JP2014014318A - Method for predicting filterability of unfiltered liquid as intermediate product of beer taste beverage - Google Patents
Method for predicting filterability of unfiltered liquid as intermediate product of beer taste beverage Download PDFInfo
- Publication number
- JP2014014318A JP2014014318A JP2012154076A JP2012154076A JP2014014318A JP 2014014318 A JP2014014318 A JP 2014014318A JP 2012154076 A JP2012154076 A JP 2012154076A JP 2012154076 A JP2012154076 A JP 2012154076A JP 2014014318 A JP2014014318 A JP 2014014318A
- Authority
- JP
- Japan
- Prior art keywords
- beer
- filtration
- filterability
- intermediate product
- concentration
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 73
- 235000013361 beverage Nutrition 0.000 title claims abstract description 58
- 239000007788 liquid Substances 0.000 title claims abstract description 46
- 239000013067 intermediate product Substances 0.000 title claims abstract description 35
- 235000013405 beer Nutrition 0.000 title claims abstract description 30
- 239000010419 fine particle Substances 0.000 claims abstract description 65
- 239000002245 particle Substances 0.000 claims abstract description 35
- 238000001914 filtration Methods 0.000 claims description 68
- 238000011045 prefiltration Methods 0.000 claims description 30
- 238000003860 storage Methods 0.000 claims description 21
- 238000004519 manufacturing process Methods 0.000 claims description 19
- 235000013334 alcoholic beverage Nutrition 0.000 claims description 4
- 239000000243 solution Substances 0.000 abstract description 8
- 239000006193 liquid solution Substances 0.000 abstract 1
- 230000035800 maturation Effects 0.000 abstract 1
- 239000011550 stock solution Substances 0.000 abstract 1
- 239000000706 filtrate Substances 0.000 description 30
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 17
- 239000005909 Kieselgur Substances 0.000 description 15
- 238000000855 fermentation Methods 0.000 description 13
- 230000004151 fermentation Effects 0.000 description 13
- 230000008569 process Effects 0.000 description 12
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 10
- 239000002994 raw material Substances 0.000 description 10
- 239000007787 solid Substances 0.000 description 8
- 238000005259 measurement Methods 0.000 description 7
- 239000000203 mixture Substances 0.000 description 6
- 238000007796 conventional method Methods 0.000 description 5
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 238000002835 absorbance Methods 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 239000012467 final product Substances 0.000 description 3
- 239000000796 flavoring agent Substances 0.000 description 3
- 235000019634 flavors Nutrition 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 235000019520 non-alcoholic beverage Nutrition 0.000 description 3
- 238000012856 packing Methods 0.000 description 3
- 238000011002 quantification Methods 0.000 description 3
- 235000008694 Humulus lupulus Nutrition 0.000 description 2
- GXCLVBGFBYZDAG-UHFFFAOYSA-N N-[2-(1H-indol-3-yl)ethyl]-N-methylprop-2-en-1-amine Chemical compound CN(CCC1=CNC2=C1C=CC=C2)CC=C GXCLVBGFBYZDAG-UHFFFAOYSA-N 0.000 description 2
- 230000032683 aging Effects 0.000 description 2
- 230000001476 alcoholic effect Effects 0.000 description 2
- 239000001569 carbon dioxide Substances 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 235000014171 carbonated beverage Nutrition 0.000 description 2
- 238000005119 centrifugation Methods 0.000 description 2
- 238000005352 clarification Methods 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000009295 crossflow filtration Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 238000011049 filling Methods 0.000 description 2
- 238000000691 measurement method Methods 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 102000004169 proteins and genes Human genes 0.000 description 2
- 108090000623 proteins and genes Proteins 0.000 description 2
- 230000001954 sterilising effect Effects 0.000 description 2
- 238000004659 sterilization and disinfection Methods 0.000 description 2
- FYGDTMLNYKFZSV-URKRLVJHSA-N (2s,3r,4s,5s,6r)-2-[(2r,4r,5r,6s)-4,5-dihydroxy-2-(hydroxymethyl)-6-[(2r,4r,5r,6s)-4,5,6-trihydroxy-2-(hydroxymethyl)oxan-3-yl]oxyoxan-3-yl]oxy-6-(hydroxymethyl)oxane-3,4,5-triol Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@H]1OC1[C@@H](CO)O[C@@H](OC2[C@H](O[C@H](O)[C@H](O)[C@H]2O)CO)[C@H](O)[C@H]1O FYGDTMLNYKFZSV-URKRLVJHSA-N 0.000 description 1
- 239000004382 Amylase Substances 0.000 description 1
- 102000013142 Amylases Human genes 0.000 description 1
- 108010065511 Amylases Proteins 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- 229920002498 Beta-glucan Polymers 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 241000209140 Triticum Species 0.000 description 1
- 235000021307 Triticum Nutrition 0.000 description 1
- 235000019418 amylase Nutrition 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 235000013339 cereals Nutrition 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000005429 filling process Methods 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 150000004676 glycans Chemical class 0.000 description 1
- 239000010903 husk Substances 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 235000020094 liqueur Nutrition 0.000 description 1
- 238000007726 management method Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000003908 quality control method Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 235000015096 spirit Nutrition 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 235000000346 sugar Nutrition 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 239000001648 tannin Substances 0.000 description 1
- 235000018553 tannin Nutrition 0.000 description 1
- 229920001864 tannin Polymers 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Landscapes
- Distillation Of Fermentation Liquor, Processing Of Alcohols, Vinegar And Beer (AREA)
- Non-Alcoholic Beverages (AREA)
Abstract
Description
本発明は、ビール等のビールテイスト飲料の中間製品である濾過前液の濾過性を予測するための方法に関する。 The present invention relates to a method for predicting the filterability of a pre-filtration liquid that is an intermediate product of beer-taste beverages such as beer.
ビールテイスト飲料は、芳醇な香り、味、及び泡といった基本的な品質に加え、清澄性も求められるので、充填前の最終工程として「濾過」が必要となる。この濾過工程は、タンパク性物質、タンニン化合物、及びホップ樹脂などの混濁成分だけでなく、酵母及び場合によってはバクテリアもここで捕捉されるという利点を含む。 Beer-taste beverages require clarification in addition to basic qualities such as rich aroma, taste, and foam, so “filtration” is required as a final step before filling. This filtration step has the advantage that not only turbid components such as proteinaceous substances, tannin compounds and hop resins, but also yeast and possibly bacteria are captured here.
「濾過」は、通常、発酵工程と充填工程の間で行なわれる。しかし、用いる原料やプロセスが異なる場合、所望する飲料特性が異なる場合等、一律な濾過条件では十分ではなく、異なる濾過条件が要求される。 “Filtering” is usually performed between the fermentation process and the filling process. However, uniform filtration conditions are not sufficient, such as different raw materials and processes used, and different desired beverage characteristics, and different filtration conditions are required.
また、例えば珪藻土濾過の場合、濾過層表面で急速な圧力増加が生じることがあり、それにより濾過可能な液量がより少なくなるといった問題もある。濾過性が悪化すると、濾過機の入口と出口の圧力差である差圧の上昇、流量の低下等の濾過困難に陥り、濾過作業が遅延したり、最悪の場合には最初から濾過をやり直す必要も生じたりする。また、不十分な濾過によって製品ビールの混濁安定性が低下することで、品質にも大きな影響を及ぼすことになる。よって、珪藻土や濾過助剤の種類や量を変えたりして、事前の対策を講じることが必要であった。 In addition, for example, in the case of diatomite filtration, there is a problem that a rapid pressure increase may occur on the surface of the filtration layer, thereby reducing the amount of liquid that can be filtered. When the filterability deteriorates, it becomes difficult to filter, such as the pressure difference between the inlet and outlet of the filter, and the flow rate decreases, and the filtering work is delayed. In the worst case, it is necessary to start filtering from the beginning. May also occur. In addition, poor turbidity stability of the product beer due to inadequate filtration greatly affects the quality. Therefore, it was necessary to take advance measures by changing the types and amounts of diatomaceous earth and filter aids.
また前記の濾過が困難になるメカニズムは珪藻土濾過に限らず、フィルター濾過、クロスフロー濾過などの濾過方式においても同様に発生するものである。 The mechanism that makes the filtration difficult is not limited to diatomaceous earth filtration but also occurs in filtration methods such as filter filtration and crossflow filtration.
そこで、濾過工程における生産性を向上する一つの手段として、濾過性を予測する方法について種々の検討がなされている。 Therefore, various studies have been made on methods for predicting filterability as one means for improving productivity in the filtration step.
例えば、実際のビール発酵液を用いて、小規模の濾過をおこなうことにより濾過性を予測する方法も検討されている。しかし、小規模の濾過を行って濾過性を予測する方法では予測精度が低い、長時間を要するなど不具合があり、迅速かつ高い精度の濾過性予測が困難であった。 For example, a method for predicting filterability by performing small-scale filtration using an actual beer fermentation liquid has been studied. However, the method of predicting filterability by performing small-scale filtration has problems such as low prediction accuracy and long time, and it is difficult to predict filterability quickly and with high accuracy.
一方、特許文献1には、特定波長における吸光度が濾過前後の差圧の上昇速度と高い相関関係を有することを見出したことに基づいて、熟成後の酒類発酵液の波長域390〜920nmにおける吸光度を指標とした濾過性予測方法が開示されている。また、異なる2つの波長における吸光度と固形分濃度との相関関係を予め求めることにより、実測することで濁りの原因が混濁形成物質(ヘイズ)によるものか酵母によるものかを判別することもできると記載されている。 On the other hand, in Patent Document 1, based on the finding that the absorbance at a specific wavelength has a high correlation with the rate of increase in the differential pressure before and after filtration, the absorbance in the wavelength range of 390 to 920 nm of the liquor fermented liquid after aging. A method for predicting filterability using the index as an index is disclosed. In addition, it is possible to determine whether the cause of turbidity is caused by turbidity-forming substances (haze) or yeast by measuring the correlation between absorbance at two different wavelengths and the solid content concentration in advance. Have been described.
特許文献2には、様々な孔サイズの複数のフィルタで試料を連続的に濾過して、各画分の濾過残分を精査して物質を特定することにより、結果として、ビール製造プロセスにおける濾過パラメータを、個々の物質群の粒子サイズに応じて調節することで濾過を容易に行なうことができるといった濾過可能性の予測方法が開示されている。 In Patent Document 2, a sample is continuously filtered through a plurality of filters having various pore sizes, and a filter residue in each fraction is examined to identify a substance, resulting in filtration in a beer manufacturing process. A method for predicting filterability is disclosed in which filtration can be easily performed by adjusting parameters according to the particle size of each substance group.
しかし、従来技術の方法では、測定手法が煩雑であるなど未だ十分ではなく、さらなる利便性に富んだ予測方法が求められている。 However, the conventional method is not yet sufficient because the measurement method is complicated, and a more convenient prediction method is demanded.
本発明の課題は、簡便、迅速かつ精度よく、ビールテイスト飲料の中間製品である濾過前液の濾過性を予測するための方法を提供することにある。 The subject of this invention is providing the method for predicting the filterability of the pre-filtration liquid which is an intermediate product of a beer taste drink simply, rapidly and accurately.
本発明は、
〔1〕 ビールテイスト飲料の中間製品である濾過前液における平均粒子径が3μm以下の微粒子濃度をコールターカウンター法により測定することを特徴とする、ビールテイスト飲料の中間製品である濾過前液の濾過性を予測するための方法、
〔2〕 ビールテイスト飲料の中間製品である濾過前液における平均粒子径が3μm以下の微粒子濃度をコールターカウンター法により測定することを特徴とする、ビールテイスト飲料の中間製品である濾過前液の濾過時における濾過機の入口と出口間の差圧上昇抑制方法、
〔3〕 前記〔1〕記載の方法を含む、ビールテイスト飲料の製造方法、及び
〔4〕 前記〔3〕記載の方法により得られたビールテイスト飲料
に関する。
The present invention
[1] Filtration of a pre-filtration liquid, which is an intermediate product of a beer-taste beverage, wherein the concentration of fine particles having an average particle size of 3 μm or less in the pre-filtration liquid, which is an intermediate product of a beer-taste beverage, is measured by a Coulter counter method A method for predicting gender,
[2] Filtration of the pre-filtration liquid, which is an intermediate product of beer-taste beverages, wherein the concentration of fine particles having an average particle size of 3 μm or less in the pre-filtration liquid, which is an intermediate product of beer-taste beverages, is measured by a Coulter counter method A method for suppressing the increase in the differential pressure between the inlet and outlet of the filter at the time,
[3] A method for producing a beer-taste beverage including the method according to [1], and [4] a beer-taste beverage obtained by the method according to [3].
本発明の予測方法は、ビールテイスト飲料の中間製品である濾過前液の濾過性を簡便、迅速かつ精度よく予測することができるという優れた効果を奏する。また、本発明の予測方法は従来の手法よりも簡便、迅速、少量のサンプルで測定を行うことができるため、実際の製造工程での現実的な管理手法として用いることができ、工程の安定化に活用することができる。 The prediction method of the present invention has an excellent effect that the filterability of a pre-filtration liquid, which is an intermediate product of a beer-taste beverage, can be predicted easily, quickly and accurately. In addition, the prediction method of the present invention is simpler, quicker than conventional methods, and can be measured with a small amount of sample, so it can be used as a realistic management method in an actual manufacturing process, and the process can be stabilized. It can be used for.
本発明のビールテイスト飲料の中間製品である濾過前液の濾過性を予測するための方法は、ビールテイスト飲料の中間製品である濾過前液における平均粒子径が3μm以下の微粒子濃度をコールターカウンター法により測定することを特徴とするものである。なお、本明細書において、濾過における濾過のし易さを『濾過性』と呼ぶこととし、濾過性を予測するとは、濾過のし易さの程度を、濾過機の「単位差圧(kPa)あたりの濾過液量(hL)」(単に、単位差圧濾過液量ともいう)の値によって決定及び/又は判定されることを含む。 The method for predicting the filterability of a pre-filtration liquid that is an intermediate product of a beer-taste beverage according to the present invention uses a Coulter counter method to measure the fine particle concentration of an average particle size of 3 μm or less in the pre-filtration liquid that is an intermediate product of a beer-taste beverage. It is characterized by measuring by. In this specification, the ease of filtration in filtration is referred to as “filterability”, and predicting the filterability means that the degree of ease of filtration is expressed by the “unit differential pressure (kPa) of the filter. It includes being determined and / or determined by the value of “per filtrate volume (hL)” (also simply referred to as unit differential pressure filtrate volume).
本明細書における「ビールテイスト飲料」とは、ビール様の風味をもつ炭酸飲料をいう。つまり、本明細書のビールテイスト飲料は、特に断わりがない場合、酵母による発酵工程の有無に拘わらず、ビール風味の炭酸飲料を全て包含する。具体的には、ビール、発泡酒、その他雑種、リキュール類、ノンアルコール飲料などが挙げられる。 As used herein, “beer-taste beverage” refers to a carbonated beverage having a beer-like flavor. That is, the beer-taste drink of this specification includes all beer-flavored carbonated drinks regardless of the presence or absence of a fermentation process using yeast, unless otherwise specified. Specifically, beer, happoshu, other hybrids, liqueurs, non-alcoholic beverages and the like can be mentioned.
本発明のビールテイスト飲料は、当業者に知られる通常の方法で製造することができる。例えば、麦芽等の麦、他の穀物、でんぷん、及び糖類からなる群より選ばれる少なくとも1種に加え、苦味料、色素などの原料を、仕込釜又は仕込槽に投入し、必要に応じてアミラーゼなどの酵素を添加し、糊化、糖化を行なわせた後、穀皮等を濾過により取り除き、必要に応じてホップなどを加えて煮沸し、清澄タンクにて凝固タンパク質などの固形分を取り除いて、麦汁を得る。これらの糖化工程、煮沸工程、固形分除去工程などにおける条件は、知られている条件を用いればよい。 The beer-taste beverage of the present invention can be produced by a conventional method known to those skilled in the art. For example, in addition to at least one selected from the group consisting of wheat such as malt, other cereals, starch, and sugars, raw materials such as bitters and pigments are charged into a charging kettle or a charging tank, and amylase as necessary. After adding the enzymes such as gelatinization and saccharification, remove the husk etc. by filtration, add hops if necessary and boil, remove solids such as coagulated protein in the clarification tank Get wort. The conditions in these saccharification process, boiling process, solid content removal process, etc. should just use known conditions.
次いで、アルコール飲料の場合には、前記で得られた麦汁に酵母を添加して発酵を行なわせ、必要に応じ濾過機などで酵母を取り除いて製造することができる(発酵工程ともいう)。発酵条件は、知られている条件を用いればよい。あるいは、発酵工程を経る代わりに、スピリッツなどアルコール分を有する原料を添加してもよい。更に、貯蔵(貯酒)、必要により炭酸ガスを添加して、濾過・容器詰め、必要により殺菌の工程を経て、アルコールビールテイスト飲料を得ることができる。 Next, in the case of an alcoholic beverage, yeast can be added to the wort obtained above for fermentation, and if necessary, the yeast can be removed with a filter or the like (also referred to as a fermentation step). What is necessary is just to use known conditions for fermentation conditions. Or you may add the raw material which has alcohol content, such as spirits, instead of passing through a fermentation process. Furthermore, an alcoholic beer-taste beverage can be obtained through storage (storage), carbon dioxide gas if necessary, filtration / packing, and sterilization if necessary.
一方、ノンアルコール飲料の場合、例えば、前記発酵工程を経ることなく、上記固形分除去工程に次いで、前記で得られた麦汁をそのまま貯蔵、炭酸ガスを添加して、濾過・容器詰め、必要により殺菌の工程を経て、製造することができる。あるいは、前記アルコール飲料の発酵工程の後、ビール膜処理や希釈などの公知の方法によりアルコール濃度を低減させることによって、ノンアルコールビールテイスト飲料を得ることもできる。 On the other hand, in the case of a non-alcoholic beverage, for example, without passing through the fermentation step, following the solid content removal step, the wort obtained above is stored as it is, carbon dioxide gas is added, and filtration / packing is necessary. Can be manufactured through a sterilization step. Alternatively, a non-alcohol beer-taste beverage can be obtained by reducing the alcohol concentration by a known method such as beer membrane treatment or dilution after the fermentation step of the alcoholic beverage.
よって、本発明におけるビールテイスト飲料の中間製品とは、ビールテイスト飲料がアルコール飲料、ノンアルコール飲料の何れであっても、容器充填後の最終製品を除く全ての態様を中間製品として含み得、中間製品である濾過前液とは、最終製品を産出するために行なう「容器詰め前の濾過」を行なう前の液体(濾過の前液)であればよい。なお、本発明における「濾過」とは、珪藻土濾過の他、フィルター濾過、クロスフロー濾過などの濾過方式も含む。 Therefore, the intermediate product of the beer-taste beverage in the present invention can include all aspects except the final product after filling the container as an intermediate product, regardless of whether the beer-taste beverage is an alcoholic beverage or a non-alcoholic beverage. The pre-filtration solution that is a product may be a liquid (pre-filtration solution) before performing “filtration before container packing” performed to produce a final product. The “filtration” in the present invention includes not only diatomaceous earth filtration but also filtration methods such as filter filtration and crossflow filtration.
本発明者らは、ビールテイスト飲料の中間製品である濾過前液の濾過性を予測するために、珪藻土濾過の原理であるケーク濾過理論に則り検討を行なったところ、濾過性変動の主たる要因はビールテイスト飲料の特性に起因し、そのうち密度、粘度、固形分濃度で説明できることが推察された。これらの特性のうち、密度と粘度については商品設計及び原料品質管理によってほぼ制御できることがこれまでの解析で分かっている。よって、固形分濃度が濾過性変動の主な要因である可能性が高いと考え、固形分濃度と単位差圧濾過液量の関係に着目して検討を行なった。具体的には、粒子径ごとの定量性に優れるコールターカウンター法によってビールテイスト飲料の中間製品である濾過前液の粒度分布を測定し、固形分濃度と単位差圧濾過液量の関係を評価したところ、平均粒子径が3μm以下、即ち、定量限界の1.1μm以上、3μm以下の範囲内の微粒子濃度と単位差圧濾過液量の間に良好な相関が示されることを見出し、本発明を完成するに至った。 In order to predict the filterability of the pre-filter solution, which is an intermediate product of beer-taste beverages, the present inventors conducted a study in accordance with the cake filtration theory, which is the principle of diatomaceous earth filtration. It was inferred that due to the characteristics of beer-taste beverages, it could be explained by density, viscosity, and solid content concentration. Among these characteristics, it has been found from previous analyzes that the density and viscosity can be almost controlled by product design and raw material quality control. Therefore, it was considered that the solid content concentration is likely to be the main factor of the filterability fluctuation, and the investigation was conducted by paying attention to the relationship between the solid content concentration and the unit differential pressure filtrate amount. Specifically, the particle size distribution of the pre-filtration liquid, which is an intermediate product of beer-taste beverages, was measured by the Coulter counter method, which is excellent in quantification for each particle size, and the relationship between the solid content concentration and the unit differential pressure filtrate amount was evaluated. However, it has been found that an average particle size is 3 μm or less, that is, a good correlation is shown between the fine particle concentration within the range of 1.1 μm or more and 3 μm or less of the limit of quantification and the unit differential pressure filtrate amount. It came to be completed.
本発明の好適な予測方法としては、ビールテイスト飲料の中間製品である濾過前液における平均粒子径が3μm以下の微粒子濃度をコールターカウンター法により測定する工程(工程A)、及び、測定された微粒子濃度における濾過性を判定する工程(工程B)を含む方法が挙げられる。 As a preferable prediction method of the present invention, a step of measuring the concentration of fine particles having an average particle size of 3 μm or less in the pre-filtration liquid, which is an intermediate product of a beer-taste beverage, by the Coulter counter method, and the measured fine particles The method of including the process (process B) which determines the filterability in a density | concentration is mentioned.
工程Aは、ビールテイスト飲料の中間製品である濾過前液中における平均粒子径が3μm以下の微粒子濃度をコールターカウンター法により測定する工程である。 Step A is a step of measuring the concentration of fine particles having an average particle size of 3 μm or less in a pre-filtration liquid that is an intermediate product of a beer-taste beverage by a Coulter counter method.
ビールテイスト飲料の中間製品である濾過前液としては、麦汁、発酵液、貯酒液、貯蔵液等が挙げられるが、安定したサンプルが得られるという観点から、貯酒液又は貯蔵液が好ましい。例えば、貯酒液としてはビールの麦汁に酵母を添加して発酵させ、必要により、酵母を回収してから、貯酒タンクに充填して熟成されたものが挙げられる。 Examples of the pre-filtration liquid that is an intermediate product of beer-taste beverages include wort, fermentation liquid, liquor storage liquid, and storage liquid. From the viewpoint of obtaining a stable sample, the liquor storage liquid or the storage liquid is preferable. For example, as the liquor storage liquid, there can be mentioned one in which yeast is added to beer wort and fermented, and if necessary, the yeast is recovered and then filled into an alcohol storage tank and aged.
本発明における微粒子濃度の測定はコールターカウンター法により行なう。なお、本発明における微粒子とは、平均粒子径が3μm以下の粒子を意味し、好ましくは、コールターカウンター法における定量限界以上、通常、1.1μm以上の粒子である。よって、平均粒子径が3μm以下の微粒子の濃度とは、平均粒子径が3μm以下の粒子、好ましくは1.1μm〜3μmの平均粒子径を有する各微粒子画分の積算濃度を意味する。ただし、平均粒子径が3μm以下の微粒子濃度を測定する、とは、実質的に、3μm以下の微粒子がその多くを占める場合を包含する。例えば、6μm以下の微粒子を測定した場合であっても、得られた微粒子の多くが、3μm以下の微粒子に由来する場合には、濾過性の予測が可能であることから、本発明に含まれる。なお、本発明におけるコールターカウンター法とは、定められた直径を持つアパーチャーに粒子を通すことにより、粒子が通過する際の電気信号の変化からその粒子直径を測定する方法を意味するが、前記メカニズムと同様の方法により測定する公知の方法も用いることができる。また、コールターカウンター法により測定される微粒子の平均粒子径とは、体積平均粒子径を意味する。本明細書において、コールターカウンター法による微粒子濃度の測定は、後述の実施例の記載の方法に従って行うことができる。 The fine particle concentration in the present invention is measured by the Coulter counter method. The fine particles in the present invention mean particles having an average particle diameter of 3 μm or less, and preferably particles having a quantification limit or more, usually 1.1 μm or more in the Coulter counter method. Therefore, the concentration of fine particles having an average particle diameter of 3 μm or less means an integrated concentration of particles having an average particle diameter of 3 μm or less, preferably each fine particle fraction having an average particle diameter of 1.1 μm to 3 μm. However, the measurement of the concentration of fine particles having an average particle size of 3 μm or less includes the case where the fine particles of 3 μm or less occupy most of them. For example, even when fine particles of 6 μm or less are measured, if many of the obtained fine particles are derived from fine particles of 3 μm or less, filterability can be predicted, and thus included in the present invention. . The Coulter counter method in the present invention means a method of measuring the particle diameter from a change in an electric signal when the particle passes by passing the particle through an aperture having a predetermined diameter. A known method of measuring by the same method can also be used. Moreover, the average particle diameter of the fine particles measured by the Coulter counter method means a volume average particle diameter. In this specification, the measurement of the fine particle concentration by the Coulter counter method can be carried out according to the method described in the Examples described later.
本発明における微粒子としては、前記平均粒子径を有するものであればその種類は特に制限されず、例えば、多糖類(β−グルカン)、タンパク質が例示される。なお、平均粒子径が3μm以下の粒子には、一般的な酵母は含まれないが、酵母由来の微粒子などが本発明の効果を損なわない範囲で含まれることがあってもよい。 The fine particles in the present invention are not particularly limited as long as they have the average particle diameter, and examples thereof include polysaccharides (β-glucan) and proteins. The particles having an average particle diameter of 3 μm or less do not contain general yeast, but may contain yeast-derived fine particles and the like as long as the effects of the present invention are not impaired.
工程Bは、前記工程Aで得られたビールテイスト飲料の中間製品である濾過前液中の平均粒子径が3μm以下の微粒子濃度における濾過性を判定する工程である。 Step B is a step of determining filterability at a fine particle concentration in which the average particle size in the pre-filtration liquid that is an intermediate product of the beer-taste beverage obtained in Step A is 3 μm or less.
具体的には、工程Aで得られた微粒子濃度が、予め定めた基準値より低い場合に濾過性に優れ、該基準値より高い場合に濾過性に劣るとの判定を行なう。なお、ここでの基準値とは、微粒子濃度の基準値であって、次のようにして設定することができる。 Specifically, when the fine particle concentration obtained in step A is lower than a predetermined reference value, the filterability is excellent, and when it is higher than the reference value, it is determined that the filterability is poor. The reference value here is a reference value of the fine particle concentration, and can be set as follows.
微粒子濃度の基準値は、例えば、先ず、平均粒子径が3μm以下の微粒子濃度が既知のサンプル、好ましくは30個以上のサンプルを、対象の濾過機でそれぞれ濾過することで、微粒子濃度と前記単位差圧濾過液量に関する相関式を作成する。次いで、該相関式から、経験則もしくは要求する生産性により目安として設定される、単位差圧濾過液量の目標値に対応する微粒子濃度を算出して、微粒子濃度の基準値とすることができる。ここで、単位差圧濾過液量とは、実際に前記濾過機を利用して濾過を行い、その結果として得られた濾過液量を確保するのに必要とした差圧(濾過機の入口圧と出口圧の差)を測定することで求めることができる。 The reference value of the fine particle concentration is, for example, by first filtering a sample with a known fine particle concentration of an average particle diameter of 3 μm or less, preferably 30 or more samples with a target filter, so that the fine particle concentration and the unit Create a correlation formula for the amount of differential pressure filtrate. Then, from the correlation equation, the fine particle concentration corresponding to the target value of the unit differential pressure filtrate amount, which is set as a standard based on empirical rules or required productivity, can be calculated and used as the reference value of the fine particle concentration. . Here, the unit differential pressure filtrate amount refers to the differential pressure (inlet pressure of the filter) required to ensure the amount of the filtrate obtained as a result of actually filtering using the filter. And the difference in outlet pressure).
得られた微粒子濃度の基準値を用いて、以下のような判定を行なう。具体的には、後述の実施例1で詳述するが、判定に供するサンプルの微粒子濃度を測定後、該測定値が微粒子濃度の基準値に対して高い場合は、該サンプルは濾過性が「劣る」と判定することが可能である。また、該測定値が微粒子濃度の基準値に対して、同程度の場合は濾過性が「良好である」、あるいは、低い場合は濾過性が「より優れる」と判定することが可能である。微粒子濃度の基準値に比して低いほど濾過性がより良好である。ここで、基準値との比較において、好ましくは20%以上変動、より好ましくは30%以上変動している場合を、変動ありとして判定を行うことができる。 The following determination is performed using the obtained reference value of the fine particle concentration. Specifically, as will be described in detail in Example 1 described later, after measuring the fine particle concentration of the sample used for determination, when the measured value is higher than the reference value of the fine particle concentration, the sample has a filterability of “ It is possible to determine “inferior”. Further, when the measured value is comparable to the reference value of the fine particle concentration, it is possible to determine that the filterability is “good”, or when the measured value is low, the filterability is “excellent”. The lower the value is compared with the reference value of the fine particle concentration, the better the filterability. Here, in the comparison with the reference value, it can be determined that there is a fluctuation when the fluctuation is preferably 20% or more, more preferably 30% or more.
かくして、ビールテイスト飲料の中間製品である濾過前液の濾過性を判定することができる。これにより、ビールテイスト飲料の濾過性を予測することが可能となり、例えば、濾過性が「より優れる」と予測されるビールテイスト飲料の中間製品である濾過前液については、事前の計画で濾過予定量を増やすことで生産性の向上が達成できる。また濾過における差圧上昇も少ないため、例えば、濾過に珪藻土を使用する場合にはその使用量も低減させることが出来、コスト及び環境負荷の低減が達成される。濾過性が「良好である」と予測される貯酒液については、通常の濾過条件にて濾過を実施することでトラブル等無く、計画通りの生産性を達成することが出来る。 Thus, the filterability of the pre-filtration liquid that is an intermediate product of a beer-taste beverage can be determined. This makes it possible to predict the filterability of beer-taste beverages. For example, for pre-filtered liquids that are intermediate products of beer-taste beverages that are predicted to have better filterability, they will be filtered in advance. Productivity can be improved by increasing the amount. Further, since the increase in the differential pressure during filtration is small, for example, when diatomaceous earth is used for filtration, the amount of use can be reduced, and reduction of cost and environmental load is achieved. For the liquor storage liquid that is predicted to have good filterability, it is possible to achieve productivity as planned without any trouble by performing filtration under normal filtration conditions.
また、濾過性が「劣る」と予測されるビールテイスト飲料の中間製品である濾過前液については、これをそのまま用いると計画通りの濾過量を確保することは困難であることが予想されるため、以下の対応を行うことで対処が可能となる。 In addition, as for the pre-filtration liquid, which is an intermediate product of beer-taste beverages that are predicted to be “inferior” in filterability, it is expected that it will be difficult to secure the filtration amount as planned if this is used as it is. The following measures can be taken to deal with it.
(対応1)珪藻土配合変更
濾過性に見合った適切な珪藻土配合(種類や量)に変更することで、単位差圧濾過液量を改善することが出来る。珪藻土の使用量が増加する場合があるため、生産性とコストの兼ね合いを考えて実施する対応策と言える。
(Correspondence 1) Change in diatomaceous earth composition By changing to an appropriate diatomaceous earth composition (type and amount) commensurate with filterability, the unit differential pressure filtrate can be improved. Since the amount of diatomaceous earth used may increase, it can be said that it is a countermeasure to be implemented considering the balance between productivity and cost.
(対応2)ブレンド
濾過性が「より優れる」あるいは「良好である」と判断されたビールテイスト飲料の中間製品である濾過前液とブレンドして濾過することで、単位差圧濾過液量を改善することができる。それによって計画的に生産量を確保することが出来る。
(Correspondence 2) Blend The amount of filtrate of unit pressure difference is improved by blending and filtering with the pre-filtration solution, which is an intermediate product of beer-taste beverages that have been judged to have better filterability or better. can do. As a result, production can be secured in a planned manner.
なお、濾過性は、微粒子濃度が同じであっても、ビールテイスト飲料の種類(原料の特性や配合などが異なる)あるいは濾過設備により異なるため、それぞれのビールテイスト飲料や設備に対して、微粒子濃度と単位差圧濾過液量の相関式をあらかじめ作成して活用することが重要である。 In addition, even if the fine particle concentration is the same, the filterability differs depending on the type of beer-taste beverage (the characteristics and composition of raw materials are different) or the filtration equipment, so the fine particle concentration for each beer-taste beverage or equipment. It is important to create and use a correlation equation between the pressure difference and the unit differential pressure filtrate in advance.
本発明では、前記のようにビールテイスト飲料の中間製品である濾過前液の平均粒子径が3μm以下の微粒子濃度を予め測定することによって、該濾過前液の濾過性を判定することができると同時に、濾過時の濾過機の差圧上昇を抑制することが可能となる。よって、本発明では、ビールテイスト飲料の中間製品である濾過前液の濾過時における濾過機の差圧上昇抑制方法を提供する。ここで、濾過機とは、ビールテイスト飲料の最終製品の容器詰め前に行なわれる濾過に用いられる濾過機のことを表し、例えば、珪藻土濾過機、シート濾過機、クロスフロー濾過機などが挙げられる。また、前記濾過機の差圧とは、濾過機の入口圧と出口圧との差を表し、例えば、濾過機の入口圧と出口圧との差(差圧)が小さい程、濾過機の負荷を小さくして濾過できる。 In the present invention, as described above, by preliminarily measuring the concentration of fine particles having an average particle diameter of 3 μm or less, which is an intermediate product of a beer-taste beverage, the filterability of the pre-filtration liquid can be determined. At the same time, it is possible to suppress an increase in the differential pressure of the filter during filtration. Therefore, the present invention provides a method for suppressing an increase in the differential pressure of the filter during filtration of a pre-filtration liquid that is an intermediate product of a beer-taste beverage. Here, the filter means a filter used for filtration performed before the final product of a beer-taste beverage is packed, and examples thereof include a diatomaceous earth filter, a sheet filter, and a crossflow filter. . The differential pressure of the filter represents the difference between the inlet pressure and the outlet pressure of the filter. For example, the smaller the difference (differential pressure) between the inlet pressure and the outlet pressure of the filter, the more the load on the filter. Can be reduced and filtered.
濾過機の差圧上昇抑制方法としては、ビールテイスト飲料の中間製品である濾過前液の平均粒子径が3μm以下の微粒子濃度をコールターカウンター法により測定する工程を含むのであれば、特に限定はない。濾過前液や測定対象物、測定方法は前記濾過性を予測するための方法と同様である。 The method for suppressing the increase in the differential pressure of the filter is not particularly limited as long as it includes a step of measuring the concentration of fine particles having an average particle diameter of 3 μm or less, which is an intermediate product of a beer-taste beverage, by a Coulter counter method. . The pre-filtration solution, the measurement object, and the measurement method are the same as the method for predicting the filterability.
得られた濾過前液中の微粒子濃度に基づいて差圧上昇を抑制する方法としては、前記濾過性を予測するための方法と同様に、例えば、平均粒子径が3μm以下の微粒子濃度が既知のサンプル、好ましくは30個以上のサンプルについて、濾過機でそれぞれ濾過した際の差圧及び濾過量を測定して単位濾過量あたりの差圧を算出し、該単位濾過量あたりの差圧と微粒子濃度との相関式を作成後、該相関式から、濾過機固有の差圧上限値に対応する微粒子濃度を算出して、微粒子濃度の基準値を設定する。次いで、サンプルの微粒子濃度を該基準値と対比することで差圧上昇を予測できる。例えば、前記微粒子濃度の基準値より低い場合や変動が認められない場合は差圧上昇が抑制されると予測されるため、そのまま濾過機に供してもよく、あるいは、該サンプルと差圧が上昇すると予測されるサンプルとを混合して濾過機に供することで、差圧の上昇を抑制することが可能となる。また、前記微粒子濃度の基準値より高い場合は差圧が上昇すると予測されるため、差圧上昇が抑制されると予測されるサンプルとを混合して濾過機に供することで、差圧の上昇を抑制することが可能となる。 As a method for suppressing the increase in the differential pressure based on the fine particle concentration in the obtained pre-filtration solution, for example, a fine particle concentration having an average particle diameter of 3 μm or less is known, as in the method for predicting the filterability. For a sample, preferably 30 or more samples, the differential pressure per unit filtration amount is calculated by measuring the differential pressure and the filtration amount when filtered with a filter, and the differential pressure and fine particle concentration per unit filtration amount Then, the fine particle concentration corresponding to the upper limit value of the differential pressure unique to the filter is calculated from the correlation equation, and the reference value of the fine particle concentration is set. Next, an increase in the differential pressure can be predicted by comparing the fine particle concentration of the sample with the reference value. For example, if it is lower than the reference value of the fine particle concentration or if no fluctuation is observed, the increase in the differential pressure is expected to be suppressed. Therefore, it may be used as it is for the filter, or the differential pressure with the sample increases. Then, it becomes possible to suppress the increase in the differential pressure by mixing the predicted sample and supplying it to the filter. In addition, since the differential pressure is predicted to increase when the fine particle concentration is higher than the reference value, the sample is mixed with a sample that is predicted to suppress the increase in the differential pressure, and then supplied to the filter to increase the differential pressure. Can be suppressed.
かくして、ビールテイスト飲料の濾過における濾過機の差圧上昇を抑制することで、単位差圧あたりの濾過液量を向上し、ひいては生産効率を向上することが可能となる。 Thus, by suppressing an increase in the differential pressure of the filter in the filtration of beer-taste beverages, it is possible to improve the amount of filtrate per unit differential pressure and thus improve production efficiency.
本発明はまた、前記濾過性を予測するための方法を含む、ビールテイスト飲料の製造方法を提供する。 The present invention also provides a method for producing a beer-taste beverage, including a method for predicting the filterability.
ビールテイスト飲料の製造方法としては、前記の通りであるが、一般に、原料の仕込工程、発酵工程、貯酒工程、及び濾過工程を含む態様や、原料の仕込工程、貯蔵工程、及び濾過工程を含む態様が挙げられる。本発明の製造方法は、濾過工程の前に、予め、濾過性を予測する工程を含むことを特徴とする。 The method for producing a beer-taste beverage is as described above, but generally includes an aspect including a raw material charging process, a fermentation process, a liquor storage process, and a filtration process, and a raw material charging process, a storage process, and a filtration process. An embodiment is mentioned. The production method of the present invention is characterized by including a step of predicting filterability in advance before the filtration step.
前記ビールテイスト飲料の製造方法は、当業者に公知の方法に従って行なうことができる。また、濾過性を予測する工程は、前記濾過性を予測するための方法を含むものであれば特に限定はない。なお、濾過工程前に遠心を行なってもよく、遠心後に、濾過性を予測する工程を行なってもよい。 The method for producing the beer-taste beverage can be performed according to a method known to those skilled in the art. The step of predicting filterability is not particularly limited as long as it includes the method for predicting filterability. In addition, you may perform centrifugation before a filtration process, and you may perform the process of predicting filterability after centrifugation.
かくして、本発明の製造方法は、予測された濾過性に対応した濾過ができることで生産性が向上するとともに、コスト、環境負荷を低減できるという優れた特性を有し、本発明の製造方法により得られたビールテイスト飲料は、より適切な条件設定により管理された製造が可能となり、製造直後の香味品質及び香味安定性が良好であるという優れた特性を有するものとなる。 Thus, the production method of the present invention has excellent characteristics that productivity can be improved by performing filtration corresponding to the predicted filterability, and cost and environmental load can be reduced. The produced beer-taste beverage can be manufactured under more appropriate condition settings, and has excellent properties such as flavor quality and flavor stability immediately after production.
以下、実施例を示して本発明を具体的に説明するが、本発明は下記実施例に制限されるものではない。 EXAMPLES Hereinafter, although an Example is shown and this invention is demonstrated concretely, this invention is not restrict | limited to the following Example.
〔コールターカウンター法による微粒子濃度〕
熟成後の貯酒タンクからサンプリングしたものを試料として、コールターカウンター(Multisizer3、ベックマン社製)を用いて、20μmサイズのアパチャーチューブを装着して、1.1μm〜10μmの測定レンジで、定量モードにてサンプルを2mLインジェクトして測定する。測定結果をエクセルでアウトプットし、1.1μm〜3μmの範囲の粒子数を積算して、これを微粒子濃度とする。
[Fine particle concentration by Coulter counter method]
Using a sampled sample from an aged storage tank, using a Coulter counter (Multisizer 3, manufactured by Beckman), a 20 μm-sized aperture tube was attached, and a measurement range of 1.1 μm to 10 μm was used in a quantitative mode. Inject 2 mL of sample and measure. The measurement results are output with Excel, and the number of particles in the range of 1.1 μm to 3 μm is integrated to obtain the fine particle concentration.
実施例1<微粒子濃度と濾過性の相関把握>
(微粒子濃度測定)
麦芽を水に投入し、糖化・濾過した後、ホップを投入し煮沸した。冷却後、ビール醸造用酵母を添加し発酵させ、発酵完了後、数日間の熟成を経て、ビールテイスト飲料Aの測定対象となる濾過前のビール貯酒液を得た。同様にして得られたバッチが異なる全40種類のビール貯酒液の微粒子濃度(個数/mL)を測定した。結果を表1に示す。
Example 1 <Correlation between particulate concentration and filterability>
(Fine particle concentration measurement)
The malt was put into water, saccharified and filtered, then hops were added and boiled. After cooling, the yeast for beer brewing was added and fermented, and after completion of the fermentation, after aging for several days, a beer storage solution before filtration, which was a measurement target of the beer-taste beverage A, was obtained. Similarly, the fine particle concentration (number / mL) of all 40 types of beer storage liquids with different batches was measured. The results are shown in Table 1.
(濾過性評価)
上記で得られたビール貯酒液を遠心処理(回転数3800rpm、流速400hL/hr)を行った後、珪藻土濾過を行った。珪藻土濾過は常法に則り、プレコートを適当な珪藻土配合にて行った後、ボディフィードとしての珪藻土を添加しながら貯酒液の濾過を行い、単位差圧あたりの濾過液量(hL/kPa)を評価した。結果を表1に示す。単位差圧あたりの濾過液量が大きいほど、濾過性が良好と考えることができる
(Filterability evaluation)
The beer liquor obtained above was centrifuged (rotation speed 3800 rpm, flow rate 400 hL / hr), and then filtered through diatomaceous earth. Diatomaceous earth filtration is performed in accordance with conventional methods, and after pre-coating with an appropriate diatomaceous earth composition, the liquor is filtered while adding diatomaceous earth as a body feed, and the amount of filtrate per unit differential pressure (hL / kPa) is determined. evaluated. The results are shown in Table 1. The larger the amount of filtrate per unit differential pressure, the better the filterability.
得られた結果を元に、x軸に微粒子濃度、y軸に単位差圧あたりの濾過液量(単位差圧濾過液量)をとるグラフを作成した。結果を図1に示す。この相関図は対数近似にて相関式を検討した場合、式:y=−5.041Ln(x)+20.083で示すことが出来ることが分かった。ここで、例えば、経験則もしくは要求する生産性により目標値として設定された、単位差圧あたりの濾過液量(単位差圧濾過液量)の目標値を7.8hL/kPaとした場合、微粒子濃度11.3×106個/mL以下の場合には、常法の濾過条件にて必要生産量を達成するだけの濾過実施が可能と判定することができる。 Based on the obtained results, a graph was prepared with the fine particle concentration on the x-axis and the filtrate volume per unit differential pressure (unit differential filtrate volume) on the y-axis. The results are shown in FIG. It has been found that this correlation diagram can be expressed by the equation: y = −5.041Ln (x) +20.083 when the correlation equation is examined by logarithmic approximation. Here, for example, when the target value of the filtrate amount per unit differential pressure (unit differential filtrate amount) set as the target value based on empirical rules or required productivity is 7.8 hL / kPa, the fine particles When the concentration is 11.3 × 10 6 pieces / mL or less, it can be determined that the filtration can be performed only to achieve the required production amount under the usual filtration conditions.
実施例2<ビール貯酒液サンプル1の濾過性予測と濾過結果>
実施例1と同様の方法(原料ロットは異なる)にて製造したビールテイスト飲料Aのビール貯酒液サンプル1は、微粒子濃度が4.5×106個/mLであり、前記実施例1で得られた微粒子濃度の基準値を60%近く下回った。よって、該ビール貯酒液サンプル1は濾過性が「より優れる」と判断されたので、珪藻土使用量を20%減らして濾過を行った。その結果、単位差圧あたりの濾過液量(単位差圧濾過液量)は9.5hL/kPaで、目標生産量を確保できた。
Example 2 <Filterability prediction and filtration result of beer storage liquid sample 1>
A beer storage sample 1 of beer-taste beverage A produced by the same method as in Example 1 (different raw material lots) has a fine particle concentration of 4.5 × 10 6 pieces / mL. The standard value of the obtained fine particle concentration was almost 60% lower. Therefore, since it was judged that the beer liquor sample 1 had better filterability, the diatomaceous earth usage was reduced by 20% and filtration was performed. As a result, the amount of filtrate per unit differential pressure (unit differential pressure filtrate amount) was 9.5 hL / kPa, and the target production amount was secured.
実施例3<ビール貯酒液サンプル2の濾過性予測と濾過結果>
実施例1と同様の方法(原料ロットは異なる)にて製造したビールテイスト飲料Aのビール貯酒液サンプル2は、微粒子濃度が18.4×106個/mLであり、前記実施例1で得られた微粒子濃度の基準値を大きく上回った。よって、該ビール貯酒液サンプル2は濾過性が劣ると判断されるので、プレコートで使用する珪藻土量を常法の1.2倍にて濾過を行った。その結果、単位差圧あたりの濾過液量(単位差圧濾過液量)は7.8hL/kPaとなり、目標生産量を確保できた。
Example 3 <Filterability prediction and filtration result of beer liquor sample 2>
The beer-taste beverage A of the beer-taste beverage A produced by the same method as in Example 1 (different raw material lots) has a fine particle concentration of 18.4 × 10 6 pieces / mL. This greatly exceeded the standard value of the fine particle concentration obtained. Therefore, since it was judged that the beer liquor sample 2 had poor filterability, filtration was carried out with the amount of diatomaceous earth used in the precoat being 1.2 times that of a conventional method. As a result, the filtrate amount per unit differential pressure (unit differential pressure filtrate amount) was 7.8 hL / kPa, and the target production amount was secured.
比較例1
該ビール貯酒液サンプル2に対して前記実施例3の対応(珪藻土配合変更)を行わなかった場合の単位差圧あたりの濾過液量(単位差圧濾過液量)は4.2hL/kPaとなり、目標生産量を下回った。
Comparative Example 1
The amount of filtrate per unit differential pressure (unit differential pressure filtrate amount) when the correspondence of Example 3 (diatomite blend change) was not performed on the beer storage liquid sample 2 was 4.2 hL / kPa, Below target production.
実施例4<ビール貯酒液サンプル3の濾過性予測と濾過結果>
実施例1と同様の方法(原料ロットは異なる)にて製造したビールテイスト飲料Aのビール貯酒液サンプル3は、微粒子濃度が24.9×106個/mLであり、前記実施例1で得られた微粒子濃度の基準値を大きく上回った。よって、該ビール貯酒液サンプル3は濾過性が劣ると判断されるので、ビール貯酒液サンプル3に、濾過性がより優れると判断されたビール貯酒液サンプル1を1:1の比率でブレンドを行った後、濾過を行った。その結果、単位差圧あたりの濾過液量(単位差圧濾過液量)は7.8hL/kPaとなり、目標生産量を確保できた。
Example 4 <Filterability prediction and filtration result of beer storage liquid sample 3>
A beer-taste beverage A sample 3 of beer-taste beverage A produced by the same method as in Example 1 (different raw material lots) has a fine particle concentration of 24.9 × 10 6 pieces / mL. This greatly exceeded the standard value of the fine particle concentration obtained. Therefore, since it is judged that the beer liquor sample 3 has poor filterability, the beer liquor sample 3 which is judged to have better filterability is blended with the beer liquor sample 3 at a ratio of 1: 1. Then, filtration was performed. As a result, the filtrate amount per unit differential pressure (unit differential pressure filtrate amount) was 7.8 hL / kPa, and the target production amount was secured.
比較例2
該ビール貯酒液サンプル3に対して前記実施例4の対応(ブレンド)を行わなかった場合の単位差圧あたりの濾過液量(単位差圧濾過液量)は3.8hL/kPaとなり、目標生産量を下回った。
Comparative Example 2
The amount of filtrate per unit differential pressure (unit differential pressure filtrate amount) when the correspondence (blending) of Example 4 was not performed on the beer storage liquid sample 3 was 3.8 hL / kPa, and the target production Less than the amount.
本発明のビールテイスト飲料の中間製品である濾過前液の濾過性を予測するための方法は、酒類発酵液の製造に有用である。 The method for predicting the filterability of the pre-filtration liquid that is an intermediate product of the beer-taste beverage of the present invention is useful for the production of an alcoholic liquor fermentation broth.
Claims (8)
工程B:工程Aで得られた微粒子濃度における濾過性を判定する工程
を含む、請求項1記載の方法。 Step A: A step of measuring the concentration of fine particles having an average particle size of 3 μm or less in the pre-filtration liquid, which is an intermediate product of a beer-taste beverage, by the Coulter counter method, and Step B: Determination of filterability at the concentration of fine particles obtained in Step A The method according to claim 1, comprising the step of:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012154076A JP5894027B2 (en) | 2012-07-09 | 2012-07-09 | Prediction method for filterability of pre-filtration liquid, an intermediate product of beer-taste beverages |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012154076A JP5894027B2 (en) | 2012-07-09 | 2012-07-09 | Prediction method for filterability of pre-filtration liquid, an intermediate product of beer-taste beverages |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2014014318A true JP2014014318A (en) | 2014-01-30 |
JP2014014318A5 JP2014014318A5 (en) | 2015-01-15 |
JP5894027B2 JP5894027B2 (en) | 2016-03-23 |
Family
ID=50109631
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012154076A Active JP5894027B2 (en) | 2012-07-09 | 2012-07-09 | Prediction method for filterability of pre-filtration liquid, an intermediate product of beer-taste beverages |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5894027B2 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104360032A (en) * | 2014-09-16 | 2015-02-18 | 中国食品发酵工业研究院 | Method for evaluating wort filtration performance by grain size analysis |
JP2015208253A (en) * | 2014-04-24 | 2015-11-24 | アサヒビール株式会社 | Non-fermented beer taste beverage and method for producing the same |
JP2019030343A (en) * | 2018-12-04 | 2019-02-28 | アサヒビール株式会社 | Non-fermented beer taste beverage and manufacturing method therefor |
JP2019062746A (en) * | 2017-09-28 | 2019-04-25 | サッポロビール株式会社 | Method for producing non-alcoholic beer-taste beverage and method for suppressing freezing of non-alcoholic beer-taste beverage |
JP2020031574A (en) * | 2018-08-29 | 2020-03-05 | サッポロビール株式会社 | Method for predicting filterability of liquid before filtration of beer taste beverage |
CN111398537A (en) * | 2020-04-25 | 2020-07-10 | 燕京啤酒(曲阜三孔)有限责任公司 | Method for predicting and regulating bubble-holding index of finished beer |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0866176A (en) * | 1994-05-18 | 1996-03-12 | Mizusawa Ind Chem Ltd | Stabilizing and treating agent for beer |
JP2002136969A (en) * | 2000-09-01 | 2002-05-14 | Haldor Topsoe As | Method for removing particulate matter from aqueous suspension |
JP2002204675A (en) * | 2001-01-10 | 2002-07-23 | Fuji Oil Co Ltd | Method for producing minced meat processed product |
JP2002275742A (en) * | 2001-03-19 | 2002-09-25 | Toray Ind Inc | Fabric for food filtration |
JP2011529093A (en) * | 2008-07-28 | 2011-12-01 | ズートツッカー アクチェンゲゼルシャフト マンハイム/オクセンフルト | How to treat hypersensitive teeth |
JP2012510799A (en) * | 2008-12-04 | 2012-05-17 | クロネス・アクチェンゲゼルシャフト | Method for determining the filterability of beer |
-
2012
- 2012-07-09 JP JP2012154076A patent/JP5894027B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0866176A (en) * | 1994-05-18 | 1996-03-12 | Mizusawa Ind Chem Ltd | Stabilizing and treating agent for beer |
JP2002136969A (en) * | 2000-09-01 | 2002-05-14 | Haldor Topsoe As | Method for removing particulate matter from aqueous suspension |
JP2002204675A (en) * | 2001-01-10 | 2002-07-23 | Fuji Oil Co Ltd | Method for producing minced meat processed product |
JP2002275742A (en) * | 2001-03-19 | 2002-09-25 | Toray Ind Inc | Fabric for food filtration |
JP2011529093A (en) * | 2008-07-28 | 2011-12-01 | ズートツッカー アクチェンゲゼルシャフト マンハイム/オクセンフルト | How to treat hypersensitive teeth |
JP2012510799A (en) * | 2008-12-04 | 2012-05-17 | クロネス・アクチェンゲゼルシャフト | Method for determining the filterability of beer |
Non-Patent Citations (3)
Title |
---|
JPN6015012887; 次世代のコールター・カウンター MultisizerTM 3 , 200603 * |
JPN6016002964; Ilberg et al: Brauwelt Vol. 133, No. 35, 19930902, p. 1502, 1504-1505 * |
JPN6016002967; Timmermans: Monatsschrift fur Brauwissenschaft Vol. 48, No. 5/6, 1995, p. 194-195 * |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015208253A (en) * | 2014-04-24 | 2015-11-24 | アサヒビール株式会社 | Non-fermented beer taste beverage and method for producing the same |
CN104360032A (en) * | 2014-09-16 | 2015-02-18 | 中国食品发酵工业研究院 | Method for evaluating wort filtration performance by grain size analysis |
JP2019062746A (en) * | 2017-09-28 | 2019-04-25 | サッポロビール株式会社 | Method for producing non-alcoholic beer-taste beverage and method for suppressing freezing of non-alcoholic beer-taste beverage |
JP2020031574A (en) * | 2018-08-29 | 2020-03-05 | サッポロビール株式会社 | Method for predicting filterability of liquid before filtration of beer taste beverage |
JP7219567B2 (en) | 2018-08-29 | 2023-02-08 | サッポロビール株式会社 | Filterability Prediction Method for Pre-Filtration Liquid of Beer-Taste Beverage |
JP2019030343A (en) * | 2018-12-04 | 2019-02-28 | アサヒビール株式会社 | Non-fermented beer taste beverage and manufacturing method therefor |
CN111398537A (en) * | 2020-04-25 | 2020-07-10 | 燕京啤酒(曲阜三孔)有限责任公司 | Method for predicting and regulating bubble-holding index of finished beer |
Also Published As
Publication number | Publication date |
---|---|
JP5894027B2 (en) | 2016-03-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5894027B2 (en) | Prediction method for filterability of pre-filtration liquid, an intermediate product of beer-taste beverages | |
JP5912243B2 (en) | Beer-taste fermented beverage containing coriander extract | |
JP5973799B2 (en) | Method for producing low alcohol fermented malt beverage | |
JPWO2016170814A1 (en) | Method for producing beer-like sparkling beverage | |
JP6309181B1 (en) | Beer-like alcoholic beverage | |
JP5882707B2 (en) | Method for producing beer-taste beverage | |
JP2019106903A (en) | Manufacturing method of beer-like fermented malt beverage, foam sustainability improving method of beer-like fermented malt beverage | |
JP7253887B2 (en) | Beer-taste beverage and method for producing the same | |
JP6110659B2 (en) | Method for producing beer-taste beverage | |
JP2023105197A (en) | Beer taste beverage and method for producing the same | |
Munroe | Fermentation | |
TWI616143B (en) | Method for manufacturing sugar-containing liquid | |
JP7219567B2 (en) | Filterability Prediction Method for Pre-Filtration Liquid of Beer-Taste Beverage | |
JP7152189B2 (en) | beer-taste beverage | |
Devolli et al. | Determination of optimal Kieselguhr doses to improve beer filtration | |
JP6608166B2 (en) | Method for producing fermented beverage | |
JP6931272B2 (en) | Distilled liquor | |
CN112280627A (en) | Clear type top fermentation wheat beer and production method thereof | |
Kupetz et al. | Interactions between dissolved β-glucans and medium-chain fatty acid ethyl esters in model beer solution and their impact on filterability | |
JP4787605B2 (en) | Yeast fermentation method | |
JP2022535621A (en) | Refined fermented beverage and its method | |
JP6231590B2 (en) | Method for producing beer-taste beverage | |
Cimini | Novel lager beer clarification and stabilisation process using ceramic tubular microfiltration membranes | |
RU2321622C1 (en) | Method for producing special light beer "arsenalnoe zakalennoe" | |
JP6317531B1 (en) | Beer-like beverage |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20141120 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20141120 |
|
A871 | Explanation of circumstances concerning accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A871 Effective date: 20141120 |
|
A975 | Report on accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A971005 Effective date: 20150316 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20150318 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20150331 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150528 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20150828 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20151125 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20151203 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20160128 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20160225 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5894027 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |