JP2014012255A - Apparatus, system and method for generating and supplying bubble mixed liquid, and program thereof - Google Patents
Apparatus, system and method for generating and supplying bubble mixed liquid, and program thereof Download PDFInfo
- Publication number
- JP2014012255A JP2014012255A JP2012150823A JP2012150823A JP2014012255A JP 2014012255 A JP2014012255 A JP 2014012255A JP 2012150823 A JP2012150823 A JP 2012150823A JP 2012150823 A JP2012150823 A JP 2012150823A JP 2014012255 A JP2014012255 A JP 2014012255A
- Authority
- JP
- Japan
- Prior art keywords
- liquid
- bubble
- piping
- storage tank
- valve
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000007788 liquid Substances 0.000 title claims abstract description 597
- 238000000034 method Methods 0.000 title claims description 21
- 230000007246 mechanism Effects 0.000 claims abstract description 66
- 238000012546 transfer Methods 0.000 claims abstract description 65
- 238000011144 upstream manufacturing Methods 0.000 claims abstract description 32
- 238000003860 storage Methods 0.000 claims description 100
- 239000000203 mixture Substances 0.000 claims description 22
- 230000006870 function Effects 0.000 claims description 18
- 238000004519 manufacturing process Methods 0.000 claims description 14
- 238000005304 joining Methods 0.000 claims description 10
- 230000008859 change Effects 0.000 claims description 8
- 230000008569 process Effects 0.000 claims description 3
- 238000004140 cleaning Methods 0.000 abstract description 14
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 3
- 238000005461 lubrication Methods 0.000 abstract description 2
- 239000003921 oil Substances 0.000 description 17
- 239000007789 gas Substances 0.000 description 11
- 239000010687 lubricating oil Substances 0.000 description 10
- 230000000694 effects Effects 0.000 description 8
- 238000005086 pumping Methods 0.000 description 8
- 230000008901 benefit Effects 0.000 description 6
- 230000001276 controlling effect Effects 0.000 description 6
- 239000012530 fluid Substances 0.000 description 6
- 239000000243 solution Substances 0.000 description 5
- 238000011109 contamination Methods 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 3
- 230000001737 promoting effect Effects 0.000 description 3
- 238000005070 sampling Methods 0.000 description 3
- 230000002411 adverse Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- 239000002518 antifoaming agent Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000005587 bubbling Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000002173 cutting fluid Substances 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 230000001050 lubricating effect Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 239000010705 motor oil Substances 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Images
Landscapes
- Cleaning By Liquid Or Steam (AREA)
- Accessories For Mixers (AREA)
Abstract
Description
本発明は、液体内へ微細な気泡を混入し使用箇所に移送するための気泡混入液生成供給装置、気泡混入液供給システム等に係り、特に、精密機器用の表面洗浄用液体および加工機用の切削液又は各種機器の潤滑油として好適な気泡混入液体を生成し使用機器に供給する気泡混入液生成供給装置、気泡混入液供給システム、気泡混入液供給方法、およびそのプログラムに関する。 The present invention relates to a bubble mixed liquid generation and supply device, a bubble mixed liquid supply system and the like for mixing fine bubbles in a liquid and transferring them to a use location, and in particular, for surface cleaning liquids for precision instruments and processing machines. The present invention relates to a bubble-containing liquid generation and supply device, a bubble-containing liquid supply system, a bubble-containing liquid supply method, and a program therefor, which generate a bubble-containing liquid suitable as a cutting fluid or lubricating oil for various devices and supply it to used devices.
洗浄液又は潤滑オイル等の液体内に気泡を混入させる方法としては、従来より下記のようなものが知られている。
(1).圧送ポンプの吸い込み側の負圧を利用してエジェクタ(アスピレータ)による吸い込む方法。
(2).液体と気体を同一容器の立体空間内で攪拌する方法。
(3).液体と気体をスポンジのような微細な間隙を通す方法。
(4).加圧して溶解させた状態から圧力を下げて気泡を発生させる方法。
(5).超音波により気泡を微細化する方法。
Conventionally known methods for mixing bubbles in a liquid such as a cleaning liquid or lubricating oil are as follows.
(1). A suction method using an ejector (aspirator) using the negative pressure on the suction side of the pump.
(2). A method of stirring liquid and gas in the three-dimensional space of the same container.
(3). A method of passing liquid and gas through a fine gap like a sponge.
(Four). A method of generating bubbles by lowering the pressure from a state of being pressurized and dissolved.
(Five). A method of refining bubbles with ultrasonic waves.
この従来より知られている方法は、何れも、液体中に気体を如何にして微細に且つ大量に混入させるかという課題に対応したものであるが、例えば混入率を定量的に制御するに必要な具体的な技術についての開示は見られない。
ここで、気泡混入率Kは、下式で定義される。
気泡混入率K(%)=〔(W−W’)/W〕×100
ここで、
W :純液体重量(100cc)
W’:気体混入した液体重量(100cc)
とする。
All of the conventionally known methods correspond to the problem of how to mix a gas in a liquid finely and in large quantities. For example, it is necessary to quantitatively control the mixing rate. There is no disclosure of specific technology.
Here, the bubble mixing rate K is defined by the following equation.
Bubble mixing rate K (%) = [(W−W ′) / W] × 100
here,
W: Pure liquid weight (100 cc)
W ′: Weight of liquid mixed with gas (100 cc)
And
一方、上述した気泡混入液にかかる先行技術としては、下記の特許文献1,2が知られている。
この内、特許文献1には、開閉バルブであるエジェクタ(アスピレータ)が並列に複数装備され、その開閉の数を調整することにより気泡の混入率を設定する技術が開示されている。
On the other hand, the following
Among these,
又、特許文献2には、気泡が混入された液体と気泡が混入されていない液体とを一つの液槽内に入れ、予めそれぞれの量を設定しておくことによって、全体の気泡混入率を調整する技術が開示されている。 Further, in Patent Document 2, a liquid in which bubbles are mixed and a liquid in which bubbles are not mixed are placed in one liquid tank, and the respective amounts are set in advance, whereby the total bubble mixing rate is determined. Techniques for adjustment are disclosed.
液体中に気泡を混入させる具体的な従来手法として、他に、図6に示すエジェクタ型の気泡混入器が知られている。この図6に示すエジェクタでは、液体流入口102から液体を流入させ、流路の形状103を図6に示すように図の中央部で絞り込む形状とし、その部分に、外部から気体を吸い込む気体用絞り部101を設ける。
このようにすると、流路形状103の絞り込み部分は流速が上がるため、当該箇所では圧力が下がり、このため、同図の上側に位置する気体絞り部101から気体が吸い込まれて気泡として混入されるようになっている。
As a specific conventional method for mixing bubbles in a liquid, an ejector-type bubble mixing device shown in FIG. 6 is also known. In the ejector shown in FIG. 6, the liquid is introduced from the
As a result, the flow rate of the narrowed portion of the
液体中に気泡を混入させるに際しては、単に大量に気泡が混入されればいい、ということではなく、混入率について正確な調整が必要な場合がある。
例えば、電子部品を装備する基板等の洗浄に効果を発揮する気泡混入水や、生物育成のための酸素導入に際しては、気泡混入率の最適値にかかる一定幅の混入率範囲が存在し、それよりも多過ぎても少な過ぎてもその効果を損なう恐れがある。
When bubbles are mixed into the liquid, it is only necessary to mix a large amount of bubbles, and there is a case where an accurate adjustment of the mixing rate may be required.
For example, there is a certain range of contamination ratios for the optimum value of the bubble contamination rate when introducing water for bubble contamination, which is effective for cleaning substrates equipped with electronic components, and oxygen for biological growth. If it is too much or too little, the effect may be impaired.
しかしながら、この図6のエジェクタによる気泡混入方法にあっては、混入率を調整するための液体用絞り部の流路形状103の流速や圧力,更には当該流路形状103の調整等が、気体吸い込み量に大きく影響する。
このため、それぞれを固定した条件の下では混入率は安定するものの、混入率を変えようとする場合の調整は非常に難しいという本質的な問題がある。
However, in the bubble mixing method using the ejector shown in FIG. 6, the flow rate and pressure of the
For this reason, although the mixing rate is stable under the fixed conditions, there is an essential problem that adjustment when changing the mixing rate is very difficult.
一方、特許文献1のものは、前述したように開閉弁と図6に示すエジェクタと同等のエジェクタとを直列に対にして、更にこれらを並列に複数個並べて各弁の開閉を制御し、これによって、混入率を制御するようにしたものである。しかしながら、この方法では、構成が大がかりとなり制御も複雑になる、という不都合がある。
On the other hand, in
又、特許文献2のものは、気泡混入液体の量と、気泡が混入されていない液体の量とを予めそれぞれ調整して槽の中に注ぎ込み、全体として気泡の混入率を調整するようにしたものであり、そのため、混入槽と攪拌機構の両方の設備を必要とするという不都合が常に存在する。 Moreover, the thing of patent document 2 adjusted the quantity of the bubble mixing liquid, and the quantity of the liquid in which the bubble was not mixed beforehand, respectively, and poured it in the tank, and adjusted the bubble mixing rate as a whole. Therefore, there is always the inconvenience of requiring both a mixing tank and a stirring mechanism.
更に、昨今にあっては、潤滑油に微細気泡を混入して潤滑効果を高める研究も見られる(特開2011-007524 号公報)。この場合、潤滑効果が良好な気泡混入率の設定については、多くの場合、潤滑油によって異なることから、最適な気泡混入率を特定するための試験装置(例えば、気泡混入率を0%から20%位迄可変設定可能なもの)を必要とする社会的要請もある。 Furthermore, in recent years, studies have been made to improve the lubrication effect by mixing fine bubbles in the lubricating oil (Japanese Patent Laid-Open No. 2011-007524). In this case, since the setting of the bubble mixing rate with a good lubricating effect is often different depending on the lubricating oil, a test apparatus for specifying the optimum bubble mixing rate (for example, the bubble mixing rate is changed from 0% to 20%). There is also a social demand that requires a variable setting of up to%.
しかしながら、前述した関連技術および特許文献1,2にあっては、何れも上記社会的要請に対応可能な技術については、何ら開示されてはいない。
However, none of the related technologies described above and
〔発明の目的〕
本発明は、上記関連技術の有する不都合を改善し、洗浄水や潤滑オイル等の液体中に混入する気泡の混入量を任意に可変設定することができる汎用性の高い気泡混入液生成供給装置、気泡混入液供給システム、気泡混入液生成方法、及びそのプログラムを提供することを、その目的とする。
(Object of invention)
The present invention improves the inconvenience of the related art, and a highly versatile bubble mixed liquid generation and supply device capable of arbitrarily variably setting the amount of bubbles mixed in a liquid such as washing water or lubricating oil, It is an object of the present invention to provide a bubble mixed liquid supply system, a bubble mixed liquid generation method, and a program thereof.
上記目的を達成するため、本発明にかかる気泡混入液生成供給装置は、液体を貯留する貯留槽と、該貯留槽の液体を液体使用機に移送する液移送用配管と、該液移送用配管に設けられて前記貯留槽から取り込んだ液体中に気泡を混入させる気泡混入機構と、前記貯留槽から前記液体使用機へ前記液体を送る液体圧送ポンプとを備えた気泡混入液生成供給装置において、
前記液移送用配管は、上流端が前記貯留槽につながる第1の配管部と、該第1の配管部に並列に設置され上流端が前記貯留槽につながる第2の配管部と、前記第1の配管部と第2の配管部の各下流側を合流させて成る合流配管部と、この合流配管部に上流端がつながると共にその下流端が前記液体使用機につながる下流側配管部とを有し、
前記気泡混入機構が前記第1の配管部に設けられ、前記第2の配管部を流れる前記液体の流量を可変設定する合流用液調整手段が、前記第2の配管部に設けられていることを特徴とする。
In order to achieve the above object, a bubble mixed liquid generation and supply device according to the present invention includes a storage tank for storing a liquid, a liquid transfer pipe for transferring the liquid in the storage tank to a liquid use machine, and the liquid transfer pipe. In a bubble mixed liquid production and supply device comprising a bubble mixing mechanism for mixing bubbles into the liquid taken in from the storage tank and a liquid pump for sending the liquid from the storage tank to the liquid use machine,
The liquid transfer pipe includes a first pipe portion having an upstream end connected to the storage tank, a second pipe portion installed in parallel to the first pipe section and having an upstream end connected to the storage tank, A merging pipe section formed by merging each downstream side of the first piping section and the second piping section, and a downstream piping section whose upstream end is connected to the merging piping section and whose downstream end is connected to the liquid use machine. Have
The bubble mixing mechanism is provided in the first piping section, and a merging liquid adjusting means for variably setting the flow rate of the liquid flowing through the second piping section is provided in the second piping section. It is characterized by.
上記目的を達成するため、本発明にかかる気泡混入液供給システムは、液体を貯留する貯留槽と、該貯留槽の液体が液体使用機に移送されるのを案内する液移送用配管と、該液移送用配管に設けられ前記貯留槽から取り込んだ液体中に気泡を混入させる気泡混入機構と、前記液移送用配管に取り込まれる前記液体に前記液体使用機への移送力を付勢する液体圧送ポンプとを備えている。 In order to achieve the above object, a bubble-containing liquid supply system according to the present invention includes a storage tank that stores liquid, a liquid transfer pipe that guides the transfer of the liquid in the storage tank to a liquid use machine, A bubble mixing mechanism that is provided in the liquid transfer pipe and mixes bubbles into the liquid taken from the storage tank, and a liquid pressure feed that urges the liquid taken into the liquid transfer pipe to transfer the liquid to the liquid use machine. With a pump.
更に、この気泡混入液供給システムでは、前記液移送用配管が、上流端が前記貯留槽につながる第1の配管部と、該第1の配管部に並列に設置され上流端が前記貯留槽につながる第2の配管部と、前記第1の配管部と第2の配管部の各下流側を合流させて成る合流配管部と、この合流配管部に上流端がつながると共にその下流端が前記液体使用機につながる下流側配管部とを有し、
前記第1の配管部には、気泡混入量調整バルブを備えた前記気泡混入機構を装備すると共に、前記第2の配管部には当該第2の配管部を流れる前記液体の流量を可変設定する合流用液調整バルブを装備し、
前記液体使用機の上流側に位置する前記下流側配管部には、前記液体使用機で使用する気泡混入液の使用量を調整する使用液量調整バルブを装備し、
前記気泡混入量調整バルブ,合流用液調整バルブ,及び使用液量調整バルブの前記各バルブの開閉量を、外部指令に基づいて個別に設定制御する本体制御部を設けたことを特徴とする。
Furthermore, in this bubble-containing liquid supply system, the liquid transfer pipe is installed in parallel with the first piping section whose upstream end is connected to the storage tank and the first piping section, and the upstream end is connected to the storage tank. A second pipe connected to each other; a merged pipe formed by joining the downstream sides of the first pipe and the second pipe; and an upstream end connected to the merged pipe and the downstream end connected to the liquid A downstream piping section connected to the machine used,
The first piping unit is equipped with the bubble mixing mechanism having a bubble mixing amount adjusting valve, and the flow rate of the liquid flowing through the second piping unit is variably set in the second piping unit. Equipped with a liquid adjustment valve for merging,
The downstream pipe section located on the upstream side of the liquid use machine is equipped with a use liquid amount adjusting valve for adjusting the use amount of the bubble mixed liquid used in the liquid use machine,
A main body control unit is provided for individually setting and controlling the open / close amounts of the bubble mixing amount adjusting valve, the merging liquid adjusting valve, and the used liquid amount adjusting valve based on an external command.
上記目的を達成するため、本発明にかかる気泡混入液供給方法は、貯留槽の液体が液体使用機に移送されるのを案内する液移送用配管と、この液移送用配管の前記貯留槽との連結側を構成する第1の配管部に装備され且つ前記貯留槽から取り込まれる液体中に気泡を混入させる気泡混入機構と、該気泡混入機構にて気泡が混入された気泡混入液に必要な移送力を付勢する液体圧送ポンプとを備えた気泡混入液供給システムにあって、
前記第1の配管部には、その下流側端部の合流配管部で合流すると共に前記貯留槽の液体を取り込む第2の配管部が並列に設置されており、
外部からの動作指令に基づいて前記気泡混入機構を稼働状態に設定し且つ予め装備された気泡混入量調整バルブを調整して前記第1の配管部内を移動する前記液体に所定量の気泡を混入する気泡混入液生成工程(第1の工程)と、
この気泡混入機構の稼働と同時に又は相前後して前記第2の配管部内を移動する前記貯留槽の液体の移動量を、当該第2の配管部に予め装備された合流用液調整バルブによって設定制御する合流用液調整工程(第2の工程)と、
前記合流配管部で合流されて成る所定の気泡混入率の気泡混入液についてその使用量を、前記液移送用配管の下流側を成す前記下流側配管部に予め装備された使用液量調整バルブが調整する使用液量調整工程(第3の工程)とを設け、
これら各工程における各バルブの開度調整およびその設定制御を、前記各バルブに予め併設された本体制御部が外部指令に基づいて順次実行することを特徴とする。
In order to achieve the above-mentioned object, a method for supplying air bubbles mixed liquid according to the present invention includes a liquid transfer pipe for guiding the liquid in a storage tank to be transferred to a liquid use machine, and the storage tank of the liquid transfer pipe. Required for the bubble mixing mechanism that is included in the first piping section that constitutes the connecting side of the gas and that mixes bubbles into the liquid taken in from the storage tank, and the bubble mixed liquid in which bubbles are mixed by the bubble mixing mechanism In the bubble mixed liquid supply system provided with a liquid pump for energizing the transfer force,
In the first piping part, a second piping part that joins at the joining piping part at the downstream end thereof and takes in the liquid in the storage tank is installed in parallel.
Based on an operation command from the outside, the bubble mixing mechanism is set to an operating state, and a bubble mixing amount adjusting valve that is equipped in advance is adjusted to mix a predetermined amount of bubbles into the liquid moving in the first piping section. A bubble entrained liquid generation step (first step);
The amount of movement of the liquid in the storage tank that moves in the second piping section at the same time as or after the operation of the bubble mixing mechanism is set by a confluence liquid adjustment valve that is preliminarily installed in the second piping section. A confluence liquid adjusting step to be controlled (second step);
A use liquid amount adjusting valve preliminarily installed in the downstream pipe portion that forms the downstream side of the liquid transfer pipe is used for the bubble mixed liquid having a predetermined bubble mixture ratio formed by joining in the merge pipe section. And a use liquid amount adjustment step (third step) to be adjusted,
The opening degree adjustment of each valve in each of these steps and the setting control thereof are sequentially performed by a main body control unit provided in advance in each valve based on an external command.
上記目的を達成するため、本発明にかかる液供給システム用制御プログラムは、貯留槽の液体が液体使用機に移送されるのを案内する液移送用配管と、この液移送用配管の前記貯留槽との連結側を構成する第1の配管部に装備され且つ前記貯留槽から取り込まれる液体中に気泡を混入させる気泡混入機構と、該気泡混入機構にて気泡が混入された気泡混入液に必要な移送力を付勢する液体圧送ポンプとを備えた気泡混入液供給システムにあって、
前記第1の配管部には、その下流側端部の合流配管部で合流すると共に前記貯留槽の液体を取り込む第2の配管部が並列に設置されており、
外部からの動作指令に基づいて前記気泡混入機構を稼働させ且つ該気泡混入機構に予め装備された気泡混入量調整バルブを駆動制御し、前記第1の配管部内を移動する前記液体に所定量の気泡を混入し気泡混入液を生成する気泡混入液生成制御機能、
この気泡混入機構の稼働と同時に又は相前後して稼働し、前記第2の配管部内を前記合流配管部に向けて移送される前記液体の移送量を、該第2の配管部に予め装備された合流用液調整バルブを駆動制御して予め設定された適量に調整する合流用液調整制御機能、
および前記合流配管部で合流されて生成される所定の気泡混入率の気泡混入液についてその使用量を、前記液移送用配管の下流側配管部に予め装備された使用液量調整バルブを駆動制御して必要とする所定量に設定制御する使用液量設定制御機能、
を設け、これら各バルブの動作制御機能を、前記各バルブ全体を対象として予め設置された本体制御部が備えているコンピュータに実現させるようにしたことを特徴とする。
In order to achieve the above object, a control program for a liquid supply system according to the present invention includes a liquid transfer pipe for guiding a liquid in a storage tank to be transferred to a liquid use machine, and the storage tank of the liquid transfer pipe. Necessary for the bubble mixing mechanism that is installed in the first piping part that constitutes the connection side with the bubble and mixes bubbles into the liquid taken in from the storage tank, and the bubble mixed liquid in which bubbles are mixed by the bubble mixing mechanism An air bubble mixed liquid supply system including a liquid pump for energizing various transfer forces,
In the first piping part, a second piping part that joins at the joining piping part at the downstream end thereof and takes in the liquid in the storage tank is installed in parallel.
Based on an operation command from the outside, the bubble mixing mechanism is operated and a bubble mixing amount adjustment valve preliminarily provided in the bubble mixing mechanism is driven and controlled, so that a predetermined amount of the liquid moving in the first pipe section is supplied. Bubble mixing liquid generation control function to mix bubbles and generate bubble mixing liquid,
The second piping unit is preliminarily equipped with a transfer amount of the liquid that is operated simultaneously with or before and after the operation of the bubble mixing mechanism and is transferred toward the merging piping unit in the second piping unit. A liquid adjustment control function for confluence, which adjusts to an appropriate amount set in advance by driving and controlling the liquid adjustment valve for confluence,
In addition, the use amount of the bubble mixed liquid having a predetermined bubble mixture rate generated by being merged in the merge pipe unit is driven and controlled using a use liquid amount adjusting valve that is preliminarily installed in the downstream pipe unit of the liquid transfer pipe. Use liquid volume setting control function to set and control to the required amount
The operation control function of each valve is realized by a computer provided in a main body control unit installed in advance for the entire valve.
本発明は以上のように構成したので、これによると、気泡混入機構で一定量の気泡が混入された気泡混入液の移送時に気泡が混入されていない若しくは気泡の混入量の少ない同質の液体を気泡混入率調整液としてその適量を合流させて移送するようにしたので、気泡混入液の気泡混入率を任意に且つ円滑に可変設定し得る汎用性の高い気泡混入液生成供給装置、気泡混入液供給システム、気泡混入液供給方法、及びそのプログラムを提供することができる(請求項1乃至12)。
Since the present invention is configured as described above, according to this, when a bubble mixed liquid in which a certain amount of bubbles are mixed by the bubble mixing mechanism is transferred, a homogeneous liquid in which bubbles are not mixed or the amount of mixed bubbles is small. Since the appropriate amount of the bubble mixture rate adjusting liquid is combined and transferred, the highly versatile bubble mixture generation and supply device and the bubble mixture solution can arbitrarily and smoothly variably set the bubble rate of the bubble mixture liquid. A supply system, a bubble mixed liquid supply method, and a program thereof can be provided (
又、本発明では、液体使用機に送られる前記液体の流量を制御する使用液量調整バルブが前記下流側配管部に設けられ、該使用液量調整バルブの上流側にて上流端が前記下流側配管部につながると共に、その下流端が前記貯留液槽につながる余剰液循環用配管を設けたので、例えば、使用液量調整バルブで液の使用量が制限された場合には、その余剰分が余剰液循環用配管を介して貯留槽へ円滑に戻される。使用液量調整バルブの急激な操作に際しても発生するサージ現象の悪影響を有効に回避することができる。即ち、液体の使用量に応じて使用液量調整バルブを調整するだけで、気泡混入液の余剰分は貯留槽へ自動的に戻される。これにより、液体の有効利用と装置の円滑な動作が担保されている(請求項2)。 In the present invention, a use liquid amount adjustment valve for controlling the flow rate of the liquid sent to the liquid use machine is provided in the downstream pipe section, and an upstream end is located on the upstream side of the use liquid amount adjustment valve. For example, when the amount of liquid used is restricted by the use liquid amount adjusting valve, the excess liquid circulation pipe connected to the side pipe portion and the downstream end thereof to the storage liquid tank is provided. Is smoothly returned to the storage tank through the excess liquid circulation pipe. It is possible to effectively avoid the adverse effect of the surge phenomenon that occurs even when the operating fluid amount adjusting valve is operated rapidly. That is, the surplus of the bubble mixed liquid is automatically returned to the storage tank only by adjusting the use liquid amount adjusting valve according to the use amount of the liquid. Thereby, the effective use of the liquid and the smooth operation of the apparatus are ensured (claim 2).
又、本発明によると、液体圧送ポンプを前記第1,第2の各配管部の合流点の下流側に装備したので、第1の配管部の合流点側、即ち気泡混入機構の下流側である気泡混入部分を、容易に且つ確実に負圧状態に設定することができ、このため、気泡混入機構部分での液体中への気泡の混入を有効に且つ効率よく行うことができる(請求項3)。 In addition, according to the present invention, since the liquid pressure pump is installed on the downstream side of the merging point of the first and second piping parts, on the merging point side of the first piping part, that is, on the downstream side of the bubble mixing mechanism. A certain bubble mixing portion can be easily and reliably set to a negative pressure state, and for this reason, bubbles can be effectively and efficiently mixed into the liquid in the bubble mixing mechanism portion. 3).
更に、本発明では、液体圧送ポンプの下流側の前記液移送用配管部分に、液体中の気泡の混入率を計測する気泡混入率測定手段を装備したので、これにより、液体使用機に近い位置で気泡混入率が測定されることから、オペレータは当該液体使用機にて使用される所望の気泡混入率をリアルタイムで確認することができ、気泡混入率がずれた場合にはオペレータが迅速対応し得る点で都合がよい(請求項4)。 Furthermore, in the present invention, since the liquid transfer pipe portion on the downstream side of the liquid pressure pump is equipped with the bubble mixing rate measuring means for measuring the mixing rate of bubbles in the liquid, the position close to the liquid using machine is thereby obtained. Since the bubble mixing rate is measured at the operator, the operator can confirm the desired bubble mixing rate to be used in the liquid using machine in real time. It is convenient in terms of obtaining (Claim 4).
又、本発明では、前記気泡混入機構には液体中への気泡の混入量を調整する気泡混入量調整バルブを装備すると共に、前記合流用液量調整手段を合流用液調整バルブにより構成したので、これにより、例えば動作開始前に設定された気泡混入量調整バルブを調整して動作開始後の液体中の気泡混入率を予め設定することができ、同時に、動作開始後は、合流用液調整バルブの開度を自在に可変設定して合流用液の混入量(気泡混入率調整液)の大小を自在に設定することができ、これによって、気泡混入機構にかかる気泡混入量調整バルブを可変制御することなく、液体中の気泡混入率を一定の範囲内で高低自在に可変設定することができる(請求項5)。 In the present invention, the bubble mixing mechanism is equipped with a bubble mixing amount adjusting valve for adjusting the amount of bubbles mixed in the liquid, and the merging liquid amount adjusting means is constituted by a merging liquid adjusting valve. In this way, for example, the bubble mixing amount adjustment valve set before the operation can be adjusted to preset the bubble mixing rate in the liquid after the operation starts. The opening degree of the valve can be variably set, and the amount of mixing liquid (bubble mixing rate adjustment liquid) can be set freely, thereby changing the bubble mixing amount adjustment valve for the bubble mixing mechanism Without control, the bubble mixing rate in the liquid can be variably set within a certain range (claim 5).
更に、本発明では、前述した液体圧送ポンプの下流側で且つ前記気泡混入率測定手段の上流側の前記配管部分に、前記気泡混入液内の気泡の微細化促進用として機能する通路絞りバルブを装備したので、通路絞りバルブのバルブ操作で気泡混入液内の気泡の微細化が促進され、これによって液体内の気泡の外部への逃げを抑制することができ、使用中でも一定の気泡混入率が維持されるので、例えば、予期した洗浄効果を継続して維持することができる(請求項6)。 Furthermore, in the present invention, a passage throttle valve that functions to promote the refinement of bubbles in the bubble mixed liquid is provided in the pipe portion downstream of the liquid pump and the upstream of the bubble mixing rate measuring means. Because it is equipped, the valve operation of the passage throttle valve facilitates the miniaturization of the bubbles in the bubble mixture liquid, thereby suppressing the escape of bubbles in the liquid to the outside, and a constant bubble mixture rate even during use. Thus, for example, the expected cleaning effect can be continuously maintained (claim 6).
更に、本発明では、貯留槽に、内部の液体の温度を予め設定された温度に設定制御する液温設定装置を併設し、この液温設定装置を、前記貯留槽内の液中に配置されたヒータと、このヒータに加熱される液体の温度を測定する液温センサと、この液温センサからの温度情報に基づいて作動し予め設定された適正温度の設定に向けて前記ヒータを通電制御する温度制御部とを含む構成としたので、これにより、貯留槽内の液温は、周囲環境の温度変化があっても常に一定温度に保持され、液体自身の温度特性(例えば潤滑度や洗浄能力などの)が常に一定の状態を維持し得るようになっている(請求項7)。 Furthermore, in the present invention, the storage tank is provided with a liquid temperature setting device that controls the temperature of the internal liquid to a preset temperature, and this liquid temperature setting device is disposed in the liquid in the storage tank. A heater, a liquid temperature sensor for measuring the temperature of the liquid heated by the heater, and an energization control of the heater for setting a preset appropriate temperature that operates based on temperature information from the liquid temperature sensor. Therefore, the liquid temperature in the storage tank is always maintained at a constant temperature even when there is a change in the temperature of the surrounding environment. (Such as ability) can always maintain a constant state (claim 7).
又、本発明では、前述した気泡混入量調整バルブと前記合流液量調整バルブとを、それぞれ各バルブの駆動量を電気的に変更可能な構造とすると共に、この各調整バルブのバルブ開度を外部指令によって個別に設定するバルブ開度設定制御部を設けたので、これにより、まず、装置全体の稼働前に気泡混入量調整バルブの開度を調整して気泡混入量が例えば最大となるように設定することができ、次に、実際の装置稼働中に合流液量調整バルブの開度を自在に調整して第1,第2の各配管部の合流点以降の液移送用配管を流動する気泡混入液の気泡混入率を、予め設定された最大値以下の範囲内で、自在に且つ円滑に可変設定することが可能となる(請求項8)。 In the present invention, the bubble mixing amount adjustment valve and the merging liquid amount adjustment valve are structured such that the drive amount of each valve can be electrically changed, and the valve opening degree of each adjustment valve is set. Since the valve opening setting control unit that is individually set by an external command is provided, first, the opening of the bubble mixing amount adjustment valve is adjusted before the entire apparatus is operated so that the bubble mixing amount becomes, for example, the maximum. Next, while the actual device is in operation, the opening of the merging liquid amount adjusting valve is freely adjusted to flow the liquid transfer pipes after the merging point of each of the first and second pipe parts. It is possible to freely and smoothly variably set the bubble mixture rate of the bubble mixture liquid within a range not exceeding the preset maximum value (claim 8).
更に、本発明では、前述した通路絞りバルブの通路絞り量を電気的に変更可能な構造とし且つこの通路絞りバルブの絞り量を前記気泡混入率測定手段で得られる情報に基づいて調整する微細化調整制御部を設けたので、微細化調整制御部に外部から所定の指令を入力して通路絞りバルブの通路絞り量を自在に可変設定し、これによって液移送用配管内を流動する気泡混入液内の気泡の微細化を図り、気泡の液中閉じ込め図り、必要とする気泡混入率の気泡混入液を液体使用機に確実に供給し得るようにした(請求項9)。 Further, in the present invention, the passage restriction amount of the passage restriction valve described above is configured to be electrically changeable, and the restriction amount of the passage restriction valve is adjusted based on information obtained by the bubble mixing rate measuring means. Since the adjustment control unit is provided, a predetermined command is input from the outside to the miniaturization adjustment control unit to freely variably set the passage throttle amount of the passage throttle valve, and thereby the bubble mixed liquid flowing in the liquid transfer pipe The air bubbles are refined, the air bubbles are confined in the liquid, and the liquid with the required air bubble mixing rate can be reliably supplied to the liquid use machine (claim 9).
〔第1実施形態〕
以下、本発明の第1実施形態を、図1乃至図4に基づいて説明する。
(全体的な構成)
本発明にかかる気泡混入液供給システム1は、図1に示すように、その中枢部を成す気泡混入液生成供給装置2と、この気泡混入液生成供給装置2の全体の動作を各構成要素毎に個別に制御する本体制御部3とを備えている。
[First Embodiment]
A first embodiment of the present invention will be described below with reference to FIGS.
(Overall configuration)
As shown in FIG. 1, a bubble mixed
この内、気泡混入液生成供給装置2は、図1の右端部に設置され液体使用機1Aに当該液体使用機1Aで必要としている液体(本第1実施形態では洗浄液)を供給するための装置で、当該洗浄液としての液体の必要量を予め貯留する貯留槽10と、この該貯留槽10の液体を液体使用機1Aに移送する液移送用配管11と、この液移送用配管11に設けられ前述した貯留槽10から取り込んだ液体中に気泡を混入させる気泡混入機構12及び気泡混入量調整バルブ12Cと、貯留槽10から液体使用機1Aへ前記液体を送る液体圧送ポンプ15とを備えている。
Among these, the bubble mixed liquid generation supply device 2 is an apparatus for supplying a liquid (cleaning liquid in the first embodiment) necessary for the
ここで、液移送用配管11は、上流端が貯留槽10につながる第1の配管部11Aと、この第1の配管部に並列に設置され上流端が前述した貯留槽10につながる第2の配管部11Bと、これら第1の配管部11Aと第2の配管部11Bの各下流側を合流させて成る合流配管部11Gと、この合流配管部11Gに上流端がつながると共にその下流端が上記した前記液体使用機1Aにつながる下流側配管部11Cとを備えて構成されている。
Here, the
そして前述した気泡混入機構12は上記第1の配管部11Aに設けられ、第2の配管部11Bを流れる前記液体の流量を可変設定する合流用液調整手段としての合流用液調整バルブ14が、第2の配管部11Bに設けられている。
The
ここで、貯留槽10には、当該貯留槽10内の液体の温度(以下「液温」という)を常時一定に保持する液温設定装置20が併設されている。又、貯留槽10内の液体については、本第1実施形態では、液体使用機1Aでの基板等の洗浄を意図して洗浄液としているが、後述するように、液体使用機1Aの実態に応じて、例えば洗浄液に代えて潤滑油を気泡混入の対象液としてもよい。
Here, the
上記気泡混入液生成供給装置2は、更に、上記第1の配管部11Aに並列に装備された装備され当該第1の配管部11Aにて前記貯留槽10から連続して取り出される液体に気泡を混入させる気泡混入機構12及び気泡混入量調整バルブ12Cに対応して、上記第2の配管11Bに、前記貯留槽10から連続して取り出される液体の流量を自在に調整する合流用液調整手段14を装備している。
The bubble mixed liquid generation and supply device 2 is further equipped with the
この合流用液調整手段14は、前述した気泡混入機構12から送り出される気泡混入液に対して、貯留槽10から取り出される液体の流量を調整してその適量を合流させて液中の気泡混入率を調整するためのもので、本第1実施形態では前述したように合流用液調整バルブが使用されている。
The merging liquid adjusting means 14 adjusts the flow rate of the liquid taken out from the
また、前述した合流配管部11Gは、第1及び第2の各配管部11A,11Bで取り出した前記液体を合流させる配管合流点を示す。本第1実施形態では、この合流配管部11Gにおいて、上述した第1及び第2の各配管部11A,11Bの配管の各下流端と前述した液移送用配管11の下流側配管部11Cの上流端とが、一体的に連結されている(図2参照)。
Further, the above-described joining
このように、所定量の気泡が混入された気泡混入液の移送中の配管内である合流配管部11Gで、当該気泡混入液と同質の気泡の混入の少ない(又は気泡の混入のない)液体の適量とを気泡混入率調整用として合流させるようにしたので、第2の配管部11Bの合流用液調整バルブ(合流用液調整手段)14のバルブ開度を調整することにより、第1の配管部11Aで生成される気泡混入液の気泡混入率を、気泡混入機構12側の気泡混入量調整バルブ12Cを可変制御しない場合でも、任意に且つ円滑に可変設定することができる。
In this way, in the merging
ここで、この気泡混入量調整バルブ12Cについて、例えば動作開始前に調整して動作開始後の液体中の気泡混入率を予め設定してもよい。同時に、動作開始後は、合流用液調整バルブ14の開度を自在に可変設定して合流用液の混入量(気泡混入率調整液)の大小を自在に設定することができ、これによって、上記したように、気泡混入機構12にかかる気泡混入量調整バルブ12Cを可変制御することなく、移送液体中の気泡混入率を所定の範囲内で高低自在に可変設定することができる。
Here, for the bubble mixing
更に、前述した液移送用配管11上で、図1の合流配管部11Gから下流側の液体使用機1Aに至る下流側配管部11C上には、図示の如く、上流側から順に前記貯留槽10から第1及び第2の各配管部11A,11Bを介して取り出され気泡が混入された上記液体に対して必要な移送力(流力)を付勢する液体圧送ポンプ15と、前述した気泡混入液内の気泡の微細化促進用として好適な通路絞りバルブ16と、この通路絞りバルブ16を通過後の気泡混入液の気泡混入率を測定する気泡混入率測定手段17と、液体使用機1Aで実際に使用される気泡混入液の量を調整する使用液量調整バルブ18と、この使用液量調整バルブ18から送り出される気泡混入液の流量を測定する流量センサ19とが、直列に装備されている。
Further, on the
この場合、液体圧送ポンプ15を、合流配管部11Gの下流側に装備したので、第1の配管部11Aの合流配管部11G側、即ち、気泡混入機構12の下流側である気泡混入部分を容易に且つ確実に負圧状態に設定することができ、このため、気泡混入機構12部分での液体中への気泡の混入を、気泡混入量調整バルブ12Cを調整するだけで効率よく行うことが可能となる。
In this case, since the
また、液体圧送ポンプ15の下流側の下流側配管部11C部分に、前述したように液体中の気泡の混入率を計測する気泡混入率測定手段17を装備したので、液体使用機1Aに近い位置で気泡混入率が測定されることから、当該液体使用機1Aにて使用される所望の気泡混入率を、オペレータはリアルタイムで確認することができ、気泡混入率が目標値からずれた場合には当該オペレータが迅速に対応し得る点で都合がよい。
Further, as described above, the bubble mixing rate measuring means 17 for measuring the mixing rate of bubbles in the liquid is provided in the
更に、液体圧送ポンプ15の下流側で且つ前記気泡混入率測定手段17の上流側の下流側配管部11C部分に、前記気泡混入液内の気泡の微細化促進用として機能する通路絞りバルブ16を装備したので、この通路絞りバルブ16のバルブ操作によって気泡混入液内の気泡の微細化が促進され、これにより、液体内の気泡の外部への逃げを抑制することができ、使用中でも一定の気泡混入率が維持されるので、例えば、予期した洗浄効果を継続維持することができる点で都合がよい。
Further, a
又、上記気泡混入液生成供給装置2は、前述したように、気泡混入率測定手段17の下流側に、使用液量調整バルブ18と当該使用液量調整バルブ18から送り出される気泡混入液の流量を測定する流量センサ19とを装備したので、液体使用機1Aに送り込まれる気泡混入液の流量を、オペレータは常時把握しその増減設定を自在に成し得るようになっている。
In addition, as described above, the bubble mixed liquid generation and supply device 2 is arranged on the downstream side of the bubble mixed ratio measuring means 17 and the flow rate of the bubble mixed liquid sent out from the use liquid
このように構成することにより、複雑で高度の機器を装備することなく、液体使用機1Aに対し、気泡混入率が管理された気泡混入液の適量を、比較的安価な設備で円滑に且つ自在に設定することが可能となるという利点がある。
ここで、上記気泡混入率測定手段17については、後述するように液体用密度計17Aによって構成してもよい。
By configuring in this way, an appropriate amount of the bubble mixed liquid in which the bubble mixing rate is controlled can be smoothly and freely applied to the
Here, the bubble mixing rate measuring means 17 may be constituted by a
又、上記気泡混入率測定手段17と使用液量調整バルブ18との間に位置する下流側配管部11C部分には、使用液量調整バルブ18で使用量が制限された気泡混入液の余剰分を前述した貯留槽10に向けて戻す余剰液循環用配管(余剰液循環路)11Eが設けられている。
In addition, in the downstream
即ち、前述した液体使用機1Aに送られる液体(気泡混入液)の流量を制御する使用液量調整バルブの上流側にて上流端が前述した下流側配管部11Cにつながると共に、その下流端が前述した貯留液槽10につながる余剰液循環用配管(余剰液循循環路)11Eを設けた。このため、例えば、使用液量調整バルブで液の使用量が制限された場合には、その余剰分が余剰液循環用配管11Eを介して貯留槽10へ円滑に戻される。この場合、使用液量調整バルブ18の急激な操作に際しても、発生するサージ現象の悪影響を有効に回避することができる。即ち、気泡混入液の使用量に応じて使用液量調整バルブ18を調整するだけで、気泡混入液の余剰分は貯留槽10へ自動的に戻される。これにより、液体の有効利用と装置の円滑な動作が担保されている。
That is, the upstream end is connected to the above-described downstream
これにより、使用液量調整バルブ18は、上述した各部の適正動作を許容しつつ当該各構成部分に負荷変動を与えることなく、液体使用機1Aに供給する気泡混入液の液量を、自在に調整し且つ自由に可変設定することができる、という汎用性の高い且つ耐久性ある気泡混入液生成供給装置2が得られる。
As a result, the used liquid
又、本第1実施形態では、上記気泡混入液生成供給装置2に加えて、オペレータが意図する気泡混入率を備えた気泡混入液を得るために、前述した各バルブ12C,14,16,18の各動作およびの液体圧送ポンプ15の動作を、予め個別に設定されたプログラムに従って可変制御する本体制御部3が装備されている。そして、この本体制御部3と上記した気泡混入液生成供給装置2とにより、前述したように、気泡混入液供給システム1が構成されている。
Further, in the first embodiment, in addition to the bubble mixed liquid generation and supply device 2, in order to obtain the bubble mixed liquid having the bubble mixed ratio intended by the operator, the
次に、上記気泡混入液生成供給装置2の各構成について、更に具体的に説明する。 Next, each configuration of the bubble mixed liquid generation supply device 2 will be described more specifically.
(気泡混入液の生成部および気泡混入率の調整部)
気泡混入液を生成する気泡混入機構12は、前述したように第1の配管部11Aに装備されている(図1,図2参照)。
この第1の配管部11Aは、気泡混入機構12を介して連結された取液側配管部11Aaと気泡混入液送出側配管部11Abとからなる。そして、取液側配管部11Aaの先端部が前述した貯留槽10内の液中に配設され、又、気泡混入液送出配管部11Abの下流側が前述した合流配管部11Gにて液移送用配管11の下流側配管部11Cに連結されている。
(Bubble mixed liquid generation unit and bubble mixing rate adjustment unit)
As described above, the
The
又、気泡混入機構12には、取液側配管部11Aaを介して貯留槽10から取り出された液体に所定量の気泡を混入するための気泡混入量調整バルブ12Cが、前述したように装備されている。この気泡混入量調整バルブ12Cは、そのバルブの開度を調整することにより、気泡混入機構12における気泡の混入率を設定する機能を備えている。
Further, the
これにより、前述した液体圧送ポンプ15に付勢されて貯留槽10から取液側配管部11Aaを介して取り込まれた液体中に、気泡混入量調整バルブ12Cによって設定されたバルブ開度と気泡混入機構12内の負圧との関係で特定される所定量の気泡が、当該気泡混入機構12部分で効率よく連続して混入されることとなる。
即ち、気泡混入機構12によって所定量の気泡が混入された気泡混入液が、第1の配管部11Aから合流配管部11Gに向けて連続して送り出されるようになっている。
As a result, the valve opening and the bubble mixing set by the bubble mixing
That is, the bubble mixed liquid in which a predetermined amount of bubbles is mixed by the
ここで、上記気泡混入機構12は、本第1実施形態では図4に示すようにエジェクタが使用されている。このエジェクタについては、具体的には後述するが、図6に示すエジェクタと同等のエジェクタが使用されている。
Here, the
一方、気泡混入率を調整するための合流液の適量を調整する合流用液調整バルブ14は、前述したように第2の配管部11Bに装備されている。
ここで、この第2の配管部11Bは、図2に示すように、合流用液調整バルブ14を介して連結された取液側配管部11Baと合流用液送出側配管部11Bbとにより構成されている。そして、取液側配管部11Baの先端部が(前述した第1の配管部11Aの場合と同様に)前述した貯留槽10内の液中に配設され、又、合流用液送出配管部11Bbの下流側が上記合流配管部11Gにて前述した第1の配管部11Aに合流し且つ前記液移送用配管11の下流側配管部11Cに連結されている。
On the other hand, the merging
Here, as shown in FIG. 2, the
この内、合流用液調整手段14は、前述した気泡混入機構12から送り出される気泡混入液を合流配管部11Gで合流させることを前提として、その合流液全体の気泡混入率を連続的に且つ高精度に調整するためのものであり、上述したように本第1実施形態では合流用液調整バルブが使用されている。
Among these, the merging liquid adjusting means 14 continuously increases the bubble mixing rate of the entire merging liquid on the premise that the bubble mixing liquid fed from the
即ち、この合流用液調整バルブ(合流用液調整手段)14は、そのバルブの開度を調整することにより、前述したように合流配管部11Gで前述した気泡混入液に合流させる気泡を含まない(若しくは気泡混入量の少ない)液体の適量を、予め調整し設定する機能を備えている。
これにより、液移送用配管11を介して前述した液体使用機1Aに送り込む気泡混入液の気泡混入率を、用途に合わせて小刻みに(又は任意の割合に)且つ自在に設定することが可能となる。
That is, the merging liquid adjustment valve (merging liquid adjusting means) 14 does not include bubbles that merge with the aforementioned bubble mixed liquid in the merging
As a result, it is possible to freely set the bubble mixing rate of the bubble mixed solution fed into the
(貯留槽10)
上記貯留槽10には、洗浄液としての液体の必要量が、予め蓄えられている。そして、この液体については、システム全体の稼働と共に、その不足分が外部から常時補給されるようになっている。
符号10Aは液体補給バルブを示し、符号10Bは廃液バルブを示す。又、前述した第1,第2の各配管部11A,11Bは、貯留槽10内では前述した液体補給バルブ10A側とは微細ゴミ除去網1Cで仕切られて反対側に配設されている。
(Reservoir 10)
The
又、この貯留槽10には、内部の液体を常時一定温度(例えば20〔℃〕、40〔℃〕、又は60〔℃〕等)に維持する温度設定装置20が装備されている。
ここで、符号20Aは防水型加熱器を示し、符号20Bは温度センサを示し、符号20Cは温度調整器を示す。又、符号20Eは温度制御部を示す。この温度制御部20Eは、後述する本体制御部3の主制御部35からの指令で作動し、温度調整器20Cを介して防水型加熱器の通電電流を制御し貯留槽1内の液温を一定値に設定制御する機能を備えている。
In addition, the
Here,
この貯留槽10には、更に、前述した余剰液循環用配管11Eの液戻り側の端部が、配設されている。この余剰液循環用配管11Eは、前述したように、液移送用配管11の下流側で余剰の気泡混入液が生じた場合に当該余剰の気泡混入液を貯留槽10に戻すための液戻し配管として機能する。
このため、貯留槽10内に貯留される液体としては、実際には、気泡が混入されない液体の場合と使用状況に応じて気泡が僅かに混入された状態の液体との両方の場合が含まれている。
The
For this reason, the liquid stored in the
ここで、貯留槽10内に設置される前述した余剰液循環用配管11Eの液戻り側の端部(排出口)は、本第1実施形態では、前述した第2の配管部11Bの取液側配管部11Baの吸液口部分の設置位置から十分離れた位置に配設されている。より好ましくは、第1の配管部11Aよりも離れた位置であるとよい。
Here, the end portion (discharge port) on the liquid return side of the above-described excess
これにより、第2の配管部11Bでは、気泡混入率の低い液体が取液(取り込まれる)されることとなり、気泡混入率の調整用として有効に機能するものとなっている。
Thereby, in the
(気泡混入機構12)
第1の配管部11Aに装備された気泡混入機構12として、本第1実施形態では、前述した図4に示すエジェクタが使用されている。
この図4において、エジェクタ(気泡混入機構)12は、液流入口102から吸液配管部11Aaを介して貯留槽10内の液体が流入するようになっており、又、流路の形状が図4に示すように絞り込む形状に予め形成されている。
(Bubble mixing mechanism 12)
In the first embodiment, the above-described ejector shown in FIG. 4 is used as the
In FIG. 4, an ejector (bubble mixing mechanism) 12 is configured such that the liquid in the
この気泡混入機構12は、具体的には、流路の絞込み部103の吸気幅103Aを設定する軸芯体12Bと、この軸芯体12Bを図4の左端部でねじ部12aを介して保持するエジェクタ本体12Aとを備えている。そして、前記絞込み幅103部分には、図4の上部から外部の気体が吸入されるのを許容する構造となっている。そして、当該気体の吸入量を調整する気泡混入量調整バルブ12Cが、前述したように装備されている。
Specifically, the
このようにすると、下流側に位置する液体圧送ポンプ15のポンプ吸引力によって絞込み部103で液体の流速が上がり同時に当該箇所の圧力が下がり(負圧状態の発生)、このため、図4の上側に位置する気体絞り部101から気体が吸気幅103Aを介して吸い込まれ、連続的に混入されるようになっている。
In this way, the flow rate of the liquid rises at the narrowing
この場合、エジェクタによる気泡の混入率は粗い調整でよい。そして、これによって生成される気泡混入液に対して、前述したように、第2の配管部11Bを介して貯留槽10内の液体を合流配管部11Gで合流させることにより、エジェクタのみでは不安定な気泡混入率の可変設定が、第2の配管部11Bに装備された合流用液調整バルブ(合流用液調整手段)14の調整によって、気泡混入機構12側の気泡混入量調整バルブ12Cを可変制御することなく、任意に且つ円滑に可変設定することができる。
In this case, the bubble mixing rate by the ejector may be adjusted roughly. Then, as described above, the liquid contained in the
(気泡混入率の計測)
又、前述した液体圧送ポンプ15の下流側に位置する液移送用配管11の下流側配管部11C部分に、前述したように、液体中の気泡の混入割合を計測する気泡混入率測定手段17が装備されている。これにより、気泡混入液の使用領域に送り込む気泡混入液の気泡混入率を連続的に捕捉し外部に知らしめることが可能となっている。この場合、気泡混入率測定手段17は、例えば第2実施形態に示す液体密度計を使用してもよい。
(Measurement of bubble mixing rate)
Further, as described above, the bubble mixing rate measuring means 17 for measuring the mixing ratio of bubbles in the liquid is provided in the
(通路絞りバルブ16/気泡の微細化促進)
更に、前述した液体圧送ポンプ15の下流側で且つ前記気泡混入率測定手段17の上流側の前記下流側配管部11C部分に、前記気泡混入液内の気泡の微細化を促進するための通路絞りバルブ16が装備されている。
即ち、液合流後の液体圧送ポンプ15の後に、絞り弁(通路絞りバルブ16)を設けると、この絞り弁を通り抜けると圧力が急減し且つ通常圧の液体に衝突するので、混入した気泡は更に微細化する。
これにより、液体使用機1Aに送り込む気泡混入液の気泡粒が更に微細化され、洗浄液として好適な気泡混入液を得ることができる。
(
Further, a passage restrictor for promoting the refinement of bubbles in the bubble mixed liquid in the
That is, if a throttle valve (passage throttle valve 16) is provided after the liquid confluence pump 15 after the liquid merge, the pressure suddenly decreases when it passes through the throttle valve and collides with a normal pressure liquid. Refine.
Thereby, the bubble particle | grains of the bubble mixed liquid sent to 1 A of liquid use machines are refined | miniaturized further, and a bubble mixed liquid suitable as a cleaning liquid can be obtained.
(各バルブ用駆動制御部)
ここで、上述した各バルブ12C,14B,16,18の各動作を個別に制御する各バルブの駆動制御部について説明する。
まず、前述した気泡混入量調整バルブ12C及び合流液量調整バルブ14Bについては、何れもバルブ開度を電気的に変更可能なものが使用され、これに対応して、外部指令により設定された開度情報に基づいて各バルブ12C,14Bのバルブ開度を個別に設定制御するバルブ開度設定制御部31が設けられている。
(Drive control unit for each valve)
Here, the drive control part of each valve which controls each operation | movement of each valve |
First, as the bubble mixing
又、前述した通路絞りバルブ16及び使用液量調整バルブ18についても、何れもバルブ開度が電気的に変更可能なものが装備され、動作開始時になされる外部指令にて設定される開度情報に基づいて作動し、対応する各バルブ16,18のバルブ開度を個別に設定する微細化調整制御部32,液量調整制御部33が、それぞれ個別に設けられている。
これらの各バルブの動作制御部31,32,33および前述した液体圧送ポンプ15は、本第1実施形態ではオペレータによる外部からの設定指令又は設定操作に基づいて動作するように構成されているが、後述する主制御部35の指令に基づいて各バルブを駆動制御するように構成してもよい。
Also, the
In the first embodiment, the
(本体制御部3)
この本体制御部3は、前述したように、上記各バルブ開度設定制御部31,微細化調整制御部32,及び液量調整制御部33と、これらの各動作制御部の所定の動作指令を発信する主制御部35とを含んで構成されている。
この場合、主制御部35からの指令によって、各動作制御部がオペレータによる外部指令に基づいて各バルブ12C,14B,16,18を個別に動作制御するように構成してもよい。
又、液体圧送ポンプ15については、本第1実施形態では主制御部35からの指令に基づいてその出力動作が設定制御されるように構成されているが、操作盤(図示せず)からのオペレータによる直接指令に基づいて動作するように構成してもよい。
(Main body control unit 3)
As described above, the main body control unit 3 receives the predetermined operation commands from the valve opening
In this case, it may be configured such that each operation control unit individually controls the operation of each
Further, in the first embodiment, the liquid
又、主制御部35には、予め指令入力部35A,記憶部36,および表示部37が併設されており、前述した各制御部31,32,33に対する制御動作指令は、この入力部35Aからの外部指令により、又は前記記憶部36に予め格納されたプログラムや動作基準情報に基づいて発信されるようになっている。液体圧送ポンプ15に対しても同様である。そして、主制御部35による上記各動作指令等については、時間の経過順に前記表示部37に表示されるようになっている。
ここで、上記主制御部35については、その制御指令その他の制御動作について、これを実行するコンピュータを予め装備するように構成してもよい。
The
Here, the
ここで、符号40は、サンプル採取用バルブを示す。このサンプル採取用バルブ40は、使用液量調整バルブ18を通過して液体使用機1Aへ供給される直前の気泡混入液をサンブル採取して、気泡混入率を厳密測定するためのものである。符号41はサンブル採取器を示す。
Here,
(全体的動作)
次に、図3のフローチャートに基づいて上記第1実施形態の動作を説明する。
最初に、本第1実施形態の要部である気泡混入液生成供給装置2の基本的な動作を説明し、その後に、気泡混入液供給システムの全体的な動作を説明する。
(Overall operation)
Next, the operation of the first embodiment will be described based on the flowchart of FIG.
First, the basic operation of the bubble mixed liquid generation and supply device 2 that is the main part of the first embodiment will be described, and then the overall operation of the bubble mixed liquid supply system will be described.
まず、システム全体が稼働状態に設定されると、貯留槽10の温度設定装置20が作動し、貯留槽1内の液体が例えば20〔℃〕に設定制御され、同時に液体圧送ポンプ15が稼働し(図2:ステップS101,S102)、これによって、まず、貯留槽1内の液体が第1,第2の配管部11A,11Bで気泡混入用としてそれぞれ各別に取り出される。続いて、液移送用配管11の下流側配管部11Cを介して液体使用機1Aへ移送される状態が設定される。
First, when the entire system is set to the operating state, the
次に、外部(主制御部35)からの動作指令に基づいて前記気泡混入機構12および予め装備された気泡混入量調整バルブ12Cが稼働し、第1の配管部11A部分で前記気泡混入機構12が所定量の気泡を混入し、当該液体を気泡混入液として合流配管部11Gに送り出す(図2:ステップS103/第1の工程)。
Next, based on an operation command from the outside (main control unit 35), the
同時に、第2の配管部11B部分では、前述したように、貯留槽1内の液体の所定量が連続的して取り出され、その適量が合流用液調整バルブ(合流用液調整手段)14の開度調整によって設定され、同じく前記合流配管部11Gに向けて送り出される。
At the same time, as described above, a predetermined amount of the liquid in the
そして、この合流配管部11Gでは、第1の配管部11A部分で生成された気泡混入液と第2の配管部11B部分で設定された適量の気泡混入率調整用の同質液体とが合流され、これによって所定の気泡混入率に調整された気泡混入液が、液移送用配管11の下流側配管部11Cへ送り出される(図2:ステップS104/第2の工程)。
そして、これら一連の液の移動は、液移送用配管11の下流側配管部11Cに装備された液体圧送ポンプ15の吸引動作によって実行される。
In this merging
The series of movements of the liquid is performed by the suction operation of the liquid
次に、前記液体圧送ポンプ15の下流側に装備された通路絞りバルブ16が稼働し、前記下流側配管部11C内を移送される気泡混入液中の気泡が当該通路絞りバルブ16によって絞り込まれ、適度に微細化される(図2:ステップS105/気泡微細化工程)。
Next, the
続いて、微細化された気泡が混入された気泡混入液は、前記下流側配管部11C内を、下流側に装備された使用液量調整バルブ18及び流量センサ19を介して液体使用機1Aに送り込まれる(図2:ステップS106乃至S109/第3の工程)。
同時に、この使用液量調整バルブ18では液体使用機1Aでの液体使用量が制限されるが、その余剰分は、前述した液体圧送ポンプ15に必要以上の過負荷変動を与えることなく、余剰液循環用配管11Eを介して自動的に前述した貯留槽1へ送り戻される。
Subsequently, the bubble mixed liquid in which the fine bubbles are mixed is transferred to the
At the same time, the use
そして、この場合、これら各工程における各バルブの開度調整およびその設定は、前記各バルブに予め併設された前記本体制御部3が外部指令に基づいて発信する動作指令により実行されるが、オペレータにより手動で実行されるように構成してもよい。 In this case, the opening adjustment and setting of each valve in each of these steps are executed by an operation command that the main body control unit 3 provided in advance in each valve transmits based on an external command. It may be configured to be executed manually.
以下、これを更に詳述する。
前述したように、システム全体が稼働状態に設定されると、まず、貯留槽10に併設された温度設定装置20が作動し、貯留槽10内の液体の温度を、例えば20〔℃〕に設定制御する。
続いて、本体制御部3の主制御部35が作動し(図2:ステップS101,S102)、液体圧送ポンプ15を稼働状態に設定し、各バルブ12C,14B,16,18の各々に対応する動作制御部31,32,33に、予め設定された内容の動作指令を順次発信する。
This will be described in detail below.
As described above, when the entire system is set to the operating state, first, the
Subsequently, the
この場合、バルブ開度設定制御部31は、第1の配管部11A側の気泡混入バルブ12Cに対しては、主制御部35からの指令に基づいて作動して気泡混入機構12が液移送用配管11内を流動する液体中に許容される最大の気泡混入率が得られるように、そのバルブ開度を調整する(図2:ステップS103)。
In this case, the valve opening
同時に、このバルブ開度設定制御部31は、第2の配管部11B側の合流用液調整バルブ(合流用液調整手段)14に対しては、合流液用として貯留槽1内から取り出される液体の適量を主制御部35から指令された所定の流量にして送出するために、当該合流液量調整バルブ14Bのバルブ開度を調整する(図2:ステップS104)。
At the same time, the valve opening
次に、微細化調整制御部32は、通路絞りバルブ16のバルブ開度を、装置全体の作動開始後は、気泡混入率測定手段17で検出される気泡混入率が主制御部35から指令される一定値になるように、改めて設定制御する(図2:ステップS105)。
Next, the miniaturization
この場合、気泡混入率測定手段17で測定される気泡混入率が、設定値X〔%〕の許容範囲か否かが、主制御部35で判定される(図2:ステップS106)。
この設定値X〔%〕の許容範囲については、予め入力部35Aを介してオペレータにより外部入力され記憶部36に記憶されている。このX〔%〕の許容範囲は、具体的には、例えばその最大値が5〔%〕±1〔%〕,10〔%〕±2〔%〕,15〔%〕±3〔%〕,又は20〔%〕±4〔%〕の如く、予め設定され若しくは切替え設定されるようになっている。
In this case, the
The allowable range of the set value X [%] is previously input from the operator via the input unit 35A and stored in the
そして、判定結果がイエス(はい)の場合(図2:ステップS106/イエス)、前述したように、微細化気泡が混入された気泡混入液は、液移送用配管11の下流側配管部11C内を下流側に装備された使用液量調整バルブ18及び流量センサ19を介して液体使用機1Aに送り込まれる(図2:ステップS106乃至S109)/第3の工程)。
If the determination result is yes (FIG. 2: step S106 / yes), as described above, the bubble-containing liquid in which the fine bubbles are mixed is contained in the downstream
一方、このステップS106で、判定結果がノー(いいえ)の場合(図2:ステップS106/ノー)、直ちに気泡混入率の再調整工程に移行する。
そして、まず、液体圧送ポンプ15の出力が主制御部35によって調整される(図2:ステップS110)。このステップS110では、前述した気泡混入率の判定で、気泡混入率が設定値X〔%〕の許容値よりも大きい場合には液体圧送ポンプ15の出力を、例えば10〔%〕下げるように調整し、逆の場合には液体圧送ポンプ15の出力を、例えば10〔%〕上げるように調整される。これらの出力調整は前述した主制御部35によって実行される。
On the other hand, if the determination result is no (No) in Step S106 (FIG. 2: Step S106 / No), the process immediately proceeds to the readjustment step of the bubble mixture rate.
First, the output of the
次に、このステップS110での出力調整後に、液体圧送ポンプ15が正常に動作しているか否かが判定される(図2:ステップS111)。
正常に動作しておれば、前述した合流用液調整バルブ14の開度調整(図2:ステップS104)に戻って、気泡混入率の、設定値X〔%〕の許容値の範囲を可変調整するために当該合流用液調整バルブ14の開度調整が実行される。
Next, after the output adjustment in step S110, it is determined whether or not the
If it is operating normally, the flow returns to the adjustment of the merging
一方、液体圧送ポンプ15が正常動作していない場合には、液体圧送ポンプ15の稼働を停止し、修理後の再稼働を前提として、当該気泡混入液供給システム1の全体が停止状態に設定される。
On the other hand, when the
ここで、上述した第1乃至第4の各工程およびこれに準ずる各動作工程における各バルブ12C,14B,16,18および液体圧送ポンプ15の動作にかかる制御処理については、これをプログラム化し前述した主制御部35が備えているコンピュータに実行させるようにしてもよい。
Here, the control processing related to the operations of the
この場合、本プログラムは、記録媒体(例えばDVD,CD,フラッシュメモリ等)に記録したものであってよい。そして、本プログラムは、記録媒体から前記コンピュータによって読み出され、実行される。 In this case, the program may be recorded on a recording medium (for example, DVD, CD, flash memory, etc.). The program is read from the recording medium by the computer and executed.
以上のように、本第1実施形態では、前述したように、貯留槽10内の液体を取り出す流路として二本の流路(第1,第2の各配管部11A,11B)を並列に設け、更に、第1の配管部11Aには気泡混入機構12及び気泡混入量調整バルブ12Cが、第2の配管11Bには合流用液調整バルブ14が、それぞれ装備されている。
As described above, in the first embodiment, as described above, two flow paths (first and
また、前述したように、一方の流路である第1の配管部11Aでは気泡混入機構12によって気泡が混入された液体を生成するも気泡混入率の微調整はしない。ここでは気泡混入率については粗い調整が行われる。これに対して、他方の流路である第2の配管部11Bでは、合流用液調整バルブ14の開度調整によって設定された貯留槽10内の液体の適量が気泡混入率調整用としてそのまま使用される。
In addition, as described above, in the
そして、この一方の流路である第1の配管部11A側で生成された気泡混入液に、合流配管部11Gで、第1の配管部11A側で設定された気泡混入のない(若しくは少ない)液体が合流される。
即ち、本第1実施形態では、一方の流路で生成された気泡混入液の気泡混入率を、他方の流路に設置された合流用液調整バルブ14による合流用液の適量調整によって所定の値に調整することが連続して且つ容易に実行可能な構成となっている。
And the bubble mixing liquid produced | generated by the
That is, in the first embodiment, the bubble mixing rate of the bubble mixing liquid generated in one channel is set to a predetermined value by adjusting an appropriate amount of the merging solution by the merging
かかる点において、本第1実施形態によると、気泡混入率を安価な設備で任意に且つ容易に調整することができるという利点を有する。 In this respect, according to the first embodiment, there is an advantage that the bubble mixing rate can be arbitrarily and easily adjusted with inexpensive equipment.
又、その合流した気泡混入液が流れる液移送用配管11の液体圧送ポンプ15の後に、前述したように通路絞りバルブ16を設けた。そして、この通路絞りバルブ16通過すると、圧力が急降下して気泡は更に微細化する。
このようにして、微細化された気泡が混入された液体が生成され、この液体の必要量は、下流側の使用液量調整バルブ18で調整される。
Further, as described above, the
In this way, a liquid in which fine bubbles are mixed is generated, and the required amount of the liquid is adjusted by the use liquid
即ち、本第1実施形態は、上記したように構成され機能するので、これによると、一定量の気泡が混入された気泡混入液の管内移送中に、気泡が混入されていない若しくは気泡の混入量の少ない同質の液体を、混入液としてその適量を合流させて移送させるようにしたので、液体中への気泡混入量を任意に且つ円滑に可変設定可能な汎用性の高い気泡混入液生成供給装置、気泡混入液供給システム、気泡混入液供給方法、及びそのプログラムを得ることができる。 That is, since the first embodiment is configured and functions as described above, according to this, no bubbles are mixed or bubbles are mixed during the transfer of the bubble mixed liquid in which a certain amount of bubbles are mixed. Since a small amount of homogeneous liquid is mixed and transferred as an admixture, it is transported, so it is possible to generate and supply a highly versatile bubbling mixture that can variably set the amount of bubbles in the liquid arbitrarily and smoothly. An apparatus, a bubble mixed liquid supply system, a bubble mixed liquid supply method, and a program thereof can be obtained.
また、上記した本第1実施形態では、気泡混入機構12とこれに並列に設置された合流用液調整バルブ14とは、液体圧送ポンプ15の液体圧送力を利用して貯留槽10から別々の流路で液体を吸出するように構成したので、各々は相互に他の動作の影響を受けることなく自在に動作することができ、かかる点において、気泡混入機構12と合流液調整バルブ14の各々は予め設定された機能を迅速に且つ効率よく実行して安定した状態で、合流液体の気泡混入率を予め設定された範囲内で自在に且つ円滑に可変設定することができるという利点がある。
Further, in the first embodiment described above, the
ここで、上記第1実施形態では、貯留槽10を1個設けた場合を例示したが、前述した第1,第2の各配管部11A,11Bに対応した専用の貯留槽10,10を独立して個別に設けると共に、前述した余剰液循環用配管11Eの液戻り配管部を第1の配管部11Aに対応した専用の貯留槽10側に設置するように構成してもよい。
このようにすると、第2の配管部11Bから送出される気泡ゼロの合流用液の適量(予め設定された気泡混入率に適合した量)を何時でも高精度に設定することができ、外部から気泡混入率を変える指令が入力されても、これに迅速に対応して予め特定された適量の合流用液を合流配管部11Gに迅速に送り出すことができるという利点がある。
Here, in the said 1st Embodiment, although the case where the one
In this way, it is possible to set the appropriate amount of the zero-bubble confluence liquid sent from the
尚、上記第1実施形態では、前述した第1,第2の各配管部11A,11Bの先端部(貯留槽10側の端部)を、貯留槽10内の液体を別々に吸い込むように別々に構成した場合を例示したが、この第1,第2の各配管部11A,11Bについては、その上流端が共通の吸込口を備え、その吸込口の下流で第1の配管部11Aと第2の配管部11Bとに分離するように構成してもよい。
このようにしても、前述した第1実施形態の場合と同様の作用効果が得られるほか、貯留槽10に対する配管装備作業が容易となるという利点がある。
In the first embodiment, the front end portions (end portions on the
Even if it does in this way, in addition to the effect similar to the case of 1st Embodiment mentioned above, there exists an advantage that the piping installation operation | work with respect to the
〔第2実施形態〕
次に、本発明の第2実施形態を説明する。
この第2実施形態は、前述した第1実施形態が液体を洗浄液としたのに対し、液体を潤滑油(以下、「オイル」という)とした点に特徴を有する。
一方、この第2実施形態では、使用する各構成部材については、前述した第1実施形態のものが、そのまま使用されている。
[Second Embodiment]
Next, a second embodiment of the present invention will be described.
The second embodiment is characterized in that the liquid is a lubricant (hereinafter referred to as “oil”), whereas the liquid is a cleaning liquid in the first embodiment.
On the other hand, in this 2nd Embodiment, about each structural member to be used, the thing of 1st Embodiment mentioned above is used as it is.
この場合、この第2実施形態では、前述した第1実施形態で装備した気泡率測定手段17として、液体用密度計17Aを使用した点に特徴を有する。
その他の構成は、前述した第1実施形態の場合と同一となっている。
In this case, the second embodiment is characterized in that a
Other configurations are the same as those of the first embodiment described above.
ここで、気泡混入されたオイルの密度変化と、気泡混入されたオイルをサンプリングし直接厳密に測定して得られたオイル中の気泡混入率の変化との対応関係を、実験的に確認してみた。その結果を、図5(A)(B)に示す。
この場合、図5(A)は油温が40〔℃〕の場合を示し、図5(B)は油温が60〔℃〕の場合を示す。オイルについては、消泡剤を添加したエンジンオイルを使用した。
Here, we experimentally confirmed the correspondence between the change in the density of oil mixed with air bubbles and the change in the air bubble contamination rate in the oil obtained by sampling and directly measuring the oil mixed with air bubbles. saw. The results are shown in FIGS. 5 (A) and 5 (B).
In this case, FIG. 5A shows the case where the oil temperature is 40 [° C.], and FIG. 5B shows the case where the oil temperature is 60 [° C.]. As the oil, engine oil to which an antifoaming agent was added was used.
図5(A)は、液体用密度計17Aで検知された液体の密度情報から逆算して得られた混入率と、図1のサンプル採取器41からサンプリングして実測した混入率との関係を示すグラフである。両者間には図示のように高い相関があることが分かり、当該液体用密度計17Aでリアルタイムで気泡混入率を知ることができる。実験的には、合流用液調整バルブ14による流路調整により、気泡混入率をパーセントオーダーの精度で調整することが可能であった。
FIG. 5A shows the relationship between the mixing rate obtained by back calculation from the density information of the liquid detected by the
又、図5(B)は、油温を60℃とした場合の他は、図5(A)の場合と同一の回路および手段で気泡混入率を測定し、同様にグラフ化したものである。油温40〔℃〕の時と同様に両者には高い相関があり、図中の近似式より、密度計でリアルタイムに気泡混入率を知ることができる。この場合も、合流用液調整バルブ14による流路調整により、気泡混入率をパーセントオーダーの精度で調整することが可能であった。
FIG. 5 (B) shows the graph of the bubble mixture rate measured with the same circuit and means as in FIG. 5 (A) except when the oil temperature is 60 ° C. . As in the case of the oil temperature of 40 [° C.], there is a high correlation between the two, and from the approximate expression in the figure, the bubble mixing rate can be known in real time with a density meter. Also in this case, it was possible to adjust the bubble mixing rate with the accuracy of the percent order by adjusting the flow path by the confluence
この図5(A)(B)から明らかのように、オイルの気泡混入率とオイルの密度とは密接な相関関係があり、オイルの密度変化をリアルタイムで測定することにより、オイルの気泡混入率をリアルタイムで正確に検知することができることが判明した。 As apparent from FIGS. 5A and 5B, there is a close correlation between the oil bubble mixing rate and the oil density. By measuring the change in the oil density in real time, the oil bubble mixing rate is obtained. It was found that can be accurately detected in real time.
このため、この液体用密度計17Aを装備した本第2実施形態によると、オイル中の気泡混入率及びその変化を迅速に得られるばかりでなく、比較的安価で且つ小型堅牢な構造であることから装置全体を安価に得ることができ、且つ耐久性増大を図ることができるという利点がある。
その他の構成及びその作用効果は、前述した第1実施形態と同一となっている。
For this reason, according to the second embodiment equipped with the
Other configurations and the operation and effects thereof are the same as those of the first embodiment described above.
1 気泡混入液供給システム
1A 液体使用機
1C 排液回収手段
2 気泡混入液生成供給装置
3 本体制御部
10 貯留槽
11 液移送用配管
11A 第1の配管部
11B 第2の配管部
11C 下流側配管部
11E 余剰液循環用配管(余剰液循環路)
11G 合流配管部
12 気泡混入機構
12C 気泡混入量調整バルブ
14 合流用液調整バルブ(合流用液調整手段)
15 液体圧送ポンプ
16 通路絞りバルブ
17 気泡混入率測定手段
17A 液体用密度計
18 使用液量調整バルブ
20 液温測定装置
20A ヒータ
20B 液温センサ
20E 温度制御部
31 バルブ開度設定制御部
32 微細化調整制御部
33 流量調整制御部
35 主制御部
DESCRIPTION OF
11G
DESCRIPTION OF
Claims (12)
前記液移送用配管は、上流端が前記貯留槽につながる第1の配管部と、該第1の配管部に並列に設置され上流端が前記貯留槽につながる第2の配管部と、前記第1の配管部と第2の配管部の各下流側を合流させて成る合流配管部と、この合流配管部に上流端がつながると共にその下流端が前記液体使用機につながる下流側配管部とを有し、
前記気泡混入機構が前記第1の配管部に設けられ、
前記第2の配管部を流れる前記液体の流量を可変設定する合流用液調整手段が、前記第2の配管部に設けられていることを特徴とする気泡混入液生成供給装置。 A storage tank for storing liquid, a liquid transfer pipe for transferring the liquid in the storage tank to a liquid use machine, and a bubble mixing for introducing bubbles into the liquid taken in from the storage tank provided in the liquid transfer pipe In the bubble mixed liquid generation and supply device including a mechanism and a liquid pressure feed pump that sends the liquid from the storage tank to the liquid use machine,
The liquid transfer pipe includes a first pipe portion having an upstream end connected to the storage tank, a second pipe portion installed in parallel to the first pipe section and having an upstream end connected to the storage tank, A merging pipe section formed by merging each downstream side of the first piping section and the second piping section, and a downstream piping section whose upstream end is connected to the merging piping section and whose downstream end is connected to the liquid use machine. Have
The bubble mixing mechanism is provided in the first piping section;
An air bubble mixed liquid production and supply device, wherein a confluence liquid adjusting means for variably setting the flow rate of the liquid flowing through the second pipe section is provided in the second pipe section.
前記液体使用機に送られる前記液体の流量を制御する使用液量調整バルブが前記下流側配管部に設けられ、
該使用液量調整バルブの上流側にて上流端が前記下流側配管部につながると共に、その下流端が前記貯留液槽につながる余剰液循環路を設けたことを特徴とする気泡混入液生成供給装置。 In the bubble mixed liquid production supply device according to claim 1,
A use liquid amount adjustment valve for controlling the flow rate of the liquid sent to the liquid use machine is provided in the downstream pipe section,
A bubble mixed liquid generation supply characterized in that an upstream end is connected to the downstream pipe section on the upstream side of the use liquid amount adjusting valve, and an excess liquid circulation path is connected to the storage liquid tank at the downstream end. apparatus.
前記液体圧送ポンプを、前記合流配管部の下流側で前記余剰液循環路の上流側に位置する前記下流側配管部分に装備したことを特徴とする気泡混入液生成供給装置。 In the bubble mixed liquid production supply device according to claim 2,
An air bubble mixed liquid generation and supply device, wherein the liquid pump is provided in the downstream pipe portion located on the downstream side of the confluent pipe section and upstream of the surplus liquid circulation path.
前記液体圧送ポンプの下流側に位置する前記下流側配管部に、前記液体中の気泡の混入率を計測する気泡混入率測定手段を装備したことを特徴とする気泡混入液生成供給装置。 In the bubble mixed liquid production and supply device according to claim 3,
An air bubble mixed liquid production and supply apparatus, wherein the downstream pipe portion located downstream of the liquid pump is equipped with an air bubble mixing rate measuring means for measuring an air bubble mixing rate in the liquid.
前記気泡混入機構には前記液体中への気泡の混入量を調整する気泡混入量調整バルブが装備され、前記合流用液量調整手段を合流用液調整バルブにより構成したことを特徴とする気泡混入液生成供給装置。 In the bubble mixed liquid production and supply device according to claim 1, 2, 3, or 4,
The bubble mixing mechanism is equipped with a bubble mixing amount adjusting valve for adjusting the amount of bubbles mixed into the liquid, and the merging liquid amount adjusting means is constituted by a merging liquid adjusting valve. Liquid generation supply device.
前記液体圧送ポンプの下流側で且つ前記気泡混入率測定手段の上流側に位置する前記下流側配管部分に、前記気泡混入液内の気泡の微細化促進用として機能する通路絞りバルブを装備したことを特徴とする気泡混入液生成供給装置。 In the bubble mixed liquid production supply device according to claim 5,
The downstream piping portion located downstream of the liquid pump and upstream of the bubble mixing rate measuring means is equipped with a passage throttle valve that functions to promote the refinement of bubbles in the bubble mixed liquid. An air bubble mixed liquid production and supply device characterized by the above.
前記貯留槽に、内部の液体の温度を予め設定された温度に設定制御する液温設定装置を併設し、
この液温設定装置を、前記貯留槽内の液中に配置されたヒータと、このヒータに加熱される液体の温度を測定する液温センサと、この液温センサからの温度情報に基づいて作動し予め設定された適正温度の設定に向けて前記ヒータを通電制御する温度制御部とを含む構成としたことを特徴とした気泡混入液生成供給装置。 In the bubble mixed liquid production supply device according to claim 6,
The storage tank is provided with a liquid temperature setting device that controls the temperature of the liquid inside to a preset temperature,
The liquid temperature setting device is operated based on a heater disposed in the liquid in the storage tank, a liquid temperature sensor for measuring the temperature of the liquid heated by the heater, and temperature information from the liquid temperature sensor. And a temperature control unit that controls energization of the heater to set an appropriate temperature that is set in advance.
前記気泡混入量調整バルブと前記合流液量調整バルブとを、それぞれ各バルブの駆動量を電気的に変更可能な構造とすると共に、
この各調整バルブのバルブ開度を外部指令によって個別に設定するバルブ開度設定制御部を設けたことを特徴とする気泡混入液生成供給装置。 In the bubble mixed liquid production and supply device according to claim 3,
The bubble mixing amount adjustment valve and the combined liquid amount adjustment valve have a structure in which the drive amount of each valve can be electrically changed,
An air bubble mixed liquid generating / supplying device provided with a valve opening setting control unit for individually setting the valve opening of each adjusting valve by an external command.
前記通路絞りバルブの通路絞り量を電気的に変更可能な構造とすると共に、
この通路絞りバルブの絞り量を前記気泡混入率測定手段で得られる情報に基づいて調整する微細化調整制御部を設けたことを特徴とする気泡混入液生成供給装置。 In the bubble mixed liquid production and supply device according to claim 3,
While having a structure that can electrically change the amount of passage restriction of the passage restriction valve,
A bubble mixed liquid generation and supply device provided with a fine adjustment control unit that adjusts the throttle amount of the passage throttle valve based on information obtained by the bubble mixture ratio measuring means.
前記液移送用配管は、上流端が前記貯留槽につながる第1の配管部と、該第1の配管部に並列に設置され上流端が前記貯留槽につながる第2の配管部と、前記第1の配管部と第2の配管部の各下流側を合流させて成る合流配管部と、この合流配管部に上流端がつながると共にその下流端が前記液体使用機につながる下流側配管部とを有し、
前記第1の配管部に、気泡混入量調整バルブを備えた前記気泡混入機構を装備すると共に、前記第2の配管部には当該第2の配管部を流れる前記液体の流量を可変設定する合流用液調整バルブを装備し、
前記液体使用機の上流側に位置する前記下流側配管部に、前記液体使用機で使用する気泡混入液の使用量を調整する使用液量調整バルブを装備し、
前記気泡混入量調整バルブ,合流用液調整バルブ,及び使用液量調整バルブの前記各バルブの開閉量を、外部指令に基づいて個別に設定制御する本体制御部を設けたことを特徴とする気泡混入液供給システム。 A storage tank for storing the liquid, a liquid transfer pipe for guiding the transfer of the liquid in the storage tank to the liquid use machine, and bubbles in the liquid taken in from the storage tank provided in the liquid transfer pipe In a bubble mixing liquid supply system comprising a bubble mixing mechanism to be mixed, and a liquid pressure feeding pump that urges the liquid taken into the liquid transfer pipe to transfer the liquid to the liquid use machine,
The liquid transfer pipe includes a first pipe portion having an upstream end connected to the storage tank, a second pipe portion installed in parallel to the first pipe section and having an upstream end connected to the storage tank, A merging pipe section formed by merging each downstream side of the first piping section and the second piping section, and a downstream piping section whose upstream end is connected to the merging piping section and whose downstream end is connected to the liquid use machine. Have
The first piping unit is equipped with the bubble mixing mechanism having a bubble mixing amount adjusting valve, and the second piping unit is configured to variably set the flow rate of the liquid flowing through the second piping unit. Equipped with liquid adjustment valve,
Equipped with a use liquid amount adjustment valve for adjusting the use amount of the bubble-containing liquid used in the liquid use machine, in the downstream pipe section located on the upstream side of the liquid use machine,
Air bubbles characterized in that a main body control unit is provided for individually setting and controlling the opening / closing amounts of the bubble mixing amount adjustment valve, the confluence liquid adjustment valve, and the use liquid amount adjustment valve based on an external command. Mixed liquid supply system.
前記第1の配管部には、その下流側端部の合流配管部で合流すると共に前記貯留槽の液体を取り込む第2の配管部が並列に設置されており、
外部からの動作指令に基づいて前記気泡混入機構を稼働状態に設定し且つ予め装備された気泡混入量調整バルブを調整して前記第1の配管部内を移動する前記液体に所定量の気泡を混入する気泡混入液生成工程(第1の工程)と、
この気泡混入機構の稼働と同時に又は相前後して前記第2の配管部内を移動する前記貯留槽の液体の移動量を、当該第2の配管部に予め装備された合流用液調整バルブによって設定制御する合流用液調整工程(第2の工程)と、
前記合流配管部で合流されて成る所定の気泡混入率の気泡混入液についてその使用量を、前記液移送用配管の下流側を成す前記下流側配管部に予め装備された使用液量調整バルブが調整する使用液量調整工程(第3の工程)とを設け、
これら各工程における各バルブの開度調整およびその設定制御を、前記各バルブに予め併設された本体制御部が外部指令に基づいて順次実行することを特徴とした気泡混入液供給方法。 The storage tank is equipped with a liquid transfer pipe that guides the transfer of the liquid in the storage tank to the liquid use machine, and a first piping section that constitutes a connection side of the liquid transfer pipe with the storage tank. A bubble mixing liquid supply system comprising: a bubble mixing mechanism for mixing bubbles in the liquid taken in from the liquid; and a liquid pump for energizing a transfer force necessary for the bubble mixed liquid in which bubbles are mixed by the bubble mixing mechanism There,
In the first piping part, a second piping part that joins at the joining piping part at the downstream end thereof and takes in the liquid in the storage tank is installed in parallel.
Based on an operation command from the outside, the bubble mixing mechanism is set to an operating state, and a bubble mixing amount adjusting valve that is equipped in advance is adjusted to mix a predetermined amount of bubbles into the liquid moving in the first piping section. A bubble entrained liquid generation step (first step);
The amount of movement of the liquid in the storage tank that moves in the second piping section at the same time as or after the operation of the bubble mixing mechanism is set by a confluence liquid adjustment valve that is preliminarily installed in the second piping section. A confluence liquid adjusting step to be controlled (second step);
A use liquid amount adjusting valve preliminarily installed in the downstream pipe portion that forms the downstream side of the liquid transfer pipe is used for the bubble mixed liquid having a predetermined bubble mixture ratio formed by joining in the merge pipe section. And a use liquid amount adjustment step (third step) to be adjusted,
A bubble mixed liquid supply method characterized in that the opening degree adjustment and setting control of each valve in each of these processes are sequentially executed based on an external command by a main body controller provided in advance in each valve.
前記第1の配管部には、その下流側端部の合流配管部で合流すると共に前記貯留槽の液体を取り込む第2の配管部が並列に設置されており、
外部からの動作指令に基づいて前記気泡混入機構を稼働させ且つ該気泡混入機構に予め装備された気泡混入量調整バルブを駆動制御し、前記第1の配管部内を移動する前記液体に所定量の気泡を混入し気泡混入液を生成する気泡混入液生成制御機能、
この気泡混入機構の稼働と同時に又は相前後して稼働し、前記第2の配管部内を前記合流配管部に向けて移送される前記液体の移送量を、該第2の配管部に予め装備された合流用液調整バルブを駆動制御して予め設定された適量に調整する合流用液調整制御機能、
および前記合流配管部で合流されて生成される所定の気泡混入率の気泡混入液についてその使用量を、前記液移送用配管の下流側配管部に予め装備された使用液量調整バルブを駆動制御して必要とする所定量に設定制御する使用液量設定制御機能、
を設け、これら各バルブの動作制御機能を、前記各バルブ全体を対象として予め設置された本体制御部が備えているコンピュータに実現させるようにしたことを特徴とする液供給システム用制御プログラム。 The storage tank is equipped with a liquid transfer pipe that guides the transfer of the liquid in the storage tank to the liquid use machine, and a first piping section that constitutes a connection side of the liquid transfer pipe with the storage tank. A bubble mixing liquid supply system comprising: a bubble mixing mechanism for mixing bubbles in the liquid taken in from the liquid; and a liquid pump for energizing a transfer force necessary for the bubble mixed liquid in which bubbles are mixed by the bubble mixing mechanism There,
In the first piping part, a second piping part that joins at the joining piping part at the downstream end thereof and takes in the liquid in the storage tank is installed in parallel.
Based on an operation command from the outside, the bubble mixing mechanism is operated and a bubble mixing amount adjustment valve preliminarily provided in the bubble mixing mechanism is driven and controlled, so that a predetermined amount of the liquid moving in the first pipe section is supplied. Bubble mixing liquid generation control function to mix bubbles and generate bubble mixing liquid,
The second piping unit is preliminarily equipped with a transfer amount of the liquid that is operated simultaneously with or before and after the operation of the bubble mixing mechanism and is transferred toward the merging piping unit in the second piping unit. A liquid adjustment control function for confluence, which adjusts to an appropriate amount set in advance by driving and controlling the liquid adjustment valve for confluence,
In addition, the use amount of the bubble mixed liquid having a predetermined bubble mixture rate generated by being merged in the merge pipe unit is driven and controlled using a use liquid amount adjusting valve that is preliminarily installed in the downstream pipe unit of the liquid transfer pipe. Use liquid volume setting control function to set and control to the required amount
A control program for a liquid supply system, wherein the operation control function of each valve is realized by a computer provided in a main body control unit installed in advance for the entire valve.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012150823A JP6018440B2 (en) | 2012-07-04 | 2012-07-04 | Air bubble mixed liquid production and supply apparatus, air bubble mixed liquid supply system, air bubble mixed liquid supply method, and program thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012150823A JP6018440B2 (en) | 2012-07-04 | 2012-07-04 | Air bubble mixed liquid production and supply apparatus, air bubble mixed liquid supply system, air bubble mixed liquid supply method, and program thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2014012255A true JP2014012255A (en) | 2014-01-23 |
JP6018440B2 JP6018440B2 (en) | 2016-11-02 |
Family
ID=50108351
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012150823A Expired - Fee Related JP6018440B2 (en) | 2012-07-04 | 2012-07-04 | Air bubble mixed liquid production and supply apparatus, air bubble mixed liquid supply system, air bubble mixed liquid supply method, and program thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6018440B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015181976A (en) * | 2014-03-20 | 2015-10-22 | Idec株式会社 | Fine bubble liquid generation device |
CN107983255A (en) * | 2017-12-29 | 2018-05-04 | 贾金堂 | A kind of processing unit and its homogenization process of industrial solid waste residue |
CN114778868A (en) * | 2022-06-13 | 2022-07-22 | 深圳市帝迈生物技术有限公司 | Cleaning method of blood analyzer and blood analyzer |
Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61192328A (en) * | 1985-02-20 | 1986-08-26 | Jinzo Nagahiro | Apparatus for generating fine air bubbles |
JPH0824606A (en) * | 1994-07-11 | 1996-01-30 | Nippon Gijutsu Kaihatsu Center:Kk | Apparatus for automatic generation of water containing fine air bubble |
JPH08281281A (en) * | 1995-04-14 | 1996-10-29 | Kojima Seisakusho:Kk | Ozonized water producing device and production of ozonized water |
JPH09141072A (en) * | 1995-11-24 | 1997-06-03 | Idec Izumi Corp | Method for controlling bubble diameter and device therefor |
JPH09273640A (en) * | 1996-04-04 | 1997-10-21 | Tokai Kosan:Kk | Valve |
US5951922A (en) * | 1998-02-10 | 1999-09-14 | Mazzei; Angelo L. | Aeration system for substantial bodies of water |
JP2001523154A (en) * | 1997-04-17 | 2001-11-20 | デグレマン | Method and apparatus for contacting ozone with a fluid to be treated, especially water |
JP2007021392A (en) * | 2005-07-19 | 2007-02-01 | Hitachi Ltd | Apparatus and method for producing microbubble |
JP3133304U (en) * | 2007-04-26 | 2007-07-05 | 鐵夫 杉岡 | Oxygen water production equipment |
JP2008290011A (en) * | 2007-05-25 | 2008-12-04 | Nakata Coating Co Ltd | Fine bubble generator |
JP2009106831A (en) * | 2007-10-29 | 2009-05-21 | Sharp Corp | Ultrapure water producing apparatus and ultrapure water producing method |
JP2009172606A (en) * | 2006-08-23 | 2009-08-06 | Panasonic Electric Works Co Ltd | Gas dissolving apparatus and method for producing gas-dissolved solution |
JP2009291681A (en) * | 2008-06-03 | 2009-12-17 | Shibaura Mechatronics Corp | Device/method of generating micro bubble and device of fabricating substrate |
JP2010210047A (en) * | 2009-03-11 | 2010-09-24 | Toyota Motor Corp | Lubricating oil supply device |
JP2011240218A (en) * | 2010-05-14 | 2011-12-01 | Dainippon Screen Mfg Co Ltd | Fine bubble generating device and method |
-
2012
- 2012-07-04 JP JP2012150823A patent/JP6018440B2/en not_active Expired - Fee Related
Patent Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61192328A (en) * | 1985-02-20 | 1986-08-26 | Jinzo Nagahiro | Apparatus for generating fine air bubbles |
JPH0824606A (en) * | 1994-07-11 | 1996-01-30 | Nippon Gijutsu Kaihatsu Center:Kk | Apparatus for automatic generation of water containing fine air bubble |
JPH08281281A (en) * | 1995-04-14 | 1996-10-29 | Kojima Seisakusho:Kk | Ozonized water producing device and production of ozonized water |
JPH09141072A (en) * | 1995-11-24 | 1997-06-03 | Idec Izumi Corp | Method for controlling bubble diameter and device therefor |
JPH09273640A (en) * | 1996-04-04 | 1997-10-21 | Tokai Kosan:Kk | Valve |
JP2001523154A (en) * | 1997-04-17 | 2001-11-20 | デグレマン | Method and apparatus for contacting ozone with a fluid to be treated, especially water |
US5951922A (en) * | 1998-02-10 | 1999-09-14 | Mazzei; Angelo L. | Aeration system for substantial bodies of water |
JP2007021392A (en) * | 2005-07-19 | 2007-02-01 | Hitachi Ltd | Apparatus and method for producing microbubble |
JP2009172606A (en) * | 2006-08-23 | 2009-08-06 | Panasonic Electric Works Co Ltd | Gas dissolving apparatus and method for producing gas-dissolved solution |
JP3133304U (en) * | 2007-04-26 | 2007-07-05 | 鐵夫 杉岡 | Oxygen water production equipment |
JP2008290011A (en) * | 2007-05-25 | 2008-12-04 | Nakata Coating Co Ltd | Fine bubble generator |
JP2009106831A (en) * | 2007-10-29 | 2009-05-21 | Sharp Corp | Ultrapure water producing apparatus and ultrapure water producing method |
JP2009291681A (en) * | 2008-06-03 | 2009-12-17 | Shibaura Mechatronics Corp | Device/method of generating micro bubble and device of fabricating substrate |
JP2010210047A (en) * | 2009-03-11 | 2010-09-24 | Toyota Motor Corp | Lubricating oil supply device |
JP2011240218A (en) * | 2010-05-14 | 2011-12-01 | Dainippon Screen Mfg Co Ltd | Fine bubble generating device and method |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015181976A (en) * | 2014-03-20 | 2015-10-22 | Idec株式会社 | Fine bubble liquid generation device |
US10315170B2 (en) | 2014-03-20 | 2019-06-11 | Idec Corporation | Fine bubble-containing liquid generating apparatus |
CN107983255A (en) * | 2017-12-29 | 2018-05-04 | 贾金堂 | A kind of processing unit and its homogenization process of industrial solid waste residue |
CN107983255B (en) * | 2017-12-29 | 2023-12-22 | 杭州富阳申能固废环保再生有限公司 | Industrial solid waste residue treatment device and homogenization method thereof |
CN114778868A (en) * | 2022-06-13 | 2022-07-22 | 深圳市帝迈生物技术有限公司 | Cleaning method of blood analyzer and blood analyzer |
Also Published As
Publication number | Publication date |
---|---|
JP6018440B2 (en) | 2016-11-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101531081B1 (en) | Liquid mixing device | |
TWI385026B (en) | Treatment liquid mixing device, substrate treatment device, treatment liquid mixing method, and storage medium | |
JP6018440B2 (en) | Air bubble mixed liquid production and supply apparatus, air bubble mixed liquid supply system, air bubble mixed liquid supply method, and program thereof | |
JP2016525682A5 (en) | ||
WO2013137339A1 (en) | Liquid material discharge mechanism and liquid material discharge device | |
CN101200326A (en) | Device for adjusting pH value of waste water | |
JP2009507289A (en) | Control system for combining materials, method for combining materials and control system therefor | |
US11839860B2 (en) | On-demand in-line-blending and supply of chemicals | |
KR200473855Y1 (en) | Device for Mixing and Supplying of Cutting Oil | |
KR102642990B1 (en) | Substrate processing apparatus and substrate processing method | |
CN104681470A (en) | Distribution system and flow control method of chemical liquid medicine | |
SE9700543L (en) | Device and method for supplying liquid to a spray nozzle for automatic spray application | |
CN205446902U (en) | Flow regulator and gas heater who has it | |
US2674256A (en) | Liquid mixture control apparatus | |
CN108350834A (en) | For open loop or the method and apparatus of the amount of closed-loop control fuel mixture | |
JP2009029078A (en) | Wire saw device | |
JP4527956B2 (en) | Apparatus and method for preparing and supplying slurry for CMP apparatus | |
CN200995977Y (en) | Waste-water pH-valve adjuster | |
CN111013425B (en) | Mixing device | |
JP2007234969A (en) | Abrasive preparing device and preparing method of cmp polishing device | |
CN101200327A (en) | Method for adjusting pH value of waste water | |
JP2020173118A (en) | Liquid feeding device | |
CN104334266B (en) | The method and apparatus for granulating with Stress control | |
JP5850565B2 (en) | Oil / water mist feed stabilization device and oil / water mist generation system | |
CN102830355A (en) | Automatic cooling system for motor test |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20150616 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150616 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20160307 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20160315 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160513 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20160906 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20160930 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6018440 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
RD07 | Notification of extinguishment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7427 Effective date: 20220613 |
|
RD07 | Notification of extinguishment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: R3D07 |
|
LAPS | Cancellation because of no payment of annual fees |