JP2014015675A - Method of producing high strength hot-dip galvanized steel sheet, and high strength hot-dip galvanized steel sheet - Google Patents

Method of producing high strength hot-dip galvanized steel sheet, and high strength hot-dip galvanized steel sheet Download PDF

Info

Publication number
JP2014015675A
JP2014015675A JP2013041499A JP2013041499A JP2014015675A JP 2014015675 A JP2014015675 A JP 2014015675A JP 2013041499 A JP2013041499 A JP 2013041499A JP 2013041499 A JP2013041499 A JP 2013041499A JP 2014015675 A JP2014015675 A JP 2014015675A
Authority
JP
Japan
Prior art keywords
steel sheet
plating
dip galvanized
hot
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013041499A
Other languages
Japanese (ja)
Other versions
JP5888267B2 (en
Inventor
Yusuke Fushiwaki
祐介 伏脇
Yoshiyasu Kawasaki
由康 川崎
Yasunobu Nagataki
康伸 長滝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2013041499A priority Critical patent/JP5888267B2/en
Publication of JP2014015675A publication Critical patent/JP2014015675A/en
Application granted granted Critical
Publication of JP5888267B2 publication Critical patent/JP5888267B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Coating With Molten Metal (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of producing a high strength hot-dip galvanized steel sheet that comprises a steel sheet containing Si and Mn, as a base material, and is excellent in plating appearance, corrosion resistance, plating peeling resistance when being subjected to a high degree of working, and workability, and to provide a high strength hot-dip galvanized steel sheet.SOLUTION: In applying annealing and a hot-dip galvanizing treatment to a steel sheet that comprises, by mass%, 0.03-0.35% C, 0.01-0.50% Si, 3.6-8.0% Mn, 0.001-1.000% Al, 0.10% or less P, 0.010% or less S, and the balance Fe with inevitable impurities, the steel sheet reaches the maximum temperature of 600-700°C inside an annealing furnace, the time for which the steel sheet passes through in the temperature range in which the steel sheet temperature is 600-700°C, is 30 seconds or more and 10 minutes or less, and a hydrogen concentration in the atmosphere is 20 vol% or more.

Description

本発明は、SiおよびMnを含有する高強度鋼板を母材とするめっき外観、耐食性、高加工時の耐めっき剥離性および加工性に優れた高強度溶融亜鉛めっき鋼板の製造方法および高強度溶融亜鉛めっき鋼板に関するものである。   The present invention is a method for producing a high-strength hot-dip galvanized steel sheet with excellent plating appearance, corrosion resistance, high-peeling peel-off resistance and workability using a high-strength steel sheet containing Si and Mn, and high-strength melting. The present invention relates to a galvanized steel sheet.

近年、自動車、家電、建材等の分野において、素材鋼板に防錆性を付与した表面処理鋼板、中でも溶融亜鉛めっき鋼板、合金化溶融亜鉛めっき鋼板が広範に使用されている。また、自動車の燃費向上および自動車の衝突安全性向上の観点から、車体材料の高強度化によって薄肉化を図り、車体そのものを軽量化しかつ高強度化する要望が高まっている。そのために高強度鋼板の自動車への適用が促進されている。   In recent years, in the fields of automobiles, home appliances, building materials and the like, surface-treated steel sheets imparted with rust resistance to raw steel sheets, particularly hot-dip galvanized steel sheets and galvannealed steel sheets have been widely used. In addition, from the viewpoint of improving the fuel efficiency of automobiles and improving the collision safety of automobiles, there is an increasing demand for reducing the thickness of the vehicle body by increasing the strength of the vehicle body material and reducing the weight of the vehicle body. Therefore, application of high-strength steel sheets to automobiles is being promoted.

一般的に、溶融亜鉛めっき鋼板は、スラブを熱間圧延や冷間圧延した薄鋼板を母材として用い、母材鋼板を連続式溶融亜鉛めっきライン(以下、CGLと称す)の焼鈍炉にて再結晶焼鈍および溶融亜鉛めっき処理を行い製造される。合金化溶融亜鉛めっき鋼板の場合は、溶融亜鉛めっき処理の後、さらに合金化処理を行い製造される。   In general, a hot dip galvanized steel sheet uses a thin steel sheet obtained by hot rolling or cold rolling a slab as a base material. Manufactured by recrystallization annealing and hot dip galvanizing. In the case of an alloyed hot-dip galvanized steel sheet, it is manufactured after further hot-dip galvanizing treatment.

ここで、CGLの焼鈍炉の加熱炉タイプとしては、DFF型(直火型)、NOF型(無酸化型)、オールラジアントチューブ型等があるが、近年では、操業のし易さやピックアップが発生しにくい等により低コストで高品質なめっき鋼板を製造できるなどの理由からオールラジアントチューブ型の加熱炉を備えるCGLの建設が増加している。しかしながら、DFF型(直火型)、NOF型(無酸化型)と異なり、オールラジアントチューブ型の加熱炉は焼鈍直前に酸化工程がないため、Si、Mn等の易酸化性元素を含有する鋼板についてはめっき性確保の点で不利である。   Here, there are DFF type (direct flame type), NOF type (non-oxidation type), all radiant tube type, etc. as the heating furnace type of CGL annealing furnace. The construction of CGLs equipped with an all-radiant tube type heating furnace is increasing for the reason that it is possible to produce high-quality plated steel sheets at low cost due to difficulty in carrying out the process. However, unlike the DFF type (direct flame type) and NOF type (non-oxidation type), the all-radiant tube type heating furnace does not have an oxidation step immediately before annealing, so a steel plate containing an easily oxidizable element such as Si or Mn. Is disadvantageous in terms of securing plating properties.

Si、Mnを多量に含む高強度鋼板を母材とした溶融めっき鋼板の製造方法として、特許文献1には、再結晶温度〜900℃で焼鈍しめっきする技術が開示されている。特許文献2には、750〜900℃で焼鈍しめっきする技術が開示されている。特許文献3には、800〜850℃で焼鈍しめっきする技術が開示されている。しかしながら、Si、Mnを多量に含む高強度鋼板の場合、750℃を超える高い温度で焼鈍をした場合、鋼中Si、Mnが選択酸化し、鋼板表面に酸化物を形成するため、めっき密着性を劣化させ、不めっき等の欠陥が発生する懸念がある。   As a method for producing a hot-dip galvanized steel sheet using a high-strength steel sheet containing a large amount of Si and Mn as a base material, Patent Document 1 discloses a technique for annealing and plating at a recrystallization temperature of -900 ° C. Patent Document 2 discloses a technique for annealing and plating at 750 to 900 ° C. Patent Document 3 discloses a technique of annealing and plating at 800 to 850 ° C. However, in the case of a high-strength steel sheet containing a large amount of Si and Mn, when annealing is performed at a high temperature exceeding 750 ° C., Si and Mn in the steel are selectively oxidized, and an oxide is formed on the surface of the steel sheet. There is a concern that defects such as non-plating occur.

さらに、特許文献4および特許文献5には、還元炉における加熱温度を水蒸気分圧で表される式で規定し露点を上げることで、地鉄表層を内部酸化させる技術が開示されている。しかしながら、露点を制御するエリアが炉内全体を前提としたものであるため、露点の制御が困難であり安定操業が困難である。また、不安定な露点制御のもとでの合金化溶融亜鉛めっき鋼板の製造は、下地鋼板に形成される内部酸化物の分布状態にバラツキが認められ、鋼帯の長手方向や幅方向でめっき濡れ性や合金化ムラなどの欠陥が発生する懸念がある。   Furthermore, Patent Document 4 and Patent Document 5 disclose a technique for internally oxidizing the surface layer of the ground iron by defining the heating temperature in the reduction furnace with an expression represented by the partial pressure of water vapor and increasing the dew point. However, since the area for controlling the dew point is premised on the entire inside of the furnace, it is difficult to control the dew point, and stable operation is difficult. In addition, the production of alloyed hot-dip galvanized steel sheets under unstable dew point control has been observed in the distribution of internal oxides formed on the base steel sheet, and is plated in the longitudinal and width directions of the steel strip. There are concerns that defects such as wettability and uneven alloying may occur.

また、特許文献6には、酸化性ガスであるHOやOだけでなく、CO濃度も同時に規定することで、めっき直前の地鉄表層を内部酸化させ外部酸化を抑制してめっき外観を改善する技術が開示されている。しかしながら、特許文献6では、内部酸化物の存在により加工時に割れが発生しやすくなり、耐めっき剥離性が劣化する。また、耐食性の劣化も認められる。さらにCOは炉内汚染や鋼板表面への浸炭などが起こり機械特性が変化するなどの問題が懸念される。 In Patent Document 6, not only the oxidizing gases H 2 O and O 2, but also the CO 2 concentration is simultaneously defined, so that the surface layer immediately before plating is internally oxidized to suppress external oxidation and plating. A technique for improving the appearance is disclosed. However, in Patent Document 6, cracks are likely to occur during processing due to the presence of the internal oxide, and the plating peel resistance deteriorates. Moreover, deterioration of corrosion resistance is also recognized. Furthermore, there is a concern that CO 2 may cause problems such as in-furnace contamination and carburizing on the steel sheet surface, resulting in changes in mechanical properties.

さらに、最近では、加工の厳しい箇所への高強度溶融亜鉛めっき鋼板、高強度合金化溶融亜鉛めっき鋼板の適用が進んでおり、高加工時の耐めっき剥離特性が重要視されるようになっている。具体的にはめっき鋼板に90°超えの曲げ加工を行いより鋭角に曲げたときや衝撃が加わり鋼板が加工を受けた場合の、加工部のめっき剥離の抑制が要求される。   Furthermore, recently, the application of high-strength hot-dip galvanized steel sheets and high-strength alloyed hot-dip galvanized steel sheets to places where machining is severe has progressed, and the anti-plating resistance characteristics at the time of high processing have become important. Yes. Specifically, it is required to suppress plating peeling at the processed part when the plated steel sheet is bent at an angle of more than 90 ° and bent at an acute angle or when the steel sheet is processed by impact.

このような特性を満たすためには、鋼中に多量にSiを添加し所望の鋼板組織を確保するだけでなく、高加工時の割れなどの起点になる可能性があるめっき層直下の地鉄表層の組織、構造のより高度な制御が求められる。しかしながら従来技術ではそのような制御は困難であり、焼鈍炉にオールラジアントチューブ型の加熱炉を備えるCGLでSi含有高強度鋼板を母材として高加工時の耐めっき剥離特性に優れた溶融亜鉛めっき鋼板を製造することはできなかった。   In order to satisfy such characteristics, not only does a large amount of Si be added to the steel to ensure the desired steel sheet structure, but also the iron core directly under the plating layer, which may be the starting point of cracking during high processing. More advanced control of the structure and structure of the surface layer is required. However, such control is difficult with the prior art, and hot dip galvanization with excellent anti-plating properties at the time of high processing using Si-containing high-strength steel plate as a base material in CGL with an all-radiant tube type heating furnace in the annealing furnace A steel plate could not be produced.

特開2009−287114号公報JP 2009-287114 A 特開2008−24980号公報JP 2008-24980 A 特開2010−150660号公報JP 2010-150660 A 特開2004−323970号公報JP 2004-323970 A 特開2004−315960号公報JP 2004-315960 A 特開2006−233333号公報JP 2006-233333 A

本発明は、かかる事情に鑑みてなされたものであって、Si、Mnを含有する鋼板を母材とし、めっき外観、耐食性、高加工時の耐めっき剥離性および加工性に優れた高強度溶融亜鉛めっき鋼板の製造方法および高強度溶融亜鉛めっき鋼板を提供することを目的とする。   The present invention has been made in view of such circumstances, and uses a steel sheet containing Si and Mn as a base material, and has high strength melting excellent in plating appearance, corrosion resistance, plating peeling resistance during high processing and workability. An object of the present invention is to provide a method for producing a galvanized steel sheet and a high-strength hot-dip galvanized steel sheet.

従来は、めっき性を改善する目的で積極的にFeを酸化させたり内部酸化させていた。しかし、同時に、耐食性や加工性が劣化する。そこで、本発明者らは、従来の考えにとらわれない新たな方法で課題を解決する方法を検討した。その結果、焼鈍工程の雰囲気と温度を適切に制御することで、めっき層直下の鋼板表層部において内部酸化の形成を抑制し、優れためっき外観と、より高い耐食性と高加工時の良好な耐めっき剥離性が得られることを知見した。具体的には、焼鈍炉内での鋼板最高到達温度を600℃以上700℃以下、鋼板温度が600℃以上700℃以下の温度域における鋼板通過時間を30秒以上10分以内、雰囲気中の水素濃度を20vol%以上となるように制御して焼鈍、溶融亜鉛めっき処理を行う。焼鈍炉内での鋼板最高到達温度を600℃以上700℃以下とし、鋼板温度が600℃以上700℃以下の温度域での雰囲気中の水素濃度を20vol%以上とすることで、鋼板と雰囲気の界面の酸素ポテンシャルを低下させ、内部酸化が極力起こらずに(酸化物を極力形成させずに)、Si、Mnなどの選択的表面拡散、酸化(以後、表面濃化と呼ぶ)を抑制する。
このように焼鈍温度や雰囲気中の水素濃度を制御することにより、内部酸化させず、表面濃化を極力抑制し、不めっきのない、めっき外観、耐食性および高加工時の耐めっき剥離性に優れる高強度溶融亜鉛めっき鋼板が得られることになる。なお、めっき外観に優れるとは、不めっきや合金化ムラが認められない外観を有することを言う。
そして、以上の方法により得られる高強度溶融亜鉛めっき鋼板は、亜鉛めっき層の直下の、下地鋼板表面から100μm以内の鋼板表層部において、Fe、Si、Mn、Al、P、さらには、B、Nb、Ti、Cr、Mo、Cu、Ni、Sn、Sb、Ta、W、Vのうちから選ばれる1種以上の酸化物の形成が抑制され、その形成量は合計で片面あたり0.030g/m未満に抑制される。これにより、めっき外観に優れ、耐食性が著しく向上し、地鉄表層における曲げ加工時の割れ防止を実現させ、高加工時の耐めっき剥離性に優れることになる。
Conventionally, Fe has been actively oxidized or internally oxidized for the purpose of improving plating properties. However, at the same time, corrosion resistance and workability deteriorate. Therefore, the present inventors have studied a method for solving the problem by a new method not confined to the conventional idea. As a result, by appropriately controlling the atmosphere and temperature of the annealing process, the formation of internal oxidation is suppressed in the surface layer of the steel sheet directly under the plating layer, and the excellent plating appearance, higher corrosion resistance and good resistance to high processing. It has been found that plating peelability can be obtained. Specifically, the steel plate maximum temperature in the annealing furnace is 600 ° C. or more and 700 ° C. or less, the steel plate passage time in the temperature range of 600 ° C. or more and 700 ° C. or less is 30 seconds or more and 10 minutes or less, hydrogen in the atmosphere Annealing and hot dip galvanizing are performed while controlling the concentration to be 20 vol% or more. By making the maximum steel plate temperature in the annealing furnace 600 ° C. or higher and 700 ° C. or lower, and the hydrogen concentration in the atmosphere in the temperature range of 600 ° C. or higher and 700 ° C. or lower being 20 vol% or higher, The oxygen potential at the interface is lowered, and internal surface oxidation is prevented as much as possible (without forming oxide as much as possible), and selective surface diffusion and oxidation (hereinafter referred to as surface concentration) such as Si and Mn are suppressed.
By controlling the annealing temperature and the hydrogen concentration in the atmosphere in this way, internal oxidation is prevented, surface concentration is suppressed as much as possible, no plating is eliminated, plating appearance, corrosion resistance, and excellent plating peeling resistance during high processing are excellent. A high-strength hot-dip galvanized steel sheet will be obtained. In addition, having excellent plating appearance means having an appearance in which non-plating and alloying unevenness are not recognized.
And the high-strength hot-dip galvanized steel sheet obtained by the above method is Fe, Si, Mn, Al, P, and B, in the steel sheet surface layer portion within 100 μm from the surface of the underlying steel sheet, directly under the galvanized layer. The formation of one or more oxides selected from Nb, Ti, Cr, Mo, Cu, Ni, Sn, Sb, Ta, W, and V is suppressed, and the total formation amount is 0.030 g / side. It is suppressed to less than m 2. Thereby, the plating appearance is excellent, the corrosion resistance is remarkably improved, the crack prevention at the bending process in the surface layer of the base metal is realized, and the plating peeling resistance at the high processing is excellent.

本発明は上記知見に基づくものであり、特徴は以下の通りである。
[1]質量%で、C:0.03〜0.35%、Si:0.01〜0.50%、Mn:3.6〜8.0%、Al:0.001〜1.000%、P≦0.10%、S≦0.010%を含有し、残部がFeおよび不可避的不純物からなる鋼板の表面に、片面あたりのめっき付着量が20〜120g/mの亜鉛めっき層を有する高強度溶融亜鉛めっき鋼板を製造する方法であって、鋼板を連続式溶融亜鉛めっき設備において焼鈍および溶融亜鉛めっき処理を施すに際し、焼鈍炉内での鋼板最高到達温度は600℃以上700℃以下であり、鋼板温度が600℃以上700℃以下の温度域における鋼板通過時間は30秒以上10分以内、雰囲気中の水素濃度は20vol%以上とすることを特徴とする高強度溶融亜鉛めっき鋼板の製造方法。
[2]前記[1]において、前記鋼板は、成分組成として、質量%で、さらに、B:0.001〜0.005%、Nb:0.005〜0.050%、Ti:0.005〜0.050%、Cr:0.001〜1.000%、Mo:0.05〜1.00%、Cu:0.05〜1.00%、Ni:0.05〜1.0%、Sn:0.001〜0.20%、Sb:0.001〜0.20%、Ta:0.001〜0.10%、W:0.001〜0.10%、V:0.001〜0.10%の中から選ばれる1種以上の元素を含有することを特徴とする高強度溶融亜鉛めっき鋼板の製造方法。
[3]前記[1]または[2]において、溶融亜鉛めっき処理後、さらに、450℃以上600℃以下の温度に鋼板を加熱して合金化処理を施し、めっき層のFe含有量を8〜14質量%の範囲にすることを特徴とする高強度溶融亜鉛めっき鋼板の製造方法。
[4]前記[1]〜[3]に記載のいずれかの製造方法により作成され、亜鉛めっき層直下の、下地鋼板表面から100μm以内の鋼板表層部に生成したFe、Si、Mn、Al、P、B、Nb、Ti、Cr、Mo、Cu、Ni、Sn、Sb、Ta、W、Vのうちから選ばれる少なくとも1種以上の酸化物が、合計で片面あたり0.030g/m未満であることを特徴とする高強度溶融亜鉛めっき鋼板。
The present invention is based on the above findings, and features are as follows.
[1] By mass%, C: 0.03 to 0.35%, Si: 0.01 to 0.50%, Mn: 3.6 to 8.0%, Al: 0.001 to 1.000% , P ≦ 0.10%, S ≦ 0.010%, and a zinc plating layer having a plating adhesion amount of 20 to 120 g / m 2 on one side on the surface of the steel plate, the balance being Fe and inevitable impurities. A method for producing a high-strength hot-dip galvanized steel sheet having a steel sheet that reaches the maximum temperature in an annealing furnace when the steel sheet is subjected to annealing and hot-dip galvanizing treatment in a continuous hot-dip galvanizing facility. The high-strength hot-dip galvanized steel sheet is characterized in that the steel sheet passage time in the temperature range of 600 ° C. or more and 700 ° C. or less is 30 seconds or more and 10 minutes or less, and the hydrogen concentration in the atmosphere is 20 vol% or more. Production method.
[2] In the above [1], the steel sheet has a component composition in mass%, and further B: 0.001 to 0.005%, Nb: 0.005 to 0.050%, Ti: 0.005. ~ 0.050%, Cr: 0.001-1.000%, Mo: 0.05-1.00%, Cu: 0.05-1.00%, Ni: 0.05-1.0%, Sn: 0.001 to 0.20%, Sb: 0.001 to 0.20%, Ta: 0.001 to 0.10%, W: 0.001 to 0.10%, V: 0.001 A method for producing a high-strength hot-dip galvanized steel sheet, comprising one or more elements selected from 0.10%.
[3] In the above [1] or [2], after the hot dip galvanizing treatment, the steel plate is further heated to a temperature of 450 ° C. or higher and 600 ° C. or lower to perform alloying treatment, and the Fe content of the plating layer is 8 to A method for producing a high-strength hot-dip galvanized steel sheet, characterized by being in the range of 14% by mass.
[4] Fe, Si, Mn, Al produced by the manufacturing method according to any one of [1] to [3], and formed in a steel plate surface layer portion within 100 μm from the surface of the underlying steel plate immediately below the galvanized layer. At least one oxide selected from P, B, Nb, Ti, Cr, Mo, Cu, Ni, Sn, Sb, Ta, W, and V is less than 0.030 g / m 2 per side in total. A high-strength hot-dip galvanized steel sheet characterized by

なお、本発明において、高強度溶融亜鉛めっき鋼板とは、引張強度TSが590MPa以上である。また、本発明の高強度溶融亜鉛めっき鋼板は、溶融亜鉛めっき処理後合金化処理を施さないめっき鋼板(以下、GIと称することもある)、合金化処理を施すめっき鋼板(以下、GAと称することもある)のいずれも含むものである。   In the present invention, the high strength hot dip galvanized steel sheet has a tensile strength TS of 590 MPa or more. The high-strength hot-dip galvanized steel sheet of the present invention includes a plated steel sheet (hereinafter sometimes referred to as GI) that is not subjected to alloying after the hot-dip galvanizing process, and a plated steel sheet (hereinafter referred to as GA) that is subjected to the alloying process. In some cases).

本発明によれば、めっき外観、耐食性、高加工時の耐めっき剥離性および加工性に優れた高強度溶融亜鉛めっき鋼板が得られる。   ADVANTAGE OF THE INVENTION According to this invention, the high intensity | strength hot-dip galvanized steel plate excellent in plating external appearance, corrosion resistance, the plating peeling resistance at the time of high processing, and workability is obtained.

以下、本発明について具体的に説明する。なお、以下の説明において、鋼成分組成の各元素の含有量、めっき層成分組成の各元素の含有量の単位はいずれも「質量%」であり、以下、特に断らない限り単に「%」で示す。   Hereinafter, the present invention will be specifically described. In the following description, the content of each element of the steel component composition and the unit of the content of each element of the plating layer component composition are all “mass%”, and hereinafter, simply “%” unless otherwise specified. Show.

先ず、本発明で最も重要な要件である、めっき層直下の下地鋼板表面の構造を決定する焼鈍条件について説明する。
鋼中に多量のSiおよびMnが添加された高強度溶融亜鉛めっき鋼板において、耐食性及び高加工時の耐めっき剥離性を満足させるためには、腐食や高加工時の割れなどの起点となる可能性があるめっき層直下の地鉄表層の内部酸化を極力少なくすることが求められる。
First, the annealing condition for determining the structure of the surface of the underlying steel sheet immediately below the plating layer, which is the most important requirement in the present invention, will be described.
In high-strength hot-dip galvanized steel sheets with a large amount of Si and Mn added to the steel, in order to satisfy corrosion resistance and anti-plating resistance during high processing, it may be the starting point for corrosion and cracking during high processing. Therefore, it is required to minimize internal oxidation of the surface layer of the railway just below the plating layer.

Feを酸化させたりSiやMnの内部酸化を促進させることによりめっき性を向上させることは可能ではあるが、これは逆に耐食性や加工性の劣化をもたらすことになってしまう。このため、SiやMnの内部酸化を促進させる方法以外で、良好なめっき性を維持しつつ、内部酸化を抑制して耐食性、加工性を向上させる必要がある。検討した結果、本発明では、めっき性を確保するために焼鈍工程において酸素ポテンシャルを低下させ易酸化性元素であるSiやMn等の地鉄表層部における活量を低下させる。そして、これらの元素の外部酸化を抑制し、結果的にめっき性を改善する。そして、地鉄表層部に形成する内部酸化も抑制され、耐食性及び加工性が改善することになる。   Although it is possible to improve the plateability by oxidizing Fe or promoting internal oxidation of Si or Mn, this leads to deterioration of corrosion resistance and workability. For this reason, it is necessary to improve corrosion resistance and workability by suppressing internal oxidation while maintaining good plating properties, other than a method of promoting internal oxidation of Si or Mn. As a result of the examination, in the present invention, in order to ensure plating properties, the oxygen potential is lowered in the annealing step, and the activity in the surface layer portion of the easily oxidizable elements such as Si and Mn is reduced. And the external oxidation of these elements is suppressed and, as a result, the platability is improved. And the internal oxidation formed in a surface iron surface layer part is also suppressed, and corrosion resistance and workability will be improved.

このような効果は、連続式溶融亜鉛めっき設備において焼鈍および溶融亜鉛めっき処理を施すに際し、焼鈍炉内での鋼板最高到達温度を600℃以上700℃以下、鋼板温度が600℃以上700℃以下の温度域における鋼板通過時間を30秒以上10分以内、雰囲気中の水素濃度を20vol%以上となるように制御することにより得られる。このように制御することにより、鋼板と雰囲気の界面の酸素ポテンシャルを低下させ、内部酸化させずに、Si、Mnなどの選択的表面拡散、表面濃化を抑制する。そして、不めっきのない、より高い耐食性と高加工時の良好な耐めっき剥離性が得られることになる。   Such effects are as follows. When performing annealing and hot dip galvanizing treatment in a continuous hot dip galvanizing facility, the steel plate maximum temperature in the annealing furnace is 600 ° C. or higher and 700 ° C. or lower, and the steel plate temperature is 600 ° C. or higher and 700 ° C. or lower. It can be obtained by controlling the steel plate passage time in the temperature range from 30 seconds to 10 minutes and the hydrogen concentration in the atmosphere to 20 vol% or more. By controlling in this way, the oxygen potential at the interface between the steel sheet and the atmosphere is lowered, and selective surface diffusion and surface concentration of Si, Mn, etc. are suppressed without internal oxidation. And higher corrosion resistance without unplating and good plating peeling resistance at the time of high processing will be obtained.

焼鈍炉内での鋼板最高到達温度を600℃以上700℃以下とした理由は以下の通りである。600℃を下回る温度域では、不めっき発生、耐食性の劣化、耐めっき剥離性の劣化等が問題になる程度の表面濃化や内部酸化は起こらないが、600℃未満では良好な材質が得られない。よって、本発明の効果が発現する温度域は、600℃以上とする。一方、700℃を上回る温度域では、表面濃化が顕著となり、不めっき発生、耐食性の劣化、耐めっき剥離性の劣化等が激しくなる。さらに、材質の観点ではTS、El共に700℃を上回る温度域では、強度と延性のバランスの効果が飽和する。以上のことから、鋼板最高到達温度は600℃以上700℃以下とする。   The reason why the maximum temperature of the steel sheet in the annealing furnace is 600 ° C. or more and 700 ° C. or less is as follows. In the temperature range below 600 ° C, surface enrichment and internal oxidation that cause problems such as non-plating, deterioration of corrosion resistance and deterioration of plating peeling resistance do not occur, but good materials can be obtained at temperatures below 600 ° C. Absent. Therefore, the temperature range in which the effects of the present invention are manifested is 600 ° C. or higher. On the other hand, in a temperature range exceeding 700 ° C., surface concentration becomes remarkable, and non-plating occurs, corrosion resistance deteriorates, plating peel resistance deteriorates, and the like. Further, from the viewpoint of material, in the temperature range where both TS and El exceed 700 ° C., the effect of balance between strength and ductility is saturated. From the above, the maximum temperature reached by the steel sheet is 600 ° C. or more and 700 ° C. or less.

次に、鋼板温度が600℃以上700℃以下の温度域における鋼板通過時間を30秒以上10分以内とした理由は以下の通りである。30秒を下回れば目標とする材質(TS、El)が得られない。一方、10分を上回れば、強度と延性のバランスの効果が飽和する。
鋼板温度が600℃以上700℃以下の温度域における水素濃度を20vol%以上とした理由は以下の通りである。表面濃化の抑制効果が認められるのが水素濃度:20vol%以上である。水素濃度の上限は特に設けないが、80vol%超えでは効果が飽和し、コスト的に不利となるため、80vol%以下が望ましい。なお、鋼板温度が600℃未満の温度域における水素濃度については、10vol%を基本とした。
Next, the reason why the steel plate passage time in the temperature range of 600 ° C. or more and 700 ° C. or less is 30 seconds or more and 10 minutes or less is as follows. If it is less than 30 seconds, the target material (TS, El) cannot be obtained. On the other hand, if it exceeds 10 minutes, the effect of balance between strength and ductility is saturated.
The reason why the hydrogen concentration in the temperature range where the steel sheet temperature is 600 ° C. or more and 700 ° C. or less is 20 vol% or more is as follows. It is the hydrogen concentration: 20 vol% or more that the effect of suppressing the surface concentration is recognized. The upper limit of the hydrogen concentration is not particularly set, but if it exceeds 80 vol%, the effect is saturated and disadvantageous in terms of cost, so 80 vol% or less is desirable. In addition, about the hydrogen concentration in the temperature range whose steel plate temperature is less than 600 degreeC, it was based on 10 vol%.

次いで、本発明の対象とする高強度溶融亜鉛めっき鋼板の鋼成分組成について説明する。
C:0.03〜0.35%
Cは、鋼組織としてマルテンサイトなどを形成させることで加工性を向上させる。そのためには0.03%以上必要である。一方、0.35%を超えると溶接性が劣化する。したがって、C量は0.03%以上0.35%以下とする。
Next, the steel component composition of the high-strength hot-dip galvanized steel sheet that is the subject of the present invention will be described.
C: 0.03-0.35%
C improves workability by forming martensite or the like as a steel structure. For that purpose, 0.03% or more is necessary. On the other hand, if it exceeds 0.35%, the weldability deteriorates. Therefore, the C content is 0.03% or more and 0.35% or less.

Si:0.01〜0.50%
Siは鋼を強化して良好な材質を得るのに有効な元素ではあるが、易酸化性元素であるため、めっき性には不利であり、極力添加することは避けるべき元素である。しかしながら、0.01%程度は不可避的に鋼中に含まれ、これ以下に低減するためにはコストが上昇してしまうため、0.01%を下限とする。一方、0.50%を超えると高加工時の耐めっき剥離性の改善が困難となってくる。したがって、Si量は0.01%以上0.50%以下とする。
Si: 0.01 to 0.50%
Si is an element effective for strengthening steel and obtaining a good material, but it is an easily oxidizable element, which is disadvantageous for plating properties and should be avoided as much as possible. However, about 0.01% is inevitably contained in the steel, and in order to reduce to less than this, the cost increases, so 0.01% is made the lower limit. On the other hand, when it exceeds 0.50%, it becomes difficult to improve the plating peel resistance at the time of high processing. Therefore, the Si amount is set to 0.01% or more and 0.50% or less.

Mn:3.6〜8.0%
Mnは鋼の高強度化に有効な元素である。機械特性や強度を確保するためは3.6%以上含有させることが必要である。一方、8.0%を超えると溶接性やめっき密着性の確保、強度と延性のバランスの確保が困難になる。したがって、Mn量は3.6%以上8.0%以下とする。
Mn: 3.6-8.0%
Mn is an element effective for increasing the strength of steel. In order to ensure mechanical properties and strength, it is necessary to contain 3.6% or more. On the other hand, if it exceeds 8.0%, it becomes difficult to ensure weldability and plating adhesion, and to ensure a balance between strength and ductility. Therefore, the Mn content is 3.6% or more and 8.0% or less.

Al:0.001〜1.000%
Alは溶鋼の脱酸を目的に添加されるが、その含有量が0.001%未満の場合、その目的が達成されない。溶鋼の脱酸の効果は0.001%以上で得られる。一方、1.000%を超えるとコストアップになる。したがって、Al量は0.001%以上1.000%以下とする。
Al: 0.001-1.000%
Al is added for the purpose of deoxidizing molten steel, but if the content is less than 0.001%, the purpose is not achieved. The effect of deoxidation of molten steel is obtained at 0.001% or more. On the other hand, if it exceeds 1.000%, the cost increases. Therefore, the Al amount is set to 0.001% or more and 1.000% or less.

P≦0.10%
Pは不可避的に含有される元素のひとつであり、0.005%未満にするためには、コストの増大が懸念されるため、0.005%以上が望ましい。一方、Pが0.10%を超えて含有されると溶接性が劣化する。さらに、表面品質が劣化する。また、非合金化処理時にはめっき密着性が劣化し、合金化処理時には合金化処理温度を上昇しないと所望の合金化度とすることができない。また所望の合金化度とするために合金化処理温度を上昇させると延性が劣化すると同時に合金化めっき皮膜の密着性が劣化するため、所望の合金化度と、良好な延性、合金化めっき皮膜を両立させることができない。したがって、P量は0.10%以下とし、下限としては0.005%以上が望ましい。
P ≦ 0.10%
P is one of the elements inevitably contained, and in order to make it less than 0.005%, there is a concern about an increase in cost, so 0.005% or more is desirable. On the other hand, if P exceeds 0.10%, weldability deteriorates. Furthermore, the surface quality deteriorates. Also, the plating adhesion deteriorates during non-alloying treatment, and the desired degree of alloying cannot be achieved unless the alloying treatment temperature is increased during alloying treatment. Also, if the alloying temperature is raised to achieve the desired degree of alloying, the ductility deteriorates and at the same time the adhesion of the alloyed plating film deteriorates, so the desired degree of alloying, good ductility, and alloyed plating film Cannot be achieved. Therefore, the P content is preferably 0.10% or less, and the lower limit is preferably 0.005% or more.

S≦0.010%
Sは不可避的に含有される元素のひとつである。下限は規定しないが、多量に含有されると溶接性が劣化するため0.010%以下とする。
S ≦ 0.010%
S is one of the elements inevitably contained. The lower limit is not specified, but if it is contained in a large amount, weldability deteriorates, so the content is made 0.010% or less.

なお、強度と延性のバランスを制御するため、B:0.001〜0.005%、Nb:0.005〜0.050%、Ti:0.005〜0.050%、Cr:0.001〜1.000%、Mo:0.05〜1.00%、Cu:0.05〜1.00%、Ni:0.05〜1.00%の中から選ばれる1種以上の元素を必要に応じて添加してもよい。
これらの元素を添加する場合における適正添加量の限定理由は以下の通りである。
In order to control the balance between strength and ductility, B: 0.001 to 0.005%, Nb: 0.005 to 0.050%, Ti: 0.005 to 0.050%, Cr: 0.001 One or more elements selected from -1.000%, Mo: 0.05-1.00%, Cu: 0.05-1.00%, Ni: 0.05-1.00% are required It may be added depending on.
The reason for limiting the appropriate addition amount in the case of adding these elements is as follows.

B:0.001〜0.005%
Bは0.001%未満では焼き入れ促進効果が得られにくい。一方、0.005%超えではめっき密着性が劣化する。よって、含有する場合、B量は0.001%以上0.005%以下とする。
B: 0.001 to 0.005%
When B is less than 0.001%, it is difficult to obtain an effect of promoting quenching. On the other hand, if it exceeds 0.005%, the plating adhesion deteriorates. Therefore, when it contains, B amount shall be 0.001% or more and 0.005% or less.

Nb:0.005〜0.050%
Nbは0.005%未満では強度調整の効果やMoとの複合添加時におけるめっき密着性改善効果が得られにくい。一方、0.050%超えではコストアップを招く。よって、含有する場合、Nb量は0.005%以上0.050%以下とする。
Nb: 0.005 to 0.050%
If Nb is less than 0.005%, it is difficult to obtain the effect of adjusting the strength and the effect of improving the plating adhesion at the time of composite addition with Mo. On the other hand, if it exceeds 0.050%, cost increases. Therefore, when it contains, Nb amount shall be 0.005% or more and 0.050% or less.

Ti:0.005〜0.050%
Tiは0.005%未満では強度調整の効果が得られにくい。一方、0.050%超えではめっき密着性の劣化を招く。よって、含有する場合、Ti量は0.005%以上0.050%以下とする。
Ti: 0.005 to 0.050%
If Ti is less than 0.005%, the effect of adjusting the strength is difficult to obtain. On the other hand, if it exceeds 0.050%, the plating adhesion deteriorates. Therefore, when it contains, Ti amount shall be 0.005% or more and 0.050% or less.

Cr:0.001〜1.000%
Crは0.001%未満では焼き入れ性効果が得られにくい。一方、1.000%超えではCrが表面濃化するため、めっき密着性や溶接性が劣化する。よって、含有する場合、Cr量は0.001%以上1.000%以下とする。
Cr: 0.001-1.000%
When Cr is less than 0.001%, it is difficult to obtain a hardenability effect. On the other hand, if it exceeds 1.000%, the surface of Cr is concentrated, so that the plating adhesion and weldability deteriorate. Therefore, when it contains, Cr content shall be 0.001% or more and 1.000% or less.

Mo:0.05〜1.00%
Moは0.05%未満では強度調整の効果やNb、またはNiやCuとの複合添加時におけるめっき密着性改善効果が得られにくい。一方、1.00%超えではコストアップを招く。よって、含有する場合、Mo量は0.05%以上1.00%以下とする。
Mo: 0.05-1.00%
If Mo is less than 0.05%, it is difficult to obtain the effect of adjusting the strength and the effect of improving the plating adhesion at the time of composite addition with Nb, Ni or Cu. On the other hand, if it exceeds 1.00%, cost increases. Therefore, when it contains, Mo amount shall be 0.05% or more and 1.00% or less.

Cu:0.05〜1.00%
Cuは0.05%未満では残留γ相形成促進効果やNiやMoとの複合添加時におけるめっき密着性改善効果が得られにくい。一方、1.00%超えではコストアップを招く。よって、含有する場合、Cu量は0.05%以上1.00%以下とする。
Cu: 0.05-1.00%
If Cu is less than 0.05%, it is difficult to obtain the effect of promoting the formation of the residual γ phase and the effect of improving the plating adhesion when combined with Ni or Mo. On the other hand, if it exceeds 1.00%, cost increases. Therefore, when contained, the Cu content is 0.05% or more and 1.00% or less.

Ni:0.05〜1.00%
Niは0.05%未満では残留γ相形成促進効果やCuとMoとの複合添加時におけるめっき密着性改善効果が得られにくい。一方、1.00%超えではコストアップを招く。よって、含有する場合、Ni量は0.05%以上1.00%以下とする。
Ni: 0.05-1.00%
When Ni is less than 0.05%, it is difficult to obtain the effect of promoting the formation of the residual γ phase and the effect of improving the plating adhesion upon the combined addition of Cu and Mo. On the other hand, if it exceeds 1.00%, cost increases. Therefore, when contained, the Ni content is 0.05% or more and 1.00% or less.

Sn:0.001〜0.20%、Sb:0.001〜0.20%
SnやSbは鋼板表面の窒化、酸化、あるいは酸化により生じる鋼板表面の数十ミクロン領域の脱炭を抑制する観点から含有することができる。このような窒化や酸化を抑制することで鋼板表面においてマルテンサイトの生成量が減少するのを防止し、疲労特性や表面品質が改善される。窒化や酸化を抑制する観点から、SnあるいはSbを含有する場合は0.001%以上とする。0.20%を超えると靭性の劣化を招くので、0.20%以下とすることが好ましい。
Sn: 0.001 to 0.20%, Sb: 0.001 to 0.20%
Sn or Sb can be contained from the viewpoint of suppressing decarburization in the region of several tens of microns on the surface of the steel sheet caused by nitriding, oxidation, or oxidation of the steel sheet surface. By suppressing such nitriding and oxidation, a reduction in the amount of martensite produced on the steel sheet surface is prevented, and fatigue characteristics and surface quality are improved. From the viewpoint of suppressing nitriding and oxidation, when Sn or Sb is contained, the content is made 0.001% or more. If it exceeds 0.20%, the toughness is deteriorated. Therefore, the content is preferably 0.20% or less.

Ta:0.001〜0.10%
TaはCやNと炭化物や炭窒化物を形成することで高強度化に寄与するとともに高降伏比(YR)化に寄与する。さらに、Taは熱延板組織を微細化する作用を有し、冷延、焼鈍後のフェライト粒径が微細化されるため、粒界面積の増大に伴う粒界へのC偏析量の増大により、高焼付き硬化量(BH量)を得ることができる。このような観点から、Taを0.001%以上含有することができる。一方、0.10%を超える過剰のTaの含有は、原料コストの増加を招くだけでなく、焼鈍後の冷却過程におけるマルテンサイトの形成を妨げる可能性があり、さらに熱延板中に析出したTaCは、冷間圧延時の変形抵抗を高くし、安定した実機製造を困難にする場合があるため、Taを含有する場合は、0.10%以下とする。
Ta: 0.001 to 0.10%
Ta contributes to high strength and high yield ratio (YR) by forming C and N together with carbides and carbonitrides. Furthermore, Ta has the effect of refining the hot-rolled sheet structure, and since the ferrite grain size after cold rolling and annealing is refined, the increase in the amount of C segregation at the grain boundary accompanying the increase in grain boundary area A high seizure hardening amount (BH amount) can be obtained. From such a viewpoint, 0.001% or more of Ta can be contained. On the other hand, the content of excess Ta exceeding 0.10% not only increases the raw material cost but also may hinder the formation of martensite in the cooling process after annealing, and further precipitates in the hot-rolled sheet. TaC increases the deformation resistance during cold rolling and may make it difficult to produce a stable actual machine. When TaC is contained, the content is made 0.10% or less.

W:0.001〜0.10%
WをSi、Mnと複合添加する事により、Γ相の生成を抑制し、めっき密着性を向上させる効果がある。このような作用はW:0.001%以上含有して認められる。一方、0.10%を超えて含有しても効果が飽和し、含有量に見合う効果を期待できず、経済的に不利となる。以上より、Wを含有する場合は、0.001%以上0.10%以下とする。
W: 0.001% to 0.10%
By adding W in combination with Si and Mn, there is an effect of suppressing the formation of a Γ phase and improving plating adhesion. Such an effect is recognized by containing W: 0.001% or more. On the other hand, even if it contains exceeding 0.10%, an effect will be saturated and the effect corresponding to content cannot be expected, but it becomes economically disadvantageous. As mentioned above, when it contains W, it is set as 0.001% or more and 0.10% or less.

V:0.001〜0.10%
Vは炭窒化物を形成し、鋼を析出効果により高強度化する作用を有する元素であり、必要に応じて含有することができる。このような作用は、Vを0.001%以上含有して認められる。一方、0.10%を超えて含有する場合、過度に高強度化し、延性が劣化してしまう。以上より、Vを含有する場合、0.001%以上0.10%以下とする。
V: 0.001 to 0.10%
V is an element that forms carbonitrides and has the effect of increasing the strength of steel by the precipitation effect, and can be contained as necessary. Such an effect is recognized when the content of V is 0.001% or more. On the other hand, when it contains exceeding 0.10%, it will become high strength too much and ductility will deteriorate. From the above, when V is contained, the content is made 0.001% or more and 0.10% or less.

上記以外の残部はFeおよび不可避的不純物である。上記記載の元素以外の元素を含有しても、本発明には何ら悪影響を及ぼすものではなく、その上限は0.1%とする。   The balance other than the above is Fe and inevitable impurities. Even if elements other than the elements described above are contained, the present invention is not adversely affected, and the upper limit is made 0.1%.

次に、本発明の高強度溶融亜鉛めっき鋼板の製造方法とその限定理由について説明する。   Next, the manufacturing method of the high-strength hot-dip galvanized steel sheet of the present invention and the reason for limitation will be described.

上記化学成分を有する鋼を熱間圧延した後、冷間圧延し鋼板とし、次いで、連続式溶融亜鉛めっき設備において焼鈍および溶融亜鉛めっき処理を行う。なお、この時、本発明においては、焼鈍炉内での鋼板最高到達温度は600℃以上700℃以下であり、鋼板温度が600℃以上700℃以下の温度域における鋼板通過時間は30秒以上10分以内、雰囲気中の水素濃度は20vol%以上とする。これは本発明において、最も重要な要件である。   The steel having the above chemical components is hot-rolled and then cold-rolled to obtain a steel plate, and then subjected to annealing and hot-dip galvanizing treatment in a continuous hot-dip galvanizing facility. At this time, in the present invention, the maximum reached temperature of the steel plate in the annealing furnace is 600 ° C. or more and 700 ° C. or less, and the steel plate passage time in the temperature range of 600 ° C. or more and 700 ° C. or less is 30 seconds or more and 10 ° C. Within a minute, the hydrogen concentration in the atmosphere is 20 vol% or more. This is the most important requirement in the present invention.

熱間圧延
通常、行われる条件にて行うことができる。
Hot rolling Usually, it can be performed on the conditions performed.

酸洗
熱間圧延後は酸洗処理を行うのが好ましい。酸洗工程で表面に生成した黒皮スケールを除去し、しかる後冷間圧延する。なお、酸洗条件は特に限定しない。
It is preferable to perform a pickling treatment after hot pickling. The black scale formed on the surface in the pickling process is removed, and then cold-rolled. The pickling conditions are not particularly limited.

冷間圧延
40%以上80%以下の圧下率で行うことが好ましい。圧下率が40%未満では再結晶温度が低温化するため、機械特性が劣化しやすい。一方、圧下率が80%超えでは高強度鋼板であるため、圧延コストがアップするだけでなく、焼鈍時の表面濃化が増加するため、めっき特性が劣化する。
Cold rolling is preferably performed at a rolling reduction of 40% to 80%. If the rolling reduction is less than 40%, the recrystallization temperature is lowered, and the mechanical characteristics are likely to deteriorate. On the other hand, when the rolling reduction exceeds 80%, the steel sheet is a high-strength steel plate, so that not only the rolling cost is increased, but also the surface concentration during annealing is increased, so that the plating characteristics are deteriorated.

冷間圧延した鋼板に対して、焼鈍した後溶融亜鉛めっき処理を施す。
焼鈍炉では、前段の加熱帯で鋼板を所定温度まで加熱する加熱工程を行い、後段の均熱帯で所定温度に所定時間保持する均熱工程を行う。
そして、上述したように、焼鈍炉内での鋼板最高到達温度は600℃以上700℃以下であり、鋼板温度が600℃以上700℃以下の温度域における鋼板通過時間は30秒以上10分以内、雰囲気中の水素濃度は20vol%以上となるように制御して焼鈍、溶融亜鉛めっき処理を行う。なお、残部はN及び不可避不純物気体からなる。本発明の効果を損するものでなければHO、CO、CO等の他の気体成分を含有してもよい。
溶融亜鉛めっき処理は、常法で行うことができる。
The cold-rolled steel sheet is annealed and then hot dip galvanized.
In the annealing furnace, a heating process is performed in which the steel sheet is heated to a predetermined temperature in a preceding heating zone, and a soaking process is performed in which the temperature is maintained at a predetermined temperature for a predetermined time in a subsequent soaking zone.
And as above-mentioned, the steel plate highest ultimate temperature in an annealing furnace is 600 degreeC or more and 700 degrees C or less, and the steel plate passage time in the temperature range whose steel plate temperature is 600 degreeC or more and 700 degrees C or less is 30 seconds or more and less than 10 minutes, Annealing and hot dip galvanizing are performed by controlling the hydrogen concentration in the atmosphere to 20 vol% or more. The balance consists of N 2 and inevitable impurity gas. Other gas components such as H 2 O, CO 2 and CO may be contained as long as the effects of the present invention are not impaired.
The hot dip galvanizing treatment can be performed by a conventional method.

次いで、必要に応じて合金化処理を行う。
溶融亜鉛めっき処理に引き続き合金化処理を行うときは、溶融亜鉛めっき処理したのち、450℃以上600℃以下に鋼板を加熱して合金化処理を施し、めっき層のFe含有量が8〜14%になるよう行うのが好ましい。8%未満では合金化ムラ発生や耐フレーキング性が劣化する。一方、14%超えは耐めっき剥離性が劣化する。
Next, an alloying treatment is performed as necessary.
When the alloying treatment is performed subsequent to the hot dip galvanizing treatment, the hot dip galvanizing treatment is performed, and then the steel plate is heated to 450 ° C. or higher and 600 ° C. or lower to perform the alloying treatment, and the Fe content of the plating layer is 8 to 14%. It is preferable to do so. If it is less than 8%, uneven alloying and flaking resistance deteriorate. On the other hand, if it exceeds 14%, the plating peel resistance deteriorates.

以上により、本発明の高強度溶融亜鉛めっき鋼板が得られる。本発明の高強度溶融亜鉛めっき鋼板は、鋼板の表面に、片面あたりのめっき付着量が20〜120g/mの亜鉛めっき層を有する。20g/m未満では耐食性の確保が困難になる。一方、120g/mを超えると耐めっき剥離性が劣化する。 As described above, the high-strength hot-dip galvanized steel sheet of the present invention is obtained. The high-strength hot-dip galvanized steel sheet of the present invention has a galvanized layer having a plating adhesion amount of 20 to 120 g / m 2 on one surface of the steel sheet. If it is less than 20 g / m 2 , it becomes difficult to ensure corrosion resistance. On the other hand, when it exceeds 120 g / m 2 , the plating peel resistance deteriorates.

そして、以下のように、めっき層直下の下地鋼板表面の構造に特徴を有することになる。
亜鉛めっき層の直下の、下地鋼板表面から100μm以内の鋼板表層部では、Fe、Si、Mn、Al、P、さらには、B、Nb、Ti、Cr、Mo、Cu、Ni、Sn、Sb、Ta、W、Vのうちから選ばれる1種以上の酸化物の形成が合計で片面あたり0.030g/m未満に抑制される。
And it has the characteristic in the structure of the base steel plate surface just under a plating layer as follows.
In the steel sheet surface layer portion within 100 μm from the surface of the underlying steel sheet immediately below the galvanized layer, Fe, Si, Mn, Al, P, and further B, Nb, Ti, Cr, Mo, Cu, Ni, Sn, Sb, The formation of one or more oxides selected from Ta, W, and V is suppressed to less than 0.030 g / m 2 per side in total.

鋼中にSi及び多量のMnが添加された溶融亜鉛めっき鋼板において、耐食性および高加工時の耐めっき剥離性を満足させるためには、腐食や高加工時の割れなどの起点になる可能性があるめっき層直下の地鉄表層の内部酸化を極力少なくすることが求められる。そこで、本発明では、まず、めっき性を確保するために焼鈍工程において酸素ポテンシャルを低下させることで易酸化性元素であるSiやMn等の地鉄表層部における活量を低下させる。そして、これらの元素の外部酸化を抑制し、結果的にめっき性を改善する。さらに、地鉄表層部に形成する内部酸化も抑制され、耐食性及び高加工性が改善することになる。このような効果は、下地鋼板表面から100μm以内の鋼板表層部に、Fe、Si、Mn、Al、P、さらには、B、Nb、Ti、Cr、Mo、Cu、Ni、Sn、Sb、Ta、W、Vのうちから選ばれる少なくとも1種以上の酸化物の形成量を合計で0.030g/m未満に抑制することで認められる。酸化物形成量の合計(以下、内部酸化量と称す)が0.030g/m以上では、耐食性及び高加工性が劣化する。また、内部酸化量を0.0001g/m未満に抑制しても、耐食性及び高加工性向上効果は飽和するため、内部酸化量の下限は0.0001g/m以上が好ましい。 In hot-dip galvanized steel sheets with Si and a large amount of Mn added to the steel, in order to satisfy the corrosion resistance and anti-plating resistance during high processing, there is a possibility of starting from corrosion and cracking during high processing. It is required to minimize the internal oxidation of the surface layer of the ground metal directly below a certain plating layer. Therefore, in the present invention, first, the activity in the surface layer portion of the iron base such as Si or Mn, which is an easily oxidizable element, is reduced by lowering the oxygen potential in the annealing process in order to ensure the plating property. And the external oxidation of these elements is suppressed and, as a result, the platability is improved. Furthermore, internal oxidation formed in the surface layer portion of the ground iron is also suppressed, and corrosion resistance and high workability are improved. Such an effect is obtained by applying Fe, Si, Mn, Al, P, and B, Nb, Ti, Cr, Mo, Cu, Ni, Sn, Sb, Ta on the steel sheet surface layer within 100 μm from the surface of the base steel sheet. , W, and V, the formation amount of at least one oxide selected from the group consisting of less than 0.030 g / m 2 is recognized. When the total oxide formation amount (hereinafter referred to as internal oxidation amount) is 0.030 g / m 2 or more, the corrosion resistance and the high workability deteriorate. Even if the internal oxidation amount is suppressed to less than 0.0001 g / m 2 , the effect of improving corrosion resistance and high workability is saturated, so the lower limit of the internal oxidation amount is preferably 0.0001 g / m 2 or more.

さらに、上記に加え、本発明では、耐めっき剥離性を向上させるために、Si、Mn系複合酸化物が成長する地鉄組織は軟質で加工性に富むフェライト相が好ましい。   Furthermore, in addition to the above, in the present invention, in order to improve the plating peel resistance, the base iron structure on which the Si and Mn-based composite oxide grows is preferably a soft and rich workability ferrite phase.

以下、本発明を、実施例に基いて具体的に説明する。
表1に示す鋼組成からなる熱延鋼板を酸洗し、黒皮スケール除去した後、表2、表3に示す条件にて冷間圧延し、厚さ1.0mmの冷延鋼板を得た。
Hereinafter, the present invention will be specifically described based on examples.
After pickling the hot rolled steel sheet having the steel composition shown in Table 1 and removing the black scale, it was cold rolled under the conditions shown in Tables 2 and 3 to obtain a cold rolled steel sheet having a thickness of 1.0 mm. .

Figure 2014015675
Figure 2014015675

次いで、上記で得た冷延鋼板を、焼鈍炉にオールラジアントチューブ型の加熱炉を備えるCGLに装入した。CGLでは、表2に示す通り、焼鈍炉内の鋼板温度が600℃〜700℃の温度域における水素濃度および鋼板通過時間、鋼板最高到達温度を表2に示すように制御して通板し、焼鈍したのち、460℃のAl含有Zn浴にて溶融亜鉛めっき処理を施した。
なお、雰囲気中の露点の制御については、N中に設置した水タンクを加熱して加湿したNガスが流れる配管を予め別途設置し、加湿したNガス中にHガスを導入して混合し、これを炉内に導入することで雰囲気中の露点を制御した。
また、GAは0.14%Al含有Zn浴を、GIは0.18%Al含有Zn浴を用いた。付着量はガスワイピングにより調節し、GAは合金化処理した。
Next, the cold-rolled steel sheet obtained above was charged into a CGL equipped with an all-radiant tube type heating furnace in an annealing furnace. In CGL, as shown in Table 2, the steel plate temperature in the annealing furnace is controlled to pass through the hydrogen concentration and the steel plate passage time in the temperature range of 600 ° C to 700 ° C as shown in Table 2, After annealing, hot dip galvanizing treatment was performed in an Al-containing Zn bath at 460 ° C.
Note that the control of the dew point in the atmosphere, and previously installed separately N 2 gas flows pipe humidified by heating water tank was placed in N 2, introducing H 2 gas to N 2 gas humidified The dew point in the atmosphere was controlled by introducing the mixture into the furnace.
In addition, GA used a 0.14% Al-containing Zn bath, and GI used a 0.18% Al-containing Zn bath. The adhesion amount was adjusted by gas wiping, and GA was alloyed.

以上により得られた溶融亜鉛めっき鋼板(GAおよびGI)に対して、外観性(めっき外観)、耐食性、高加工時の耐めっき剥離性、加工性を調査した。また、めっき層直下の100μmまので地鉄鋼板表層部に存在する酸化物の量(内部酸化量)を測定した。測定方法および評価基準を下記に示す。   The hot-dip galvanized steel sheets (GA and GI) obtained as described above were examined for appearance (plating appearance), corrosion resistance, plating peeling resistance during high processing, and workability. Further, the amount of oxide (internal oxidation amount) present in the surface layer portion of the steel sheet up to 100 μm immediately below the plating layer was measured. The measurement method and evaluation criteria are shown below.

<外観性(めっき外観)>
外観性は、不めっきや合金化ムラなどの外観不良が無い場合は外観良好(記号○)、ある場合は外観不良(記号×)と判定した。
<Appearance (plating appearance)>
Appearance was judged as good appearance (symbol ◯) when there was no appearance defect such as non-plating or alloying unevenness, and when it was present, it was judged as poor appearance (symbol x).

<耐食性>
寸法70mm×150mmの合金化溶融亜鉛めっき鋼板について、JIS Z 2371(2000年)に基づく塩水噴霧試験を3日間行い、腐食生成物をクロム酸(濃度200g/L、80℃)を用いて1分間洗浄除去し、片面あたりの試験前後のめっき腐食減量(g/m・日)を重量法にて測定し、下記基準で評価した。
○(良好):20g/m・日未満
×(不良):20g/m・日以上
<耐めっき剥離性>
高加工時の耐めっき剥離性は、GAではめっき鋼板では、90°を超えて鋭角に曲げたときの曲げ加工部のめっき剥離の抑制が要求される。本実施例では120°曲げした場合の曲げ加工部にセロハンテープ(登録商標)を押し付けて剥離物をセロハンテープ(登 録商標)に転移させ、セロハンテープ(登録商標)上の剥離物量をZnカウント数として蛍光X線法で求めた。なお、この時のマスク径は30mm、蛍光X線の加速電圧は50kV、加速電流は50mA、測定時間は20秒である。下記の基準に照らして、ランク1、2のものを耐めっき剥離性が良好(記号○)、3以上のものを耐めっき剥離性が不良(記号×)と評価した。
蛍光X線Znカウント数 ランク
0−500未満:1(良)
500以上−1000未満:2
1000以上−2000未満:3
2000以上−3000未満:4
3000以上:5(劣)
GIでは、衝撃試験時の耐めっき剥離性が要求される。ボールインパクト試験を行い、加工部をテープ剥離し、めっき層の剥離有無を目視判定した。ボールインパクト条件は、ボール重量1000g、落下高さ100cmである。
○:めっき層の剥離無し
×:めっき層が剥離
<加工性>
加工性は、試料から圧延方向に対して90°方向にJIS5号引張試験片を採取し、JIS Z 2241の規定に準拠してクロスヘッド速度10mm/min一定で引張試験を行い、引張り強度(TS/MPa)と伸び(El%)を測定し、TS×El≧24000のものを良好、TS×El<24000のものを不良とした。
<Corrosion resistance>
A salt spray test based on JIS Z 2371 (2000) is performed on an alloyed hot-dip galvanized steel sheet having dimensions of 70 mm × 150 mm for 3 days, and the corrosion product is used for 1 minute using chromic acid (concentration 200 g / L, 80 ° C.). After washing and removing, the plating corrosion weight loss (g / m 2 · day) before and after the test per one side was measured by a weight method and evaluated according to the following criteria.
○ (Good): Less than 20 g / m 2 · day × (Bad): 20 g / m 2 · day or more <Plating resistance>
With regard to the plating peel resistance at the time of high processing, in the case of a plated steel sheet in GA, it is required to suppress plating peeling at the bent portion when bent to an acute angle exceeding 90 °. In this example, the cellophane tape (registered trademark) is pressed against the bending part when it is bent at 120 ° to transfer the peeled material to the cellophane tape (registered trademark), and the amount of peeled material on the cellophane tape (registered trademark) is counted as Zn. The number was obtained by fluorescent X-ray method. At this time, the mask diameter is 30 mm, the fluorescent X-ray acceleration voltage is 50 kV, the acceleration current is 50 mA, and the measurement time is 20 seconds. In light of the following criteria, those with ranks 1 and 2 were evaluated to have good plating peel resistance (symbol ◯), and those with three or more were evaluated to have poor plating peel resistance (symbol x).
Fluorescent X-ray Zn count number Rank 0 to less than 500: 1 (good)
500 or more and less than 1000: 2
1000 or more and less than −2000: 3
2000 or more and less than −3000: 4
3000 or more: 5 (poor)
In GI, resistance to plating peeling during an impact test is required. A ball impact test was performed, the processed part was peeled off with tape, and the presence or absence of peeling of the plating layer was visually determined. Ball impact conditions are a ball weight of 1000 g and a drop height of 100 cm.
○: Plating layer is not peeled ×: Plating layer is peeled <Processability>
For workability, a JIS No. 5 tensile test piece was sampled from the sample in a 90 ° direction with respect to the rolling direction, a tensile test was performed at a constant crosshead speed of 10 mm / min in accordance with the provisions of JIS Z 2241, and the tensile strength (TS / MPa) and elongation (El%) were measured, and those with TS × El ≧ 24000 were good and those with TS × El <24000 were bad.

<めっき層直下100μmまでの領域における内部酸化量>
内部酸化量は、「インパルス炉溶融−赤外線吸収法」により測定する。ただし、素材(すなわち焼鈍を施す前の高強度鋼板)に含まれる酸素量を差し引く必要があるので、本発明では、連続焼鈍後の高強度鋼板の両面の表層部を100μm以上研磨して鋼中酸素濃度を測定し、その測定値を素材に含まれる酸素量OHとし、また、連続焼鈍後の高強度鋼板の板厚方向全体での鋼中酸素濃度を測定して、その測定値を内部酸化後の酸素量OIとした。このようにして得られた高強度鋼板の内部酸化後の酸素量OIと、素材に含まれる酸素量OHとを用いて、OIとOHの差(=OI−OH)を算出し、さらに片面単位面積(すなわち1m)当たりの量に換算した値(g/m)を内部酸化量とした。
<Internal oxidation amount in the region of 100 μm directly under the plating layer>
The amount of internal oxidation is measured by “impulse furnace melting-infrared absorption method”. However, since it is necessary to subtract the amount of oxygen contained in the material (that is, the high-strength steel plate before annealing), in the present invention, the surface layer portions on both surfaces of the high-strength steel plate after continuous annealing are polished by 100 μm or more in the steel. Measure the oxygen concentration, set the measured value as the amount of oxygen OH contained in the material, measure the oxygen concentration in the steel in the entire thickness direction of the high-strength steel sheet after continuous annealing, and measure the measured value internally. The subsequent oxygen amount OI was used. The difference between OI and OH (= OI-OH) is calculated using the oxygen amount OI after internal oxidation of the high-strength steel plate thus obtained and the oxygen amount OH contained in the material, and further, single-sided unit area (i.e. 1 m 2) value converted into the amount per (g / m 2) as an internal oxide amount.

以上により得られた結果を製造条件と併せて表2、表3に示す。   The results obtained above are shown in Tables 2 and 3 together with the production conditions.

Figure 2014015675
Figure 2014015675

Figure 2014015675
Figure 2014015675

表2、表3から明らかなように、本発明法で製造されたGI、GA(本発明例)は、Si、Mn等の易酸化性元素を多量に含有する高強度鋼板であるにもかかわらず、耐食性、加工性、高加工時の耐めっき剥離性およびめっき外観も良好である。
一方、比較例では、めっき外観、耐食性、加工性、高加工時の耐めっき剥離性のいずれか一つ以上が劣る。
As is apparent from Tables 2 and 3, GI and GA (invention examples) produced by the method of the present invention are high-strength steel sheets containing a large amount of oxidizable elements such as Si and Mn. In addition, corrosion resistance, workability, resistance to plating peeling during high processing, and plating appearance are also good.
On the other hand, in the comparative example, any one or more of plating appearance, corrosion resistance, workability, and plating peeling resistance during high processing is inferior.

本発明の高強度溶融亜鉛めっき鋼板は、めっき外観、耐食性、加工性および高加工時の耐めっき剥離性に優れ、自動車の車体そのものを軽量化かつ高強度化するための表面処理鋼板として利用することができる。また、自動車以外にも、素材鋼板に防錆性を付与した表面処理鋼板として、家電、建材の分野等、広範な分野で適用できる。   The high-strength hot-dip galvanized steel sheet according to the present invention is excellent in plating appearance, corrosion resistance, workability, and anti-plating resistance during high processing, and is used as a surface-treated steel sheet for reducing the weight and strength of an automobile body. be able to. In addition to automobiles, the steel sheet can be applied in a wide range of fields such as home appliances and building materials as a surface-treated steel sheet provided with rust prevention properties.

Claims (4)

質量%で、C:0.03〜0.35%、Si:0.01〜0.50%、Mn:3.6〜8.0%、Al:0.001〜1.000%、P≦0.10%、S≦0.010%を含有し、残部がFeおよび不可避的不純物からなる鋼板の表面に、片面あたりのめっき付着量が20〜120g/mの亜鉛めっき層を有する高強度溶融亜鉛めっき鋼板を製造する方法であって、鋼板を連続式溶融亜鉛めっき設備において焼鈍および溶融亜鉛めっき処理を施すに際し、焼鈍炉内での鋼板最高到達温度は600℃以上700℃以下であり、鋼板温度が600℃以上700℃以下の温度域における鋼板通過時間は30秒以上10分以内、雰囲気中の水素濃度は20vol%以上とすることを特徴とする高強度溶融亜鉛めっき鋼板の製造方法。 In mass%, C: 0.03 to 0.35%, Si: 0.01 to 0.50%, Mn: 3.6 to 8.0%, Al: 0.001 to 1.000%, P ≦ High strength having a galvanized layer with a coating adhesion amount of 20 to 120 g / m 2 on one surface on the surface of a steel plate containing 0.10%, S ≦ 0.010%, the balance being Fe and inevitable impurities A method for producing a hot dip galvanized steel sheet, when the steel sheet is subjected to annealing and hot dip galvanizing treatment in a continuous hot dip galvanizing facility, the highest steel sheet temperature in the annealing furnace is 600 ° C or higher and 700 ° C or lower, A method for producing a high-strength hot-dip galvanized steel sheet, characterized in that the steel sheet passage time in a temperature range of 600 ° C. to 700 ° C. is 30 seconds to 10 minutes and the hydrogen concentration in the atmosphere is 20 vol% or more. 前記鋼板は、成分組成として、質量%で、さらに、B:0.001〜0.005%、Nb:0.005〜0.050%、Ti:0.005〜0.050%、Cr:0.001〜1.000%、Mo:0.05〜1.00%、Cu:0.05〜1.00%、Ni:0.05〜1.00%、Sn:0.001〜0.20%、Sb:0.001〜0.20%、Ta:0.001〜0.10%、W:0.001〜0.10%、V:0.001〜0.10%の中から選ばれる1種以上の元素を含有することを特徴とする請求項1に記載の高強度溶融亜鉛めっき鋼板の製造方法。   The steel sheet is in mass% as a component composition, and B: 0.001 to 0.005%, Nb: 0.005 to 0.050%, Ti: 0.005 to 0.050%, Cr: 0 0.001 to 1.000%, Mo: 0.05 to 1.00%, Cu: 0.05 to 1.00%, Ni: 0.05 to 1.00%, Sn: 0.001 to 0.20 %, Sb: 0.001 to 0.20%, Ta: 0.001 to 0.10%, W: 0.001 to 0.10%, V: 0.001 to 0.10% The method for producing a high-strength hot-dip galvanized steel sheet according to claim 1, comprising at least one element. 溶融亜鉛めっき処理後、さらに、450℃以上600℃以下の温度に鋼板を加熱して合金化処理を施し、めっき層のFe含有量を8〜14質量%の範囲にすることを特徴とする請求項1〜3に記載の高強度溶融亜鉛めっき鋼板の製造方法。   After the hot dip galvanizing treatment, the steel sheet is further heated to a temperature of 450 ° C. or higher and 600 ° C. or lower to perform alloying treatment, and the Fe content of the plating layer is in the range of 8 to 14% by mass. The manufacturing method of the high intensity | strength hot-dip galvanized steel plate of claim | item 1-3. 請求項1〜3に記載のいずれかの製造方法により作成され、亜鉛めっき層直下の、下地鋼板表面から100μm以内の鋼板表層部に生成したFe、Si、Mn、Al、P、B、Nb、Ti、Cr、Mo、Cu、Ni、Sn、Sb、Ta、W、Vのうちから選ばれる少なくとも1種以上の酸化物が、合計で片面あたり0.030g/m2未満であることを特徴とする高強度溶融亜鉛めっき鋼板。 Fe, Si, Mn, Al, P, B, Nb, produced by the production method according to any one of claims 1 to 3 and formed in a steel plate surface layer portion within 100 μm from the surface of the underlying steel plate immediately below the galvanized layer. It is characterized in that at least one oxide selected from Ti, Cr, Mo, Cu, Ni, Sn, Sb, Ta, W, V is less than 0.030 g / m 2 per side in total. High strength hot dip galvanized steel sheet.
JP2013041499A 2012-06-15 2013-03-04 Method for producing high-strength hot-dip galvanized steel sheet and high-strength hot-dip galvanized steel sheet Expired - Fee Related JP5888267B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013041499A JP5888267B2 (en) 2012-06-15 2013-03-04 Method for producing high-strength hot-dip galvanized steel sheet and high-strength hot-dip galvanized steel sheet

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012135358 2012-06-15
JP2012135358 2012-06-15
JP2013041499A JP5888267B2 (en) 2012-06-15 2013-03-04 Method for producing high-strength hot-dip galvanized steel sheet and high-strength hot-dip galvanized steel sheet

Publications (2)

Publication Number Publication Date
JP2014015675A true JP2014015675A (en) 2014-01-30
JP5888267B2 JP5888267B2 (en) 2016-03-16

Family

ID=50110617

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013041499A Expired - Fee Related JP5888267B2 (en) 2012-06-15 2013-03-04 Method for producing high-strength hot-dip galvanized steel sheet and high-strength hot-dip galvanized steel sheet

Country Status (1)

Country Link
JP (1) JP5888267B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014040655A (en) * 2012-07-23 2014-03-06 Jfe Steel Corp High-strength steel plate and manufacturing method thereof
JP2015151607A (en) * 2014-02-18 2015-08-24 Jfeスチール株式会社 High strength hot-dip galvanized steel sheet and method for producing the same
JP2015151595A (en) * 2014-02-18 2015-08-24 Jfeスチール株式会社 High strength steel sheet and manufacturing method of high strength steel sheet
CN106029934A (en) * 2014-02-18 2016-10-12 杰富意钢铁株式会社 High-strength hot-dip galvanized steel plate and method for producing same
WO2018003407A1 (en) * 2016-06-27 2018-01-04 Jfeスチール株式会社 High strength galvannealed steel sheet and production method therefor
US10174411B2 (en) 2013-03-04 2019-01-08 Jfe Steel Corporation High-strength steel sheet and production method therefor and high-strength galvanized steel sheet and production method therefor (as amended)
US10597741B2 (en) 2013-11-22 2020-03-24 Jfe Steel Corporation High-strength steel sheet and method for manufacturing the same
US10837074B2 (en) 2012-03-19 2020-11-17 Jfe Steel Corporation Method for manufacturing high strength galvanized steel sheet and high strength galvanized steel sheet
WO2023238938A1 (en) * 2022-06-10 2023-12-14 日本製鉄株式会社 Hot dipped steel sheet

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005273001A (en) * 2004-01-08 2005-10-06 Nippon Steel Corp Steel sheet having high young's modulus and its production method
JP2010255112A (en) * 2009-03-31 2010-11-11 Jfe Steel Corp High strength hot dip galvanized steel sheet and method for producing the same
JP2011523442A (en) * 2008-05-20 2011-08-11 ポスコ High-strength cold-rolled steel sheet, hot-dip galvanized steel sheet excellent in high ductility and delayed fracture resistance, and manufacturing method thereof
JP2011219783A (en) * 2009-03-31 2011-11-04 Jfe Steel Corp High-strength hot-dip galvanized steel plate and method for manufacturing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005273001A (en) * 2004-01-08 2005-10-06 Nippon Steel Corp Steel sheet having high young's modulus and its production method
JP2011523442A (en) * 2008-05-20 2011-08-11 ポスコ High-strength cold-rolled steel sheet, hot-dip galvanized steel sheet excellent in high ductility and delayed fracture resistance, and manufacturing method thereof
JP2010255112A (en) * 2009-03-31 2010-11-11 Jfe Steel Corp High strength hot dip galvanized steel sheet and method for producing the same
JP2011219783A (en) * 2009-03-31 2011-11-04 Jfe Steel Corp High-strength hot-dip galvanized steel plate and method for manufacturing the same

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10837074B2 (en) 2012-03-19 2020-11-17 Jfe Steel Corporation Method for manufacturing high strength galvanized steel sheet and high strength galvanized steel sheet
JP2014040655A (en) * 2012-07-23 2014-03-06 Jfe Steel Corp High-strength steel plate and manufacturing method thereof
US10174411B2 (en) 2013-03-04 2019-01-08 Jfe Steel Corporation High-strength steel sheet and production method therefor and high-strength galvanized steel sheet and production method therefor (as amended)
US10597741B2 (en) 2013-11-22 2020-03-24 Jfe Steel Corporation High-strength steel sheet and method for manufacturing the same
WO2015125435A1 (en) * 2014-02-18 2015-08-27 Jfeスチール株式会社 High-strength hot-dip galvanized steel plate and method for producing same
CN106029934B (en) * 2014-02-18 2018-11-30 杰富意钢铁株式会社 High strength hot dip galvanized steel sheet and its manufacturing method
KR20160122255A (en) * 2014-02-18 2016-10-21 제이에프이 스틸 가부시키가이샤 High-strength hot-dip galvanized steel plate and method for producing same
EP3109338A4 (en) * 2014-02-18 2017-03-01 JFE Steel Corporation High-strength hot-dip galvanized steel plate and method for producing same
US20170067131A1 (en) * 2014-02-18 2017-03-09 Jfe Steel Corporation High-strength steel sheet and method of manufacturing high-strength steel sheet
JP2015151607A (en) * 2014-02-18 2015-08-24 Jfeスチール株式会社 High strength hot-dip galvanized steel sheet and method for producing the same
KR101864655B1 (en) * 2014-02-18 2018-06-05 제이에프이 스틸 가부시키가이샤 Method for producing high-strength hot-dip galvanized steel sheet
CN106029934A (en) * 2014-02-18 2016-10-12 杰富意钢铁株式会社 High-strength hot-dip galvanized steel plate and method for producing same
WO2015125422A1 (en) * 2014-02-18 2015-08-27 Jfeスチール株式会社 High-strength steel plate and method for producing high-strength steel plate
US10301701B2 (en) 2014-02-18 2019-05-28 Jfe Steel Corporation High-strength hot-dip galvanized steel sheet and method for producing same
JP2015151595A (en) * 2014-02-18 2015-08-24 Jfeスチール株式会社 High strength steel sheet and manufacturing method of high strength steel sheet
WO2018003407A1 (en) * 2016-06-27 2018-01-04 Jfeスチール株式会社 High strength galvannealed steel sheet and production method therefor
US11384407B2 (en) 2016-06-27 2022-07-12 Jfe Steel Corporation High-strength galvannealed steel sheet
WO2023238938A1 (en) * 2022-06-10 2023-12-14 日本製鉄株式会社 Hot dipped steel sheet
JP7410448B1 (en) 2022-06-10 2024-01-10 日本製鉄株式会社 Hot-dipped steel sheet

Also Published As

Publication number Publication date
JP5888267B2 (en) 2016-03-16

Similar Documents

Publication Publication Date Title
JP5206705B2 (en) High-strength hot-dip galvanized steel sheet and manufacturing method thereof
JP5982905B2 (en) Method for producing high-strength hot-dip galvanized steel sheet
JP5982906B2 (en) Method for producing high-strength hot-dip galvanized steel sheet
JP5888267B2 (en) Method for producing high-strength hot-dip galvanized steel sheet and high-strength hot-dip galvanized steel sheet
US10138530B2 (en) Method for producing high-strength galvannealed steel sheets
JP2010126757A (en) High-strength hot-dip galvanized steel sheet and method for producing the same
JP5884196B2 (en) Method for producing high-strength hot-dip galvanized steel sheet
JP5552863B2 (en) High-strength hot-dip galvanized steel sheet and manufacturing method thereof
JP2011219778A (en) High-strength hot-dip galvanized steel plate and method for manufacturing the same
JP5888268B2 (en) Method for producing high-strength hot-dip galvanized steel sheet and high-strength hot-dip galvanized steel sheet
JP5552859B2 (en) High-strength hot-dip galvanized steel sheet and manufacturing method thereof
JP5593771B2 (en) Method for producing high-strength hot-dip galvanized steel sheet
JP5552862B2 (en) High-strength hot-dip galvanized steel sheet and manufacturing method thereof
JP5552864B2 (en) High-strength hot-dip galvanized steel sheet and manufacturing method thereof
JP6094507B2 (en) High-strength hot-dip galvanized steel sheet and manufacturing method thereof
JP6094508B2 (en) High-strength hot-dip galvanized steel sheet and manufacturing method thereof
JP5672743B2 (en) High-strength hot-dip galvanized steel sheet and manufacturing method thereof
JP5593770B2 (en) Method for producing high-strength hot-dip galvanized steel sheet
JP5971155B2 (en) Method for producing high-strength hot-dip galvanized steel sheet and high-strength hot-dip galvanized steel sheet
JP5935720B2 (en) Method for producing high-strength hot-dip galvanized steel sheet and high-strength hot-dip galvanized steel sheet
JP2011219782A (en) High-strength hot-dip galvanized steel plate and method for manufacturing the same
JP5552860B2 (en) High-strength hot-dip galvanized steel sheet and manufacturing method thereof
JP5552861B2 (en) High-strength hot-dip galvanized steel sheet and manufacturing method thereof
JP5962544B2 (en) Method for producing high-strength hot-dip galvanized steel sheet and high-strength hot-dip galvanized steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160119

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160201

R150 Certificate of patent or registration of utility model

Ref document number: 5888267

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees