JP2014013160A - 走査プローブ顕微鏡 - Google Patents

走査プローブ顕微鏡 Download PDF

Info

Publication number
JP2014013160A
JP2014013160A JP2012150066A JP2012150066A JP2014013160A JP 2014013160 A JP2014013160 A JP 2014013160A JP 2012150066 A JP2012150066 A JP 2012150066A JP 2012150066 A JP2012150066 A JP 2012150066A JP 2014013160 A JP2014013160 A JP 2014013160A
Authority
JP
Japan
Prior art keywords
light
excitation
excitation light
cantilever
probe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012150066A
Other languages
English (en)
Inventor
Takehiro Tachizaki
武弘 立▲崎▼
Toshihiko Nakada
俊彦 中田
Masahiro Watanabe
正浩 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2012150066A priority Critical patent/JP2014013160A/ja
Priority to US14/411,731 priority patent/US20150177276A1/en
Priority to PCT/JP2013/064569 priority patent/WO2014006999A1/ja
Publication of JP2014013160A publication Critical patent/JP2014013160A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q60/00Particular types of SPM [Scanning Probe Microscopy] or microscopes; Essential components thereof
    • G01Q60/18SNOM [Scanning Near-Field Optical Microscopy] or apparatus therefor, e.g. SNOM probes
    • G01Q60/22Probes, their manufacture, or their related instrumentation, e.g. holders
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q60/00Particular types of SPM [Scanning Probe Microscopy] or microscopes; Essential components thereof
    • G01Q60/18SNOM [Scanning Near-Field Optical Microscopy] or apparatus therefor, e.g. SNOM probes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q70/00General aspects of SPM probes, their manufacture or their related instrumentation, insofar as they are not specially adapted to a single SPM technique covered by group G01Q60/00
    • G01Q70/08Probe characteristics
    • G01Q70/10Shape or taper
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q70/00General aspects of SPM probes, their manufacture or their related instrumentation, insofar as they are not specially adapted to a single SPM technique covered by group G01Q60/00
    • G01Q70/08Probe characteristics
    • G01Q70/14Particular materials

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

【課題】 本発明は、プラズモンの励起効率を向上させて、その結果として近接場光の励起効率を向上させた走査プローブ顕微鏡を提供することを目的とする。
【解決手段】 本発明は、プローブを測定対象に対して走査するカンチレバーと、前記カンチレバーに励起光を入射する光源と、前記カンチレバー励起光により励起されたプラズモンによって前記プローブの先端から発生し、前記測定対象の表面から散乱した近接場光を検出する近接場光検出センサとを備え、前記カンチレバーの前記励起光が照射される部分に前記励起光を前記プラズモンの励起点に導く微小構造を設けることを特徴とする走査プローブ顕微鏡を提供する。
【選択図】 図1

Description

本発明は走査プローブ顕微鏡に関する。
極微領域の計測技術として走査プローブ顕微鏡(Scanning Probe Microscope:SPM)が知られている。その中でも原子間力顕微鏡(Atomic Force Microscope:AFM)は、先端のとがった探針を制御して試料表面を走査し、原子サイズの極微立体形状が計測できる技術として広く用いられている(非特許文献1)。しかし、原子間力顕微鏡においては試料表面の屈折率分布のような光学的性質を測定することはできない。
一方、最先端の極微細半導体デバイスにおいては物性をナノメートルオーダーで制御することによって性能向上が図られており、形状以外の物性をナノメートルオーダーで測定する必要がある。また、ストレージデバイスなどにおいては、微小な異物がデバイス動作にとって致命傷となるため、異物の詳細な物性が必要とされている。
物性測定には光学的分光計測が適しており、現在までに例えばラマン分光を顕微鏡下でおこなうラマン顕微鏡などが開発され、広く分析に利用されている。しかし、従来の光学顕微鏡技術では空間分解能が数百nm程度であり、ナノメートルオーダーの観察をするには分解能が不足しているため異物の詳細は観測できない。
これらの課題を解決し、試料表面の物性情報や光学的性質を高空間分解能で測定する手段として、走査型近接場光顕微鏡(Near−field Scanning Optical Microscope:NSOM)がある。
走査型近接場光顕微鏡は非特許文献2に示されているように、例えば開口プローブ法と呼ばれる手段においては、数十nm程度の微小開口から漏れる近接場光を用いる。微小開口を試料との間隙を数nmから数十nmに保持して開口を走査することにより、開口と同程度の数十nmの空間分解能で、試料表面の光学的性質を測定することができる。
また、非特許文献3には、先鋭化された探針の先端に光を照射し、試料との相互作用に依存して探針先端に発生する近接場光と、その近接場光の散乱光を用いて数十nmの空間分解能で光学観察を実現する走査型近接場光顕微鏡も開示されている。本手法は散乱プローブ法として知られている。
これら開口プローブ法や散乱プローブ法においては、微小開口から漏れ出る光が微弱である、または、試料との相互作用が弱く検出光が弱いため、高精度・高感度測定が困難であるという課題がある。
これらの課題を解決するために、特許文献1ないし特許文献2に示されているように、カーボンナノチューブ(以下必要に応じてCNTと表記する)を用い、プラズモンを利用してプローブ先端へ光を導くプラズモン導光方式が提案されている。このプラズモン導光方式においては、特許文献2ないし特許文献3に記述があるように、CNTを固定しているチップへ光照射してプラズモンを励起し、そのプラズモンをCNTへ伝播させる方式が提案されている。この導光方式は簡便でかつ効率が優れている利点がある。
特開2008−256672 特開2009−236895 特開2010−197208
Physical Review Letters,vol.56,No.9,p930. Chemical Reviews,1999,vol.99,No.10,pp2891−2927. Optics Letters,vol.19,no.3,p159.
特許文献1−3に記載のプラズモン導光方式による走査型近接場光顕微鏡においては、CNTを固定し、プラズモンを励起するチップ、およびチップを支持しているカンチレバーを用いる。チップおよびカンチレバーはシリコン製であることが多いため、可視光帯域で不透明である。そのため、プラズモンを励起する励起光に近赤外光を用いるため、目視によって励起光を照射する位置を確認できないという課題がある。
また、プラズモンの励起は励起光の照射位置や照射角度に非常に敏感である。そのため、最適な励起条件から外れると、プラズモンが励起できないためCNT先端の近接場光が弱く信号が微弱になる、または、プラズモンの励起に関与せず直接チップから漏れる励起光が多くなり、背景光・ノイズが強くなるなどの課題がある。
一方、透明材料で作られたチップやカンチレバーを用いた場合、透明な材料でCNT固定やプラズモン励起に好適な形状と寸法のチップとカンチレバーを製作することは非常に困難である。
本発明は、上記問題点に鑑み、プラズモンの励起効率を向上させて、その結果として近接場光の励起効率を向上させた走査プローブ顕微鏡を提供することを目的とする。
上記課題を解決するため、本発明は、プローブを支持する支持部材と、前記支持部材に励起光を入射する光源と、前記支持部材に入射した励起光により励起されたプラズモンによって前記プローブの先端から発生し、前記測定対象の表面から散乱した近接場光を検出する近接場光検出センサとを備え、前記支持部材の前記励起光が照射される部分に前記励起光を前記プラズモンの励起点に導く微小構造を設けることを特徴とする走査プローブ顕微鏡を提供する。
また、他の観点における本発明は、プローブを支持する支持部材と、前記支持部材に励起光を入射する光源と、前記支持部材に入射した励起光により励起されたプラズモンによって前記プローブの先端から発生し、前記測定対象の表面から散乱した近接場光を検出する近接場光検出センサとを備え、前記支持部材に励起光の光周波数を変換する光周波数変換素子を設けることを特徴とする走査プローブ顕微鏡を提供する。
本発明によれば、プラズモンの励起条件を向上させることにより、近接場光の励起効率を向上させた走査プローブ顕微鏡を提供することができる。
本発明の実施例1における屈折面を有するカンチレバー構造を示す図である。 本発明の実施例1における屈折面を有するカンチレバーの具体的構造を示す図である。 本発明の実施例1における傾いたカンチレバーにおける角度の定義を説明する図である。 本発明の実施例1におけるFIBにより屈折面を間接的に加工する方法の説明図である。 本発明の実施例1におけるFIBにより屈折面を直接加工する方法の説明図である。 本発明の実施例1における堆積法によるカンチレバー形成の概念図である。 本発明の実施例1における雛形を用いた堆積法による屈折面の作製方法の説明図である。 本発明の実施例1における堆積法により屈折面を新たに作製する方法の説明図である。 本発明の実施例1における光を回折させる回折面を有するカンチレバーの概念図である。 本発明の実施例1における光を回折させる回折面を示す図である。 本発明の実施例1における回折面が光を回折させる原理を示す図である。 本発明の実施例1における光を回折させ、集光する微小構造を示す図である。 本発明の実施例1における光を屈折によって集光する湾曲した屈折面を有するカンチレバー構造の説明図である。 本発明の実施例1における光を屈折によって集光する原理の説明図である。 本発明の実施例2における波長を変換する構造を有するチップの説明図である。 本発明の実施例3における屈折面を有するカンチレバーと波長を変換する構造を有するチップの説明図である。 本発明の実施例3における湾曲した屈折面を有するカンチレバーと波長を変換する構造を有するチップの説明図である。 本発明の実施例1における走査プローブ顕微鏡を示す図である。
本発明における実施例1について図1−14、18を用いて説明する。
図18に本実施例における走査プローブ顕微鏡を示す。本実施例では、光源116からプローブ117(測定探針)を支持する支持部材としてのカンチレバー105に励起光102を照射する。励起光は例えば、光源16から照射されるレーザ光である。カンチレバー105にレーザ光が照射されると、プラズモンが励起され、カンチレバー105からプローブ117へ伝搬する。カンチレバー105からプローブ117に伝搬したプラズモンは、プローブ117の先端まで伝搬し、プローブ117の先端から近接場光118が発生する。プローブ117の先端から発生した近接場光118は試料119の表面で散乱(反射)し、散乱光120となり近接場光検出センサ121により検出される。駆動機構によって、カンチレバー105およびプローブ117と試料119との相対的位置を変えることにより、プローブ117によって試料119の表面を走査して、試料119の表面の光学的性質を測定することができる。
なお、本発明の各実施例では、カンチレバー105の表面にチップを設け、チップに励起光を照射する場合もあるが、その場合はチップも含めて支持部材と表記する。
本実施例では、プラズモンを高効率で励起するために、入射励起光をプラズモンを励起する点に所定の角度で入射させることを目的とする構造を備えたカンチレバーを説明する。
図1にカンチレバー105の構造の一例を示す。これは、カンチレバー105の背面(プラズモンを励起する励起光を入射させる面)101に照射された励起光102をプラズモンの励起点103に所定の角度で入射するように屈折させる微小構造としての屈折面104を設けた微細加工済カンチレバー105である(図1右下に微細加工済カンチレバー105の俯瞰図を例示する)。
図1において、励起光102は微細加工済カンチレバー105上方からカンチレバー背面101に向かって垂直に入射するとし、プラズモン励起点103における最適なプラズモン入射角をΦ、屈折面104がカンチレバー背面101となす角度をθとした。微細加工済カンチレバー105を取り巻く環境の屈折率をn0、カンチレバー105を形作る材質の励起光102の波長における屈折率をn1であるとすると、励起光102の屈折後の進行方向Aは、ベクトル表示で数1と表される。ただし、ここで座標は図1に示したXY座標系を採用する。
Figure 2014013160
数1に示したベクトルAが、数2で表されるベクトルBと同じ方向を指す場合、励起点103において効率の良いプラズモン励起が可能となる。
Figure 2014013160
すなわち、必要な入射角Φが決まれば、数3をθについて解くことにより、屈折面104とカンチレバー背面のなす角度θが一意に決定される。数3のCは左右のベクトルの大きさを揃える為の因子である。実際は、数3の左辺の比と数3の右辺の比を等しくするとしてθを決定する方法が簡便と思われる。
Figure 2014013160
このように決定された角度θである屈折面104を通った励起光102の光線を図2に示す。なお、図2では励起光102はカンチレバーの背面101へ垂直に入射するとしたが、実際の入射方向は垂直方向に限らず、図3に示すようにγだけ傾いた場合もある。その際、屈折面104の角度θをθ→θ―γと補正する必要がある。
一例として、Φ=45°とする場合のθは数4より決定される。
Figure 2014013160
数4では複号があるが90°以下のΦは一意に決定できる。この例においては正号を採用する。例えば、カンチレバー105がシリコン製で大気中にある場合はn0=1、n1=3.6であるため、Φ=68.2°と決まる(図2)。
カンチレバー背面101と屈折面104が、数3ないし数4に基づいて算出された角度θを保つように微細加工済カンチレバー105を設計すれば、励起光102の励起点103への入射角Φをプラズモンの励起に最適な角度に保つことができる。
このような屈折面104を持つ微細加工済カンチレバー105の作製方法の一例を図4に示す。図4に示した方式は、作製される屈折面104に平行となるように収束イオンビーム106を照射し、カンチレバーを背面から切削する方式である。収束イオンビーム106の照射方向は、図5に示すような方向からでもよい。図4に示す方法では、収束イオンビーム106の照射量、すなわち加工量が多少変動しても、加工面107に多少の凹凸が発生するのみであり、屈折面104の品質に影響が無いため、高い加工精度は要求されず、比較的簡便に屈折面104を作製可能である。
一方、図5に示した方法では、収束イオンビーム106の照射量を高度に制御しなければ、加工面107に凹凸が発生する。この場合は、加工面107が屈折面104そのものであるため、微小な凹凸が励起光102を所定の角度以外へも屈折・回折させてしまう、または散乱光が発生する懸念がある。そのため、収束イオンビーム106を高精度に制御する必要がある。
他の加工方法としては、例えばカンチレバーが結晶性の高いシリコン製の場合はシリコンの結晶異方性を利用した異方性エッチングが利用できるし、半導体製造工程やMEMS製造工程と同様のレジスト塗布・露光・エッチングによる方法も利用できる。または、図6に示すようにカンチレバーそのものを基板108上にカンチレバーの材料109を堆積させて作製するのであれば、カンチレバー作製時に屈折面104を形成するような雛形微小構造110を基板108に設けて、その雛形微小構造110を転写する方法でも作製可能である。
屈折面104をカンチレバーの切削によって形成するのではなく、図8に示すようにカンチレバー背面101上に新たに構造物111を設ける方式も考えられる。
カンチレバー背面102に屈折面104を設ける方法以外にも、図9に示す実施形態も考えられる。図9に示す実施形態は、カンチレバー背面101に微小構造としての回折面112を設け、この回折面112へ入射した励起光102を回折させ、励起点103へ光を導く方式である(微細加工済カンチレバー105の俯瞰図を図9右下に例示する)。微細構造112の具体例として、例えば透過型回折格子が挙げられる。透過回折格子を用いる場合、励起光102の波長λと入射角度α、回折角度β、回折格子の格子間隔dは数5に示す関係がある。
Figure 2014013160
ただし、m、m′は整数である。数5により入射角度αと回折角度β、すなわち励起点への入射角度が決定されれば、回折格子の間隔dが決定され、設計可能となる。ただしここで、nは回折の次数である。例えば、最も低次数の回折角を考えるのであればm=1、m′=1とし、加工済カンチレバー105がシリコン製かつ周囲が大気雰囲気であればn0=1、n1=3.6であり、λ=800nmの近赤外光を垂直にカンチレバー背面101へ入射させるとし(α=0°)、プラズモン励起点103への入射角をβ=45°とすると、回折格子間隔dは244nmとなる。
微細構造112として回折格子を作製するには、例えば、収束イオンビーム加工による方式や、ナノインプリントによる方式、カンチレバー背面101へレジストを塗布し、周期パターンを露光後にエッチングする方法、カンチレバー材料より硬く鋭い針のような道具によって溝を掘る方式などが考えられる。
図9、図10においては、微小構造としての回折面112は励起光102の伝播方向を変化させるように描いてあるが、回折面112を図12のように周期を変化させて形成することにより、プラズモン励起点へ集光するように設計してもよい。これは、図12に示した回折面112の中央B付近は狙った角度βで入射するように数5に従って決まる格子間隔dとし、A側においては回折角を小さくするように回折格子間隔dをB部分より広くし、C側においては回折角を大きくするように格子間隔dをB部分より狭く設計するくことで実現できる。
励起点103へ励起光102を導く方式として、図13に示す実施形態も考えられる。図13は、カンチレバー背面101に、微小構造として湾曲した屈折面113を設ける方式である。
本実施例では、励起光102を、プラズモン励起点103に、励起光102の光線中心114がプラズモンを高効率で励起可能な角度で入射するように屈折させ、集光させる方式である。このような湾曲した屈曲面113を用いる方式では、屈折面104を用いる場合に比べ、プラズモン励起点における励起光102の強度を強くできるため、励起されるプラズモンの強度を強くできる利点がある。一方で、励起光102を湾曲した屈折面113で散乱させずに屈折・集光させるためには、その表面は励起光102の波長以下に凹凸が抑制された滑らかである必要がある。加工は収束イオンビームによる手段や、半導体製造工程、MEMS製造工程と同様の加工プロセスによる手段、鋳型を用いてカンチレバー作製と同時に湾曲した屈折面113を形成する手段、平面であるカンチレバー背面102にカンチレバーを形成する材質と親和性の高い材料を堆積させる手段などが考えられる。
湾曲した屈折面113の面角度ζは数3で決定できる。一方、湾曲した屈折面113の湾曲の曲率半径ξは、数6により決定できる。
Figure 2014013160
数6は、図14に示すように、曲率半径ξの面115を挟んで光の入射側媒質の屈折率をn0とし、面115の光の射出側(図14では右側)媒質の屈折率をn1とし、面115左側から右向きへ伝播してくる光が面115の頂点116から距離fの場所に集光する場合の、各物理量の関係を表した式である。
これにより、湾曲した屈折面113の中心x、すなわち湾曲した屈折面113を設ける位置が決まり、励起点103への入射角Φが決まれば、数7のように曲率半径ξが決定される。
Figure 2014013160
以上より、本実施例によれば、カンチレバー105に照射された励起光を、正確に、予め設定したプラズモンの励起点位置に、かつ設定した最適な角度で入射するようにカンチレバー背面に微小構造を設けることにより、励起光を照射するべき箇所が容易に視認可能となる。さらに、上記微小構造により、微小構造に照射した励起光が屈折または回折、反射、集光することによって、励起光を、プラズモンを高効率に励起できるプローブ近傍のプラズモン励起点に正確かつ最適な角度で導くことができる。これにより、プラズモンの励起効率を向上させて、その結果として近接場光の励起効率を向上させることができる。さらに、信号光すなわち近接場光の励起効率が向上することにより、相対的に励起光がカンチレバーから直接漏れて生じる背景光雑音を抑制することが可能となり、測定結果の信号対雑音比(Signal to Noise ratio:S/N)を向上することができ、より高感度・高精度のナノメートルレベルの光計測が実現することができる。
これにより、現在までに実現されてこなかった、例えば、ナノ構造の光学観測やナノメートルオーダーの微小領域・微小物体のラマン分光解析、近接場光干渉による形状計測等が可能となる。これらの測定・観測が実現することにより、半導体デバイスやストレージデバイス製造における物性制御や異物分析を高精度に行うことが可能となり、デバイスの機能向上や製造段階においては歩留まり向上による廃棄物減少などの有用な効果が得られる。
また、光学特性の測定が可能となることにより、微小生体組織や細菌、ウィルスを生きたまま直接観察が可能となるであろうし、分子を直接観察してその形状と物性をナノメートルオーダーで測定可能となるなど、現在まで実現されてこなかった新たな顕微分析が実現可能となる。
高感度化は測定の高速化にも寄与する。測定の高速化によって生物の動態が直接観測可能となれば、微小生体組織や細菌、ウィルスの表面でおこるダイナミクス(例えば膜タンパクの運動や、抗原抗体反応)を理解し機能を解明することに繋がるであろうし、薬剤を投与した際の応答をリアルタイムで観測し、その効果を即時判断することが可能となる。
本発明の実施例2について図15を用いて説明する。実施例1と同一の構成については、同一の符号を付し、その説明を省略する。
本実施例では実施例1のカンチレバー105に代えて、光周波数(波長)変換素子202を有するカンチレバー203を設けた点に特徴がある。
即ち、本実施例では、入射させた励起光を、プラズモンを励起する直前に光周波数(波長)変換する構造を持つことを特徴とするカンチレバーを用い、励起光(入射光)と測定光(近接場光)の光周波数(波長)を違え、近接場光から発生した測定光を検出する際に、測定光のみを選択的に取得し、背景光・ノイズが抑えられた測定を可能とする構造を具備したプローブについて説明する。
図15に、入射励起光200を、プラズモン励起点201で励起する直前に光周波数(波長)を変換する部位である光周波数(波長)変換素子202を具備することを特徴とするカンチレバー203を図示する。ここで、光周波数とは励起光200の波長の逆数に応じた物理量を指す。
光周波数(波長)変換素子202は、例えば非線形光学素子や発光素子を用いる。非線形光学素子は、例えば、LBOやBBO、KTP、KDP等の非線形光学結晶や色素が利用できる。電気感受率χの2次の項が非ゼロである物質を使えば、第二高調波等の高調波を発生可能であるため、非線形光学素子は上記非線形光学結晶や色素に限られない。
前記非線形光学結晶を光周波数を変換する光周波数(波長)変換素子202として用いた場合、励起光200の光周波数を整数倍にすることができ、励起光200と近接場光204を光周波数フィルタ(波長が異なるので波長フィルタ、色フィルタとも呼ぶ)によって、分離可能となる。なお、近接場光204は励起点201で励起されたプラズモン207によって最先端のプローブ206の先端へ導かれる。
強く指向性の高い光を励起光200として用いた場合は、励起光200の整数倍の周波数のみならず、和周波数発生や差周波数発生、パラメトリック発振を利用することが可能となり、近接場光204の波長を検出により適した波長とすることが可能となる。
光周波数(波長)変換素子202として非線形光学結晶を用いる場合、例えば、カンチレバー203へ貼り付けるなどして作製する。非線形光学素子はその結晶方位が励起光200の偏光方向と所定の角度をなさないと位相整合条件を満たせないため、高調波が発生しないまたは発生効率が著しく低下し、入射励起光200の偏光方向を考慮して固定する必要がある。または結晶方位を考慮して励起光200の偏光を制御する必要がある。
光周波数(波長)変換素子202として高調波を発生させる方式では、励起光200より近接場光204の方が波長が短くなる。そのため、光をプラズモンへ変換させる金属膜205やプラズモン207を導光する最先端のプローブ206を、発生する高調波に適した材料で形成する必要がある。
例えば、励起光200として近赤外光を用いた場合、第二高調波は緑(550nm程度)や青(450nm程度)となるため、金属膜205として銀を用いることが望ましい。金属膜205は、変換された波長における屈折率とプローブの屈折率を考慮して決定する。
発光素子を光周波数を変換する構造202として用いる場合、光周波数を変換する構造202として例えば色素や蛍光物質、半導体および半導体微細構造、またはこれらの組み合わせで形成される。
発光素子を用いる方式では、励起光200によって光励起キャリアの緩和後の発光再結合の際に発生する光を用いることになるため、励起光200より低周波数(長波長)の光によってプラズモンを励起することとなる。
発光素子を光周波数(波長)変換素子202として用いる場合、蛍光物質や半導体をカンチレバー203へ塗布するまたは貼り付けるなどして作製する。蛍光物質は、その光励起は方向に依らないことが多く、その蛍光が等方的に発生するため、固定の際に特に固定方法に注意しなくても良いという利点がある。ただし、前記非線形光学素子を用いた場合と異なり、発光は励起光200の入射方向に依らず等方的であるため、変換された光の中でプラズモンの発生に寄与する光の割合が非線形光学素子を用いた場合に比べて低下し、プラズモンの励起に寄与しなかった発光は、最終的に背景雑音となりうる。
発光素子として半導体を用いた場合も、蛍光物質を用いた場合と同じである。半導体としては、ガリウム砒素(GaAs)やインジウムアンチモン(InSb)など多くの化合物半導体を用いることができる。より効率よく光を発生させるには、直接遷移半導体を選択すると良い。ただし、半導体によって発光波長が決まっているため、導光部やプローブの材質の選定と合わせて検討する必要がある。
発光素子として半導体微細構造を用いる場合は、発光の分布は励起光200の入射方向と構造によってある程度の範囲に決まり、蛍光物質を用いる場合や半導体を構造化せずに用いる場合よりある方向へ強い光を発生させられるため、プラズモンの励起効率を向上できる期待がある。
ただし、半導体微細構造のカンチレバー203への固定角度を、半導体微細構造からの発光がプラズモンを効率よく励起できるような角度とする必要があり、作製は蛍光物質や半導体を構造化せずに用いる場合より複雑となる。
半導体微細構造の例としては、ガリウム砒素(GaAs)やインジウムアンチモン(InSb)のへテロ構造やダブルへテロ構造、量子井戸や超格子などである。半導体微細構造を用いるのであれば、直接遷移半導体に限らず、シリコン(Si)はゲルマニウム(Ge)も効率の良い発光素子として利用できる。これは、シリコンの超格子をでは、バンドフォーディングがあるため、元々は間接遷移半導体であったシリコンが、微細構造全体として直接遷移半導体として振舞うからである。
発光素子によって発する光の波長と高効率励起可能な波長が有る程度きまるため、発光素子を選定するに際し、プラズモンを励起する金属膜205や、カンチレバー203の材料、励起光の200の波長を注意深く選定する必要がある。
なお、カンチレバーないしチップを光周波数(波長)変換素子で形成する方法でも良い。
以上より、本実施例によれば、実施例1で得られる効果に加えて、励起光(入射光)と測定光(近接場光)の光周波数(波長)を異ならせることにより、近接場光から発生した測定光を検出する際に、測定光のみを選択的に取得することが可能となり、背景光・ノイズが抑えられた測定を行うことができる。これにより、高感度・高精度のナノメートルレベルの光計測が実現することができる。
本発明の実施例3について図16、17を用いて説明する。実施例1、2と同一の構成については、同一の符号を付し、その説明を省略する。
本実施例では実施例1のカンチレバー105、実施例2のカンチレバー103に代えて、照射された励起光を最適な角度で励起点に導く微小構造304、305と、光周波数(波長)変換素子202を有するカンチレバー300を設けた点に特徴がある。
即ち、本実施例は、プラズモンを高効率で励起するために入射励起光を、プラズモンを励起する点に所定の角度で入射させることを目的とする微小構造を具備したカンチレバーに、プラズモンを励起する直前に光周波数(波長)変換する微小構造を具備するプローブを組合せたプラズモン高効率導光・励起系についてである。
図16ないし図17にカンチレバー及びプローブの構造例・構成例を示す。
カンチレバー300は、その背面301に励起光302をプラズモン励起点303へ屈折または回折させるための微小構造304を備えている。または励起光302をプラズモン励起点303へ集光させるような微小構造305を備えているものとする。カンチレバー300の先端に設けられたチップの面ないし稜線部分において励起光300をプラズモンへ変換するが、プラズモンへ変換する直前に励起光300の光周波数(波長)を変換する光周波数(波長)変換素子202を備えている。
実施例1と同様に、微小構造304はカンチレバー300を切削して設けた屈折面や新規に材料を堆積させるなどして形成させた構造、周期的微細構造である回折格子などである。微小構造305は、カンチレバーを切削または材料を堆積させた設けた湾曲した屈折面などである。光周波数(波長)変換素子202は、色素や蛍光物質、半導体および半導体微細構造、またはこれらの組み合わせで形成される。
微小構造304により、励起光302を屈折または回折させてプラズモン励起点303へ効率よく励起光302を導くことができ、導かれた励起光302を光周波数(波長)変換素子202によって光周波数(波長)変換して、金属膜308等を用いてプラズモン310を励起し、最先端のプローブ307先端へプラズモン310を導くことによって近接場光309を生成する。このよう方法により、近接場光309を高効率で最先端のプローブ307の先端に発生させることができ、かつ励起光302と近接場光309の波長を変えて近接場光309を選択的に検出することができるようになり、測定のSN比を向上可能である。
微小構造305を用いることにより、励起光302をプラズモン励起点303へ集光することができるため、上記に加えて更にプラズモンの励起効率を向上可能である。
これらの方法には高いSN比での計測や高効率の計測が可能であるのみならず、カンチレバー背面301で励起光302を照射すべき位置が簡便かつ明瞭に確認可能となるため、励起光302の調整の簡便性が向上する、ないし調整の再現性が向上するなどの利点がある。
微小構造304として屈折面を用いる場合、カンチレバー300の屈折率と周囲の媒質の屈折率、プラズモン励起点303へ入射させる励起光の角度が決定されれば、屈折面の角度は数3により決定される。光周波数(波長)変換素子202は、励起光302の伝播方向と偏光が決まれば、その例えば非線形光学結晶を用いる場合はその結晶方位が決まる。または、実装しやすい角度で非線形光学結晶を固定し、励起光の偏光を制御するでも良い。カンチレバーないしチップを光周波数(波長)変換素子で形成する方法でも良い。
微小構造304として回折格子を用いる場合は、励起光302の入射角と励起点303への入射角度、カンチレバーの屈折率と周囲の媒質の屈折率、励起光波長が決まれば、数5により回折格子間隔が決定される。この場合も同様に光周波数(波長)変換素子202を実装する。
微小構造305として、湾曲した屈折面を用いる場合、屈折面を設ける位置と励起点303への入射角度が決定されれば湾曲の曲率半径が決まり、励起光302の入射角度と励起点303への入射角度、カンチレバーの屈折率と周囲の媒質の屈折率が決定されれば屈折面の角度が決まる。この場合も波光周波数(波長)変換素子202の実装は前述と同様である。
以上より、本実施例によれば、プラズモンの励起効率を向上させて、その結果として近接場光の励起効率を向上させることができ、さらに、測定結果の信号対雑音比(Signal to Noise ratio:S/N)を向上することができ、より高感度・高精度のナノメートルレベルの光計測が実現することができる。
これまで説明してきた実施例は、何れも本発明を実施するにあたっての具体化の一例を示したものに過ぎず、これらによって本発明の技術的範囲が限定的に解釈されない。すなわち、本発明はその技術思想、又はその主要な特徴から逸脱することなく、様々な形で実施することができる。また、実施例1−3を組み合わせることにより本発明を実施してもよい。
101 カンチレバー背面
102 励起光
103 プラズモン励起点
104 屈折面
105 微細加工済カンチレバー
106 収束イオンビーム
107 加工面
108 基板
109 カンチレバーの材料
110 雛形微小構造
111 構造物
112 回折面
113 湾曲した屈折面
114 光線中心
115 面
116 光源
117 プローブ
118 近接場光
119 試料
120 散乱光
121 近接場光検出センサ
200 励起光
201 プラズモン励起点
202 光周波数(波長)変換素子
203 カンチレバー
204 近接場光
205 金属膜
206 最先端のプローブ
207 プラズモン
300 カンチレバー
301 カンチレバー背面
302 励起光
303 プラズモン励起点
304 微小構造
305 微小構造
307 最先端のプローブ
308 金属膜
309 近接場光
310 プラズモン

Claims (13)

  1. プローブを支持する支持部材と、
    前記支持部材に励起光を入射する光源と、
    前記支持部材に入射した励起光により励起されたプラズモンによって前記プローブの先端から発生し、前記測定対象の表面から散乱した近接場光を検出する近接場光検出センサとを備え、
    前記支持部材の前記励起光が照射される部分に前記励起光を前記プラズモンの励起点に導く微小構造を設けることを特徴とする走査プローブ顕微鏡。
  2. 前記微小構造は前記励起光を屈折させる構造であること特徴とする請求項1記載の走査プローブ顕微鏡。
  3. 前記微小構造は前記励起光を回折させる構造であること特徴とする請求項1記載の走査プローブ顕微鏡。
  4. 前記微小構造は前記励起光を集光させる構造であること特徴とする請求項1記載の走査プローブ顕微鏡。
  5. 前記励起光によって励起されたプラズモンが前記支持部材と前記プローブを伝搬し、前記プローブ先端に近接場光を発生させることを特徴とする請求項1記載の走査プローブ顕微鏡。
  6. 前記支持部材に励起光の光周波数を変換する光周波数変換素子を設けることを特徴とする請求項1に記載の走査プローブ顕微鏡。
  7. 前記光周波数変換素子は、発光素子であることを特徴とする請求項6記載の走査プローブ顕微鏡。
  8. 前記周波数変換素子は、非線形光学素子であることを特徴とする請求項6記載の走査プローブ顕微鏡。
  9. 前記光周波数変換素子により光周波数変換された光によって励起されたプラズモンが前記カンチレバーと前記プローブを伝搬し、前記プローブ先端に近接場光を発生させることを特徴とする請求項6記載の走査プローブ顕微鏡。
  10. プローブを支持する支持部材と、
    前記支持部材に励起光を入射する光源と、
    前記支持部材に入射した励起光により励起されたプラズモンによって前記プローブの先端から発生し、前記測定対象の表面から散乱した近接場光を検出する近接場光検出センサとを備え、
    前記支持部材に励起光の光周波数を変換する光周波数変換素子を設けることを特徴とする走査プローブ顕微鏡。
  11. 前記光周波数変換素子は、発光素子であることを特徴とする請求項10記載の走査プローブ顕微鏡。
  12. 前記光周波数変換素子は、非線形光学素子であることを特徴とする請求項10記載の走査プローブ顕微鏡。
  13. 前記光周波数変換素子により光周波数変換された光によって励起されたプラズモンが前記支持部材と前記プローブを伝搬し、前記プローブ先端に近接場光を発生させることを特徴とする請求項10記載の走査プローブ顕微鏡。
JP2012150066A 2012-07-04 2012-07-04 走査プローブ顕微鏡 Pending JP2014013160A (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012150066A JP2014013160A (ja) 2012-07-04 2012-07-04 走査プローブ顕微鏡
US14/411,731 US20150177276A1 (en) 2012-07-04 2013-05-27 Scanning Probe Miscroscope
PCT/JP2013/064569 WO2014006999A1 (ja) 2012-07-04 2013-05-27 走査プローブ顕微鏡

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012150066A JP2014013160A (ja) 2012-07-04 2012-07-04 走査プローブ顕微鏡

Publications (1)

Publication Number Publication Date
JP2014013160A true JP2014013160A (ja) 2014-01-23

Family

ID=49881760

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012150066A Pending JP2014013160A (ja) 2012-07-04 2012-07-04 走査プローブ顕微鏡

Country Status (3)

Country Link
US (1) US20150177276A1 (ja)
JP (1) JP2014013160A (ja)
WO (1) WO2014006999A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015133014A1 (ja) * 2014-03-05 2015-09-11 株式会社日立製作所 走査プローブ顕微鏡及び、これを用いた試料測定方法
RU2610351C2 (ru) * 2015-07-14 2017-02-09 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Башкирский государственный университет" Способ измерения энергетических спектров квазичастиц в конденсированной среде
JP2019007756A (ja) * 2017-06-21 2019-01-17 株式会社日立製作所 近接場走査プローブ顕微鏡、走査プローブ顕微鏡用プローブおよび試料観察方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2570239C1 (ru) * 2014-07-14 2015-12-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Башкирский государственный университет" Способ измерения энергетических спектров квазичастиц в конденсированной среде
WO2016067398A1 (ja) * 2014-10-29 2016-05-06 株式会社日立製作所 走査プローブ顕微鏡およびこれを用いた試料の観察方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001291258A (ja) * 2000-03-31 2001-10-19 Toshiba Corp 近接場光ヘッド、近接場光ヘッドの作製方法ならびに光情報記録再生装置
JP2002512697A (ja) * 1997-06-19 2002-04-23 ビーコ インストルメンツ インコーポレイテッド 固体界浸レンズを用いた走査プローブ光学顕微鏡
JP2010197208A (ja) * 2009-02-25 2010-09-09 Hitachi Ltd 走査プローブ顕微鏡およびこれを用いた試料の観察方法
JP2010230687A (ja) * 2003-04-04 2010-10-14 Vp Holding Llc 増強ナノ分光学的走査のための方法および装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6339217B1 (en) * 1995-07-28 2002-01-15 General Nanotechnology Llc Scanning probe microscope assembly and method for making spectrophotometric, near-field, and scanning probe measurements
JPH10293134A (ja) * 1997-02-19 1998-11-04 Canon Inc 光検出または照射用のプローブ、及び該プローブを備えた近視野光学顕微鏡・記録再生装置・露光装置、並びに該プローブの製造方法
JP3554233B2 (ja) * 1998-10-28 2004-08-18 キヤノン株式会社 光プローブの製造方法
DE10303927B4 (de) * 2003-01-31 2005-03-31 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Sonde für ein optisches Nahfeldmikroskop mit verbesserter Streulichtunterdrückung und Verfahren zu deren Herstellung
JP5216509B2 (ja) * 2008-03-05 2013-06-19 株式会社日立製作所 走査プローブ顕微鏡およびこれを用いた試料の観察方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002512697A (ja) * 1997-06-19 2002-04-23 ビーコ インストルメンツ インコーポレイテッド 固体界浸レンズを用いた走査プローブ光学顕微鏡
JP2001291258A (ja) * 2000-03-31 2001-10-19 Toshiba Corp 近接場光ヘッド、近接場光ヘッドの作製方法ならびに光情報記録再生装置
JP2010230687A (ja) * 2003-04-04 2010-10-14 Vp Holding Llc 増強ナノ分光学的走査のための方法および装置
JP2010197208A (ja) * 2009-02-25 2010-09-09 Hitachi Ltd 走査プローブ顕微鏡およびこれを用いた試料の観察方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015133014A1 (ja) * 2014-03-05 2015-09-11 株式会社日立製作所 走査プローブ顕微鏡及び、これを用いた試料測定方法
RU2610351C2 (ru) * 2015-07-14 2017-02-09 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Башкирский государственный университет" Способ измерения энергетических спектров квазичастиц в конденсированной среде
JP2019007756A (ja) * 2017-06-21 2019-01-17 株式会社日立製作所 近接場走査プローブ顕微鏡、走査プローブ顕微鏡用プローブおよび試料観察方法

Also Published As

Publication number Publication date
US20150177276A1 (en) 2015-06-25
WO2014006999A1 (ja) 2014-01-09

Similar Documents

Publication Publication Date Title
Chen et al. Microsphere enhanced optical imaging and patterning: From physics to applications
Zhang et al. Near-field Raman spectroscopy with aperture tips
Kim et al. Recent progress of nano-technology with NSOM
Lucas et al. Invited review article: combining scanning probe microscopy with optical spectroscopy for applications in biology and materials science
WO2014006999A1 (ja) 走査プローブ顕微鏡
JP2009541742A (ja) 偏光設計の方法およびそれらの適用例
Lindquist et al. Tip‐based plasmonics: squeezing light with metallic nanoprobes
Bek et al. Tip enhanced Raman scattering with adiabatic plasmon focusing tips
Sivadasan et al. Effect of scattering efficiency in the tip-enhanced Raman spectroscopic imaging of nanostructures in the sub-diffraction Limit
Chen et al. Insight into the Heterogeneity of Longitudinal Plasmonic Field in a Nanocavity Using an Intercalated Two-Dimensional Atomic Crystal Probe with a∼ 7 Å Resolution
Heydarian et al. Dual-color plasmonic probes for improvement of scanning near-field optical microscopy
Mizobata et al. Development of aperture-type near-field reflection spectroscopy and its application to single silver nanoplates
Sun et al. 3D printed asymmetric nanoprobe for plasmonic nanofocusing under internal illumination
Wen et al. Length-Controllable Gold-Coated Silver Nanowire Probes for High AFM-TERS Scattering Activity
Johnson et al. Size-reduction template stripping of smooth curved metallic tips for adiabatic nanofocusing of surface plasmons
WO2005024391A1 (ja) 光学測定方法および装置
Maslov et al. Theoretical foundations of super-resolution in microspherical nanoscopy
Umakoshi et al. Tip-Enhanced Raman Spectroscopy
Zhang Near-Field Imaging Via Localized Surface Plasmon Resonance Enhanced Gold Photoluminescence
Klein Scanning near-field optical microscopy: from single-tip to dual-tip operation
Backs et al. A nanoplasmonic probe for near-field imaging
Le Moal Nano-Optics in a Scanning Tunneling Microscope: Applications to Plasmonics and Excitonics
Seo et al. Near-field imaging beyond the probe aperture limit
Lindquist Engineering metallic nanostructures for surface plasmon resonance sensing
Wei Plasmon-assisted controllable excitation of single quantum dots on a metal nanowire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150915

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151113

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20151222