JP2014015909A - Exhaust emission control device - Google Patents

Exhaust emission control device Download PDF

Info

Publication number
JP2014015909A
JP2014015909A JP2012155371A JP2012155371A JP2014015909A JP 2014015909 A JP2014015909 A JP 2014015909A JP 2012155371 A JP2012155371 A JP 2012155371A JP 2012155371 A JP2012155371 A JP 2012155371A JP 2014015909 A JP2014015909 A JP 2014015909A
Authority
JP
Japan
Prior art keywords
catalyst
fuel
temperature
oxidation catalyst
particulate filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012155371A
Other languages
Japanese (ja)
Inventor
Kensaku Tani
健作 谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hino Motors Ltd
Original Assignee
Hino Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hino Motors Ltd filed Critical Hino Motors Ltd
Priority to JP2012155371A priority Critical patent/JP2014015909A/en
Publication of JP2014015909A publication Critical patent/JP2014015909A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Filtering Of Dispersed Particles In Gases (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Catalysts (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Processes For Solid Components From Exhaust (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an exhaust emission control device that efficiently heats a whole fuel reforming catalyst, can regenerate a particulate filter by early increasing temperatures of an oxidation catalyst and the particulate filter even at a low exhaust temperature, shortens a rise time of a selective reduction type catalyst inlet temperature and can improve a NOx reduction ratio by early adding a reduction agent to the upstream side of the selective reduction type catalyst.SOLUTION: When a temperature of an oxidation catalyst 2 is an oxidation catalyst set temperature, microwaves generated by a microwave generating device 9 are emitted to a fuel reforming catalyst 8, so as to heat the fuel reforming catalyst 8 uniformly. When the temperature of the oxidation catalyst 2 is equal to or higher than the oxidation catalyst set temperature, in a temperature region in which generation of reformed gas is not required, the microwaves are emitted to the oxidation catalyst 2 and a particulate filter 3 switching from the fuel reforming catalyst 8.

Description

本発明は、排気浄化装置に関するものである。   The present invention relates to an exhaust emission control device.

従来、ディーゼルエンジンにおいては、排ガスが流通する排気管の途中に、酸素共存下でも選択的にNOxを還元剤と反応させる性質を備えた選択還元型触媒を装備し、該選択還元型触媒の上流側に還元剤添加手段から必要量の還元剤を添加して該還元剤を選択還元型触媒上で排ガス中のNOx(窒素酸化物)と還元反応させ、これによりNOxの排出濃度を低減し得るようにしたものがある。   Conventionally, a diesel engine is equipped with a selective reduction catalyst having a property of selectively reacting NOx with a reducing agent even in the presence of oxygen in the middle of an exhaust pipe through which exhaust gas flows, and upstream of the selective reduction catalyst. The required amount of reducing agent is added to the side from the reducing agent addition means, and the reducing agent is allowed to undergo a reduction reaction with NOx (nitrogen oxide) in the exhaust gas on the selective reduction catalyst, thereby reducing the NOx emission concentration. There is something like that.

又、プラント等における工業的な排煙脱硝処理の分野では、還元剤にアンモニア(NH3)を用いてNOxを還元浄化する手法の有効性が既に広く知られているところであるが、自動車の場合には、アンモニアそのものを搭載して走行することに関し問題があるため、近年においては、毒性のない尿素水を還元剤として使用する、いわゆる尿素SCR(Selective Catalytic Reduction)システムの研究が進められている。 In addition, in the field of industrial flue gas denitration treatment in plants and the like, the effectiveness of a method for reducing and purifying NOx using ammonia (NH 3 ) as a reducing agent is already widely known. In recent years, there is a problem with traveling with ammonia itself, and in recent years, research on a so-called urea SCR (Selective Catalytic Reduction) system using non-toxic urea water as a reducing agent has been advanced. .

即ち、尿素水を選択還元型触媒の上流側で排ガス中に添加すれば、該排ガス中で尿素水がアンモニアと炭酸ガスに熱分解され、選択還元型触媒上で排ガス中のNOxがアンモニアにより良好に還元浄化されることになる。   That is, if urea water is added to the exhaust gas upstream of the selective catalytic reduction catalyst, the urea water is thermally decomposed into ammonia and carbon dioxide gas in the exhaust gas, and the NOx in the exhaust gas is better on the selective catalytic reduction catalyst due to ammonia. Will be reduced and purified.

一方、ディーゼルエンジンの排気浄化を図る場合、排ガス中のNOxを除去するだけでは充分ではなく、排ガス中に含まれるパティキュレート(Particulate Matter:粒子状物質)についてもパティキュレートフィルタを通して捕集する必要があるが、通常のディーゼルエンジンの運転状態においては、パティキュレートが自己燃焼するほどの高い排気温度が得られる機会が少ないため、PtやPd等を活性種とする酸化触媒をパティキュレートフィルタに一体的に担持させるようにしている。   On the other hand, when purifying exhaust gas from a diesel engine, it is not enough to remove NOx in the exhaust gas. It is also necessary to collect particulate matter (particulate matter) contained in the exhaust gas through the particulate filter. However, in normal diesel engine operating conditions, there are few opportunities to obtain exhaust temperatures that are high enough for the particulates to self-combust, so an oxidation catalyst with Pt, Pd, etc. as the active species is integrated with the particulate filter. It is made to carry on.

即ち、このような酸化触媒を担持させたパティキュレートフィルタを採用すれば、捕集されたパティキュレートの酸化反応が促進されて着火温度が低下し、従来より低い排気温度でもパティキュレートを燃焼除去することが可能となる。   That is, if such a particulate filter carrying an oxidation catalyst is employed, the oxidation reaction of the collected particulates is promoted to lower the ignition temperature, and the particulates are burned and removed even at a lower exhaust temperature than in the past. It becomes possible.

但し、前記パティキュレートフィルタを採用した場合であっても、排気温度の低い運転領域では、パティキュレートの処理量よりも捕集量が上回ってしまうので、このような低い排気温度での運転状態が続くと、パティキュレートフィルタの再生が良好に進まずに該パティキュレートフィルタが過捕集状態に陥る虞がある。   However, even when the particulate filter is employed, the trapped amount exceeds the processing amount of the particulates in the operation region where the exhaust temperature is low. If it continues, there exists a possibility that this particulate filter may fall into an over trapping state, without the reproduction | regeneration of a particulate filter progressing favorably.

そこで、パティキュレートフィルタの前段にフロースルー型の酸化触媒を付帯装備させ、パティキュレートの堆積量が増加してきた段階で前記酸化触媒より上流の排ガス中に燃料添加手段から燃料を添加してパティキュレートフィルタを強制再生することが考えられている。   Therefore, a flow-through type oxidation catalyst is attached to the front stage of the particulate filter, and when the accumulated amount of particulates has increased, fuel is added from the fuel addition means to the exhaust gas upstream of the oxidation catalyst. It is considered to forcibly regenerate the filter.

つまり、酸化触媒より上流の排ガス中に燃料を添加すれば、その添加燃料(HC)が前段の酸化触媒を通過する間に酸化反応するので、その反応熱で昇温した排ガスの流入により、直後のパティキュレートフィルタの触媒床温度が上げられてパティキュレートが燃やし尽くされ、パティキュレートフィルタの再生化が図られることになる。   In other words, if fuel is added to the exhaust gas upstream of the oxidation catalyst, the added fuel (HC) undergoes an oxidation reaction while passing through the preceding oxidation catalyst. The catalyst bed temperature of the particulate filter is raised, the particulate is burned out, and the particulate filter is regenerated.

但し、渋滞路ばかりを走行する都市部の路線バス等のように排気温度の低い運転状態が長く続く運行形態の車両にあっては、前段の酸化触媒が充分な触媒活性を発揮し得る触媒床温度まで昇温し難く、該酸化触媒における添加燃料の酸化反応が活発化してこないため、パティキュレートフィルタを短時間のうちに効率良く再生することが困難になると共に、前記選択還元型触媒も触媒活性を発揮し得る触媒床温度まで昇温せず、尿素水を添加できなくなってNOxの排出濃度が増加するという問題があった。   However, the catalyst bed in which the oxidation catalyst in the previous stage can exhibit sufficient catalytic activity in a vehicle with an operation state in which the operation state with a low exhaust temperature continues for a long time such as an urban route bus traveling only on a congested road It is difficult to raise the temperature to the temperature, and the oxidation reaction of the added fuel in the oxidation catalyst is not activated, so that it is difficult to efficiently regenerate the particulate filter in a short time, and the selective reduction catalyst is also a catalyst. There was a problem that the NOx emission concentration increased because it was not possible to add urea water without raising the temperature to a catalyst bed temperature at which activity could be exhibited.

このため、近年においては、酸化触媒の入側に添加燃料をH2とCOに分解し得る燃料改質触媒を配設し、該燃料改質触媒をヒータやグロープラグを用いて加熱し、添加燃料を反応性の高いH2及びCOからなる改質ガスに改質し、該改質ガスのH2及びCOにより、排ガスの低い温度領域であっても、前記酸化触媒及びパティキュレートフィルタの温度を早期に上昇させて該パティキュレートフィルタの再生を可能にすると共に、前記選択還元型触媒の上流側への尿素水添加を可能として高いNOx低減率を得られるようにすることが考えられている。 Therefore, in recent years, a fuel reforming catalyst capable of decomposing the added fuel into H 2 and CO is disposed on the inlet side of the oxidation catalyst, and the fuel reforming catalyst is heated using a heater or a glow plug to be added. reforming the reformed gas of highly reactive H 2 and CO fuel, the H 2 and CO in the reforming gas, even low exhaust gas temperature region, the oxidation catalyst and temperature of the particulate filter It is considered that the particulate filter can be regenerated early and the urea water can be added upstream of the selective catalytic reduction catalyst so that a high NOx reduction rate can be obtained. .

尚、マイクロ波の照射により触媒装置を加熱する排気浄化装置の一般的技術水準を示すものとしては、例えば、特許文献1がある。   For example, Patent Document 1 discloses a general technical level of an exhaust purification device that heats a catalyst device by microwave irradiation.

特開2004−169665号公報JP 2004-169665 A

しかしながら、前述のように、加熱源としてヒータやグロープラグを用いるのでは、加熱が不均一で、図5に示される如く、燃料改質触媒全体が燃料を改質ガス化できる温度(例えば、400[℃])に上昇するまでに時間がかかり、前記酸化触媒及びパティキュレートフィルタの温度を早期に上昇させにくくなって該パティキュレートフィルタの再生が困難になると共に、前記選択還元型触媒入口温度の上昇時間が長引き、該選択還元型触媒の上流側への尿素水添加が早期に行えず、高いNOx低減率を得ることが難しくなるという問題を有していた。   However, as described above, when a heater or a glow plug is used as a heating source, the heating is not uniform, and as shown in FIG. 5, the temperature at which the entire fuel reforming catalyst can reform the fuel (for example, 400) [° C.]) takes a long time to rise, and it becomes difficult to raise the temperature of the oxidation catalyst and the particulate filter at an early stage, making it difficult to regenerate the particulate filter. As a result, the rising time is prolonged, and urea water cannot be added to the upstream side of the selective catalytic reduction catalyst at an early stage, which makes it difficult to obtain a high NOx reduction rate.

尚、図5中、A´は、従来において、燃料改質触媒温度が改質設定温度(例えば、400[℃])に到達し、燃料改質触媒へ燃料及びエアを供給して改質ガスを発生させることが可能となるタイミングを示している。   In FIG. 5, A ′ is a conventional reformed gas in which the fuel reforming catalyst temperature reaches the reforming set temperature (for example, 400 [° C.]) and fuel and air are supplied to the fuel reforming catalyst. The timing when it becomes possible to generate is shown.

又、B´は、従来において、酸化触媒温度が酸化触媒設定温度(例えば、200[℃])に到達し、前記燃料改質触媒への燃料及びエアの供給を停止し且つ前記酸化触媒より上流の排ガス中に燃料添加手段から燃料を添加し、パティキュレートフィルタを強制再生することが可能となるタイミングを示している。   Further, B ′ has conventionally been such that the oxidation catalyst temperature reaches an oxidation catalyst set temperature (for example, 200 [° C.]), stops the supply of fuel and air to the fuel reforming catalyst, and is upstream of the oxidation catalyst. The timing at which the particulate filter can be forcibly regenerated by adding fuel from the fuel addition means to the exhaust gas is shown.

更に又、C´は、従来において、選択還元型触媒温度が選択還元設定温度(例えば、200[℃])に到達し、前記還元剤添加手段から還元剤としての尿素水を添加し、選択還元型触媒上で排ガス中のNOxをアンモニアにより還元浄化することが可能となるタイミングを示している。   Furthermore, C ′ has conventionally been subjected to selective reduction-type catalyst temperature reaching a selective reduction setting temperature (for example, 200 [° C.]), and urea water as a reducing agent is added from the reducing agent adding means to perform selective reduction. The timing at which NOx in the exhaust gas can be reduced and purified with ammonia on the type catalyst is shown.

本発明は、上記従来の問題点に鑑みてなしたもので、燃料改質触媒全体を効率良く加熱し、低排気温度時も酸化触媒及びパティキュレートフィルタの温度を早期に上昇させて該パティキュレートフィルタの再生を行い得ると共に、選択還元型触媒入口温度の上昇時間を短縮し、該選択還元型触媒の上流側への還元剤添加を早期に行ってNOx低減率向上を図り得る排気浄化装置を提供しようとするものである。   The present invention has been made in view of the above-described conventional problems, and efficiently heats the entire fuel reforming catalyst and raises the temperature of the oxidation catalyst and the particulate filter at an early stage even at a low exhaust temperature. An exhaust emission control device capable of regenerating a filter, shortening the rise time of the selective catalytic reduction catalyst inlet temperature, and quickly adding a reducing agent upstream of the selective catalytic reduction catalyst to improve the NOx reduction rate It is something to be offered.

本発明は、排ガスが流通する排気管内に配設される酸化触媒及びパティキュレートフィルタと、
該酸化触媒より上流の排ガス中に燃料を添加してパティキュレートフィルタを強制再生する燃料添加手段と、
前記排気管内に配設される選択還元型触媒と、
該選択還元型触媒の上流側に還元剤を添加して選択還元型触媒上で排ガス中のNOxと還元反応させる還元剤添加手段と、
前記酸化触媒の入側に燃料の改質ガスを供給する燃料改質触媒と、
該燃料改質触媒と前記酸化触媒及びパティキュレートフィルタとのうちいずれか一方にマイクロ波を照射するマイクロ波発生装置と、
前記酸化触媒温度が酸化触媒設定温度未満である場合には前記燃料改質触媒にマイクロ波を照射するよう前記マイクロ波発生装置を切り換える一方、前記酸化触媒温度が酸化触媒設定温度以上となった場合には前記燃料改質触媒へのマイクロ波の照射を停止して前記酸化触媒及びパティキュレートフィルタにマイクロ波を照射するよう前記マイクロ波発生装置を切り換える制御装置と
を備えたことを特徴とする排気浄化装置にかかるものである。
The present invention includes an oxidation catalyst and a particulate filter disposed in an exhaust pipe through which exhaust gas flows,
Fuel addition means for forcibly regenerating the particulate filter by adding fuel to the exhaust gas upstream of the oxidation catalyst;
A selective reduction catalyst disposed in the exhaust pipe;
A reducing agent adding means for adding a reducing agent upstream of the selective catalytic reduction catalyst to cause a reduction reaction with NOx in the exhaust gas on the selective catalytic reduction catalyst;
A fuel reforming catalyst for supplying a reformed gas of fuel to the inlet side of the oxidation catalyst;
A microwave generator that irradiates microwaves to any one of the fuel reforming catalyst, the oxidation catalyst, and the particulate filter;
When the oxidation catalyst temperature is lower than the oxidation catalyst set temperature, the microwave generator is switched to irradiate the fuel reforming catalyst with microwaves, while the oxidation catalyst temperature is equal to or higher than the oxidation catalyst set temperature. And a control device for switching the microwave generator so as to irradiate the fuel reforming catalyst with microwaves and irradiate the oxidation catalyst and the particulate filter with microwaves. It concerns the purification device.

上記手段によれば、以下のような作用が得られる。   According to the above means, the following operation can be obtained.

従来のように、加熱源としてヒータやグロープラグを用いるのと比べ、本発明のように酸化触媒温度が酸化触媒設定温度未満である場合にマイクロ波発生装置で発生させたマイクロ波を燃料改質触媒に照射すると、該燃料改質触媒の加熱が均一に行われ、燃料改質触媒全体が燃料を改質ガス化できる温度に上昇するまでの時間が短縮され、前記酸化触媒及びパティキュレートフィルタの温度を早期に上昇させやすくなって該パティキュレートフィルタの再生が容易になると共に、前記選択還元型触媒の入口温度の上昇時間が長引かず、該選択還元型触媒の上流側への還元剤添加が早期に行えるようになり、高いNOx低減率を得ることが可能となる。   Compared to the case of using a heater or a glow plug as a heating source as in the past, the microwave generated by the microwave generator when the oxidation catalyst temperature is lower than the oxidation catalyst set temperature as in the present invention is fuel reformed. When the catalyst is irradiated, the fuel reforming catalyst is uniformly heated, and the time until the entire fuel reforming catalyst rises to a temperature at which the fuel can be converted into reformed gas is shortened. The oxidation catalyst and the particulate filter It is easy to raise the temperature early, the regeneration of the particulate filter is facilitated, and the rise time of the inlet temperature of the selective catalytic reduction catalyst is not prolonged, so that the reducing agent can be added to the upstream side of the selective catalytic reduction catalyst. It becomes possible to carry out at an early stage, and a high NOx reduction rate can be obtained.

又、前記酸化触媒の温度が酸化触媒設定温度以上で、改質ガスを発生させる必要のなくなる温度領域では、マイクロ波発生装置で発生させたマイクロ波を燃料改質触媒から酸化触媒及びパティキュレートフィルタへ切り換えて照射するため、該マイクロ波を酸化触媒及びパティキュレートフィルタの昇温の補助として利用可能となり、排気温度が低くなるような運転条件でも酸化触媒及びパティキュレートフィルタの温度を高く保持し、高い活性を維持する上で非常に有効となる。因みに、特許文献1に開示されたものは、マイクロ波の照射により触媒装置を加熱するものであるが、本発明のように、温度に応じて加熱対象を切り換えるものとは相違している。   Further, in a temperature range where the temperature of the oxidation catalyst is equal to or higher than the oxidation catalyst set temperature and it is not necessary to generate reformed gas, the microwave generated by the microwave generator is transferred from the fuel reforming catalyst to the oxidation catalyst and the particulate filter. In order to irradiate and switch to, the microwave can be used as an aid for raising the temperature of the oxidation catalyst and the particulate filter, and the temperature of the oxidation catalyst and the particulate filter is kept high even under operating conditions where the exhaust temperature is lowered, It is very effective in maintaining high activity. Incidentally, what is disclosed in Patent Document 1 is to heat the catalyst device by microwave irradiation, but is different from that to switch the heating target according to the temperature as in the present invention.

前記排気浄化装置においては、前記燃料改質触媒へのマイクロ波照射により燃料改質触媒温度が改質設定温度以上となった場合に燃料改質触媒へ燃料及びエアを供給して改質ガスを発生させ、
前記酸化触媒温度が酸化触媒設定温度以上となった場合に前記燃料改質触媒への燃料及びエアの供給を停止し且つ前記燃料添加手段から燃料を添加し、
前記パティキュレートフィルタの入口温度がフィルタ設定温度以上となった場合にパティキュレートフィルタへのマイクロ波の照射を停止すると共に、前記燃料添加手段からの燃料添加を停止するよう前記制御装置を構成することができる。
In the exhaust emission control device, when the fuel reforming catalyst temperature becomes equal to or higher than a reforming set temperature due to microwave irradiation to the fuel reforming catalyst, fuel and air are supplied to the fuel reforming catalyst to generate reformed gas. Generate
When the oxidation catalyst temperature becomes equal to or higher than the oxidation catalyst set temperature, supply of fuel and air to the fuel reforming catalyst is stopped and fuel is added from the fuel addition means,
The controller is configured to stop the microwave irradiation to the particulate filter and stop the fuel addition from the fuel addition means when the inlet temperature of the particulate filter becomes equal to or higher than a filter set temperature. Can do.

更に、前記燃料添加手段からの燃料添加により選択還元型触媒温度が選択還元設定温度以上となった場合に前記還元剤添加手段から還元剤を添加し、
排ガス中のNOx濃度が規準値以下となった場合に前記還元剤添加手段からの還元剤の添加を停止するよう前記制御装置を構成することもできる。
Further, when the selective reduction catalyst temperature becomes equal to or higher than the selective reduction set temperature due to fuel addition from the fuel addition means, a reducing agent is added from the reducing agent addition means,
The control device can also be configured to stop the addition of the reducing agent from the reducing agent addition means when the NOx concentration in the exhaust gas becomes below a reference value.

又、前記排気浄化装置においては、前記還元剤を尿素水とすることができる。   In the exhaust gas purification apparatus, the reducing agent can be urea water.

本発明の排気浄化装置によれば、燃料改質触媒全体を効率良く加熱し、低排気温度時も酸化触媒及びパティキュレートフィルタの温度を早期に上昇させて該パティキュレートフィルタの再生を行い得ると共に、選択還元型触媒入口温度の上昇時間を短縮し、該選択還元型触媒の上流側への還元剤添加を早期に行ってNOx低減率向上を図り得るという優れた効果を奏し得る。   According to the exhaust emission control device of the present invention, the entire fuel reforming catalyst can be efficiently heated, and the temperature of the oxidation catalyst and the particulate filter can be increased at an early stage even at a low exhaust temperature to regenerate the particulate filter. In addition, it is possible to achieve an excellent effect that the time for raising the selective reduction catalyst inlet temperature is shortened and the reducing agent is added to the upstream side of the selective reduction catalyst at an early stage to improve the NOx reduction rate.

本発明の排気浄化装置の実施例を示す全体概要構成図である。1 is an overall schematic configuration diagram showing an embodiment of an exhaust emission control device of the present invention. 本発明の排気浄化装置の実施例における導波管を示す斜視図である。It is a perspective view which shows the waveguide in the Example of the exhaust gas purification apparatus of this invention. 本発明の排気浄化装置の実施例における制御の流れを示すフローチャートである。It is a flowchart which shows the flow of control in the Example of the exhaust gas purification apparatus of this invention. 本発明の排気浄化装置の実施例における制御の流れを示すフローチャートである。It is a flowchart which shows the flow of control in the Example of the exhaust gas purification apparatus of this invention. 本発明の排気浄化装置の実施例における燃料改質触媒と酸化触媒と選択還元型触媒の温度上昇を従来の場合と比較して示す線図である。It is a diagram which shows the temperature rise of the fuel reforming catalyst, oxidation catalyst, and selective reduction catalyst in the embodiment of the exhaust gas purification apparatus of the present invention in comparison with the conventional case.

以下、本発明の実施の形態を添付図面を参照して説明する。   Embodiments of the present invention will be described below with reference to the accompanying drawings.

図1〜図5は本発明の排気浄化装置の実施例であって、排ガスが流通する排気管1内に、酸化触媒2及びパティキュレートフィルタ3を配設し、その下流側に、還元剤として尿素水が用いられる選択還元型触媒4と、該選択還元型触媒4からリークしてくる余剰のアンモニア(NH3)を酸化処理するためのアンモニアスリップ触媒5とを配設してある。 1 to 5 show an embodiment of the exhaust gas purification apparatus of the present invention, in which an oxidation catalyst 2 and a particulate filter 3 are arranged in an exhaust pipe 1 through which exhaust gas flows, and as a reducing agent downstream thereof. A selective reduction catalyst 4 using urea water and an ammonia slip catalyst 5 for oxidizing excess ammonia (NH 3 ) leaking from the selective reduction catalyst 4 are provided.

前記酸化触媒2より上流には、排ガス中に燃料を添加してパティキュレートフィルタ3を強制再生する燃料添加手段6を設け、前記選択還元型触媒4の上流側には、還元剤を添加して該還元剤を選択還元型触媒4上で排ガス中のNOxと還元反応させ、NOxの排出濃度を低減させる還元剤添加手段7を設けてある。ここで、前記燃料添加手段6は、途中に遮断弁6bが設けられた燃料配管6aの先端に、前記排気管1内へ燃料を噴射する燃料添加ノズル6cを接続してなる構成を有している。又、前記還元剤添加手段7は、途中に遮断弁7bが設けられた還元剤配管7aの先端に、前記排気管1内へ還元剤を噴射する還元剤添加ノズル7cを接続してなる構成を有している。   A fuel addition means 6 for forcibly regenerating the particulate filter 3 by adding fuel to the exhaust gas is provided upstream of the oxidation catalyst 2, and a reducing agent is added upstream of the selective catalytic reduction catalyst 4. A reducing agent addition means 7 is provided for reducing the NOx emission concentration by causing the reducing agent to undergo a reduction reaction with NOx in the exhaust gas on the selective catalytic reduction catalyst 4. Here, the fuel addition means 6 has a configuration in which a fuel addition nozzle 6c for injecting fuel into the exhaust pipe 1 is connected to the tip of a fuel pipe 6a provided with a shutoff valve 6b in the middle. Yes. The reducing agent addition means 7 has a configuration in which a reducing agent addition nozzle 7c for injecting a reducing agent into the exhaust pipe 1 is connected to the tip of a reducing agent pipe 7a provided with a shutoff valve 7b in the middle. Have.

前記酸化触媒2の入側には、燃料の改質ガスを供給する燃料改質触媒8を設け、該燃料改質触媒8と前記酸化触媒2及びパティキュレートフィルタ3とのうちいずれか一方にマイクロ波を照射するマイクロ波発生装置9を前記排気管1の外部に設けてある。該マイクロ波発生装置9は、高電圧発生器9aと、該高電圧発生器9aからの高電圧の印加によりマイクロ波を発生するマグネトロン9bとから構成してある。   A fuel reforming catalyst 8 for supplying a reformed gas of fuel is provided on the entry side of the oxidation catalyst 2, and the fuel reforming catalyst 8 and any one of the oxidation catalyst 2 and the particulate filter 3 are micro-connected. A microwave generator 9 for irradiating a wave is provided outside the exhaust pipe 1. The microwave generator 9 includes a high voltage generator 9a and a magnetron 9b that generates a microwave when a high voltage is applied from the high voltage generator 9a.

前記燃料改質触媒8は、一端面に燃料配管10a及びエア配管11aが接続され且つ他端面に改質ガス吹出配管12が接続されたケーシング13内に配設してあり、該ケーシング13内には、燃料改質触媒8の上流側と下流側とを両側から挟むようにパンチングメタル等の電磁遮蔽部材14を配設すると共に、該電磁遮蔽部材14で挟まれる空間に、前記マイクロ波発生装置9のマグネトロン9bから延び且つ燃料改質触媒8へマイクロ波を照射するための導波管15を挿入し、前記燃料配管10a及びエア配管11aの途中にはそれぞれ、遮断弁10b,11bを設けてある。   The fuel reforming catalyst 8 is disposed in a casing 13 having a fuel pipe 10a and an air pipe 11a connected to one end face and a reformed gas blowing pipe 12 connected to the other end face. Is provided with an electromagnetic shielding member 14 such as a punching metal so as to sandwich the upstream side and the downstream side of the fuel reforming catalyst 8 from both sides, and the microwave generator is disposed in a space sandwiched by the electromagnetic shielding member 14. 9, a waveguide 15 extending from the magnetron 9b and irradiating the fuel reforming catalyst 8 with microwaves is inserted, and shut-off valves 10b and 11b are provided in the middle of the fuel pipe 10a and the air pipe 11a, respectively. is there.

前記排気管1内には、酸化触媒2及びパティキュレートフィルタ3の上流側と下流側とを両側から挟むようにパンチングメタル等の電磁遮蔽部材16を配設すると共に、該電磁遮蔽部材16で挟まれる空間に、前記マイクロ波発生装置9のマグネトロン9bから延び且つ酸化触媒2及びパティキュレートフィルタ3へマイクロ波を照射するための導波管17を挿入してある。   An electromagnetic shielding member 16 such as punching metal is disposed in the exhaust pipe 1 so as to sandwich the upstream side and the downstream side of the oxidation catalyst 2 and the particulate filter 3 from both sides, and is sandwiched by the electromagnetic shielding member 16. A waveguide 17 extending from the magnetron 9b of the microwave generator 9 and irradiating the oxidation catalyst 2 and the particulate filter 3 with microwaves is inserted into the space.

尚、前記電磁遮蔽部材14,16には、マイクロ波が通過することができない小径の孔(図示せず)が多数設けられており、マイクロ波は電磁遮蔽部材14,16によって遮蔽される一方、前記燃料及びエア、並びに排ガスはそれぞれ電磁遮蔽部材14,16の前記孔を通過できるようになっている。   The electromagnetic shielding members 14 and 16 are provided with a large number of small-diameter holes (not shown) through which microwaves cannot pass, and the microwaves are shielded by the electromagnetic shielding members 14 and 16. The fuel, air, and exhaust gas can pass through the holes of the electromagnetic shielding members 14 and 16, respectively.

更に、前記燃料改質触媒8の温度を検出する温度検出器18と、前記酸化触媒2の温度を検出する温度検出器19と、前記パティキュレートフィルタ3の入口温度を検出する温度検出器20と、前記選択還元型触媒4の温度を検出する温度検出器21と、排ガス中のNOx濃度を検出するNOx検出器22を設けると共に、前記各温度検出器18,19,20,21で検出された温度及びNOx検出器22で検出されたNOx濃度に基づき前記マイクロ波発生装置9へ切換制御信号を出力し且つ各遮断弁6b,7bへ開閉制御信号を出力する制御装置23を設けるようにしてある。   Furthermore, a temperature detector 18 for detecting the temperature of the fuel reforming catalyst 8, a temperature detector 19 for detecting the temperature of the oxidation catalyst 2, and a temperature detector 20 for detecting the inlet temperature of the particulate filter 3; The temperature detector 21 for detecting the temperature of the selective catalytic reduction catalyst 4 and the NOx detector 22 for detecting the NOx concentration in the exhaust gas are provided and detected by the temperature detectors 18, 19, 20, 21. Based on the temperature and the NOx concentration detected by the NOx detector 22, a control device 23 is provided for outputting a switching control signal to the microwave generator 9 and outputting an opening / closing control signal to the shutoff valves 6b and 7b. .

又、前記導波管15,17は、図2に示す如く、断面矩形形状の角型筒状で先端側(図2では下端側)を閉鎖し、前記燃料改質触媒8或いは酸化触媒2及びパティキュレートフィルタ3(図1参照)に対向する面に開口部15a,17aを形成し、前記マイクロ波発生装置9のマグネトロン9bで発生させたマイクロ波を内部で反射させながら前記開口部15a,17aから照射できるようにしてある。   Further, the waveguides 15 and 17 are rectangular cylinders having a rectangular cross section as shown in FIG. 2 and closed at the front end side (the lower end side in FIG. 2), so that the fuel reforming catalyst 8 or the oxidation catalyst 2 and Openings 15a and 17a are formed on the surface facing the particulate filter 3 (see FIG. 1), and the microwaves generated by the magnetron 9b of the microwave generator 9 are reflected internally while the openings 15a and 17a are reflected. It can be irradiated from.

次に、上記実施例の作用を説明する。   Next, the operation of the above embodiment will be described.

ディーゼルエンジンの運転時、温度検出器19で検出される酸化触媒2の温度が酸化触媒設定温度(例えば、200[℃])未満であるか否かの判断が行われ(図3のステップS1参照)、前記酸化触媒2の温度が酸化触媒設定温度未満である場合には、制御装置23から出力される切換制御信号によりマイクロ波発生装置9のマグネトロン9bが切り換えられて前記燃料改質触媒8に導波管15からマイクロ波が照射されその加熱が行われる(図3のステップS2参照)。   During operation of the diesel engine, it is determined whether or not the temperature of the oxidation catalyst 2 detected by the temperature detector 19 is lower than the oxidation catalyst set temperature (for example, 200 [° C.]) (see step S1 in FIG. 3). ) When the temperature of the oxidation catalyst 2 is lower than the oxidation catalyst set temperature, the magnetron 9b of the microwave generator 9 is switched by the switching control signal output from the control device 23 to the fuel reforming catalyst 8. Microwaves are irradiated from the waveguide 15 and heated (see step S2 in FIG. 3).

続いて、温度検出器18で検出される燃料改質触媒8の温度がマイクロ波照射により改質設定温度(例えば、400[℃])以上になったか否かの判断が行われ(図3のステップS3参照)、前記燃料改質触媒8の温度が改質設定温度以上になった場合には、制御装置23から出力される開閉制御信号により遮断弁10b,11bが開かれ、燃料改質触媒8へ燃料及びエアが供給されて改質ガスが発生し(図3のステップS4参照)、該改質ガスが改質ガス吹出配管12から酸化触媒2及びパティキュレートフィルタ3へ向けて吹き出され、改質ガスのH2及びCOにより、排ガスの低い温度領域であっても、前記酸化触媒及びパティキュレートフィルタの温度を早期に上昇させて該パティキュレートフィルタの再生を可能にすることが行われる。前記燃料改質触媒8の温度が改質設定温度以上になっていない場合には、前記ステップS2へ戻り、前記燃料改質触媒8へのマイクロ波照射による加熱が継続される。 Subsequently, it is determined whether or not the temperature of the fuel reforming catalyst 8 detected by the temperature detector 18 has become equal to or higher than a reforming set temperature (for example, 400 [° C.]) by microwave irradiation (FIG. 3). In step S3), when the temperature of the fuel reforming catalyst 8 becomes equal to or higher than the reforming set temperature, the shutoff valves 10b and 11b are opened by the open / close control signal output from the control device 23, and the fuel reforming catalyst. Fuel and air are supplied to 8 to generate reformed gas (see step S4 in FIG. 3), and the reformed gas is blown out from the reformed gas blowing pipe 12 toward the oxidation catalyst 2 and the particulate filter 3, the H 2 and CO in the reformed gas, even at a low temperature region the exhaust gas, it is conducted to said early raises the oxidation catalyst and temperature of the particulate filter to allow regeneration of the particulate filter That. If the temperature of the fuel reforming catalyst 8 is not equal to or higher than the reforming set temperature, the process returns to step S2, and heating of the fuel reforming catalyst 8 by microwave irradiation is continued.

尚、前記ステップS1において酸化触媒2の温度が酸化触媒設定温度未満でなく既に酸化触媒設定温度以上である場合には、前記燃料改質触媒8へのマイクロ波照射は行われず、そのまま前記ステップS4へ進む形となる。   When the temperature of the oxidation catalyst 2 is not lower than the oxidation catalyst set temperature but is already equal to or higher than the oxidation catalyst set temperature in the step S1, the microwave irradiation to the fuel reforming catalyst 8 is not performed and the step S4 is performed as it is. It becomes a form to go to.

前記酸化触媒2の温度が酸化触媒設定温度以上であるか否かの判断が行われ(図3のステップS5参照)、前記酸化触媒2の温度が酸化触媒設定温度以上である場合には、制御装置23から出力される切換制御信号によりマイクロ波発生装置9のマグネトロン9bが切り換えられて前記燃料改質触媒8へのマイクロ波の照射が停止されその加熱が停止され(図3のステップS6参照)、制御装置23から出力される開閉制御信号により遮断弁10b,11bが閉じられ、燃料改質触媒8への燃料及びエアの供給が停止されて改質ガスの発生が停止され(図3のステップS7参照)、パティキュレートフィルタ3に導波管17からマイクロ波が照射されその加熱が行われる(図3のステップS8参照)。   It is determined whether or not the temperature of the oxidation catalyst 2 is equal to or higher than the oxidation catalyst set temperature (see step S5 in FIG. 3). If the temperature of the oxidation catalyst 2 is equal to or higher than the oxidation catalyst set temperature, control is performed. The magnetron 9b of the microwave generator 9 is switched by the switching control signal output from the device 23, the microwave irradiation to the fuel reforming catalyst 8 is stopped, and the heating is stopped (see step S6 in FIG. 3). The shutoff valves 10b and 11b are closed by the open / close control signal output from the control device 23, the supply of fuel and air to the fuel reforming catalyst 8 is stopped, and the generation of reformed gas is stopped (step of FIG. 3). S7), the particulate filter 3 is irradiated with microwaves from the waveguide 17 and heated (see step S8 in FIG. 3).

この後、制御装置23から出力される開閉制御信号により遮断弁6bが開かれ、燃料添加手段6の燃料添加ノズル6cからの燃料噴射が開始され(図4のステップS9参照)、温度検出器20で検出されるパティキュレートフィルタ3の入口温度がフィルタ設定温度(例えば、600[℃])以上となっているか否かの判断が行われ(図4のステップS10参照)、該パティキュレートフィルタ3の入口温度がフィルタ設定温度以上となっていない場合には、前記ステップS9へ戻り、前記パティキュレートフィルタ3へのマイクロ波照射による加熱が引き続き行われている状態で、前記燃料添加手段6の燃料添加ノズル6cからの燃料噴射が継続され、前記パティキュレートフィルタ3の入口温度がフィルタ設定温度以上となった場合には、パティキュレートフィルタ3へのマイクロ波の照射が停止されると共に(図4のステップS11参照)、前記燃料添加手段6の燃料添加ノズル6cからの燃料噴射が停止される(図4のステップS12参照)。   Thereafter, the shutoff valve 6b is opened by an open / close control signal output from the control device 23, fuel injection from the fuel addition nozzle 6c of the fuel addition means 6 is started (see step S9 in FIG. 4), and the temperature detector 20 It is determined whether or not the inlet temperature of the particulate filter 3 detected in (1) is equal to or higher than the filter set temperature (for example, 600 [° C.]) (see step S10 in FIG. 4). If the inlet temperature is not equal to or higher than the filter set temperature, the process returns to step S9, and the fuel addition means 6 adds fuel while the particulate filter 3 is continuously heated by microwave irradiation. When the fuel injection from the nozzle 6c is continued and the inlet temperature of the particulate filter 3 becomes equal to or higher than the filter set temperature. The microwave irradiation to the particulate filter 3 is stopped (see step S11 in FIG. 4), and the fuel injection from the fuel addition nozzle 6c of the fuel addition means 6 is stopped (see step S12 in FIG. 4). .

前記ステップS10におけるパティキュレートフィルタ3の入口温度のフィルタ設定温度に対する比較判断と並行して、温度検出器21で検出される選択還元型触媒4の温度が選択還元設定温度(例えば、200[℃])以上となっているか否かの判断が行われ(図4のステップS13参照)、該選択還元型触媒4の温度が選択還元設定温度以上となっていない場合には、前記ステップS9へ戻り、前記パティキュレートフィルタ3へのマイクロ波照射による加熱が引き続き行われている状態で、前記燃料添加手段6の燃料添加ノズル6cからの燃料噴射が継続され、前記燃料添加手段6の燃料添加ノズル6cからの燃料噴射により選択還元型触媒4の温度が選択還元設定温度以上となった場合には、前記還元剤添加手段7の還元剤添加ノズル7cから還元剤として尿素水が噴射される(図4のステップS14参照)。   Concurrently with the comparison judgment with respect to the filter set temperature of the inlet temperature of the particulate filter 3 in the step S10, the temperature of the selective catalytic reduction catalyst 4 detected by the temperature detector 21 is the selective reduction set temperature (for example, 200 [° C.]). ) Is determined (see step S13 in FIG. 4). If the temperature of the selective catalytic reduction catalyst 4 is not equal to or higher than the selective reduction set temperature, the process returns to step S9, Fuel injection from the fuel addition nozzle 6c of the fuel addition means 6 is continued in a state in which the particulate filter 3 is continuously heated by microwave irradiation, and from the fuel addition nozzle 6c of the fuel addition means 6 When the temperature of the selective reduction catalyst 4 becomes equal to or higher than the selective reduction set temperature due to the fuel injection, the reducing agent addition nose of the reducing agent addition means 7 is reduced. Urea water is injected as a reducing agent from 7c (see step S14 in FIG. 4).

前記還元剤添加手段7の還元剤添加ノズル7cからの還元剤としての尿素水の噴射により、NOx検出器22で検出される排ガス中のNOx濃度が規準値以下となったか否かの判断が行われ(図4のステップS15参照)、該排ガス中のNOx濃度が規準値以下となっていない場合には、前記ステップS14へ戻り、前記還元剤添加手段7の還元剤添加ノズル7cからの還元剤としての尿素水の噴射が継続され、前記排ガス中のNOx濃度が規準値以下となった場合には、前記還元剤添加手段7の還元剤添加ノズル7cからの還元剤としての尿素水の添加が停止される(図4のステップS16参照)。   Judgment is made as to whether or not the NOx concentration in the exhaust gas detected by the NOx detector 22 has fallen below the reference value due to the injection of urea water as the reducing agent from the reducing agent addition nozzle 7c of the reducing agent addition means 7. If the NOx concentration in the exhaust gas is not below the reference value, the process returns to step S14 and the reducing agent from the reducing agent addition nozzle 7c of the reducing agent addition means 7 is performed. When the NOx concentration in the exhaust gas becomes equal to or less than a reference value, the addition of urea water as a reducing agent from the reducing agent addition nozzle 7c of the reducing agent addition means 7 is continued. Stopped (see step S16 in FIG. 4).

尚、図5中、Aは、本実施例において、燃料改質触媒8の温度が改質設定温度(例えば、400[℃])に到達し、燃料改質触媒8へ燃料及びエアを供給して改質ガスを発生させることが可能となるタイミングを示している。   In FIG. 5, A indicates that the temperature of the fuel reforming catalyst 8 reaches the reforming set temperature (for example, 400 [° C.]) and supplies fuel and air to the fuel reforming catalyst 8 in this embodiment. The timing at which the reformed gas can be generated is shown.

又、Bは、本実施例において、酸化触媒2の温度が酸化触媒設定温度(例えば、200[℃])に到達し、前記燃料改質触媒8への燃料及びエアの供給を停止し且つ前記酸化触媒2より上流の排ガス中に燃料添加手段6から燃料を添加し、パティキュレートフィルタ3を強制再生することが可能となるタイミングを示している。   In the present embodiment, B indicates that the temperature of the oxidation catalyst 2 reaches the oxidation catalyst set temperature (for example, 200 [° C.]), stops the supply of fuel and air to the fuel reforming catalyst 8, and The timing at which fuel can be added from the fuel addition means 6 to the exhaust gas upstream of the oxidation catalyst 2 and the particulate filter 3 can be forcibly regenerated is shown.

更に又、Cは、本実施例において、選択還元型触媒4の温度が選択還元設定温度(例えば、200[℃])に到達し、前記還元剤添加手段7から還元剤としての尿素水を添加し、選択還元型触媒4上で排ガス中のNOxをアンモニアにより還元浄化することが可能となるタイミングを示している。   Furthermore, in the present embodiment, C, when the temperature of the selective catalytic reduction catalyst 4 reaches a selective reduction setting temperature (for example, 200 [° C.]), urea water as a reducing agent is added from the reducing agent adding means 7. The timing at which NOx in the exhaust gas can be reduced and purified with ammonia on the selective catalytic reduction catalyst 4 is shown.

この結果、従来のように、加熱源としてヒータやグロープラグを用いるのと比べ、本実施例のようにマイクロ波発生装置9のマグネトロン9bで発生させたマイクロ波を燃料改質触媒8に照射すると、該燃料改質触媒8の加熱が均一に行われ、図5に示す如く、燃料改質触媒8全体が燃料を改質ガス化できる温度(例えば、400[℃])に上昇するまでの時間が短縮され、前記酸化触媒2及びパティキュレートフィルタ3の温度を早期に上昇させやすくなって該パティキュレートフィルタ3の再生が容易になると共に、前記選択還元型触媒4の入口温度の上昇時間が長引かず、該選択還元型触媒4の上流側への尿素水添加が早期に行えるようになり、高いNOx低減率を得ることが可能となる。   As a result, as compared with the conventional case where a heater or a glow plug is used as a heating source, the fuel reforming catalyst 8 is irradiated with the microwave generated by the magnetron 9b of the microwave generator 9 as in this embodiment. The time until the fuel reforming catalyst 8 is uniformly heated and the whole fuel reforming catalyst 8 rises to a temperature at which the fuel can be converted into reformed gas (for example, 400 [° C.]) as shown in FIG. The temperature of the oxidation catalyst 2 and the particulate filter 3 can be easily raised early, the regeneration of the particulate filter 3 is facilitated, and the rise time of the inlet temperature of the selective catalytic reduction catalyst 4 is prolonged. Therefore, urea water can be added to the upstream side of the selective catalytic reduction catalyst 4 at an early stage, and a high NOx reduction rate can be obtained.

又、前記酸化触媒2の温度が酸化触媒設定温度以上で、改質ガスを発生させる必要のなくなる温度領域では、マイクロ波発生装置9のマグネトロン9bで発生させたマイクロ波を燃料改質触媒8から酸化触媒2及びパティキュレートフィルタ3へ切り換えて照射するため、該マイクロ波を酸化触媒2及びパティキュレートフィルタ3の昇温の補助として利用可能となり、排気温度が低くなるような運転条件でも酸化触媒2及びパティキュレートフィルタ3の温度を高く保持し、高い活性を維持する上で非常に有効となる。因みに、特許文献1に開示されたものは、マイクロ波の照射により触媒装置を加熱するものであるが、本実施例のように、温度に応じて加熱対象を切り換えるものとは相違している。   In the temperature range where the temperature of the oxidation catalyst 2 is equal to or higher than the oxidation catalyst set temperature and the generation of reformed gas is not necessary, the microwave generated by the magnetron 9b of the microwave generator 9 is sent from the fuel reforming catalyst 8. Since the irradiation is switched to the oxidation catalyst 2 and the particulate filter 3, the microwave can be used as an auxiliary for raising the temperature of the oxidation catalyst 2 and the particulate filter 3, and the oxidation catalyst 2 even under operating conditions where the exhaust temperature is lowered. And it is very effective in keeping the temperature of the particulate filter 3 high and maintaining high activity. Incidentally, what is disclosed in Patent Document 1 is for heating the catalyst device by microwave irradiation, but is different from that for switching the heating target according to the temperature as in this embodiment.

尚、前記燃料改質触媒8や酸化触媒2及びパティキュレートフィルタ3の担体には、マイクロ波によって加熱されやすい誘電損失の大きな材料を用いるのが望ましいが、誘電損失の小さい触媒担体に誘電損失の大きな材料を埋め込んで使用しても良い。   It is preferable to use a material having a large dielectric loss that is easily heated by microwaves for the carrier of the fuel reforming catalyst 8, the oxidation catalyst 2, and the particulate filter 3, but the catalyst carrier having a small dielectric loss has a low dielectric loss. Large materials may be embedded and used.

こうして、燃料改質触媒8全体を効率良く加熱し、低排気温度時も酸化触媒2及びパティキュレートフィルタ3の温度を早期に上昇させて該パティキュレートフィルタ3の再生を行い得ると共に、選択還元型触媒4の入口温度の上昇時間を短縮し、該選択還元型触媒4の上流側への還元剤添加を早期に行ってNOx低減率向上を図り得る。   In this way, the entire fuel reforming catalyst 8 can be efficiently heated, and the temperature of the oxidation catalyst 2 and the particulate filter 3 can be increased at an early stage even at a low exhaust temperature to regenerate the particulate filter 3. The rise time of the inlet temperature of the catalyst 4 can be shortened, and the reducing agent can be added to the upstream side of the selective catalytic reduction catalyst 4 at an early stage to improve the NOx reduction rate.

尚、本発明の排気浄化装置は、上述の実施例にのみ限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。   The exhaust emission control device of the present invention is not limited to the above-described embodiment, and various changes can be made without departing from the scope of the present invention.

1 排気管
2 酸化触媒
3 パティキュレートフィルタ
4 選択還元型触媒
6 燃料添加手段
7 還元剤添加手段
8 燃料改質触媒
9 マイクロ波発生装置
10a 燃料配管
11a エア配管
12 改質ガス吹出配管
18 温度検出器
19 温度検出器
20 温度検出器
21 温度検出器
22 NOx検出器
23 制御装置
DESCRIPTION OF SYMBOLS 1 Exhaust pipe 2 Oxidation catalyst 3 Particulate filter 4 Selective reduction type catalyst 6 Fuel addition means 7 Reducing agent addition means 8 Fuel reforming catalyst 9 Microwave generator 10a Fuel piping 11a Air piping 12 Reformed gas outlet piping 18 Temperature detector DESCRIPTION OF SYMBOLS 19 Temperature detector 20 Temperature detector 21 Temperature detector 22 NOx detector 23 Control apparatus

Claims (4)

排ガスが流通する排気管内に配設される酸化触媒及びパティキュレートフィルタと、
該酸化触媒より上流の排ガス中に燃料を添加してパティキュレートフィルタを強制再生する燃料添加手段と、
前記排気管内に配設される選択還元型触媒と、
該選択還元型触媒の上流側に還元剤を添加して選択還元型触媒上で排ガス中のNOxと還元反応させる還元剤添加手段と、
前記酸化触媒の入側に燃料の改質ガスを供給する燃料改質触媒と、
該燃料改質触媒と前記酸化触媒及びパティキュレートフィルタとのうちいずれか一方にマイクロ波を照射するマイクロ波発生装置と、
前記酸化触媒温度が酸化触媒設定温度未満である場合には前記燃料改質触媒にマイクロ波を照射するよう前記マイクロ波発生装置を切り換える一方、前記酸化触媒温度が酸化触媒設定温度以上となった場合には前記燃料改質触媒へのマイクロ波の照射を停止して前記酸化触媒及びパティキュレートフィルタにマイクロ波を照射するよう前記マイクロ波発生装置を切り換える制御装置と
を備えたことを特徴とする排気浄化装置。
An oxidation catalyst and a particulate filter disposed in an exhaust pipe through which exhaust gas flows;
Fuel addition means for forcibly regenerating the particulate filter by adding fuel to the exhaust gas upstream of the oxidation catalyst;
A selective reduction catalyst disposed in the exhaust pipe;
A reducing agent adding means for adding a reducing agent upstream of the selective catalytic reduction catalyst to cause a reduction reaction with NOx in the exhaust gas on the selective catalytic reduction catalyst;
A fuel reforming catalyst for supplying a reformed gas of fuel to the inlet side of the oxidation catalyst;
A microwave generator that irradiates microwaves to any one of the fuel reforming catalyst, the oxidation catalyst, and the particulate filter;
When the oxidation catalyst temperature is lower than the oxidation catalyst set temperature, the microwave generator is switched to irradiate the fuel reforming catalyst with microwaves, while the oxidation catalyst temperature is equal to or higher than the oxidation catalyst set temperature. And a control device for switching the microwave generator so as to irradiate the fuel reforming catalyst with microwaves and irradiate the oxidation catalyst and the particulate filter with microwaves. Purification equipment.
前記燃料改質触媒へのマイクロ波照射により燃料改質触媒温度が改質設定温度以上となった場合に燃料改質触媒へ燃料及びエアを供給して改質ガスを発生させ、
前記酸化触媒温度が酸化触媒設定温度以上となった場合に前記燃料改質触媒への燃料及びエアの供給を停止し且つ前記燃料添加手段から燃料を添加し、
前記パティキュレートフィルタの入口温度がフィルタ設定温度以上となった場合にパティキュレートフィルタへのマイクロ波の照射を停止すると共に、前記燃料添加手段からの燃料添加を停止するよう前記制御装置を構成した請求項1記載の排気浄化装置。
When the fuel reforming catalyst temperature becomes equal to or higher than the reforming set temperature by microwave irradiation to the fuel reforming catalyst, fuel and air are supplied to the fuel reforming catalyst to generate reformed gas,
When the oxidation catalyst temperature becomes equal to or higher than the oxidation catalyst set temperature, supply of fuel and air to the fuel reforming catalyst is stopped and fuel is added from the fuel addition means,
The control device is configured to stop microwave irradiation to the particulate filter and stop fuel addition from the fuel addition means when the inlet temperature of the particulate filter becomes equal to or higher than a filter set temperature. Item 2. An exhaust emission control device according to Item 1.
前記燃料添加手段からの燃料添加により選択還元型触媒温度が選択還元設定温度以上となった場合に前記還元剤添加手段から還元剤を添加し、
排ガス中のNOx濃度が規準値以下となった場合に前記還元剤添加手段からの還元剤の添加を停止するよう前記制御装置を構成した請求項2記載の排気浄化装置。
When the selective catalytic reduction catalyst temperature becomes equal to or higher than the selective reduction set temperature due to fuel addition from the fuel addition means, a reducing agent is added from the reducing agent addition means,
The exhaust emission control device according to claim 2, wherein the control device is configured to stop the addition of the reducing agent from the reducing agent addition means when the NOx concentration in the exhaust gas becomes a reference value or less.
前記還元剤を尿素水とした請求項1〜3のいずれか一つに記載の排気浄化装置。   The exhaust emission control device according to any one of claims 1 to 3, wherein the reducing agent is urea water.
JP2012155371A 2012-07-11 2012-07-11 Exhaust emission control device Pending JP2014015909A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012155371A JP2014015909A (en) 2012-07-11 2012-07-11 Exhaust emission control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012155371A JP2014015909A (en) 2012-07-11 2012-07-11 Exhaust emission control device

Publications (1)

Publication Number Publication Date
JP2014015909A true JP2014015909A (en) 2014-01-30

Family

ID=50110810

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012155371A Pending JP2014015909A (en) 2012-07-11 2012-07-11 Exhaust emission control device

Country Status (1)

Country Link
JP (1) JP2014015909A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180008925A1 (en) * 2016-07-08 2018-01-11 Fujitsu Limited Fine particle detector and exhaust gas purification apparatus
CN110296425A (en) * 2019-06-26 2019-10-01 广东德大环保设备有限公司 A kind of low-temperature catalyzed cleaning equipment of VOCs volatile organic waste gas
US10576406B2 (en) * 2017-04-04 2020-03-03 Fujitsu Limited Exhaust purification device, internal combustion device, and power generation device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180008925A1 (en) * 2016-07-08 2018-01-11 Fujitsu Limited Fine particle detector and exhaust gas purification apparatus
US10850221B2 (en) * 2016-07-08 2020-12-01 Fujitsu Limited Fine particle detector and exhaust gas purification apparatus
US10576406B2 (en) * 2017-04-04 2020-03-03 Fujitsu Limited Exhaust purification device, internal combustion device, and power generation device
CN110296425A (en) * 2019-06-26 2019-10-01 广东德大环保设备有限公司 A kind of low-temperature catalyzed cleaning equipment of VOCs volatile organic waste gas

Similar Documents

Publication Publication Date Title
ES2638605T3 (en) Active and passive regeneration assisted by electric heating for efficient emission controls of diesel engines
JP5449009B2 (en) Exhaust purification device
KR100922513B1 (en) Exhaust aftertreatment system and method for lean burn internal combustion engines
US20030140616A1 (en) Purification of exhaust gases
JP2011506827A5 (en)
JP2009114930A (en) Exhaust purification device
JP6005413B2 (en) Exhaust purification device
JP2005090450A (en) Exhaust emission control device
KR101028556B1 (en) System for purifying exhaust gas
JP2009091909A (en) Exhaust emission control device
JP2009041454A (en) Nox emission control method and nox emission control system
JP2007023997A (en) Exhaust emission control device
JP2015093222A (en) Non-catalyst nox removal system and non-catalyst nox removal method
JP2014015909A (en) Exhaust emission control device
KR101607647B1 (en) Regenerating Device of Deactivated De-NOx SCR Catalyst
JP2011012643A (en) Reducing agent supply device of urea scr catalyst
JP2004162600A (en) Exhaust emission control device for internal combustion engine
JP2008038634A (en) Exhaust emission control device for internal combustion engine
JP2017227181A (en) Oxidization catalyst and exhaust emission control system
JP5282568B2 (en) Exhaust gas purification method and exhaust gas purification system
JP5962165B2 (en) Denitration apparatus and denitration method
JP2012154247A (en) Exhaust gas treatment device
KR102067851B1 (en) Selective catalytic reduction system
JP2013245606A (en) Exhaust gas purification system
KR102488787B1 (en) After-treatment apparatus for exhaust gas and after-treatment method for exhaust gas using the same