe connecting the discharge side of the compressor 21a and the oil separator 28a is discharged from the compressor 21a and a high-pressure sensor 50a that detects the pressure of the refrigerant discharged from the compressor 21a. And a discharge temperature sensor 53a which is a discharge temperature detecting means for detecting the temperature of the refrigerant. Between the connection point F in the outdoor unit low-pressure gas pipe 34a and the inflow side of the accumulator 27a, a low-pressure sensor 51a for detecting the pressure of the refrigerant sucked into the compressor 21a and the refrigerant sucked into the compressor 21a An inhalation temperature sensor 54a for detecting the temperature is provided. Further, between the connection point B in the outdoor unit liquid pipe 32a and the closing valve 46a, an intermediate pressure sensor 52a for detecting the pressure of the refrigerant flowing through the outdoor unit liquid pipe 35a and the temperature of the refrigerant flowing through the outdoor unit liquid pipe 35a. The refrigerant temperature sensor 55a which is the outdoor unit side refrigerant temperature detection means which detects this is provided.

第1三方弁22aのポートbと第1室外熱交換器24aとを接続する冷媒配管には、第1室外熱交換器24aから流出あるいは第1室外熱交換器24aへ流入する冷媒の温度を検出する第1熱交温度センサ56aが設けられている。また、第2三方弁23aのポートeと第2室外熱交換器25aとを接続する冷媒配管には、第2室外熱交換器25aから流出あるいは第2室外熱交換器25aへ流入する冷媒の温度を検出する第2熱交温度センサ57aが設けられている。さらには、室外機2aの図示しない吸込口付近には、室外機2a内に流入する外気の温度、すなわち外気温度を検出する外気温度センサ58aが備えられている。   The refrigerant pipe connecting the port b of the first three-way valve 22a and the first outdoor heat exchanger 24a detects the temperature of the refrigerant flowing out of the first outdoor heat exchanger 24a or flowing into the first outdoor heat exchanger 24a. A first heat exchange temperature sensor 56a is provided. Further, the refrigerant pipe connecting the port e of the second three-way valve 23a and the second outdoor heat exchanger 25a has a temperature of the refrigerant flowing out from the second outdoor heat exchanger 25a or flowing into the second outdoor heat exchanger 25a. A second heat exchange temperature sensor 57a is provided for detecting. Furthermore, an outdoor air temperature sensor 58a for detecting the temperature of the outside air flowing into the outdoor unit 2a, that is, the outside air temperature, is provided in the vicinity of a suction port (not shown) of the outdoor unit 2a.

室外機2aには、制御手段100aが備えられている。制御手段100aは、図示しない制御基板に搭載されており、CPU110aと、記憶部120aと、通信部130aとを備えている。CPU110aは、室外機2aの上述した各センサからの検出信号を取り込むとともに、各室内機8a〜8eから出力される制御信号を通信部130aを介して取り込む。CPU110aは、取り込んだ検出信号や制御信号に基づいて圧縮機21aの駆動制御、第1三方弁22aおよび第2三方弁23aの切り換え制御、ファンモータ29aの回転制御、第1室外膨張弁40aおよび第2室外膨張弁41aの開度制御、といった様々な制御を行う。   The outdoor unit 2a is provided with a control means 100a. The control unit 100a is mounted on a control board (not shown) and includes a CPU 110a, a storage unit 120a, and a communication unit 130a. CPU110a takes in the detection signal from each sensor mentioned above of outdoor unit 2a, and takes in the control signal output from each indoor unit 8a-8e via communication part 130a. The CPU 110a controls the drive control of the compressor 21a, the switching control of the first three-way valve 22a and the second three-way valve 23a, the rotation control of the fan motor 29a, the first outdoor expansion valve 40a and the first based on the acquired detection signal and control signal. Various controls such as the opening degree control of the two outdoor expansion valves 41a are performed.

記憶部120aは、ROMやRAMで構成されており、室外機2aの制御プログラムや各センサからの検出信号に対応した検出値を記憶する。通信部130aは、室外機2aと室内機8a〜8eとの通信を行うインターフェイスである。   The storage unit 120a is composed of a ROM and a RAM, and stores detection values corresponding to control programs for the outdoor unit 2a and detection signals from each sensor. The communication unit 130a is an interface that performs communication between the outdoor unit 2a and the indoor units 8a to 8e.

尚、室外機2bの構成は室外機2aと同じであり、室外機2aの構成要素(装置や部材)に付与した番号の末尾をaからbに変更したものが、室外機2aの構成要素と対応する室外機2bの構成要素となる。但し、第1三方弁や第2三方弁、および、冷媒配管の接続点については、室外機2aと室外機2bとで記号を異ならせており、室外機2aの第1三方弁22aにおけるポートa、b、cに対応するものを室外機2bの第1三方弁22bではポートg、h、jとし、室外機2aの第2三方弁23aにおけるポートd、e、fに対応するものを室外機2bの第2三方弁23bではポートk、m、nとしている。また、室外機2aにおける接続点A、B、C、D、E、F、Gに対応するものを室外機2bでは接続点H、J、K、M、N、P、Qとしている。   The configuration of the outdoor unit 2b is the same as that of the outdoor unit 2a, and the number assigned to the components (devices and members) of the outdoor unit 2a is changed from a to b. It becomes a component of the corresponding outdoor unit 2b. However, the symbols for the connection points of the first three-way valve, the second three-way valve, and the refrigerant pipe are different between the outdoor unit 2a and the outdoor unit 2b, and the port a in the first three-way valve 22a of the outdoor unit 2a. , B, c are ports g, h, j in the first three-way valve 22b of the outdoor unit 2b, and those corresponding to ports d, e, f in the second three-way valve 23a of the outdoor unit 2a are the outdoor units. In the 2b second three-way valve 23b, ports k, m, and n are set. In the outdoor unit 2b, the connection points H, J, K, M, N, P, and Q correspond to the connection points A, B, C, D, E, F, and G in the outdoor unit 2a.

図1に示すように、暖房運転時の冷媒回路では、室外機2a、2bの各々に備えられた2台の室外熱交換器が蒸発器として機能するよう、各々の三方弁が切り換えられる。具体的には、室外機2aでは、第1三方弁22aはポートbとポートcとを連通するよう、また、第2三方弁23aはポートeとポートfとを連通するよう切り換えられる。また、室外機2bでは、第1三方弁22bはポートhとポートjとを連通するよう、また、第2三方弁23bはポートmとポートnとを連通するよう切り換えられる。尚、図1では、各三方弁の連通しているポート間は実線で示し、連通していないポート間は破線で示している。   As shown in FIG. 1, in the refrigerant circuit during the heating operation, each three-way valve is switched so that the two outdoor heat exchangers provided in each of the outdoor units 2a and 2b function as evaporators. Specifically, in the outdoor unit 2a, the first three-way valve 22a is switched to communicate the port b and the port c, and the second three-way valve 23a is switched to communicate the port e and the port f. In the outdoor unit 2b, the first three-way valve 22b is switched so as to communicate between the port h and the port j, and the second three-way valve 23b is switched so as to communicate between the port m and the port n. In FIG. 1, the ports that communicate with the three-way valves are indicated by solid lines, and the ports that do not communicate are indicated by broken lines.

5台の室内機8a〜8eは、室内熱交換器81a〜81eと、室内膨張弁82a〜82eと、室内ファン83a〜83eとを備えている。尚、室内機8a〜8eの構成は全て同じであるため、以下の説明では、室内機8aの構成についてのみ説明を行い、その他の室内機8b〜8eについては説明を省略する。   The five indoor units 8a to 8e include indoor heat exchangers 81a to 81e, indoor expansion valves 82a to 82e, and indoor fans 83a to 83e. In addition, since the structure of all the indoor units 8a-8e is the same, in the following description, only the structure of the indoor unit 8a is demonstrated, and description is abbreviate | omitted about the other indoor units 8b-8e.

室内熱交換器81aは、一端が室内膨張弁82aの一方のポートに冷媒配管で接続され、他端が後述する切換ユニット6aに冷媒配管で接続されている。室内熱交換器81aは、室内機8aが冷房運転を行う場合は蒸発器として機能し、室内機8aが暖房運転を行う場合は凝縮器として機能する。   One end of the indoor heat exchanger 81a is connected to one port of the indoor expansion valve 82a via a refrigerant pipe, and the other end is connected to a switching unit 6a described later via a refrigerant pipe. The indoor heat exchanger 81a functions as an evaporator when the indoor unit 8a performs a cooling operation, and functions as a condenser when the indoor unit 8a performs a heating operation.

室内膨張弁82aは、一方のポートが上述したように室内熱交換器81aに接続され、他方のポートが液管32に接続されている。室内膨張弁82aは、室内熱交換器81aが蒸発器として機能する場合は、その開度が要求される冷房能力に応じて調整され、室内熱交換器81aが凝縮器として機能する場合は、その開度が要求される暖房能力に応じて調整される。   The indoor expansion valve 82 a has one port connected to the indoor heat exchanger 81 a as described above, and the other port connected to the liquid pipe 32. When the indoor heat exchanger 81a functions as an evaporator, the indoor expansion valve 82a is adjusted according to the required cooling capacity, and when the indoor heat exchanger 81a functions as a condenser, The opening is adjusted according to the required heating capacity.

室内ファン83aは、図示しないファンモータによって回転することで、室内機8a内に室内空気を取り込み、室内熱交換器81aにおいて冷媒と室内空気とを熱交換させた後、熱交換した空気を室内へ供給する。   The indoor fan 83a is rotated by a fan motor (not shown), thereby taking in indoor air into the indoor unit 8a, heat-exchanging the refrigerant and indoor air in the indoor heat exchanger 81a, and then transferring the heat-exchanged air indoors. Supply.

以上説明した構成の他に、室内機8aには各種のセンサが設けられている。室内熱交換器81aの室内膨張弁82a側の冷媒配管には冷媒の温度を検出する室内機側冷媒温度検出手段である冷媒温度センサ84aが、また、室内熱交換器81aの切換ユニット6a側の冷媒配管には冷媒の温度を検出する冷媒温度センサ85aが、それぞれ備えられている。また、室内機8aの図示しない室内空気の吸込口付近には、室内機8a内に流入する室内空気の温度、すなわち室内温度を検出する室温センサ86aが備えられている。   In addition to the configuration described above, the indoor unit 8a is provided with various sensors. The refrigerant pipe on the indoor expansion valve 82a side of the indoor heat exchanger 81a is provided with a refrigerant temperature sensor 84a, which is an indoor unit side refrigerant temperature detecting means for detecting the temperature of the refrigerant, and on the switching unit 6a side of the indoor heat exchanger 81a. Each refrigerant pipe is provided with a refrigerant temperature sensor 85a for detecting the temperature of the refrigerant. Further, a room temperature sensor 86a for detecting the temperature of the indoor air flowing into the indoor unit 8a, that is, the room temperature is provided in the vicinity of the indoor air suction port (not shown) of the indoor unit 8a.

尚、室内機8b〜8eの構成は室内機8aと同じであり、室内機8aの構成要素(装置や部材)に付与した番号の末尾をaからb、c、dおよびeにそれぞれ変更したものが、室外機8aの構成要素と対応する室内機8b〜8eの構成要素となる。   The configurations of the indoor units 8b to 8e are the same as those of the indoor unit 8a, and the numbers given to the constituent elements (devices and members) of the indoor unit 8a are changed from a to b, c, d, and e, respectively. However, it becomes a component of the indoor units 8b-8e corresponding to the component of the outdoor unit 8a.

空気調和装置1には、5台の室内機8a〜8eに対応する5台の切換ユニット6a〜6eが備えられている。切換ユニット6a〜6eは、電磁弁61a〜61eと、電磁弁62a〜62eと、第1分流管63a〜63eと、第2分流管64a〜64eとを備えている。尚、切換ユニット6a〜6eの構成は全て同じであるため、以下の説明では、切換ユニット6aの構成についてのみ説明を行い、その他の切換ユニット6b〜6eについては説明を省略する。   The air conditioner 1 includes five switching units 6a to 6e corresponding to the five indoor units 8a to 8e. The switching units 6a to 6e include solenoid valves 61a to 61e, solenoid valves 62a to 62e, first branch pipes 63a to 63e, and second branch pipes 64a to 64e. In addition, since all the structures of switching unit 6a-6e are the same, in the following description, only the structure of switching unit 6a is demonstrated and description is abbreviate | omitted about the other switching units 6b-6e.

第1分流管63aの一端は高圧ガス管30に接続されており、第2分流管64aの一端は低圧ガス管31に接続されている。また、第1分流管63aの他端と第2分流管64aの他端とが相互に接続され、この接続部と室内熱交換器81aとが冷媒配管で接続されている。第1分流管63aには電磁弁61aが、また、第2分流管64aには電磁弁62aが、それぞれ設けられており、電磁弁61aおよび電磁弁62aをそれぞれ開閉することによって、切換ユニット6aに対応する室内機8aの室内熱交換器81aが圧縮機21の吐出側(高圧ガス管30側)または吸入側(低圧ガス管31側)に接続されるよう、冷媒回路における冷媒の流路を切り換えることができる。   One end of the first branch pipe 63 a is connected to the high pressure gas pipe 30, and one end of the second branch pipe 64 a is connected to the low pressure gas pipe 31. Further, the other end of the first diversion pipe 63a and the other end of the second diversion pipe 64a are connected to each other, and the connection portion and the indoor heat exchanger 81a are connected by a refrigerant pipe. The first diverter pipe 63a is provided with an electromagnetic valve 61a, and the second diverter pipe 64a is provided with an electromagnetic valve 62a. By opening and closing the electromagnetic valve 61a and the electromagnetic valve 62a, the switching unit 6a is provided. The refrigerant flow path in the refrigerant circuit is switched so that the indoor heat exchanger 81a of the corresponding indoor unit 8a is connected to the discharge side (high-pressure gas pipe 30 side) or the suction side (low-pressure gas pipe 31 side) of the compressor 21. be able to.

尚、切換ユニット6b〜6eの構成は、上述したように切換ユニット6aと同じであり、切換ユニット6aの構成要素(装置や部材)に付与した番号の末尾をaからb、c、dおよびeにそれぞれ変更したものが、切換ユニット6aの構成要素と対応する切換ユニット6b〜6eの構成要素となる。   Note that the configuration of the switching units 6b to 6e is the same as that of the switching unit 6a as described above, and the end of the numbers given to the components (devices and members) of the switching unit 6a are a to b, c, d and e. Those changed to the above are the constituent elements of the switching units 6b to 6e corresponding to the constituent elements of the switching unit 6a.

以上説明した室外機2a、2b、室内機8a〜8eおよび切換ユニット6a〜6eと、高圧ガス管30、高圧ガス分管30a、30b、低圧ガス管31、低圧ガス分管31a、31b、液管32、液分管32a、32b、および、分岐器70、71、72との接続状態を、図1を用いて説明する。室外機2a、2bの閉鎖弁44a、44bには高圧ガス分管30a、30bの一端がそれぞれ接続され、高圧ガス分管30a、30bの他端はそれぞれ分岐器70に接続される。この分岐器70に高圧ガス管30の一端が接続され、高圧ガス管30の他端は分岐して切換ユニット6a〜6eの第1分流管63a〜63eに接続される。   The outdoor units 2a and 2b, the indoor units 8a to 8e and the switching units 6a to 6e described above, the high pressure gas pipe 30, the high pressure gas distribution pipes 30a and 30b, the low pressure gas pipe 31, the low pressure gas distribution pipes 31a and 31b, the liquid pipe 32, The connection state with the liquid distribution pipes 32a and 32b and the branching devices 70, 71, and 72 will be described with reference to FIG. One end of the high-pressure gas branch pipes 30a and 30b is connected to the shut-off valves 44a and 44b of the outdoor units 2a and 2b, respectively, and the other end of the high-pressure gas branch pipes 30a and 30b is connected to the branch device 70, respectively. One end of the high-pressure gas pipe 30 is connected to the branching device 70, and the other end of the high-pressure gas pipe 30 is branched and connected to the first branch pipes 63a to 63e of the switching units 6a to 6e.

室外機2a、2bの閉鎖弁45a、45bには低圧ガス分管31a、31bの一端がそれぞれ接続され、低圧ガス分管31a、31bの他端はそれぞれ分岐器71に接続される。この分岐器71に低圧ガス管31の一端が接続され、低圧ガス管31の他端は分岐して切換ユニット6a〜6eの第2分流管64a〜64eに接続される。   One ends of the low-pressure gas distribution pipes 31a and 31b are connected to the shut-off valves 45a and 45b of the outdoor units 2a and 2b, respectively, and the other ends of the low-pressure gas distribution pipes 31a and 31b are connected to the branch device 71, respectively. One end of the low-pressure gas pipe 31 is connected to the branching device 71, and the other end of the low-pressure gas pipe 31 is branched and connected to the second branch pipes 64a to 64e of the switching units 6a to 6e.

室外機2a、2bの閉鎖弁46a、46bには液分管32a、32bの一端がそれぞれ接続され、液分管32a、32bの他端はそれぞれ分岐器72に接続される。この分岐器72に液管32の一端が接続され、液管32の他端は分岐してそれぞれ室内機8a〜8eの室内膨張弁82a〜82eに接続されている冷媒配管に接続される。   One ends of the liquid distribution pipes 32a and 32b are connected to the closing valves 46a and 46b of the outdoor units 2a and 2b, respectively, and the other ends of the liquid distribution pipes 32a and 32b are connected to the branching device 72, respectively. One end of the liquid pipe 32 is connected to the branching device 72, and the other end of the liquid pipe 32 is branched and connected to refrigerant pipes connected to the indoor expansion valves 82a to 82e of the indoor units 8a to 8e, respectively.

また、対応する室内機8a〜8eの室内熱交換器81a〜81eと、切換ユニット6a〜6eにおける第1分流管63a〜63eと第2分流管64a〜64eとの接続点が、それぞれ冷媒配管で接続される。
以上説明した接続によって、空気調和装置1の冷媒回路が構成され、冷媒回路に冷媒を流すことによって冷凍サイクルが成立する。
The connection points of the indoor heat exchangers 81a to 81e of the corresponding indoor units 8a to 8e and the first branch pipes 63a to 63e and the second branch pipes 64a to 64e in the switching units 6a to 6e are refrigerant pipes, respectively. Connected.
With the connection described above, the refrigerant circuit of the air conditioner 1 is configured, and the refrigeration cycle is established by flowing the refrigerant through the refrigerant circuit.

次に、本実施例における空気調和装置1の運転動作について、図1を用いて説明する。尚、図1では、室外機2a、2bや室内機8a〜8eに備えられた各熱交換器が凝縮器となる場合はハッチングを付し、蒸発器となる場合は白抜きで図示する。また、室外機2a、2bに備えられた第1電磁弁42a、42bおよび第2電磁弁43a、43bや、切換ユニット6a〜6eに備えられた電磁弁61a〜61eおよび電磁弁62a〜62eの開閉状態については、閉じている場合を黒塗りで、開いている場合を白抜きで図示する。また、矢印は冷媒の流れを示している。   Next, the operation | movement operation | movement of the air conditioning apparatus 1 in a present Example is demonstrated using FIG. In addition, in FIG. 1, when each heat exchanger with which the outdoor units 2a and 2b and indoor unit 8a-8e were equipped becomes a condenser, hatching is attached | subjected, and when it becomes an evaporator, it illustrates in white. Further, the first electromagnetic valves 42a and 42b and the second electromagnetic valves 43a and 43b provided in the outdoor units 2a and 2b, and the electromagnetic valves 61a to 61e and the electromagnetic valves 62a to 62e provided in the switching units 6a to 6e are opened and closed. As for the state, the closed state is illustrated in black, and the open state is illustrated in white. Moreover, the arrow has shown the flow of the refrigerant | coolant.

図1に示すように、全ての室内機8a〜8eが暖房運転を行い、これらで要求される暖房能力が高くて全ての室外機2a、2bを運転する必要がある場合、室外機2aでは、第1三方弁22aのポートbとポートcとが連通するよう切り換えられて第1室外熱交換器24aが蒸発器として機能し、第2三方弁23aのポートeとポートfとが連通するよう切り換えられて第2室外熱交換器25aが蒸発器として機能する。また、室外機2bでは、第1三方弁22bのポートhとポートjとが連通するよう切り換えられて第1室外熱交換器24bが蒸発器として機能し、第2三方弁23bのポートmとポートnとが連通するよう切り換えられて第2室外熱交換器25bが蒸発器として機能する。尚、室外機2a、2bの第1電磁弁42a、42bと第2電磁弁43a、43bとは、共に閉じられており、ホットガスバイパス管36a、36bおよび油戻り管37a、37bは共に冷媒や冷凍機油が流れない状態とされている。   As shown in FIG. 1, when all the indoor units 8a to 8e perform the heating operation, and the heating capacity required by these is high and it is necessary to operate all the outdoor units 2a and 2b, in the outdoor unit 2a, The port b and the port c of the first three-way valve 22a are switched so as to communicate with each other, the first outdoor heat exchanger 24a functions as an evaporator, and the port e and the port f of the second three-way valve 23a are switched to communicate with each other. Thus, the second outdoor heat exchanger 25a functions as an evaporator. In the outdoor unit 2b, the port h and the port j of the first three-way valve 22b are switched so as to communicate with each other, and the first outdoor heat exchanger 24b functions as an evaporator, and the port m and the port of the second three-way valve 23b. The second outdoor heat exchanger 25b functions as an evaporator by switching so as to communicate with n. The first electromagnetic valves 42a and 42b and the second electromagnetic valves 43a and 43b of the outdoor units 2a and 2b are both closed, and the hot gas bypass pipes 36a and 36b and the oil return pipes 37a and 37b are both refrigerant and Refrigerating machine oil is not allowed to flow.

室内機8a〜8eでは、各々に対応する切換ユニット6a〜6eの電磁弁61a〜61eを開いて第1分流管63a〜63eを冷媒が流れるようにするとともに、電磁弁62a〜62eを閉じて第2分流管64a〜64eを冷媒が流れないようにする。これにより、室内機8a〜8eの室内熱交換器81a〜81eは全て凝縮器として機能する。   In the indoor units 8a to 8e, the electromagnetic valves 61a to 61e of the switching units 6a to 6e corresponding to the respective indoor units 8a to 8e are opened so that the refrigerant flows through the first branch pipes 63a to 63e, and the electromagnetic valves 62a to 62e are closed to The refrigerant is prevented from flowing through the two branch pipes 64a to 64e. Thereby, all the indoor heat exchangers 81a to 81e of the indoor units 8a to 8e function as a condenser.

圧縮機21a、21bから吐出された高圧の冷媒は、オイルセパレータ28a、28bを介して室外機高圧ガス管33a、33bを流れ、閉鎖弁44a、44bを介して高圧ガス分管30a、30bに流入する。高圧ガス分管30a、30bに流入した高圧の冷媒は、分岐器70で合流して高圧ガス管30を流れ、高圧ガス管30から切換ユニット6a〜6eに分かれて流入する。   The high-pressure refrigerant discharged from the compressors 21a and 21b flows through the outdoor unit high-pressure gas pipes 33a and 33b via the oil separators 28a and 28b, and flows into the high-pressure gas branch pipes 30a and 30b via the shut-off valves 44a and 44b. . The high-pressure refrigerant that has flowed into the high-pressure gas branch pipes 30a and 30b joins at the branching device 70, flows through the high-pressure gas pipe 30, and flows into the switching units 6a to 6e from the high-pressure gas pipe 30.

切換ユニット6a〜6eに流入した高圧の冷媒は、開となっている電磁弁61a〜61eが備えられた第1分流管63a〜63eを流れて切換ユニット6a〜6eから流出し、切換ユニット6a〜6eに対応する室内機8a〜8eに流入する。   The high-pressure refrigerant that has flowed into the switching units 6a to 6e flows through the first branch pipes 63a to 63e provided with the open electromagnetic valves 61a to 61e, and flows out of the switching units 6a to 6e. Flows into the indoor units 8a to 8e corresponding to 6e.

室内機8a〜8eに流入した高圧の冷媒は、室内熱交換器81a〜81eに流入して室内空気と熱交換を行って凝縮する。これにより、室内空気が暖められ、室内機8a〜8eが設置された室内の暖房が行われる。室内熱交換器81a〜81eから流出した高圧の冷媒は、室内膨張弁82a〜82eを通過して減圧される。室内膨張弁82a〜82eの開度は、室内熱交換器81a〜81eの冷媒出口における冷媒の過冷却度に応じて決定される。冷媒の過冷却度は、例えば、室外機2a、2bの高圧センサ50a、50bで検出した圧力から算出した高圧飽和温度(室内熱交換器81a〜81e内の凝縮温度に相当)から、冷媒温度センサ84a〜84eで検出した室内熱交換器81a〜81eの冷媒出口における冷媒温度(後述する室内機側冷媒温度Tif)を引くことで求められる。   The high-pressure refrigerant flowing into the indoor units 8a to 8e flows into the indoor heat exchangers 81a to 81e, exchanges heat with the indoor air, and condenses. Thereby, room air is warmed and the room in which indoor unit 8a-8e was installed is heated. The high-pressure refrigerant that has flowed out of the indoor heat exchangers 81a to 81e passes through the indoor expansion valves 82a to 82e and is depressurized. The opening degree of the indoor expansion valves 82a to 82e is determined in accordance with the degree of supercooling of the refrigerant at the refrigerant outlet of the indoor heat exchangers 81a to 81e. The degree of supercooling of the refrigerant is determined, for example, from a high-pressure saturation temperature (corresponding to the condensation temperature in the indoor heat exchangers 81a to 81e) calculated from the pressure detected by the high-pressure sensors 50a and 50b of the outdoor units 2a and 2b. It is obtained by subtracting the refrigerant temperature (the indoor unit side refrigerant temperature Tif described later) at the refrigerant outlet of the indoor heat exchangers 81a to 81e detected by 84a to 84e.

室内機8a〜8eから流出した中間圧の冷媒は液管32に流入し、液管32内で合流して分岐器72に流入する。分岐器72から液分管32a、32bに分流した中間圧の冷媒は、閉鎖弁46a、46bを介して室外機2a、2bに流入する。室外機2a、2bに流入した中間圧の冷媒は、室外機液管35a、35bを流れ、接続点B、Jで分流して第1室外膨張弁40a、40bおよび第2室外膨張弁41a、41bを通過して減圧されて低圧の冷媒となる。   The intermediate-pressure refrigerant that has flowed out of the indoor units 8a to 8e flows into the liquid pipe 32, joins in the liquid pipe 32, and flows into the branching device 72. The intermediate-pressure refrigerant branched from the branching device 72 to the liquid distribution pipes 32a and 32b flows into the outdoor units 2a and 2b via the closing valves 46a and 46b. The intermediate-pressure refrigerant that has flowed into the outdoor units 2a and 2b flows through the outdoor unit liquid pipes 35a and 35b, and is divided at the connection points B and J to be divided into the first outdoor expansion valves 40a and 40b and the second outdoor expansion valves 41a and 41b. The refrigerant is reduced in pressure through a low pressure refrigerant.

第1室外膨張弁40a、40bの開度は、第1室外熱交換器24a、24bの冷媒出口における冷媒の過熱度に応じて決定される。また、第2室外膨張弁41a、41bの開度は、第2室外熱交換器25a、25bの冷媒出口における冷媒の過熱度に応じて決定される。冷媒の過熱度は、例えば、第1熱交温度センサ56a、56bや第2熱交温度センサ57a、57bで検出した第1室外熱交換器24a、24bや第2室外熱交換器25a、25bの冷媒出口における冷媒温度から、室外機2a、2bの低圧センサ51a、51bで検出した圧力から算出した低圧飽和温度(第1室外熱交換器24a、24b内や第2室外熱交換器25a、25b内の蒸発温度に相当)を引くことで求められる。   The opening degree of the first outdoor expansion valves 40a, 40b is determined according to the degree of superheat of the refrigerant at the refrigerant outlet of the first outdoor heat exchangers 24a, 24b. The opening degree of the second outdoor expansion valves 41a and 41b is determined according to the degree of superheat of the refrigerant at the refrigerant outlet of the second outdoor heat exchangers 25a and 25b. The degree of superheat of the refrigerant is, for example, that of the first outdoor heat exchangers 24a and 24b and the second outdoor heat exchangers 25a and 25b detected by the first heat exchange temperature sensors 56a and 56b and the second heat exchange temperature sensors 57a and 57b. Low pressure saturation temperature calculated from the pressure detected by the low pressure sensors 51a and 51b of the outdoor units 2a and 2b from the refrigerant temperature at the refrigerant outlet (inside the first outdoor heat exchangers 24a and 24b and in the second outdoor heat exchangers 25a and 25b) Is equivalent to the evaporation temperature of

尚、制御手段100a、100bのCPU110a、110bは、所定のタイミング(例えば、30秒毎)に第1室外熱交換器24a、24bの冷媒出口における冷媒の過熱度や第2室外熱交換器25a、25bの冷媒出口における冷媒の過熱度を求め、これらに応じて第1室外膨張弁40a、40bや第2室外膨張弁41a、41bの開度を制御している。   Note that the CPUs 110a and 110b of the control means 100a and 100b have the degree of superheat of the refrigerant at the refrigerant outlet of the first outdoor heat exchangers 24a and 24b and the second outdoor heat exchangers 25a and 25a at predetermined timing (for example, every 30 seconds). The degree of superheat of the refrigerant at the refrigerant outlet 25b is obtained, and the opening degree of the first outdoor expansion valves 40a and 40b and the second outdoor expansion valves 41a and 41b is controlled accordingly.

第1室外膨張弁40a、40bや第2室外膨張弁41a、41bで減圧された低圧の冷媒は、第1室外熱交換器24a、24bおよび第2室外熱交換器25a、25bに流入して外気と熱交換を行って蒸発する。そして、第1室外熱交換器24a、24bおよび第2室外熱交換器25a、25bから流出した低圧の冷媒は、第1三方弁22a、22bおよび第2三方弁23a、23bを介して接続点C,Kで合流し、接続点D、Mで室外機低圧ガス管34a、34bに流入する。そして、室外機低圧ガス管34a、34bに流入した低圧の冷媒は、接続点F、P、アキュムレータ27a、27bを介して圧縮機21a、21bに吸入されて再び圧縮される。   The low-pressure refrigerant depressurized by the first outdoor expansion valves 40a and 40b and the second outdoor expansion valves 41a and 41b flows into the first outdoor heat exchangers 24a and 24b and the second outdoor heat exchangers 25a and 25b, and the outside air Evaporate with heat exchange. The low-pressure refrigerant flowing out of the first outdoor heat exchangers 24a and 24b and the second outdoor heat exchangers 25a and 25b is connected to the connection point C via the first three-way valves 22a and 22b and the second three-way valves 23a and 23b. , K, and flows into the outdoor unit low-pressure gas pipes 34a, 34b at the connection points D, M. The low-pressure refrigerant flowing into the outdoor unit low-pressure gas pipes 34a and 34b is sucked into the compressors 21a and 21b via the connection points F and P and the accumulators 27a and 27b, and is compressed again.

次に、図1および図2を用いて、本実施例の空気調和装置1において、本発明に関わる冷媒回路の動作やその作用・効果について説明する。まずは、第1室外膨張弁40a、40bおよび第2室外膨張弁41a、41bと、室内熱交換器81a〜81eとの間の液管32や液分管32a、32bおよび室外機液管35a、35b(以下、個別に言及する必要がある場合を除いて、これらをまとめて液管と記載する)に冷媒が滞留するときの冷媒回路の動作、および、冷媒温度センサ55a、55bで検出した冷媒温度と、冷媒温度センサ84a〜84eで検出した冷媒温度とを比較することによって、液管に冷媒が滞留しているか否かを判断できる理由について説明する。   Next, with reference to FIG. 1 and FIG. 2, the operation of the refrigerant circuit according to the present invention and the operation and effect thereof in the air-conditioning apparatus 1 of the present embodiment will be described. First, the liquid pipe 32 and liquid distribution pipes 32a and 32b and the outdoor unit liquid pipes 35a and 35b between the first outdoor expansion valves 40a and 40b and the second outdoor expansion valves 41a and 41b and the indoor heat exchangers 81a to 81e ( Hereinafter, the refrigerant circuit operation when the refrigerant stays in the liquid pipe), and the refrigerant temperature detected by the refrigerant temperature sensors 55a and 55b, unless otherwise mentioned, are collectively referred to as a liquid pipe) The reason why it is possible to determine whether or not the refrigerant is staying in the liquid pipe by comparing the refrigerant temperatures detected by the refrigerant temperature sensors 84a to 84e will be described.

空気調和装置1が図1に示すような冷媒回路で暖房運転を行っているとき、CPU110a、110bは、蒸発器として機能している第1室外熱交換器24a、24bや第2室外熱交換器25a、25bの冷媒出口における冷媒過熱度が、予め記憶部120a、120bに記憶されている目標冷媒過熱度となるように、第1室外膨張弁40a、40bや第2室外熱交換器41a、41bの開度を制御している。   When the air conditioner 1 is performing heating operation in the refrigerant circuit as shown in FIG. 1, the CPUs 110 a and 110 b are the first outdoor heat exchangers 24 a and 24 b and the second outdoor heat exchangers that function as evaporators. The first outdoor expansion valves 40a and 40b and the second outdoor heat exchangers 41a and 41b are set so that the refrigerant superheat degree at the refrigerant outlets 25a and 25b becomes the target refrigerant superheat degree stored in the storage units 120a and 120b in advance. The degree of opening is controlled.

上記のように暖房運転を行っているときに外気温度が高い(例えば、10℃以上)場合は、高圧、つまり、高圧センサ50a、50bで検出する吐出圧力が高くなって、圧縮機21a、21bで許容される吐出圧力の上限値を超える虞がある。このような場合、CPU110a、110bは、例えば、第1電磁弁42a、42bや第2電磁弁43a、43bを開いて、ホットガスバイパス管36a、36bや油戻し管37a、37bを冷媒あるいは冷凍機油が流れるようにして、高圧を低下させる制御を行う。   When the outside air temperature is high (for example, 10 ° C. or more) during the heating operation as described above, the high pressure, that is, the discharge pressure detected by the high pressure sensors 50a and 50b becomes high, and the compressors 21a and 21b. May exceed the upper limit of the discharge pressure allowed. In such a case, for example, the CPUs 110a and 110b open the first electromagnetic valves 42a and 42b and the second electromagnetic valves 43a and 43b, and set the hot gas bypass pipes 36a and 36b and the oil return pipes 37a and 37b as refrigerant or refrigerator oil. In order to reduce the high pressure, control is performed.

ホットガスバイパス管36a、36bや油戻し管37a、37bを冷媒あるいは冷凍機油が流れるようにすれば、高圧が低下するとともに低圧が上昇する。低圧が上昇すれば低圧飽和温度も上昇するので、第1室外熱交換器24a、24bや第2室外熱交換器25a、25bの冷媒出口における冷媒過熱度が小さくなって目標冷媒過熱度より小さくなる。   If the refrigerant or refrigerating machine oil flows through the hot gas bypass pipes 36a and 36b and the oil return pipes 37a and 37b, the high pressure decreases and the low pressure increases. If the low pressure rises, the low pressure saturation temperature also rises. Therefore, the refrigerant superheat degree at the refrigerant outlet of the first outdoor heat exchangers 24a, 24b and the second outdoor heat exchangers 25a, 25b becomes small and becomes smaller than the target refrigerant superheat degree. .

このとき、CPU110a、110bは、冷媒過熱度を目標冷媒過熱度まで上昇させるために、第1室外膨張弁40a、40bや第2室外熱交換器41a、41bの開度を小さくする。これにより、第1室外熱交換器24a、24bや第2室外熱交換器25a、25bに流れる冷媒量が減少するので低圧が低下して低圧飽和温度も低下する。また、第1室外熱交換器24a、24bや第2室外熱交換器25a、25bに流れる冷媒量が減少することによって、第1室外熱交換器24a、24bや第2室外熱交換器25a、25bの冷媒出口における冷媒温度(第1熱交温度センサ56a、56bや第2熱交温度センサ57a、57bで検出する冷媒温度)が上昇する。従って、冷媒過熱度が大きくなって目標冷媒過熱度まで上昇させることができる。   At this time, the CPUs 110a and 110b reduce the opening degree of the first outdoor expansion valves 40a and 40b and the second outdoor heat exchangers 41a and 41b in order to increase the refrigerant superheat degree to the target refrigerant superheat degree. As a result, the amount of refrigerant flowing through the first outdoor heat exchangers 24a, 24b and the second outdoor heat exchangers 25a, 25b decreases, so the low pressure decreases and the low pressure saturation temperature also decreases. Further, the amount of refrigerant flowing through the first outdoor heat exchangers 24a and 24b and the second outdoor heat exchangers 25a and 25b is reduced, so that the first outdoor heat exchangers 24a and 24b and the second outdoor heat exchangers 25a and 25b are reduced. The refrigerant temperature at the refrigerant outlet (the refrigerant temperature detected by the first heat exchange temperature sensors 56a and 56b and the second heat exchange temperature sensors 57a and 57b) rises. Therefore, the refrigerant superheat degree can be increased and increased to the target refrigerant superheat degree.

上記のように第1室外膨張弁40a、40bや第2室外熱交換器41a、41bの開度が小さくなれば、液管に、室内熱交換器81a〜81eで凝縮して室内熱交換器81a〜81eから流出した気液二相状態の冷媒が滞留する。ホットガスバイパス管36a、36bや油戻し管37a、37bを冷媒あるいは冷凍機油が流れるようにしている状態が長時間(例えば、10分以上)継続し、第1室外膨張弁40a、40bや第2室外熱交換器41a、41bの開度が小さい状態も継続すれば、液管内での冷媒圧力が上昇して滞留する気液二相状態の冷媒が凝縮して液冷媒となる。   As described above, if the opening degree of the first outdoor expansion valves 40a and 40b and the second outdoor heat exchangers 41a and 41b is reduced, the liquid heat pipe is condensed by the indoor heat exchangers 81a to 81e and the indoor heat exchanger 81a. The refrigerant in the gas-liquid two-phase state that has flowed out from ~ 81e stays. The state in which the refrigerant or refrigerating machine oil flows through the hot gas bypass pipes 36a, 36b and the oil return pipes 37a, 37b continues for a long time (for example, 10 minutes or more), and the first outdoor expansion valves 40a, 40b and the second If the outdoor heat exchangers 41a and 41b are kept in a small state, the refrigerant pressure in the liquid pipe rises and the gas-liquid two-phase refrigerant that stays condenses into liquid refrigerant.

第1室外膨張弁40a、40bや第2室外熱交換器41a、41bの開度が小さい状態がさらに続けば、液管内が液冷媒で充満し室内熱交換器81a〜81eにも液冷媒が滞留することとなって、室内熱交換器81a〜81eにおける凝縮能力が低下して暖房能力が不足する。このとき、液管内は液冷媒で充満しているので、冷媒温度センサ84a〜84eで検出する冷媒温度(以下、室内機側冷媒温度Tifと記載)と冷媒温度センサ55a、55bで検出する冷媒温度(以下、室外機側冷媒温度Toeと記載)との差温Δtが0となる。従って、室内機側冷媒温度Tifと室外機側冷媒温度Toeとを比較する(差温Δtを見る)ことによって、液管に液冷媒が滞留しているか否かを判断することができる。   If the opening degree of the first outdoor expansion valves 40a and 40b and the second outdoor heat exchangers 41a and 41b continues to be small, the liquid pipe is filled with liquid refrigerant, and the liquid refrigerant stays in the indoor heat exchangers 81a to 81e. As a result, the condensing capacity in the indoor heat exchangers 81a to 81e is lowered and the heating capacity is insufficient. At this time, since the liquid pipe is filled with the liquid refrigerant, the refrigerant temperature detected by the refrigerant temperature sensors 84a to 84e (hereinafter referred to as indoor unit side refrigerant temperature Tif) and the refrigerant temperature detected by the refrigerant temperature sensors 55a and 55b. The temperature difference Δt with respect to the outdoor unit side refrigerant temperature Toe (hereinafter referred to as the outdoor unit side refrigerant temperature Toe) becomes zero. Therefore, by comparing the indoor unit side refrigerant temperature Tif and the outdoor unit side refrigerant temperature Toe (see the difference temperature Δt), it can be determined whether or not the liquid refrigerant is retained in the liquid pipe.

次に、図1および図2を用いて、液管に冷媒が滞留しているか否かを判断しこの判断結果に応じて第1室外膨張弁40a、40bや第2室外膨張弁41a、41bの開度を制御する方法について、具体的に説明する。図2に示すフローチャートは、第1室外膨張弁40a、40bや第2室外膨張弁41a、41bの開度制御を行うときの処理の流れを示すものであり、STはステップを表しこれに続く数字はステップ番号を表している。尚、図2では本発明に関わる処理を中心に説明しており、使用者の指示した設定温度や風量等の運転条件に対応した冷媒回路の制御等といった、その他の一般的な処理については説明を省略する。   Next, using FIG. 1 and FIG. 2, it is determined whether or not the refrigerant is retained in the liquid pipe, and the first outdoor expansion valves 40a and 40b and the second outdoor expansion valves 41a and 41b are determined according to the determination result. A method for controlling the opening will be specifically described. The flowchart shown in FIG. 2 shows the flow of processing when the opening degree control of the first outdoor expansion valves 40a and 40b and the second outdoor expansion valves 41a and 41b is performed. ST represents a step and is a number that follows this step. Represents a step number. Note that FIG. 2 mainly describes the processing related to the present invention, and other general processing such as control of the refrigerant circuit corresponding to the operating conditions such as the set temperature and the air volume instructed by the user will be described. Is omitted.

まず、CPU110a、110bは、室内機8a〜8eにおける使用者の要求する運転モードや運転能力を通信部130a、130bを介して室内機8a〜8eから取り込み、暖房運転もしくは暖房主体運転を行うか否かを判断する(ST1)。   First, the CPUs 110a and 110b fetch the operation mode and the operation capability requested by the user in the indoor units 8a to 8e from the indoor units 8a to 8e via the communication units 130a and 130b, and perform the heating operation or the heating main operation. (ST1).

暖房運転もしくは暖房主体運転を行う場合は(ST1−Yes)、CPU110a、110bは、各々の室外機2a、2bの第1三方弁22a、22bや第2三方弁23a、23bを切り換えて暖房運転もしくは暖房主体運転を行う。   When performing the heating operation or the heating main operation (ST1-Yes), the CPU 110a, 110b switches the first three-way valve 22a, 22b or the second three-way valve 23a, 23b of each outdoor unit 2a, 2b to perform the heating operation or Perform heating-based operation.

具体的には、CPU110aは、第1三方弁22aをポートbとポートcとが連通するように切り換えるとともに、第2三方弁23aをポートeとポートfとが連通するように切り換える(図1に実線で示す状態)。これにより、第1室外熱交換器24aおよび第2室外熱交換器25aが蒸発器として機能する。そして、CPU110aは、圧縮機21aを要求される運転能力に応じた回転数で駆動するとともに、第1室外膨張弁40aの開度を第1室外熱交換器24aの冷媒出口における冷媒過熱度に応じた開度とし、第2室外膨張弁41aの開度を第2室外熱交換器25aの冷媒出口における冷媒過熱度に応じた開度とする。   Specifically, the CPU 110a switches the first three-way valve 22a so that the port b and the port c communicate with each other, and switches the second three-way valve 23a so that the port e and the port f communicate with each other (see FIG. 1). State shown by solid line). Thereby, the 1st outdoor heat exchanger 24a and the 2nd outdoor heat exchanger 25a function as an evaporator. Then, the CPU 110a drives the compressor 21a at a rotational speed corresponding to the required operating capacity, and the opening degree of the first outdoor expansion valve 40a is determined according to the refrigerant superheat degree at the refrigerant outlet of the first outdoor heat exchanger 24a. The opening degree of the second outdoor expansion valve 41a is set to an opening degree corresponding to the degree of refrigerant superheat at the refrigerant outlet of the second outdoor heat exchanger 25a.

同様に、CPU110bは、第1三方弁22bをポートhとポートjとが連通するように切り換えるとともに、第2三方弁23bをポートmとポートnとが連通するように切り換える(図1に実線で示す状態)。これにより、第1室外熱交換器24bおよび第2室外熱交換器25bが蒸発器として機能する。そして、CPU110bは、圧縮機21bを要求される運転能力に応じた回転数で駆動するとともに、第1室外膨張弁40bの開度を第1室外熱交換器24bの冷媒出口における冷媒過熱度に応じた開度とし、第2室外膨張弁41bの開度を第2室外熱交換器25bの冷媒出口における冷媒過熱度に応じた開度とする。   Similarly, the CPU 110b switches the first three-way valve 22b so that the port h and the port j communicate with each other, and switches the second three-way valve 23b so that the port m and the port n communicate with each other (shown by a solid line in FIG. 1). State shown). Thereby, the 1st outdoor heat exchanger 24b and the 2nd outdoor heat exchanger 25b function as an evaporator. Then, the CPU 110b drives the compressor 21b at a rotational speed corresponding to the required driving capability, and the opening degree of the first outdoor expansion valve 40b is determined according to the refrigerant superheat degree at the refrigerant outlet of the first outdoor heat exchanger 24b. The opening degree of the second outdoor expansion valve 41b is set to an opening degree corresponding to the degree of refrigerant superheating at the refrigerant outlet of the second outdoor heat exchanger 25b.

CPU110a、110bは、上記のように室外機2a、2bを制御して暖房運転もしくは暖房主体運転を実行する。尚、冷媒過熱度は、例えば、低圧センサ51a、51bで検出した圧力を用いて算出した低圧飽和温度と第1熱交温度センサ56a、56bや第2熱交温度センサ57a、57bで検出した冷媒温度とを用いて求めることができ、CPU110a、110bは、冷媒過熱度を定期的(例えば、30秒毎。低圧の変化による低圧飽和温度の変化時間に比べて、第1室外熱交換器24a、24bや第2室外熱交換器25a、25bでの冷媒の温度変化に時間がかかるため、比較的長めの時間間隔としている)に求め、求めた冷媒過熱度に応じて第1室外膨張弁40a、40bや第2室外膨張弁41a、41bの開度を決定する。   The CPUs 110a and 110b perform the heating operation or the heating main operation by controlling the outdoor units 2a and 2b as described above. The refrigerant superheat degree is, for example, the low pressure saturation temperature calculated using the pressure detected by the low pressure sensors 51a and 51b and the refrigerant detected by the first heat exchange temperature sensors 56a and 56b and the second heat exchange temperature sensors 57a and 57b. The CPU 110a, 110b can determine the refrigerant superheat degree periodically (for example, every 30 seconds. Compared with the change time of the low pressure saturation temperature due to the change in low pressure, the first outdoor heat exchanger 24a, 24b and the second outdoor heat exchangers 25a and 25b take a long time to change the temperature of the refrigerant, which is a relatively long time interval), and the first outdoor expansion valve 40a according to the obtained refrigerant superheat degree, The opening degree of 40b and the 2nd outdoor expansion valves 41a and 41b is determined.

CPU110a、110bは、上述した暖房運転を行っているときに、冷媒温度センサ55a、55bで検出した室外機側冷媒温度Toeを取り込むとともに、冷媒温度センサ84a〜84eで検出した室内機側冷媒温度Tifを室内機8a〜8eから通信部130a、130bを介して取り込む(ST2)。   The CPUs 110a and 110b take in the outdoor unit side refrigerant temperature Toe detected by the refrigerant temperature sensors 55a and 55b and perform the indoor unit side refrigerant temperature Tif detected by the refrigerant temperature sensors 84a to 84e during the heating operation described above. Are taken in from the indoor units 8a to 8e via the communication units 130a and 130b (ST2).

次に、CPU110a、110bは、冷媒滞留発生条件が成立しているか否かを判断する(ST3)。ここで、冷媒滞留発生条件とは、取り込んだ室外機側冷媒温度Toeと室内機側冷媒温度Tifとの差温Δtが所定温度(例えば、6℃)以下であるか否か、であり、差温Δtが6℃以下であれば、液管で液冷媒が滞留している虞があると考えられる条件である。尚、CPU110a、110bは、ST2からST3にかけての処理を定期的(例えば、5秒毎)に行っている。   Next, the CPUs 110a and 110b determine whether or not the refrigerant stagnation generation condition is satisfied (ST3). Here, the refrigerant stagnation generation condition is whether or not the difference temperature Δt between the taken outdoor unit side refrigerant temperature Toe and the indoor unit side refrigerant temperature Tif is equal to or lower than a predetermined temperature (for example, 6 ° C.). If the temperature Δt is 6 ° C. or less, it is a condition that the liquid refrigerant may be retained in the liquid pipe. Note that the CPUs 110a and 110b periodically perform the processing from ST2 to ST3 (for example, every 5 seconds).

冷媒滞留発生条件が成立している場合は(ST3−Yes)、CPU110a、110bは、他の室外機に冷媒滞留解消制御開始信号を送信し(ST4)、ST5に処理を進める。ここで、冷媒滞留解消制御開始信号とは、後述する冷媒滞留解消制御の実行を他の室外機に指示するものであり、例えば、室外機2aで冷媒滞留発生条件が成立している場合は、CPU110aが室外機2bに冷媒滞留解消制御開始信号を送信する。   When the refrigerant stagnation generation condition is satisfied (ST3-Yes), the CPUs 110a and 110b transmit a refrigerant stagnation elimination control start signal to other outdoor units (ST4), and the process proceeds to ST5. Here, the refrigerant stagnation elimination control start signal instructs other outdoor units to perform refrigerant stagnation elimination control described later. For example, when the refrigerant stagnation generation condition is satisfied in the outdoor unit 2a, The CPU 110a transmits a refrigerant retention elimination control start signal to the outdoor unit 2b.

一方、冷媒滞留発生条件が成立していない場合は(ST3−No)、CPU110a、110bは、他の室外機から冷媒滞留解消制御開始信号を受信したか否かを判断する(ST9)。例えば、上述した室外機2aで冷媒滞留発生条件が成立している場合は、CPU110bは室外機2aから冷媒滞留解消制御開始信号を受信したか否かを判断する。   On the other hand, when the refrigerant stagnation generation condition is not satisfied (ST3-No), the CPUs 110a and 110b determine whether or not a refrigerant stagnation elimination control start signal has been received from another outdoor unit (ST9). For example, when the refrigerant stagnation generation condition is satisfied in the outdoor unit 2a described above, the CPU 110b determines whether or not the refrigerant stagnation elimination control start signal is received from the outdoor unit 2a.

滞留解消制御開始信号を受信していなければ(ST9−No)、CPU110bは、通常の第1室外膨張弁40bおよび第2室外膨張弁41bの開度制御(第1室外熱交換器24bおよび第2室外熱交換器25bの冷媒出口における冷媒過熱度に応じた開度制御)を行い(ST13)、ST1に処理を戻す。滞留解消制御開始信号を受信していれば(ST9−Yes)、CPU110a、110bは、ST5に処理を進める。   If the stay elimination control start signal is not received (ST9-No), the CPU 110b controls the opening degree of the normal first outdoor expansion valve 40b and the second outdoor expansion valve 41b (the first outdoor heat exchanger 24b and the second outdoor heat exchanger 24b). (Opening degree control according to the degree of refrigerant superheating at the refrigerant outlet of the outdoor heat exchanger 25b) is performed (ST13), and the process returns to ST1. If the stay cancellation control start signal has been received (ST9-Yes), the CPUs 110a and 110b advance the process to ST5.

ST5において、CPU110a、110bは、第1室外膨張弁40a、40bおよび第2室外膨張弁41a、41bの開度を所定の変化量以上で大きくして冷媒滞留解消制御を実行する(ST5)。ここで、所定の変化量とは、第1室外膨張弁40a、40bおよび第2室外膨張弁41a、41bの開度を、液管に滞留する液冷媒が大量に第1室外熱交換器24a、24bや第2室外熱交換器25a、25bの方に流れて圧縮機21a、21bにまで流入する所謂液バックが発生しない程度の、所定の割合で大きくしていくことを示し、例えば、30秒毎に、第1室外膨張弁40a、40bおよび第2室外膨張弁41a、41bに与えるパルス数を2パルスずつ増加させる、というものである。   In ST5, the CPUs 110a and 110b execute the refrigerant stagnation elimination control by increasing the opening degree of the first outdoor expansion valves 40a and 40b and the second outdoor expansion valves 41a and 41b by a predetermined change amount or more (ST5). Here, the predetermined amount of change refers to the degree of opening of the first outdoor expansion valves 40a and 40b and the second outdoor expansion valves 41a and 41b, and the first outdoor heat exchanger 24a, 24b and the second outdoor heat exchangers 25a and 25b, and flows into the compressors 21a and 21b, indicating that the so-called liquid back does not occur and increases at a predetermined rate, for example, 30 seconds. Every time, the number of pulses given to the first outdoor expansion valves 40a and 40b and the second outdoor expansion valves 41a and 41b is increased by two pulses.

上述した上記冷媒滞留解消制御において、第1室外膨張弁40a、40bおよび第2室外膨張弁41a、41bの開度を大きくする割合を所定の変化量「以上」としているのは、次の理由による。CPU110a、110bは、冷媒滞留解消制御を行っているときも、これと併せて第1室外膨張弁40a、40bおよび第2室外膨張弁41a、41bの開度の冷媒過熱度による制御を行っている。従って、求めた冷媒過熱度に応じた開度制御で、第1室外膨張弁40a、40bおよび第2室外膨張弁41a、41bに与えるパルス数を2パルス以上増加させる場合は、これに従って第1室外膨張弁40a、40bおよび第2室外膨張弁41a、41bの開度を大きくする。   In the above-described refrigerant retention elimination control, the ratio of increasing the opening degree of the first outdoor expansion valves 40a and 40b and the second outdoor expansion valves 41a and 41b is set to the predetermined change amount “more than” for the following reason. . The CPUs 110a and 110b also perform control based on the degree of refrigerant superheat of the opening degrees of the first outdoor expansion valves 40a and 40b and the second outdoor expansion valves 41a and 41b in combination with the refrigerant retention elimination control. . Therefore, when the number of pulses applied to the first outdoor expansion valves 40a and 40b and the second outdoor expansion valves 41a and 41b is increased by two or more by opening control according to the obtained refrigerant superheat degree, the first outdoor The opening degree of the expansion valves 40a and 40b and the second outdoor expansion valves 41a and 41b is increased.

また、求めた冷媒過熱度に応じた開度制御で、第1室外膨張弁40a、40bおよび第2室外膨張弁41a、41bに与えるパルス数を1パルス増加あるいはパルス数を減少させる場合は、液管での液冷媒滞留の解消が遅れるもしくは液冷媒滞留が進むので、前述したように冷媒滞留解消制御を優先し第1室外膨張弁40a、40bおよび第2室外膨張弁41a、41bに与えるパルス数を30秒毎に2パルスずつ増加させる。   Further, when the number of pulses applied to the first outdoor expansion valves 40a and 40b and the second outdoor expansion valves 41a and 41b is increased by one pulse or the number of pulses is decreased by opening control according to the obtained refrigerant superheat degree, Since the elimination of the liquid refrigerant retention in the pipe is delayed or the liquid refrigerant residence proceeds, the number of pulses given to the first outdoor expansion valves 40a and 40b and the second outdoor expansion valves 41a and 41b with priority given to the refrigerant residence elimination control as described above. Is increased by 2 pulses every 30 seconds.

尚、上記説明では、第1室外膨張弁40a、40bおよび第2室外膨張弁41a、41bの開度変化量について、冷媒過熱度に応じて決定される開度変化量と冷媒滞留解消制御による所定の変化量との比較によって決定する場合を説明したが、第1室外膨張弁40a、40bおよび第2室外膨張弁41a、41bの開度変化量を、吐出温度センサ53a、53bで検出した圧縮機21a、21bの吐出温度に応じて決定している場合も、同様に冷媒滞留解消制御による所定の変化量との比較によって決定する。   In the above description, the opening change amount of the first outdoor expansion valves 40a, 40b and the second outdoor expansion valves 41a, 41b is determined by the opening change amount determined according to the refrigerant superheat degree and the refrigerant stagnation elimination control. Although the case where it determines by comparing with the variation | change_quantity of this was demonstrated, the compressor which detected the opening amount variation | change_quantity of 1st outdoor expansion valve 40a, 40b and 2nd outdoor expansion valve 41a, 41b with discharge temperature sensor 53a, 53b Similarly, when it is determined according to the discharge temperatures of 21a and 21b, it is determined by comparison with a predetermined change amount by the refrigerant stagnation elimination control.

具体的には、CPU110a、110bは、吐出温度センサ53a、53bで検出した吐出温度が、圧縮機21a、21bで定められた吐出温度の上限値を超える場合は、第1室外膨張弁40a、40bおよび第2室外膨張弁41a、41bの開度を大きくして圧縮機21a、21bに吸入される冷媒量を増やすことによって、吐出温度を下げる制御を行う。   Specifically, when the discharge temperature detected by the discharge temperature sensors 53a and 53b exceeds the upper limit value of the discharge temperature determined by the compressors 21a and 21b, the CPUs 110a and 110b, the first outdoor expansion valves 40a and 40b. And the discharge temperature is controlled to decrease by increasing the opening of the second outdoor expansion valves 41a and 41b and increasing the amount of refrigerant sucked into the compressors 21a and 21b.

従って、検出した吐出温度に応じた開度制御で、第1室外膨張弁40a、40bおよび第2室外膨張弁41a、41bに与えるパルス数を2パルス以上増加させる場合は、これに従って第1室外膨張弁40a、40bおよび第2室外膨張弁41a、41bの開度を大きくする。また、検出した吐出温度に応じた開度制御で、第1室外膨張弁40a、40bおよび第2室外膨張弁41a、41bに与えるパルス数を1パルス増加あるいはパルス数を減少させる場合は、液管での液冷媒滞留の解消が遅れるもしくは液冷媒滞留が進むので、冷媒滞留解消制御を優先し第1室外膨張弁40a、40bおよび第2室外膨張弁41a、41bに与えるパルス数を30秒毎に2パルスずつ増加させる。   Therefore, when the number of pulses applied to the first outdoor expansion valves 40a and 40b and the second outdoor expansion valves 41a and 41b is increased by two pulses or more by opening degree control according to the detected discharge temperature, the first outdoor expansion is performed accordingly. The opening degree of the valves 40a and 40b and the second outdoor expansion valves 41a and 41b is increased. When the number of pulses applied to the first outdoor expansion valves 40a and 40b and the second outdoor expansion valves 41a and 41b is increased by one pulse or the number of pulses is decreased by opening control according to the detected discharge temperature, Since the liquid refrigerant stagnation is delayed or the liquid refrigerant stagnation proceeds, the priority is given to the refrigerant stagnation control, and the number of pulses given to the first outdoor expansion valves 40a and 40b and the second outdoor expansion valves 41a and 41b is set every 30 seconds. Increase by 2 pulses.

以上のように第1室外膨張弁40a、40bおよび第2室外膨張弁41a、41bの開度を制御することによって、液管に滞留している液冷媒は第1室外膨張弁40a、40bおよび第2室外膨張弁41a、41bを通過して第1室外熱交換器24a、24bおよび第2室内熱交換器25a、25bに流れ、第1三方弁22a、22bおよび第2三方弁23a、23bを介してアキュムレータ27a、27bに流入する。これにより、液管での液冷媒滞留が解消される。   As described above, by controlling the opening degree of the first outdoor expansion valves 40a and 40b and the second outdoor expansion valves 41a and 41b, the liquid refrigerant staying in the liquid pipes is allowed to flow into the first outdoor expansion valves 40a and 40b and the second outdoor expansion valves 40a and 40b. It passes through the two outdoor expansion valves 41a and 41b, flows to the first outdoor heat exchangers 24a and 24b and the second indoor heat exchangers 25a and 25b, and passes through the first three-way valves 22a and 22b and the second three-way valves 23a and 23b. Into the accumulators 27a and 27b. Thereby, the liquid refrigerant stagnation in the liquid pipe is eliminated.

次に、CPU110a、110bは、冷媒滞留解消条件が成立しているか否かを判断する(ST6)。ここで、冷媒滞留解消条件とは、取り込んだ室外機側冷媒温度Toeと室内機側冷媒温度Tifとの差温Δtが所定温度(例えば、6℃)より大きいか否か、であり、差温Δtが6℃より大きければ、液管での液冷媒滞留が解消していると考えられる条件である。冷媒滞留解消条件が成立していなければ(ST6−No)、CPU110a、110bは、ST1に処理を戻し、冷媒滞留解消条件が成立していれば(ST6−Yes)、CPU110a、110bは、冷媒滞留解消制御を停止し(ST7)、ST8に処理を進める。   Next, the CPUs 110a and 110b determine whether or not the refrigerant retention elimination condition is satisfied (ST6). Here, the refrigerant retention elimination condition is whether or not the difference temperature Δt between the taken outdoor unit side refrigerant temperature Toe and the indoor unit side refrigerant temperature Tif is greater than a predetermined temperature (for example, 6 ° C.). If Δt is greater than 6 ° C., it is a condition that liquid refrigerant stagnation in the liquid pipe is considered to be eliminated. If the refrigerant retention cancellation condition is not satisfied (ST6-No), the CPUs 110a and 110b return the process to ST1, and if the refrigerant retention cancellation condition is satisfied (ST6-Yes), the CPUs 110a and 110b The cancellation control is stopped (ST7), and the process proceeds to ST8.

ST8において、CPU110a、110bは、全ての室内機8a〜8eが運転を停止することによって、室外機2a、2bの運転を終了する必要があるか否かを判断する。運転を終了する必要があれば(ST8−Yes)、CPU110a、110bは、圧縮機21a、21bを停止するとともに、第1室外膨張弁40a、40bおよび第2室外膨張弁41a、41bを全閉として、処理を終了する。運転を終了する必要がなければ(ST8―No)、CPU110a、110bは、ST1に処理を戻す。   In ST8, the CPUs 110a and 110b determine whether or not it is necessary to end the operation of the outdoor units 2a and 2b by stopping the operation of all the indoor units 8a to 8e. If it is necessary to end the operation (ST8-Yes), the CPUs 110a and 110b stop the compressors 21a and 21b and fully close the first outdoor expansion valves 40a and 40b and the second outdoor expansion valves 41a and 41b. The process is terminated. If it is not necessary to end the operation (ST8-No), the CPUs 110a and 110b return the process to ST1.

尚、ST1において、暖房運転もしくは暖房主体運転を行わない場合は(ST1−No)、CPU110a、110bは、冷媒滞留解消制御を実行中であるか否かを判断する(ST10)。この判断は、例えば、暖房運転あるいは暖房主体運転を行っている状態から冷房運転あるいは冷房主体運転を行うよう切り換える際に必要となる判断である。冷媒滞留解消制御を実行中でない場合は(ST10−No)、CPU110a、110bは、ST12に処理を進める。冷媒滞留解消制御を実行中である場合は(ST10−Yes)、CPU110a、110bは、冷媒滞留解消制御を停止して(ST11)、ST12に処理を進める。   In ST1, when the heating operation or the heating main operation is not performed (ST1-No), the CPUs 110a and 110b determine whether or not the refrigerant stagnation elimination control is being executed (ST10). This determination is, for example, a determination necessary when switching from the state where the heating operation or the heating main operation is performed to the cooling operation or the cooling main operation. When the refrigerant retention elimination control is not being executed (ST10-No), the CPUs 110a and 110b advance the process to ST12. When the refrigerant stagnation elimination control is being executed (ST10-Yes), the CPUs 110a and 110b stop the refrigerant stagnation elimination control (ST11) and advance the process to ST12.

ST12において、CPU110a、110bは、各々の室外機2a、2bの第1三方弁22a、22bや第2三方弁23a、23bを切り換えて冷房運転もしくは冷房主体運転を行う。具体的には、CPU110aは、第1三方弁22aをポートaとポートbとが連通するように切り換えるとともに、第2三方弁23aをポートdとポートeとが連通するように切り換える(図1に破線で示す状態)。これにより、第1室外熱交換器24aおよび第2室外熱交換器25aが凝縮器として機能する。そして、CPU110aは、圧縮機21aを要求される運転能力に応じた回転数で駆動するとともに、第1室外膨張弁40aの開度を全開もしくは第1室外熱交換器24aの冷媒出口における冷媒過冷却度に応じた開度とし、第2室外膨張弁41aの開度を全開もしくは第2室外熱交換器25aの冷媒出口における冷媒過冷却度に応じた開度とする。   In ST12, the CPUs 110a and 110b perform the cooling operation or the cooling main operation by switching the first three-way valves 22a and 22b and the second three-way valves 23a and 23b of the outdoor units 2a and 2b. Specifically, the CPU 110a switches the first three-way valve 22a so that the port a and the port b communicate with each other, and switches the second three-way valve 23a so that the port d and the port e communicate with each other (see FIG. 1). State indicated by a broken line). Thereby, the 1st outdoor heat exchanger 24a and the 2nd outdoor heat exchanger 25a function as a condenser. Then, the CPU 110a drives the compressor 21a at a rotation speed corresponding to the required operating capacity, and fully opens the opening of the first outdoor expansion valve 40a or refrigerant supercooling at the refrigerant outlet of the first outdoor heat exchanger 24a. The opening of the second outdoor expansion valve 41a is fully opened or the opening according to the degree of refrigerant supercooling at the refrigerant outlet of the second outdoor heat exchanger 25a.

同様に、CPU110bは、第1三方弁22bをポートgとポートhとが連通するように切り換えるとともに、第2三方弁23bをポートkとポートmとが連通するように切り換える(図1に破線で示す状態)。これにより、第1室外熱交換器24bおよび第2室外熱交換器25bが凝縮器として機能する。そして、CPU110bは、圧縮機21bを要求される運転能力に応じた回転数で駆動するとともに、第1室外膨張弁40bの開度を全開もしくは第1室外熱交換器24bの冷媒出口における冷媒過冷却度に応じた開度とし、第2室外膨張弁41bの開度を全開もしくは第2室外熱交換器25bの冷媒出口における冷媒過冷却度に応じた開度とする。   Similarly, the CPU 110b switches the first three-way valve 22b so that the port g and the port h communicate with each other, and switches the second three-way valve 23b so that the port k and the port m communicate with each other (as indicated by a broken line in FIG. 1). State shown). Thereby, the 1st outdoor heat exchanger 24b and the 2nd outdoor heat exchanger 25b function as a condenser. Then, the CPU 110b drives the compressor 21b at a rotational speed corresponding to the required operating capacity, and fully opens the opening of the first outdoor expansion valve 40b or refrigerant supercooling at the refrigerant outlet of the first outdoor heat exchanger 24b. The opening degree of the second outdoor expansion valve 41b is fully opened or the opening degree according to the degree of refrigerant supercooling at the refrigerant outlet of the second outdoor heat exchanger 25b.

CPU110a、110bは、上記のように室外機2a、2bを制御して冷房運転もしくは冷房主体運転を実行し、ST1に処理を戻す。尚、冷媒過冷却度は、例えば、高圧センサ50a、50bで検出した圧力を用いて算出した高圧飽和温度と冷媒温度センサ55a、55bで検出した冷媒温度とを用いて求めることができ、CPU110a、110bは、冷媒過冷却度を定期的(例えば、30秒毎)に求めて第1室外膨張弁40a、40bや第2室外膨張弁41a、41bの開度を調整する。   The CPUs 110a and 110b control the outdoor units 2a and 2b as described above to execute the cooling operation or the cooling main operation, and return the process to ST1. Note that the refrigerant supercooling degree can be obtained by using, for example, the high pressure saturation temperature calculated using the pressure detected by the high pressure sensors 50a and 50b and the refrigerant temperature detected by the refrigerant temperature sensors 55a and 55b, and the CPU 110a, 110b calculates | requires a refrigerant | coolant supercooling degree regularly (for example, every 30 second), and adjusts the opening degree of the 1st outdoor expansion valves 40a and 40b and the 2nd outdoor expansion valves 41a and 41b.

以上説明したように、本発明の空気調和装置によれば、室外熱交換器を蒸発器として機能させる、すなわち、暖房運転や暖房主体運転を行っているときに、検出した室外機側冷媒温度と室内機側冷媒温度とを比較することによって液管に液冷媒が滞留しているか否かを判断し、液管に液冷媒が滞留していると判断すれば、液管に備えられた流量調整手段の開度を所定の変化量で大きくすることで、液管に滞留している液冷媒を室外熱交換器側に流すことができる。これにより、液管に液冷媒が充満することによって室内熱交換器で凝縮能力が低下することを防ぎ、暖房運転を行っている室内機での暖房能力不足を抑制することができる。   As described above, according to the air conditioner of the present invention, the outdoor heat exchanger functions as an evaporator, that is, when the outdoor unit side refrigerant temperature detected during the heating operation or the heating main operation is performed. By comparing the indoor unit side refrigerant temperature with the liquid pipe, it is determined whether or not the liquid refrigerant is staying in the liquid pipe, and if it is determined that the liquid refrigerant is staying in the liquid pipe, the flow rate adjustment provided in the liquid pipe By increasing the opening degree of the means by a predetermined change amount, the liquid refrigerant staying in the liquid pipe can flow to the outdoor heat exchanger side. Thereby, it can prevent that a condensation capacity falls by an indoor heat exchanger by filling a liquid refrigerant with a liquid pipe, and can suppress the shortage of the heating capacity in the indoor unit which is performing heating operation.

以上説明した実施例では、2台の室外機に高圧ガス管、低圧ガス管および液管で5台の室内機が並列接続されて冷暖房フリー運転を行うことができる空気調和装置を例に挙げて説明したが、少なくとも1台の室外機に複数の室内機がガス管と液管とで並列接続されて全ての室内機で同時に冷房運転または暖房運転を行えるマルチ型空気調和装置にも適用することができる。   In the embodiment described above, an air conditioner that can perform an air-conditioning-free operation in which five indoor units are connected in parallel to two outdoor units with a high-pressure gas pipe, a low-pressure gas pipe, and a liquid pipe is taken as an example. Although described, a plurality of indoor units are connected to at least one outdoor unit in parallel by gas pipes and liquid pipes, and the present invention is also applied to a multi-type air conditioner that can perform cooling operation or heating operation simultaneously in all indoor units. Can do.

1 空気調和装置
2a、2b 室外機
6a〜6e 切換ユニット
8a〜8e 室内機
21a,21b 圧縮機
22a、22b 第1三方弁
23a、23b 第2三方弁
24a、24b 第1室外熱交換器
25a、25b 第2室外熱交換器
26a、26b 室外ファン
27a、27b アキュムレータ
28a、28b オイルセパレータ
29a、29b レシーバタンク
40a、40b 第1室外膨張弁
41a、41b 第2室外膨張弁
51a、51b 低圧センサ
52a、52b 中間圧センサ
55a、55b 冷媒温度センサ
56a、56b 第1熱交温度センサ
57a、57b 第2熱交温度センサ
58a、58b 外気温度センサ
81a〜81e 室内熱交換器
84a〜84e 冷媒温度センサ
100a、100b 制御手段
110a、110b CPU
Toe 室外機側冷媒温度
Tif 室内機側冷媒温度
Δt 差温

DESCRIPTION OF SYMBOLS 1 Air conditioning apparatus 2a, 2b Outdoor unit 6a-6e Switching unit 8a-8e Indoor unit 21a, 21b Compressor 22a, 22b 1st three-way valve 23a, 23b 2nd three-way valve 24a, 24b 1st outdoor heat exchanger 25a, 25b Second outdoor heat exchanger 26a, 26b Outdoor fan 27a, 27b Accumulator 28a, 28b Oil separator 29a, 29b Receiver tank 40a, 40b First outdoor expansion valve 41a, 41b Second outdoor expansion valve 51a, 51b Low pressure sensor 52a, 52b Intermediate Pressure sensor 55a, 55b Refrigerant temperature sensor 56a, 56b First heat exchange temperature sensor 57a, 57b Second heat exchange temperature sensor 58a, 58b Outside air temperature sensor 81a-81e Indoor heat exchanger 84a-84e Refrigerant temperature sensor 100a, 100b Control means 110a, 110b CP U
Toe Outdoor unit side refrigerant temperature Tif Indoor unit side refrigerant temperature Δt Differential temperature

Claims (3)

圧縮機と、室外熱交換器と、同室外熱交換器の一方の冷媒出入口に接続されて前記圧縮機の冷媒吐出口あるいは冷媒吸入口への前記室外熱交換器の接続を切り換える流路切換手段と、前記室外熱交換器の他方の冷媒出入口に接続されて同室外熱交換器での冷媒流量を調整する流量調整手段と、前記流路切換手段や前記流量調整手段の制御を行う制御手段とを備えた少なくとも1台の室外機と、
前記室外機に、1本の液管と少なくとも1本のガス管とで接続され、室内熱交換器を備えた複数の室内機と、
を備えた空気調和装置であって、
前記流量調整手段と前記室内熱交換器とが前記液管で接続され、
前記液管における前記流量調整手段側には、前記室外熱交換器が蒸発器として機能しているときの同室外熱交換器の冷媒流入側に室外機側冷媒温度検出手段が設けられ、
前記液管における前記室内熱交換器側には、同室内熱交換器が凝縮器として機能しているときの同室内熱交換器の冷媒流出側に室内機側冷媒温度検出手段が設けられ、
前記制御手段は、前記流路切換手段を制御して前記室外熱交換器を蒸発器として機能させているときに、前記室外機側冷媒温度検出手段から取り込んだ室外機側冷媒温度と前記室内機側冷媒温度検出手段から取り込んだ室内機側冷媒温度との温度差が所定値以内であれば、前記流量調整手段の開度を所定の変化量で大きくすることを特徴とする空気調和装置。
A compressor, an outdoor heat exchanger, and a flow path switching unit that is connected to one refrigerant inlet / outlet of the outdoor heat exchanger and switches the connection of the outdoor heat exchanger to a refrigerant discharge port or a refrigerant suction port of the compressor And a flow rate adjusting means connected to the other refrigerant inlet / outlet of the outdoor heat exchanger to adjust the flow rate of refrigerant in the outdoor heat exchanger, and a control means for controlling the flow path switching means and the flow rate adjusting means. At least one outdoor unit comprising:
A plurality of indoor units connected to the outdoor unit by one liquid pipe and at least one gas pipe, and provided with an indoor heat exchanger;
An air conditioner comprising:
The flow rate adjusting means and the indoor heat exchanger are connected by the liquid pipe,
On the flow rate adjusting means side in the liquid pipe, an outdoor unit side refrigerant temperature detecting means is provided on the refrigerant inflow side of the outdoor heat exchanger when the outdoor heat exchanger functions as an evaporator,
On the indoor heat exchanger side of the liquid pipe, an indoor unit side refrigerant temperature detection means is provided on the refrigerant outflow side of the indoor heat exchanger when the indoor heat exchanger functions as a condenser,
The control means controls the flow path switching means to cause the outdoor heat exchanger to function as an evaporator, and the outdoor unit side refrigerant temperature taken in from the outdoor unit side refrigerant temperature detection means and the indoor unit If the temperature difference with the indoor unit side refrigerant | coolant temperature taken in from the side refrigerant | coolant temperature detection means is less than predetermined value, the opening degree of the said flow volume adjustment means will be enlarged by the predetermined | prescribed change amount, The air conditioning apparatus characterized by the above-mentioned.
請求項1に記載の空気調和装置であって、
前記制御手段は、前記室外機側冷媒温度と前記室内機側冷媒温度との温度差が所定値以内であるときに、前記室外熱交換器における冷媒過熱度に対応して前記流量調整手段の開度を制御する場合に、前記冷媒過熱度に対応して定められた前記流量調整手段の開度の変化量が前記所定の変化量より大きければ、前記冷媒過熱度に対応して定められた変化量で前記流量調整手段の開度を大きくすることを特徴とする空気調和装置。
The air conditioner according to claim 1,
When the temperature difference between the outdoor unit side refrigerant temperature and the indoor unit side refrigerant temperature is within a predetermined value, the control unit opens the flow rate adjusting unit according to the degree of refrigerant superheat in the outdoor heat exchanger. When the degree of change in the degree of opening of the flow rate adjusting means determined corresponding to the degree of refrigerant superheat is greater than the predetermined amount of change, the change determined corresponding to the degree of refrigerant superheat An air conditioner characterized in that the opening degree of the flow rate adjusting means is increased by an amount.
請求項1に記載の空気調和装置であって、
前記室外機には、前記圧縮機から吐出された冷媒の温度である吐出温度を検出する吐出温度検出手段が設けられ、
前記制御手段は、前記室外機側冷媒温度と前記室内機側冷媒温度との温度差が所定値以内であるときに、前記吐出温度検出手段で検出した前記吐出温度に対応して前記流量調整手段の開度を制御する場合に、前記吐出温度に対応して定められた前記流量調整手段の開度の変化量が前記所定の変化量より大きければ、前記吐出温度に対応して定められた変化量で前記流量調整手段の開度を大きくすることを特徴とする空気調和装置。
The air conditioner according to claim 1,
The outdoor unit is provided with a discharge temperature detecting means for detecting a discharge temperature which is a temperature of the refrigerant discharged from the compressor,
The control means corresponds to the flow rate adjusting means corresponding to the discharge temperature detected by the discharge temperature detecting means when a temperature difference between the outdoor unit side refrigerant temperature and the indoor unit side refrigerant temperature is within a predetermined value. When the opening degree of the flow rate is controlled, if the change amount of the opening degree of the flow rate adjusting means determined corresponding to the discharge temperature is larger than the predetermined change amount, the change determined corresponding to the discharge temperature An air conditioner characterized in that the opening degree of the flow rate adjusting means is increased by an amount.
JP2012153761A 2012-07-09 2012-07-09 Air conditioner Active JP5928202B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012153761A JP5928202B2 (en) 2012-07-09 2012-07-09 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012153761A JP5928202B2 (en) 2012-07-09 2012-07-09 Air conditioner

Publications (2)

Publication Number Publication Date
JP2014016096A true JP2014016096A (en) 2014-01-30
JP5928202B2 JP5928202B2 (en) 2016-06-01

Family

ID=50110944

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012153761A Active JP5928202B2 (en) 2012-07-09 2012-07-09 Air conditioner

Country Status (1)

Country Link
JP (1) JP5928202B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109708260A (en) * 2018-12-26 2019-05-03 广东美的制冷设备有限公司 Control method, air conditioner and the computer readable storage medium of air conditioner

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004239517A (en) * 2003-02-06 2004-08-26 Sanyo Electric Co Ltd Multiple room-type air conditioner
JP2005315477A (en) * 2004-04-28 2005-11-10 Hitachi Home & Life Solutions Inc Multi-chamber type air conditioner
JP2009168343A (en) * 2008-01-16 2009-07-30 Sanyo Electric Co Ltd Air conditioner
JP2009204174A (en) * 2008-02-26 2009-09-10 Panasonic Corp Multiple chamber air conditioner

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004239517A (en) * 2003-02-06 2004-08-26 Sanyo Electric Co Ltd Multiple room-type air conditioner
JP2005315477A (en) * 2004-04-28 2005-11-10 Hitachi Home & Life Solutions Inc Multi-chamber type air conditioner
JP2009168343A (en) * 2008-01-16 2009-07-30 Sanyo Electric Co Ltd Air conditioner
JP2009204174A (en) * 2008-02-26 2009-09-10 Panasonic Corp Multiple chamber air conditioner

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109708260A (en) * 2018-12-26 2019-05-03 广东美的制冷设备有限公司 Control method, air conditioner and the computer readable storage medium of air conditioner

Also Published As

Publication number Publication date
JP5928202B2 (en) 2016-06-01

Similar Documents

Publication Publication Date Title
JP6064412B2 (en) Air conditioner
JP6052488B2 (en) Air conditioner
EP3348934B1 (en) Air conditioner
US9506674B2 (en) Air conditioner including a bypass pipeline for a defrosting operation
US9046284B2 (en) Air conditioning apparatus
JP6248878B2 (en) Air conditioner
JP5747709B2 (en) Air conditioner
JP2014214951A (en) Air conditioner
EP2530411A1 (en) Refrigeration cycle apparatus
US9689589B2 (en) Refrigeration apparatus
JP5906790B2 (en) Air conditioner
EP3236168B1 (en) Air conditioning device
JP6052489B2 (en) Air conditioner
JP2018091540A (en) Air conditioner
JP5928202B2 (en) Air conditioner
JP6003160B2 (en) Air conditioner
JP2012197959A (en) Air conditioning apparatus
JP6015075B2 (en) Air conditioner
JP5445494B2 (en) Air conditioner
JP6341122B2 (en) Air conditioner
JP2021162252A (en) Air conditioner
JP5573741B2 (en) Air conditioner
JP7408942B2 (en) air conditioner
JP2017101844A (en) Air conditioner
JP2022070160A (en) Air conditioning system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150529

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160311

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160411

R151 Written notification of patent or utility model registration

Ref document number: 5928202

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151