JP2014015857A - Electromagnetic fuel injection valve - Google Patents

Electromagnetic fuel injection valve Download PDF

Info

Publication number
JP2014015857A
JP2014015857A JP2012151996A JP2012151996A JP2014015857A JP 2014015857 A JP2014015857 A JP 2014015857A JP 2012151996 A JP2012151996 A JP 2012151996A JP 2012151996 A JP2012151996 A JP 2012151996A JP 2014015857 A JP2014015857 A JP 2014015857A
Authority
JP
Japan
Prior art keywords
movable core
fuel injection
spring
injection valve
valve body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012151996A
Other languages
Japanese (ja)
Other versions
JP5814870B2 (en
Inventor
Kiyotaka Ogura
清隆 小倉
Takeo Miyake
威生 三宅
Junji Takaoku
淳司 高奥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Astemo Ltd
Original Assignee
Hitachi Automotive Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Automotive Systems Ltd filed Critical Hitachi Automotive Systems Ltd
Priority to JP2012151996A priority Critical patent/JP5814870B2/en
Publication of JP2014015857A publication Critical patent/JP2014015857A/en
Application granted granted Critical
Publication of JP5814870B2 publication Critical patent/JP5814870B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Fuel-Injection Apparatus (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve an engine combustion performance by reducing a return time of a movable core that is constituted so that it can be relatively displaced from a valve body in a fuel injection valve.SOLUTION: An electromagnetic fuel injection valve has: a cylindrical member 2 having an injection hole at a tip; a stationary core 3 housed inside the cylindrical member 2; a movable core 4 that is housed inside the cylindrical member 2 opposite to side end faces of injection holes 71, 72 of the stationary core 3 and that can move forward and backward; and a spring 10 energizing the movable core 4 toward the stationary core 3. Flexion and a load of the spring 10 have a non-linear shape.

Description

本発明は、自動車用内燃機関用の燃料噴射弁に関する。   The present invention relates to a fuel injection valve for an automobile internal combustion engine.

従来、内燃機関に用いられる燃料噴射弁は、コイルに電流を流すことにより可動コアと固定コアとを含む磁気通路に磁束を供給し、可動コア端面と固定コア端面との間の磁気吸引ギャップに磁気吸引力を発生させて可動コアを固定コア側に引き付けることにより、弁体の開閉を行う構成となっている。弁体に対して可動コアが弁体の軸方向に相対変位可能に構成されて弁体と可動コアとが協働する場合、閉弁状態に至る過程において、元の可動コア静止位置を通過するオーバーシュートを発生することがあり、このオーバーシュートを制限し元の可動コア静止位置に戻すために、可動コア下側に戻しばねを設置し、可動コア上側方向への強制力を付与している。(例えば特許文献1参照)。   2. Description of the Related Art Conventionally, a fuel injection valve used in an internal combustion engine supplies magnetic flux to a magnetic path including a movable core and a fixed core by flowing a current through a coil, and forms a magnetic attraction gap between the movable core end surface and the fixed core end surface. The valve body is opened and closed by generating a magnetic attractive force and attracting the movable core toward the fixed core. When the movable core is configured to be relatively displaceable in the axial direction of the valve body and the valve body and the movable core cooperate with each other, the original movable core stationary position is passed in the process of reaching the valve closing state. An overshoot may occur, and in order to limit this overshoot and return to the original movable core stationary position, a return spring is installed on the lower side of the movable core to apply a forcing force in the upper direction of the movable core. . (For example, refer to Patent Document 1).

特許第4211814号公報Japanese Patent No. 4211814

特許文献1には、弁体と協動する可動コアの下側(固定コアとは反対側)に戻しばねが設置してあることが記載されている。この戻しばねは、弁体が静止状態のときに可動コアと弁体を接触した状態で静止するために必要な強制力を発生することと、閉弁時に可動コアが元の静止位置よりも下側への過度のオーバーシュートを抑制するだけの強制力が必要とされる。また、可動コアがオーバーシュート最下点から元の可動コア静止位置へ戻り弁体と接触する時に必要最小限の衝突力をもった状態にすることで、弁体の再作動を防止し2次噴射を防ぐことが可能となる。2次噴射は、エンジン燃焼に必要な流量を最適に制御できないばかりでなく、排気性能の悪化にもつながるため燃料噴射弁にとっては防がなければならない重要な機能のひとつでもある。   Patent Document 1 describes that a return spring is installed on the lower side (opposite to the fixed core) of the movable core that cooperates with the valve body. This return spring generates a forcing force necessary to stop the valve body in contact with the movable core when the valve body is stationary, and the movable core is lower than the original stationary position when the valve is closed. Force is required to suppress excessive overshoot to the side. In addition, when the movable core returns to the original movable core stationary position from the lowest point of the overshoot and comes into contact with the valve body, the valve body is prevented from being re-actuated to prevent secondary operation. It becomes possible to prevent injection. The secondary injection is one of important functions that must be prevented for the fuel injection valve because not only the flow rate required for engine combustion cannot be optimally controlled but also the exhaust performance is deteriorated.

近年環境負荷への軽減を背景に、排気ガスのさらなる低減、燃料消費量の低減が必要となり、燃料噴射弁へも最小噴射量低減や弁体挙動ばらつきのさらなる低減が求められている。具体的に燃料噴射弁の要求機能としては1回の燃焼行程における分割噴射、すなわち微小時間における複数回の噴射が必要となっている。
このような燃料噴射弁の機能への要求に対して、特許文献1の構造だけで微小時間における複数回の噴射を満足するには構造的に十分といえない。
本発明の目的は、可動コア下側における戻しばね機能を拡張し、微小時間における複数回の燃料噴射を可能にする燃料噴射弁を市場に提供することにある。
In recent years, further reduction of exhaust gas and reduction of fuel consumption are required against the background of mitigation of environmental load, and fuel injection valves are required to further reduce minimum injection amount and variation in valve body behavior. Specifically, the required function of the fuel injection valve requires divided injection in one combustion stroke, that is, multiple injections in a minute time.
In response to such a demand for the function of the fuel injection valve, the structure of Patent Document 1 alone is not structurally sufficient to satisfy multiple injections in a very short time.
An object of the present invention is to provide a market with a fuel injection valve that expands the return spring function under the movable core and enables multiple fuel injections in a minute time.

上記課題を解決するため、本発明では、可動コアが元の静止位置よりも下側へオーバーシュートする領域において、オーバーシュート量が大きい領域のバネ定数が、オーバーシュート量が小さい領域のバネ定数よりも大きくなるように、可動コア下側における戻しばねの荷重特性を設定したことを特徴とする。   In order to solve the above problem, in the present invention, in the region where the movable core overshoots below the original stationary position, the spring constant in the region where the overshoot amount is large is larger than the spring constant in the region where the overshoot amount is small. Also, the load characteristic of the return spring on the lower side of the movable core is set so as to be larger.

本発明によれば、可動コアがオーバーシュート量の大きい領域に位置する場合に戻しばねのバネ定数が大きくなることから、可動コア上側方向へ付与される強制力、すなわち可動コアを元の位置へ戻す力が大きくなる。そのため、可動コアのオーバーシュート量(最下点)は従来の可動コアのオーバーシュート量に比べて軽減できることがわかる。オーバーシュート量が軽減された結果、可動コアが元の静止位置に戻る時間が短縮されることから、弁体の次作動までに必要な時間を短縮できるため、微小時間における複数回の燃料噴射を増やすことが確実に可能となる。   According to the present invention, since the spring constant of the return spring increases when the movable core is located in a region where the overshoot amount is large, the forcing force applied in the upward direction of the movable core, that is, the movable core is returned to the original position. The power to return increases. Therefore, it can be seen that the overshoot amount (the lowest point) of the movable core can be reduced as compared with the overshoot amount of the conventional movable core. As a result of reducing the amount of overshoot, the time required for the movable core to return to the original stationary position is shortened, so the time required for the next operation of the valve body can be shortened. It is definitely possible to increase.

燃料噴射弁の全体構成を示す縦断面図。The longitudinal cross-sectional view which shows the whole structure of a fuel injection valve. 従来構造の詳細拡大図Detailed enlarged view of conventional structure 実施例記載の形態図Example drawing 実施例記載の別形態図Another form of description in the examples 実施例記載の別形態図Another form of description in the examples 実施例記載の別形態図Another form of description in the examples

本発明に係る実施例を説明する。   Embodiments according to the present invention will be described.

図1は、本発明の一実施例に係る燃料噴射弁の全体構成を示す縦断面図である。本実施例の燃料噴射弁は、ガソリン等の燃料をエンジンの気筒(燃焼室)内に直接供給する燃料噴射弁である。   FIG. 1 is a longitudinal sectional view showing the overall configuration of a fuel injection valve according to an embodiment of the present invention. The fuel injection valve of the present embodiment is a fuel injection valve that directly supplies fuel such as gasoline into the cylinder (combustion chamber) of the engine.

燃料噴射弁本体1は、金属円筒部材であるノズルボディ2、ノズルボディ2の内周に結合される中空の固定コア3、固定コアの対向面に配置されノズルボディ2に収容される可動コア4、ノズルボディ2の外周に配置される電磁コイル6、電磁コイル6の外側に配置されるハウジング5からなり、これらの部品は磁気回路構成要素となる。   The fuel injection valve body 1 includes a nozzle body 2 that is a metal cylindrical member, a hollow fixed core 3 that is coupled to the inner periphery of the nozzle body 2, and a movable core 4 that is disposed on the opposite surface of the fixed core and is accommodated in the nozzle body 2. The electromagnetic coil 6 disposed on the outer periphery of the nozzle body 2 and the housing 5 disposed on the outer side of the electromagnetic coil 6 include these components as magnetic circuit components.

可動コア4の内径には弁体41が貫通するように組みつけられており、可動コア4の軸方向の動きと弁体41は同調する。ノズルボディ2の先端側にはガイド部材12が組み付けられたオリフィスカップ7が収容されており、オリフィスカップ7には噴孔71、72が配置される。噴孔71、72は本断面図では2個であるが、1つもしくは3つ以上の複数あっても良い。
燃料は固定コア2の上流側から供給され、固定コア3、ノズルボディ2の内部を通りオリフィスカップ7まで達する。
A valve body 41 is assembled so as to penetrate the inner diameter of the movable core 4, and the movement of the movable core 4 in the axial direction is synchronized with the valve body 41. An orifice cup 7 to which a guide member 12 is assembled is accommodated on the tip side of the nozzle body 2, and injection holes 71 and 72 are arranged in the orifice cup 7. Although there are two nozzle holes 71 and 72 in this cross-sectional view, there may be one or a plurality of three or more.
The fuel is supplied from the upstream side of the fixed core 2, passes through the fixed core 3 and the nozzle body 2, and reaches the orifice cup 7.

弁体41は固定コア2の内部に収容されるばね8によりバネ力を付成され、バネ力により弁体41はオリフィスカップ7と接触する。このバネ力は、ばね8を圧縮することで力を発生し弁体41へ力を伝達する。このバネ力は適切に設定される必要があり、固定コア3の内部、ばね8の上部に設置されたアジャスタ9の位置により調整される。アジャスタ9はばね8を介して弁体41の反対側にあり、固定コア2の内径に圧入などにより固定されている。電磁コイル6に通電されない時は弁体41とオリフィスカップ7は金属シールを構成し、燃料は噴孔71、72より噴出されない。   The valve body 41 is provided with a spring force by the spring 8 housed in the fixed core 2, and the valve body 41 contacts the orifice cup 7 by the spring force. This spring force is generated by compressing the spring 8 and transmitted to the valve body 41. This spring force needs to be set appropriately, and is adjusted by the position of the adjuster 9 installed in the fixed core 3 and on the top of the spring 8. The adjuster 9 is on the opposite side of the valve body 41 via the spring 8 and is fixed to the inner diameter of the fixed core 2 by press fitting or the like. When the electromagnetic coil 6 is not energized, the valve body 41 and the orifice cup 7 constitute a metal seal, and fuel is not ejected from the injection holes 71 and 72.

また、ノズルボディ2内部には、弁体41の軸方向に離れた位置に、2つのガイド部材11、12が配置されている。さらに可動コア4の下側には戻しばね10が設置されており、本実施例では可動コア4とガイド部材11との間に挟まれるように設置されている。   Further, two guide members 11 and 12 are disposed in the nozzle body 2 at positions separated in the axial direction of the valve body 41. Further, a return spring 10 is installed on the lower side of the movable core 4. In this embodiment, the return spring 10 is installed so as to be sandwiched between the movable core 4 and the guide member 11.

電磁コイル6に適切な電流がリード端子13を伝達し印加されることで、電磁コイル6を中心に磁場が発生し、前述の磁気回路(固定コア2、可動コア3、ハウジング6、ノズルホルダ2)に磁束がながれ、固定コア3と可動コア4の境界部に構成される空隙を狭めるように可動コア4に吸引力が発生する。ガイド部材11、12により弁体41は径方向への動きを制限されているため、可動コア4が軸方向に動くのにあわせ弁体41もオリフィスカップ7から離れるように動作を開始する。そのため、オリフィスカップ7と弁体41にせき止められていた燃料は噴孔71、72に流入し、燃料噴射弁本体からエンジンの燃焼室内に供給される。   When an appropriate current is transmitted to and applied to the electromagnetic coil 6 through the lead terminal 13, a magnetic field is generated around the electromagnetic coil 6, and the magnetic circuit (the fixed core 2, the movable core 3, the housing 6, the nozzle holder 2). ), A magnetic force is generated, and an attractive force is generated in the movable core 4 so as to narrow the gap formed at the boundary between the fixed core 3 and the movable core 4. Since the valve body 41 is restricted from moving in the radial direction by the guide members 11 and 12, the valve body 41 starts to move away from the orifice cup 7 as the movable core 4 moves in the axial direction. Therefore, the fuel blocked by the orifice cup 7 and the valve body 41 flows into the injection holes 71 and 72 and is supplied from the fuel injection valve body into the combustion chamber of the engine.

その後、電磁コイル5に印加される電流が遮断されることにより、電磁コイル6の磁場が消失し、磁気回路上から磁束が減少していく。可動コア4に発生する磁気吸引力と戻しばね10によるバネ力よりも、燃料噴射弁内部の燃料圧力とばね8により弁体41に加わるバネ力が上回ることで、弁体41は可動コア4と共にオリフィスカップ7の方向へ移動し、弁体41は最終的にオリフィスカップ7と接触し、金属シールを構成することで燃焼室内への燃料の供給がおわる。この一連の過程を燃料噴射弁の動作、すなわちストロークと呼ぶこととする。   Thereafter, when the current applied to the electromagnetic coil 5 is interrupted, the magnetic field of the electromagnetic coil 6 disappears, and the magnetic flux decreases from the magnetic circuit. The valve body 41 and the movable core 4 together with the movable core 4 are obtained because the fuel pressure inside the fuel injection valve and the spring force applied to the valve body 41 by the spring 8 exceed the magnetic attractive force generated in the movable core 4 and the spring force by the return spring 10. It moves in the direction of the orifice cup 7, and the valve element 41 finally comes into contact with the orifice cup 7 to constitute a metal seal, thereby supplying the fuel into the combustion chamber. This series of processes is called the operation of the fuel injection valve, that is, the stroke.

また、本実施例の燃料噴射弁の制御例として、電磁コイル6に印加される電流の長さを制御することで可動コア4の吸引時間の長さを変化させ、その結果弁体41がオリフィスカップ7から離れている時間を制御する方法がある。それにより弁体41の1ストロークあたりの燃料噴射量を制御できることになる。   Further, as a control example of the fuel injection valve of the present embodiment, the length of the suction time of the movable core 4 is changed by controlling the length of the current applied to the electromagnetic coil 6, and as a result, the valve body 41 becomes an orifice. There is a method for controlling the time away from the cup 7. Thereby, the fuel injection amount per stroke of the valve body 41 can be controlled.

また、ストローク後期において、弁体41がオリフィスカップ7と接触し始める頃、可動コア4は弁体41の元の静止位置から離れ、下側(固定コア3とは反対方向、すなわちオリフィスカップ7方向)へ慣性力によりオーバーシュートし始める。オーバーシュートとは、静止時の可動コア4の位置(元の静止位置)を原点と定めた際に、原点よりも下側へいく挙動を示す。可動コア4は慣性力と戻しバネ10の力が釣り合う位置までオーバーシュートを続け、そこから上側(固定コア3側)への運動を再開する。原点を定めるために、弁体41には、可動コア4の弁体41に対する相対変位を規制する規制部41aが設けられている。規制部41aは弁体41が貫通する可動コア4の貫通孔4aの直径よりも大きな直径を有する拡径部として構成されている。そして規制部41aは可動コア4の弁体41に対する開弁方向への相対変位を規制している。   Further, in the latter half of the stroke, when the valve body 41 starts to come into contact with the orifice cup 7, the movable core 4 moves away from the original stationary position of the valve body 41 and moves downward (in the direction opposite to the fixed core 3, that is, in the direction of the orifice cup 7. ) To overshoot by inertia force. The overshoot indicates a behavior of moving downward from the origin when the position of the movable core 4 at rest (original rest position) is determined as the origin. The movable core 4 continues overshooting to a position where the inertial force and the force of the return spring 10 are balanced, and resumes the upward movement (the fixed core 3 side) from there. In order to determine the origin, the valve body 41 is provided with a restricting portion 41 a that restricts relative displacement of the movable core 4 with respect to the valve body 41. The restricting portion 41a is configured as an enlarged diameter portion having a diameter larger than the diameter of the through hole 4a of the movable core 4 through which the valve body 41 passes. The restricting portion 41a restricts relative displacement of the movable core 4 in the valve opening direction with respect to the valve element 41.

これにより可動コア4が再び弁体41と接触することになり、可動コア4が弁体41に接触時に発生する衝撃力により弁体41とオリフィスカップ7の金属シールが保たれるよう、すなわち弁体41が再び開弁しないように戻しバネ10の強制力は決定される。   As a result, the movable core 4 comes into contact with the valve body 41 again, and the metal seal between the valve body 41 and the orifice cup 7 is maintained by the impact force generated when the movable core 4 contacts the valve body 41, that is, the valve The forcing force of the return spring 10 is determined so that the body 41 does not open again.

図2a、図2bに、従来構造の詳細拡大図及び可動コア挙動の例を示す。   2a and 2b show a detailed enlarged view of a conventional structure and an example of a movable core behavior.

図2bには可動コア4の時間軸応答を原点付近を通過しオーバーシュトする挙動を横軸時間、縦軸に可動コア4変位として表した図である。前述のように、可動コア4は原点付近を通過した後、慣性力をもって下側へ変位を続けるが、戻しバネ10と釣り合う位置で最下点となり以後上側への運動へと切り替わる。その後、可動コア4が弁体41と接触し静止するまでの時間を短縮することが課題である。   FIG. 2B is a diagram in which the time axis response of the movable core 4 passes over the vicinity of the origin and overshoots is expressed as the horizontal axis time and the vertical axis as the movable core 4 displacement. As described above, the movable core 4 continues to move downward with inertial force after passing through the vicinity of the origin. However, the movable core 4 becomes the lowest point at a position that balances with the return spring 10 and then switches to the upward movement. Thereafter, it is a problem to shorten the time until the movable core 4 comes into contact with the valve body 41 and stops.

図3は不等ピッチである圧縮ばねを戻しばね10に設置した実施例である。図3a、図3b及び図3cに、本発明の詳細拡大図及び可動コア挙動の例を示す。   FIG. 3 shows an embodiment in which compression springs having unequal pitches are installed on the return spring 10. 3a, 3b and 3c show a detailed enlarged view of the invention and an example of a movable core behavior.

不等ピッチ圧縮ばねを使用した時のばね荷重とばねたわみの関係を図3bに示す。実線が不等ピッチ圧縮ばねを表し、破線が均等ピッチ圧縮ばねの特性である。どちらもたわみ始めのばね定数は同じとした場合を示す。不等ピッチ圧縮ばねの場合、たわみをある程度超えた点からばね定数が大きくなることが知られている。このばね定数が変わる荷重よりも大きな荷重を与えた場合、不等ピッチ圧縮ばねと均等ピッチ圧縮ばねのたわみ量はhだけ不等ピッチ圧縮ばねが短縮できる。これを実施例にあてはめると、可動コア4の慣性力と釣り合う荷重が、不等ピッチ圧縮ばね定数の変化した領域にあれば、必ず戻しばね10のたわみ量がhだけ短縮できることになる。   The relationship between spring load and spring deflection when using an unequal pitch compression spring is shown in FIG. 3b. A solid line represents an unequal pitch compression spring, and a broken line represents the characteristics of the uniform pitch compression spring. In both cases, the spring constant at the beginning of deflection is the same. In the case of an unequal pitch compression spring, it is known that the spring constant increases from the point where the deflection is exceeded to some extent. When a load larger than the load that changes the spring constant is applied, the amount of deflection of the unequal pitch compression spring and the equal pitch compression spring can be shortened by the unequal pitch compression spring. When this is applied to the embodiment, if the load balanced with the inertial force of the movable core 4 is in a region where the unequal pitch compression spring constant is changed, the deflection amount of the return spring 10 can be reduced by h.

そこで、このたわみ量の短縮代hを可動コア変位とあわせてみると図3cのようになる。たわみ短縮長さhだけ最下点が短くなるのに伴い、最下点到達までの時間も早くなり、さらに可動コア4が弁体41と接触し静止するまでの時間もtだけ短縮されることがわかる。   Therefore, when the reduction amount h of the deflection amount is combined with the movable core displacement, it is as shown in FIG. As the lowermost point is shortened by the deflection shortening length h, the time to reach the lowermost point is also shortened, and further, the time until the movable core 4 comes into contact with the valve body 41 and stops is shortened by t. I understand.

同様のばね荷重とばねたわみの関係を表す構成として、図4aに示す円錐形状の戻しばねや、図4bに示す鼓形状の戻しばね、さらには図4cにしめすたる形状の戻しばねでも同様の効果が得られる。   The same effect can be obtained with the conical return spring shown in FIG. 4a, the drum-like return spring shown in FIG. 4b, and the return spring shown in FIG. Is obtained.

このとき、可動コア4が弁体41に接触する速度は、戻しばねの荷重特性の下側領域(図3b参照)が変わらなければ速度は変わらないため、弁体41の2次噴射の影響は考える必要は特にない。   At this time, the speed at which the movable core 4 contacts the valve body 41 does not change unless the lower region (see FIG. 3b) of the load characteristic of the return spring changes. There is no particular need to think about it.

また、均等ピッチであっても図5に示すテーパ状の線材を使用した圧縮スプリングにおいても同様の効果が得られる。図5に示すように、巻き始め線径d1と途中もしくは終端部において線径d2の関係がd1<d2となっている構成である。   Moreover, even if the pitch is uniform, the same effect can be obtained in the compression spring using the tapered wire shown in FIG. As shown in FIG. 5, the relationship between the winding start wire diameter d1 and the wire diameter d2 in the middle or at the end is such that d1 <d2.

さらに、図6に示すように可動コア4の下側に戻しばね10と戻しばね10の内側に収まるように設置された戻しばね20が設置されていても図3bと同様の効果が得られる。   Further, as shown in FIG. 6, even when the return spring 10 and the return spring 20 installed so as to be accommodated inside the return spring 10 are installed on the lower side of the movable core 4, the same effect as in FIG.

この場合、戻しばね20は自然長において可動コア4に接触している必要はなく、そのため、可動コア4がオーバーシュートして初めて戻しバネ20と接触するように構成されていればよい。これにより可動コア4は戻しばね10と戻しばね20による強制力が加わることから、図3bと同様の効果が得られる。図6では戻しばねは2個の設定であるが、2個以上の戻しばねでも同様の効果が期待できる。   In this case, the return spring 20 does not need to be in contact with the movable core 4 in the natural length, and therefore, the return spring 20 may be configured to contact the return spring 20 only after the movable core 4 overshoots. As a result, the movable core 4 is subjected to a forcing force by the return spring 10 and the return spring 20, and thus the same effect as in FIG. In FIG. 6, there are two return springs, but the same effect can be expected with two or more return springs.

また、戻しばね10、戻しばね20の荷重特性は、前述の実施例で示した非線形であっても線形であってもよく、荷重特性の組み合わせも自由に選択可能である。   Further, the load characteristics of the return spring 10 and the return spring 20 may be non-linear or linear as shown in the above-described embodiment, and the combination of load characteristics can be freely selected.

戻しばね10に非線形ばねを使用することにより、製造上の戻しばね10同士の絡み防止にも役立つと考えられる。燃料噴射弁を製造する際、通常製造ライン内においてパーツフィーダーなどを用いて戻しばねの整列が実施される。このパーツフィーダー内では一度に大量の戻しばねが投入されるため、戻しばね10同士が絡みつく可能性が考えられる。しかしながら、不等ピッチや形状が異なる戻しバネを使用した場合には、必要以上に部品同士ばねピッチの隙間に接触する確率が低減できると考えられるため、結果として部品同士の絡み防止にもなると考えられ、チョコ停などの発生を抑えられ、製造効率の改善にもつながると考えられる。   It is considered that the use of a non-linear spring for the return spring 10 is useful for preventing entanglement between the return springs 10 in manufacturing. When the fuel injection valve is manufactured, the return springs are usually aligned using a parts feeder or the like in the manufacturing line. Since a large amount of return springs are inserted at a time in the parts feeder, there is a possibility that the return springs 10 may be entangled with each other. However, if return springs with different unequal pitches or shapes are used, it is considered that the probability of contact with the gap between the spring pitches of parts can be reduced more than necessary, and as a result, entanglement between parts will be prevented. Therefore, it is thought that the occurrence of a chocolate stop etc. can be suppressed and the production efficiency can be improved.

上述のように戻しばねの荷重特性を非線形にする本発明であるが、実使用上はばね定数の上限を決定しなければならない。ばね定数を制限なく高くすることにより、可動コア4のオーバーシュート後の戻り速度が極端に早くなり、弁体41へ衝突する衝撃力が過大となることで、弁体41の2次噴射を引きおこすことがある。そのため、可動コア4の質量と、弁体41に付与されるスプリング8のセット荷重とを加味し戻しばね10の荷重特性を決定する必要がある。   Although the present invention makes the load characteristic of the return spring nonlinear as described above, the upper limit of the spring constant must be determined in actual use. By increasing the spring constant without limitation, the return speed of the movable core 4 after overshooting becomes extremely fast, and the impact force that collides with the valve body 41 becomes excessive, causing secondary injection of the valve body 41. Sometimes. Therefore, it is necessary to determine the load characteristics of the return spring 10 by taking into account the mass of the movable core 4 and the set load of the spring 8 applied to the valve body 41.

1…噴射弁本体、2…ノズルボディ、3…固定コア、4…可動コア、41…弁体、5…ハウジング、6…電磁コイル、7…オリフィスカップ、71,72…噴孔、8…スプリング、9…アジャスタ、10…戻しばね、11,12…ガイド部材、13…リード端子、14…樹脂カバー、20…戻しばね、101…中心軸線。   DESCRIPTION OF SYMBOLS 1 ... Injection valve body, 2 ... Nozzle body, 3 ... Fixed core, 4 ... Movable core, 41 ... Valve body, 5 ... Housing, 6 ... Electromagnetic coil, 7 ... Orifice cup, 71, 72 ... Injection hole, 8 ... Spring , 9 ... Adjuster, 10 ... Return spring, 11, 12 ... Guide member, 13 ... Lead terminal, 14 ... Resin cover, 20 ... Return spring, 101 ... Center axis.

Claims (4)

先端に噴孔を有する筒状部材と、前記筒状部材の内側に収納された固定コアと、前記筒状部材の内側に前記固定コアの噴孔側端面と対向するように収容されかつ往復運動が可能な可動コアと、前記可動コアを前記固定コア側へ付勢するばねとを有する電磁式燃料噴射弁において、
前記ばねのたわみと荷重は非線形性を有することを特徴とする電磁式燃料噴射弁。
A cylindrical member having a nozzle hole at the tip, a fixed core housed inside the cylindrical member, and a reciprocating motion housed inside the cylindrical member so as to face the nozzle hole side end surface of the fixed core In an electromagnetic fuel injection valve having a movable core capable of moving and a spring for biasing the movable core toward the fixed core side,
The electromagnetic fuel injection valve, wherein the spring deflection and load have non-linearity.
請求項1に記載の燃料噴射弁において、
前記ばねは、ばねのたわみ量が大きくなるにつれ非線形的に荷重が増大することを特徴とする電磁式燃料噴射弁。
The fuel injection valve according to claim 1,
The electromagnetic fuel injection valve according to claim 1, wherein the load increases nonlinearly as the amount of deflection of the spring increases.
請求項1又は2に記載の電磁式燃料噴射弁において、
前記ばねは、線形性もしくは非線形性を有した複数のばねで構成されたことを特徴とする電磁式燃料噴射弁。
The electromagnetic fuel injection valve according to claim 1 or 2,
The electromagnetic fuel injection valve, wherein the spring is composed of a plurality of springs having linearity or nonlinearity.
請求項1乃至3のいずれかに記載の燃料噴射弁において、
前記ばねは、前記固定コアと前記可動コアとが対向する面とは反対側の可動コア部分に接触して前記可動コアに付勢力を付与することを特徴とする電磁式燃料噴射弁。
The fuel injection valve according to any one of claims 1 to 3,
The electromagnetic fuel injection valve according to claim 1, wherein the spring is in contact with a movable core portion on a side opposite to a surface where the fixed core and the movable core are opposed to each other to apply a biasing force to the movable core.
JP2012151996A 2012-07-06 2012-07-06 Electromagnetic fuel injection valve Active JP5814870B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012151996A JP5814870B2 (en) 2012-07-06 2012-07-06 Electromagnetic fuel injection valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012151996A JP5814870B2 (en) 2012-07-06 2012-07-06 Electromagnetic fuel injection valve

Publications (2)

Publication Number Publication Date
JP2014015857A true JP2014015857A (en) 2014-01-30
JP5814870B2 JP5814870B2 (en) 2015-11-17

Family

ID=50110769

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012151996A Active JP5814870B2 (en) 2012-07-06 2012-07-06 Electromagnetic fuel injection valve

Country Status (1)

Country Link
JP (1) JP5814870B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016156320A (en) * 2015-02-25 2016-09-01 株式会社デンソー Fuel injection device
KR20180001461A (en) * 2016-06-24 2018-01-04 콘티넨탈 오토모티브 게엠베하 Valve assembly for an injection valve and injection valve
CN109026482A (en) * 2017-05-23 2018-12-18 罗伯特·博世有限公司 Fuel injector
CN111344483A (en) * 2017-11-22 2020-06-26 日立汽车系统株式会社 Fuel injection device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002014168A (en) * 2000-06-27 2002-01-18 Canon Inc X-ray imaging apparatus
JP2003148339A (en) * 2001-11-15 2003-05-21 Matsushita Electric Ind Co Ltd Linear compressor
JP4211814B2 (en) * 2006-07-13 2009-01-21 株式会社日立製作所 Electromagnetic fuel injection valve
JP2010190178A (en) * 2009-02-20 2010-09-02 Denso Corp Fuel injection apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002014168A (en) * 2000-06-27 2002-01-18 Canon Inc X-ray imaging apparatus
JP2003148339A (en) * 2001-11-15 2003-05-21 Matsushita Electric Ind Co Ltd Linear compressor
JP4211814B2 (en) * 2006-07-13 2009-01-21 株式会社日立製作所 Electromagnetic fuel injection valve
JP2010190178A (en) * 2009-02-20 2010-09-02 Denso Corp Fuel injection apparatus

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016156320A (en) * 2015-02-25 2016-09-01 株式会社デンソー Fuel injection device
KR20180001461A (en) * 2016-06-24 2018-01-04 콘티넨탈 오토모티브 게엠베하 Valve assembly for an injection valve and injection valve
CN107542612A (en) * 2016-06-24 2018-01-05 大陆汽车有限公司 Valve module and injection valve for injection valve
KR101979087B1 (en) * 2016-06-24 2019-05-15 콘티넨탈 오토모티브 게엠베하 Valve assembly for an injection valve and injection valve
US10309360B2 (en) 2016-06-24 2019-06-04 Cpt Group Gmbh Valve assembly for an injection valve and injection valve
CN107542612B (en) * 2016-06-24 2020-01-21 大陆汽车有限公司 Valve assembly for an injection valve and injection valve
CN109026482A (en) * 2017-05-23 2018-12-18 罗伯特·博世有限公司 Fuel injector
RU2769207C2 (en) * 2017-05-23 2022-03-29 Роберт Бош Гмбх Fuel injector
CN111344483A (en) * 2017-11-22 2020-06-26 日立汽车系统株式会社 Fuel injection device
CN111344483B (en) * 2017-11-22 2022-03-08 日立安斯泰莫株式会社 Fuel injection device

Also Published As

Publication number Publication date
JP5814870B2 (en) 2015-11-17

Similar Documents

Publication Publication Date Title
JP2006017101A (en) Fuel injection valve
US10267283B2 (en) Solenoid valve
JP5994905B2 (en) Fuel injection valve
JP2010084552A (en) Solenoid type fuel injection valve
JP5814870B2 (en) Electromagnetic fuel injection valve
WO2019216202A1 (en) Fuel injection device
JP2017089425A (en) Fuel injection device
CN107923548B (en) Electromagnetic valve
WO2017154815A1 (en) Fuel injection device
JP2013167194A (en) Fuel injection valve
US20180230955A1 (en) Electromagnetic Switching Valve and High-Pressure Fuel Pump
JP5857952B2 (en) Fuel injection valve
JP6020194B2 (en) Fuel injection valve
JP2013151915A (en) Fuel injection valve
EP3156638B1 (en) Fuel injector
JP5222253B2 (en) Fuel injection valve
JP6167993B2 (en) Fuel injection valve
JP6504023B2 (en) Fuel injection device
JP6160562B2 (en) Fuel injection valve
CN111344483B (en) Fuel injection device
JP7152274B2 (en) fuel injector
CN108779747B (en) Fuel injection device
JP6282175B2 (en) Switchgear
JP6451883B2 (en) Fuel injection valve
JP6292272B2 (en) Fuel injection valve

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140519

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140519

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150825

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150918

R150 Certificate of patent or registration of utility model

Ref document number: 5814870

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350