JPS61192328A - Apparatus for generating fine air bubbles - Google Patents

Apparatus for generating fine air bubbles

Info

Publication number
JPS61192328A
JPS61192328A JP60030257A JP3025785A JPS61192328A JP S61192328 A JPS61192328 A JP S61192328A JP 60030257 A JP60030257 A JP 60030257A JP 3025785 A JP3025785 A JP 3025785A JP S61192328 A JPS61192328 A JP S61192328A
Authority
JP
Japan
Prior art keywords
liquid
nozzle
gas
gas nozzle
injected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60030257A
Other languages
Japanese (ja)
Other versions
JPH0133211B2 (en
Inventor
Jinzo Nagahiro
長廣 仁蔵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP60030257A priority Critical patent/JPS61192328A/en
Publication of JPS61192328A publication Critical patent/JPS61192328A/en
Publication of JPH0133211B2 publication Critical patent/JPH0133211B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/40Mixing liquids with liquids; Emulsifying
    • B01F23/45Mixing liquids with liquids; Emulsifying using flow mixing
    • B01F23/454Mixing liquids with liquids; Emulsifying using flow mixing by injecting a mixture of liquid and gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/20Jet mixers, i.e. mixers using high-speed fluid streams
    • B01F25/21Jet mixers, i.e. mixers using high-speed fluid streams with submerged injectors, e.g. nozzles, for injecting high-pressure jets into a large volume or into mixing chambers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Bakery Products And Manufacturing Methods Therefor (AREA)
  • Food-Manufacturing Devices (AREA)

Abstract

PURPOSE:To stably generate a large amount of uniform fine air bubbles in a liquid to be bubbled at a high speed, by injecting a liquid sent under pressure from an ejector type gas nozzle and sucking gas such as air to inject the same. CONSTITUTION:A liquid to be injected is injected to a liquid tank 41 over the width thereof from an ejector type gas nozzle 11 through a flow control valve and a heat exchanger. At this time, gas is sucked from a gas suction pipe 65 under low pressure generated around the injected liquid and injected into a liquid to be bubbled along with the injected liquid to generate fine air bubbles 81. The average bubble size of fine air bubbles can be appropriately regulated between 100-200mum by selecting the thickness of a gas jet ring and the overlapped length of nozzles. As the liquid, both of a Newton fluid and a non- Newton fluid can be used and various kinds of gases can be utilized and, therefore, this apparatus can be applied to a food field and other various fields.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は種々の液体中に微細気泡を発生さlる微細気
泡発生装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a microbubble generating device for generating microbubble in various liquids.

[従来の技術] スポンジケーキ、泡雪かん、ホイップドクリームなどに
見られるように、食品中に多くの微細気泡を含ませると
、テクスチャーが改善されるとか味がマイルド化される
等食品の感覚性機能が改善されることが知られている。
[Prior art] When many microbubbles are included in food, as seen in sponge cakes, foam snowflakes, whipped cream, etc., the texture of the food is improved, the taste is made milder, and the sensory characteristics of the food are improved. Known to improve functionality.

このための気泡発生装置として従来は、手動式攪I¥泡
立て器、ハンドル手動式攪拌発泡器及び電動式攪拌発泡
器などの機械式攪拌発泡器が用いられている。
Conventionally, mechanical agitation foamers such as a manual agitation foamer, a handle manual agitation foamer, and an electric agitation foamer have been used as bubble generators for this purpose.

しかしながら前記従来の気泡発生装置に於ては、泡立て
棒の外径ヤ)形状攪拌速度等の調節によっても生成Jる
空気泡を均一に微細とすることが囲動であるばかりでな
く、発泡効率が悪く従って気泡光り速瓜が遅いという問
題点があった。
However, in the conventional bubble generator, it is not only necessary to make the air bubbles uniformly fine by adjusting the outside diameter of the whisk, shape, stirring speed, etc., but also to improve the foaming efficiency. There was a problem that the bubbles were poor and the speed of the melon was slow.

前記発泡に関する問題は食品についてだけでなく、各種
産業分野で7〕関心がbたれでおり、品質良好で効率の
良い発泡装置が望まれているのである。
The problems related to foaming are of great interest not only in food products but also in various industrial fields, and a foaming device with good quality and efficiency is desired.

[発明の[]的] この発明の目的は前記問題点を解決4ることであり、均
一な微細気泡を連続安定的に、かつ高)朱人量に発生さ
けることのできる微細気泡発生装置を提供りることであ
る。
[Objective of the Invention] The purpose of the present invention is to solve the above-mentioned problems, and to provide a micro-bubble generating device that can continuously and stably generate uniform micro-bubbles in large amounts. Is Rukoto.

[弁明の構成] この発明の微細気泡発生装置は、前記目的を達成する!
こめ、液体圧送手段5により圧送された液体3を液体ノ
ズル61から噴出りると共にna記噴出する液体3によ
り発生づ−る低圧部にガス67を吸引づる工げフタ式ガ
スノズル11と、前記エゼクタ式ガスノズル11から前
記液体3と一緒に噴出り−るガス67により微細気泡8
1を発生さける被発泡液体43を取り囲む壁とを備えて
いる。
[Structure of defense] The microbubble generator of the present invention achieves the above object!
The liquid 3 pumped by the liquid pumping means 5 is spouted from the liquid nozzle 61 and the gas 67 is sucked into the low pressure section generated by the spouted liquid 3. Fine bubbles 8 are created by the gas 67 ejected together with the liquid 3 from the type gas nozzle 11.
1 and a wall surrounding the foaming liquid 43 to avoid generation of foaming liquid 43.

[実施例] 以下第1図、第2図、第3図を用いて本発明の一実施例
を説明する。第1図は微細気泡発/J′3A置の原理図
、第2図はエヒクタ式ガスノズルの一部断面図、第3図
はエゼクタ式ガスノズルのノズル3一 部拡大図である。
[Embodiment] An embodiment of the present invention will be described below with reference to FIGS. 1, 2, and 3. FIG. 1 is a diagram showing the principle of fine bubble formation/J'3A position, FIG. 2 is a partial sectional view of the ejector type gas nozzle, and FIG. 3 is a partially enlarged view of the nozzle 3 of the ejector type gas nozzle.

第1図に示すように、噴出液体槽1に貯えられた水、油
などの噴出液体3は、送液ポンプ5により流量調整用バ
ルブ7、熱交換器9、切換コック29を経C工げフタ式
ガスノズル11又は予備エゼクタ式ガスノズル13に送
られ液体槽41又は予備液体槽31中に噴出される。
As shown in FIG. 1, the ejected liquid 3 such as water or oil stored in the ejected liquid tank 1 is passed through a flow rate adjustment valve 7, a heat exchanger 9, and a switching cock 29 by a liquid sending pump 5. It is sent to the lid type gas nozzle 11 or the preliminary ejector type gas nozzle 13 and is ejected into the liquid tank 41 or the preliminary liquid tank 31.

以下、より詳細に説明すると15は送液圧力のむらを平
滑化するための空気室、17は送液圧力計、19は余分
の液体を噴出液体槽1に遅波するための安全弁、21は
送液流量計である。熱交換器9、加熱液(A l’J 
79及び加熱ヒータ27は、熱交換器9中の噴出液体3
を適宜加熱するものであり、23は加熱油槽温瓜計、2
5はノズル入口圧力計である。切変えコック29は運転
始め定常状態になるまで予備液体槽31に設けられた予
備エゼクタ式ガスノズル13に送液するためのものであ
る。35は工ぜフタ式ガスノズル11及び予備]−ゼク
タ式ガスノズル13の入口温度計である。
To explain in more detail below, 15 is an air chamber for smoothing unevenness in liquid feeding pressure, 17 is a liquid feeding pressure gauge, 19 is a safety valve for slowing the excess liquid to the ejecting liquid tank 1, and 21 is a feeding pressure gauge. It is a liquid flow meter. Heat exchanger 9, heating liquid (A l'J
79 and the heater 27 are connected to the ejected liquid 3 in the heat exchanger 9.
23 is a heating oil bath thermometer;
5 is a nozzle inlet pressure gauge. The switching cock 29 is used to feed liquid to the preliminary ejector type gas nozzle 13 provided in the preliminary liquid tank 31 from the start of operation until a steady state is reached. Reference numeral 35 denotes an inlet thermometer of the main-lid type gas nozzle 11 and the preliminary]-zekta type gas nozzle 13.

65はエヒクタ式ガスノズル11及び予備エゼクタ式ガ
スノズル13のガス吸入管Cあり、この例ではその吸入
口が空気中に開放され空気を吸入するようになっている
。37は吸入ガス流量81である。液体槽41及び予備
液体槽31には、被発泡液体43が貯えられ、液体槽4
1には温度附39及び熱交換器1!I5が設けられてい
る。この熱交換器45は被発泡液体43を加熱または冷
却することによりその粘磨を適宜調節するものである。
65 is a gas suction pipe C of the ejector type gas nozzle 11 and the preliminary ejector type gas nozzle 13, and in this example, the suction port thereof is opened to the air to suck air. 37 is an intake gas flow rate 81. A foaming liquid 43 is stored in the liquid tank 41 and the preliminary liquid tank 31.
1 has a temperature 39 and a heat exchanger 1! I5 is provided. This heat exchanger 45 adjusts the viscosity of the foaming liquid 43 as appropriate by heating or cooling it.

エゼクタ式ガスノズル11及び予備工げフタ式ガスノズ
ル13は全く同じ構成であるので工ぜフタ式ガスノズル
11について説明すると、第2図に示づように、エゼク
タ式ガスノズル11のノズル本体51にはガスノズル本
体55がねじ57によりノズル本体51に螺合して設置
′Iられている。
The ejector type gas nozzle 11 and the preliminary lid type gas nozzle 13 have exactly the same configuration, so to explain the pre-lid type gas nozzle 11, as shown in FIG. 55 is screwed onto the nozzle body 51 with a screw 57 and installed.

ノズル本体51の透孔83には液体ノズル本体59が圧
入して設けられ、その先端にある液体ノズル61が、第
3図に示すように、前記ガスノズル本体55に形成され
たガスノズル63の平行部長さ1−の内側に、重なり長
さΔLにより挿入して設【プられでいる。一方ノズル本
体51のに部には、ガス吸入管65が設けられると共に
ガス吸入管65に連続して小孔69が穿孔され、ガス吸
入管65から吸入されICガス67がこの小孔69を介
してガスノズル63に導かれるようになっている。
A liquid nozzle main body 59 is press-fitted into the through hole 83 of the nozzle main body 51, and the liquid nozzle 61 at the tip of the liquid nozzle main body 59 is formed in the parallel section of the gas nozzle 63 formed in the gas nozzle main body 55, as shown in FIG. It is inserted and installed inside the wall 1 with an overlap length ΔL. On the other hand, a gas suction pipe 65 is provided in the corner of the nozzle body 51, and a small hole 69 is bored continuously with the gas suction pipe 65. and is guided to a gas nozzle 63.

また70はシムでこの厚さを変えることによりノズル重
なり長さ△1−すなわちガスノズル63の平行部と液体
ノズル61の相対位置を正確に定めることができる。
In addition, by changing the thickness of 70 with a shim, the nozzle overlap length Δ1 - that is, the relative position of the parallel portion of the gas nozzle 63 and the liquid nozzle 61 can be accurately determined.

次にこの実施例の作用について説明する。Next, the operation of this embodiment will be explained.

噴出液体3は、噴出液体槽1から熱交換器9に圧送され
ると、エゼクタ式ガスノズル11から高速′c−噴出で
きるJ:うに加熱ヒータ27により十分な低粘度となる
まで加熱される。続いて噴出液体3は、切換えコック2
9を介して予備エゼクタ式ガスノズル13に圧送され、
この予備エゼクタ式ガスノズル13から予備液体槽31
中に噴出される。
When the ejected liquid 3 is pressure-fed from the ejected liquid tank 1 to the heat exchanger 9, it is heated by the sea urchin heating heater 27 until it has a sufficiently low viscosity so that it can be ejected from the ejector type gas nozzle 11 at high speed. Subsequently, the ejected liquid 3 is transferred to the switching cock 2.
9 to the preliminary ejector type gas nozzle 13,
From this preliminary ejector type gas nozzle 13 to the preliminary liquid tank 31
It is squirted inside.

一定の時間が経過し噴出液体3が予備工げフタ式ガスノ
ズル13から安定連続的に噴出することが確められると
切換えコック2つが切換えられ、前記噴出液体3がこん
どは工しクタ式ガスノズル11の方に圧送される。エゼ
クタ式カスノズル11の方に圧送された噴出液体3はノ
ズル本体51の)h孔83を通しC液体ノズル61から
液体槽41中に噴出される。
When it is confirmed that the ejected liquid 3 is stably and continuously ejected from the preliminary lid type gas nozzle 13 after a certain period of time has elapsed, the two switching cocks are switched, and the ejected liquid 3 is then transferred to the pre-operated lid type gas nozzle 11. is forced towards. The ejected liquid 3 that has been force-fed toward the ejector-type cass nozzle 11 is ejected from the C liquid nozzle 61 into the liquid tank 41 through the )H hole 83 of the nozzle body 51.

その際、噴出液体3の噴出速度が充分大きくなっている
と、噴出液体3の周囲に低圧部が発生し、この低圧部が
、ガスノズル63、小孔69及びガス吸入管65を介し
て空気67を吸入し、噴出液体3と伴に空気67を被発
泡液体43中に噴出する。こうして噴出された空気67
が被発泡液体43中に所望の微細気泡81を発生させる
のである。
At this time, if the jetting speed of the jetted liquid 3 is sufficiently high, a low pressure area is generated around the jetted liquid 3, and this low pressure area is filled with air 67 through the gas nozzle 63, the small hole 69, and the gas suction pipe 65. is inhaled, and air 67 is ejected into the foamed liquid 43 along with the ejected liquid 3. Air blown out in this way 67
This generates desired fine bubbles 81 in the foaming liquid 43.

□なお被発泡液体43の粘度が極めて小さく、発生した
微細気泡が液体上面に短時間内に浮」ニジ空気中に拡散
づ−る恐れがある場合には、熱交換器45により被発泡
液体43を冷却しその粘度を増加させるように覆ればJ
:゛い。
□If the viscosity of the foaming liquid 43 is extremely low and there is a risk that the generated microbubbles may float on the top surface of the liquid within a short period of time and diffuse into the air, the foaming liquid 43 may be heated by the heat exchanger 45. If you cover it to cool it and increase its viscosity, J
: Yes.

第4図は、前記実施例の装置で微細気泡を発生さゼた場
合の気泡径分布の一例を承りものである。
FIG. 4 shows an example of the bubble diameter distribution when fine bubbles are generated by the apparatus of the above embodiment.

但しこの例では噴出液体3及び被発泡液体43をともに
サラダ油とした。又ガスノズル平行部長さを1=1.5
mm、液体ノズル内径をd2=0.36Il1m、液体
ノズル外径をd 1=0.63mm、噴出ガスリング厚
さをδ!J =0.15mm、液体圧送圧力をP = 
7 、0 kof /cm2と設定し、2flの被発泡
液体43中に20秒間微細気泡を発生させた。
However, in this example, both the ejected liquid 3 and the foamed liquid 43 are salad oil. Also, the length of the parallel part of the gas nozzle is 1 = 1.5
mm, the inner diameter of the liquid nozzle is d2=0.36Il1m, the outer diameter of the liquid nozzle is d1=0.63mm, and the thickness of the ejected gas ring is δ! J = 0.15mm, liquid pumping pressure P =
7.0 kof/cm2, and fine bubbles were generated in 2 fl of the foaming liquid 43 for 20 seconds.

そしてシム70の厚さを調節しガスノズル本体55をノ
ズル本体51に対して前後に移動させることにより、ノ
ズル重なり長さΔLを、−1,Q、mm。
Then, by adjusting the thickness of the shim 70 and moving the gas nozzle body 55 back and forth with respect to the nozzle body 51, the nozzle overlap length ΔL is set to −1, Q, mm.

−0,5mm、 0.0mm、 0.5vnと変化させ
たものである。
-0.5mm, 0.0mm, and 0.5vn.

同図かられかるように、ノズル重なり長さ△1−が−1
,0mm、 −0,5mm、 0.0non、 0.5
mmいずれの場合にも発生ずる気泡の80〜90%は、
気泡直径50〜200/、1mである。前記従来の機械
式攪拌発泡器においては発生気泡の気泡径は約200〜
800μmであると知られているから、本実施例の装置
によれば従来装置に比べて遥かに微細かつ均一な微細気
泡を発生させることができるのである。
As can be seen from the figure, the nozzle overlap length △1- is -1
,0mm, -0,5mm, 0.0non, 0.5
80 to 90% of the bubbles generated in any case are
The bubble diameter is 50 to 200 m/m. In the conventional mechanical stirring foamer, the bubble diameter of the generated bubbles is about 200~
Since it is known that the bubble diameter is 800 μm, the device of this embodiment can generate much finer and more uniform microbubbles compared to the conventional device.

第5図は、ノズル重なり長さ△11.に加えCl174
出リング厚さδgも、0.10mm、 0.15m++
+、 0゜20mmと変化させた場合の平均気泡径口μ
mを示したものである。ただし、この平均気泡直径6は
噴出気体流faQmL/min 、気泡発/A:速度N
個/minとしたどき、 で与えられるものであり、吸入気体Qが、N個の同じ大
きざの気泡となったと仮定したときのその気泡の平均気
泡径を表ねりものである。同図かられかるにうに本実施
例によれば噴出リング厚さδq、及びノズル重t【り長
ざΔ「を選択することにより平均気泡径を100〜20
0μmの間で適宜調節することができる。
FIG. 5 shows the nozzle overlap length △11. In addition to Cl174
Outer ring thickness δg is also 0.10mm, 0.15m++
+, average bubble diameter μ when changing from 0°20mm
This shows m. However, this average bubble diameter 6 is the ejected gas flow faQmL/min, bubble formation/A: speed N
It is given by: bubbles/min, and represents the average bubble diameter of the bubbles when the intake gas Q is assumed to be N bubbles of the same size. As can be seen from the figure, according to this embodiment, the average bubble diameter can be adjusted to 100 to 20 by selecting the ejection ring thickness δq and the nozzle weight t and the length difference Δ.
It can be adjusted appropriately between 0 μm.

また1分当りに発生ずb気泡数ずなわら気泡発生速度ば
噴出リング厚さδg及びノズル重なり長さΔ1−ににり
多少の変化はあるが、人(A 3〜6×106 (個/
min )であり、高能率の気泡発Zlを実施すること
ができる。なお八りが減少するに従って気泡発生速度は
増加するが−0,5mm以下では気泡発生状態が不安定
となる場合があるので実用的ではない。
In addition, there are some changes depending on the number of bubbles generated per minute, the number of bubbles generated per minute, the ejection ring thickness δg and the nozzle overlap length Δ1-,
min), and high efficiency foaming Zl can be carried out. Although the bubble generation rate increases as the rupture decreases, if it is less than -0.5 mm, the bubble generation state may become unstable, which is not practical.

このように本実施例の微細気泡発生装置によれば、従来
のものに比べて逃かに微細かつ均一な気泡を高速大量に
発生させることができるのである。
As described above, the micro-bubble generating device of this embodiment can generate a large amount of micro-bubble at high speed compared to the conventional device.

なお、前記実施例においてはガス吸入管65の吸入口を
空気中に開放し、空気を吸入するようにしたがガス吸入
管65に種々の気体のボンベを接続することにより空気
以外の気体の微細気泡を発生させることもできる。特に
この気体としてN2やGO2などの不活性ガスを用いれ
ば食品の酸化劣化の防止や品質維持などに役立てること
ができる。又芳香性の気体を吸入し、食品中にこれらの
微細気泡を含有させれば新しい食品開発も可能となる。
In the above embodiment, the suction port of the gas suction pipe 65 was opened to the air to suck air, but by connecting cylinders of various gases to the gas suction pipe 65, fine particles of gas other than air Bubbles can also be generated. In particular, if an inert gas such as N2 or GO2 is used as this gas, it can be useful for preventing oxidative deterioration of foods and maintaining quality. Furthermore, by inhaling aromatic gases and incorporating these microbubbles into foods, it becomes possible to develop new foods.

また前記実施例においては、液体ノズル61から噴出す
る液体3及び微細気泡を発生させる被発泡液体43をと
もにニュートン流体であるとしたが、両方又は一方を卵
白やゼラチンなどの非ニユートン流体とすることも可能
である。但しその場合には、液体ノズル61.ガスノス
ル63のノズル径及び液体圧送圧力の大小並びに加熱ヒ
ータ27及び熱交換器45の有無等を適宜選択づる必要
がある。例えばニュートン流体については液体ノズル6
1のノズル径d + =0.6mm−1、On+mにて
液体圧送圧力P=5〜8kgf 7cm2が適当である
が非ニユートン流体についてはd + =0.8mm〜
1.5mmにてP−6〜12kg[/C12が適当であ
る。このようにすれば、卵白、ゼラチン等の非ニユート
ン流体中にも、所望の微細気泡を所望の量だけ含有せし
めることができる。
Further, in the above embodiment, both the liquid 3 ejected from the liquid nozzle 61 and the foamed liquid 43 that generates microbubbles are Newtonian fluids, but both or one of them may be a non-Newtonian fluid such as egg white or gelatin. is also possible. However, in that case, the liquid nozzle 61. It is necessary to appropriately select the nozzle diameter of the gas nostle 63, the magnitude of the liquid pumping pressure, and the presence or absence of the heater 27 and the heat exchanger 45. For example, for Newtonian fluid, the liquid nozzle 6
1 nozzle diameter d + = 0.6 mm-1, liquid pumping pressure P = 5 to 8 kgf 7 cm2 at On+m is appropriate, but for non-Newtonian fluids, d + = 0.8 mm ~
At 1.5 mm, P-6 to 12 kg [/C12] is appropriate. In this way, a desired amount of fine bubbles can be contained even in a non-Newtonian fluid such as egg white or gelatin.

又前記実施例ではエゼクタ式ガスノズル11を油槽41
の側面下方に設&プたが、側面上方に設【プることもで
きる。このようにすれば、噴出液体3の液体圧送力を前
記実施例の液体圧送力Pよりかなり小さいものとするこ
とができる。ただしこの場合には発生した微細気泡81
が短時間の内に液体表面に浮上し空気中に拡散り゛るこ
とを防止するため油槽41内に被発泡液体43の攪拌器
を設置)、微細気泡を適宜攪拌することが望ましい。
Further, in the above embodiment, the ejector type gas nozzle 11 is connected to the oil tank 41.
Although it was installed below the side of the machine, it can also be installed above the side. In this way, the liquid pumping force of the ejected liquid 3 can be made considerably smaller than the liquid pumping force P of the embodiment described above. However, in this case, the fine bubbles 81 generated
In order to prevent the bubbles from rising to the surface of the liquid and dispersing into the air within a short period of time, it is desirable to appropriately stir the fine bubbles by installing a stirrer for the foamed liquid 43 in the oil tank 41.

更にコンピュータと連動する自動制御装置を装備するこ
とにより気泡発生状態をワンタッチで制御することをも
可能である。例えば前記の温度計、圧力計、流量剖など
により淘醍、圧力、流量等を検出し、制御用コンビコー
タを介して流量調整用バルブ7の開度や吸入ガス67の
流入量を制御し、気泡発生速度を自動的に調節し被発泡
液体43中の気泡密度側/!lすなわち気泡含有率を適
正値に制御するよう構成することができるのである。
Furthermore, by installing an automatic control device linked to a computer, it is possible to control the bubble generation state with a single touch. For example, the flow rate, pressure, flow rate, etc. are detected using the above-mentioned thermometer, pressure gauge, flow rate analyzer, etc., and the opening degree of the flow rate adjustment valve 7 and the inflow amount of the intake gas 67 are controlled via the control combination coater. The bubble generation speed is automatically adjusted to increase the bubble density in the foaming liquid 43/! 1, that is, the bubble content can be controlled to an appropriate value.

エゼクタ式ガスノズル11の個数を増設することにより
単位時間当りの発泡量を増加させることができることは
勿論である。
Of course, by increasing the number of ejector type gas nozzles 11, the amount of foaming per unit time can be increased.

更に又被発泡液体43は必ずしも前記実施例のように静
止している必要はなく、例えばバイブ中をゆっくり移動
するものであってもよい。
Furthermore, the foaming liquid 43 does not necessarily have to be stationary as in the above embodiments, but may be moving slowly in the vibrator, for example.

なお、本発明は以上のように食品中に微細気泡を含ませ
る為の手段としてばかりでなく以下のように他の分野に
おける発泡手段としても用いることができる。
The present invention can be used not only as a means for incorporating microbubbles into foods as described above, but also as a foaming means in other fields as described below.

(1)0例えば畜産業の分野においては幼い家畜の育成
を促進するため飼料の消化吸収を改善する技術が待望さ
れているが、一方で極微細気泡を含有した水を子豚等に
与えると肥育効果が上るとの知見が得られている。従っ
て前記微細気泡発生装置を用いで家畜の飲料水に微細気
泡を発生させれば幼い家畜の育成を促進することができ
る。
(1)0 For example, in the field of livestock farming, there is a long-awaited technology to improve the digestion and absorption of feed in order to promote the growth of young livestock. Knowledge has been obtained that it increases the fattening effect. Therefore, if the fine bubble generator is used to generate fine bubbles in the drinking water of livestock, the growth of young livestock can be promoted.

(2)、また魚資源の枯渇から養殖、栽培漁業が盛んに
なってきているが、大規模養殖システムで大量の魚を管
理密養殖する際には海水中の溶存酸素量を確保する必要
がある。これら溶存酸素を供給する場合にも本発明の微
細気泡発生装置は最適である。すなわち海水中にふぎこ
まれた気泡は、その径が小さ【プれば小さいほど表面積
が大となりそれだけよく水にとけるが、本発明の微細気
泡発生装置によれば、100μI11〜200μmの極
微細酸素気泡を高速で発生させることができるから大量
の酸素を極めて容易に海水中に溶かし込むことができる
(2) Also, aquaculture and cultivation fisheries are becoming more popular due to the depletion of fish resources, but when cultivating large quantities of fish in a large-scale aquaculture system, it is necessary to ensure the amount of dissolved oxygen in the seawater. be. The micro bubble generator of the present invention is also optimal for supplying dissolved oxygen. In other words, the bubbles that are blown into seawater have a small diameter (the smaller the bubble, the larger the surface area, and the better it dissolves in the water, but according to the micro bubble generator of the present invention, ultrafine oxygen of 100μI11 to 200μm) Since bubbles can be generated at high speed, large amounts of oxygen can be dissolved into seawater very easily.

(3)、更に気泡含有耐摩耗性コンクリ−1・を製造す
る際に発泡剤が用いられているが、発泡剤では気泡径が
均一とならないばかりでなくその人ぎさも大ぎく、自ず
と用途−6限られてくる。
(3) Furthermore, foaming agents are used in the production of abrasion-resistant concrete containing air bubbles (1), but the foaming agents not only do not make the cell diameters uniform, but are also very harsh, which naturally makes them difficult to use. 6 will be limited.

従って本発明の微細気泡発生装置により、生コンクリ−
[・に極微細気泡を含有ざゼれば軽量:Iンクリート、
断熱用コンクリート等多彩なコンクリート祠を安価に提
供覆ることが可能となる。
Therefore, by using the micro bubble generator of the present invention, it is possible to
[Contains ultra-fine bubbles and is lightweight: I-crete,
It becomes possible to cover a variety of concrete shrines, such as concrete for insulation, at low cost.

[発明の効果] 本発明は、特許請求範囲の第一項に述べたようにエゼク
タ式ガスノズルを用いて被発泡液体内に液体を噴出する
とともに、前記噴出液体によって発生する低圧部に気体
を吸引し、前記噴出液体ど一緒に前記気体を被発泡液体
内に噴出し、前記気体を封入した微細気泡を発生させる
微細気泡発生装置であるから、従来の攪拌式泡立て器に
較べて発生する気泡径が極めて微細で、気泡発生速度も
人であるから発泡作業を高能率かつ連続的に行なうこと
ができる。
[Effects of the Invention] As stated in the first claim, the present invention uses an ejector-type gas nozzle to eject a liquid into a liquid to be foamed, and at the same time, sucks gas into a low-pressure part generated by the ejected liquid. However, since this is a micro-bubble generator that ejects the gas into the liquid to be foamed together with the ejected liquid to generate micro-bubbles encapsulating the gas, the diameter of the bubbles generated is smaller than that of conventional stirring-type whisks. Since the bubbles are extremely fine and the bubble generation speed is human, the foaming process can be carried out highly efficiently and continuously.

なお、本発明は、空気以外の各種気体を吸引させること
ができるから、例えば食品劣化防止のための□微細気泡
を発生させたり、芳香性気泡を含有した新食品を開発し
たり、あるいは水中への人聞酸素の急速溶解を行わせる
等多種多様に各種産業分野で使用づ−ることができるの
である。
Since the present invention can suck various gases other than air, it can be used, for example, to generate microbubbles to prevent food deterioration, to develop new foods containing aromatic bubbles, or to It can be used in a wide variety of industrial fields, including rapid dissolution of human oxygen.

【図面の簡単な説明】[Brief explanation of drawings]

第1図乃至第3図は何れも本発明の実施例を示すもので
、第1図は微細気泡発生装置の原理図、第2図はエゼク
タ式ガスノズ゛ルの断面詳細図、第よる微細気泡の気泡
径分布、平均気泡径、気泡発生速度を示づものである。 3・・・噴出液体  11・・・工げフタ式ガスノズル
27・・・加熱ヒータ 43・・・被発泡液体57・・
・ねじ    61・・・液体ノズル63・・・ガスノ
ズル 65・・・ガス吸入管67・・・ガス    7
0・・・シム特許出願人     長 廣  仁 蔵代
理人  弁理士  三 好  保 男第2図 G′ 第4図 気泡直径 D(μm) ◇脈根塚H四倒2\ を
Figures 1 to 3 all show embodiments of the present invention, with Figure 1 being a principle diagram of a microbubble generator, and Figure 2 being a detailed cross-sectional view of an ejector-type gas nozzle. This shows the bubble size distribution, average bubble diameter, and bubble generation rate. 3... Ejected liquid 11... Lid type gas nozzle 27... Heater 43... Liquid to be foamed 57...
・Screw 61...Liquid nozzle 63...Gas nozzle 65...Gas suction pipe 67...Gas 7
0... SIM Patent Applicant Hitoshi Nagahiro Representative Patent Attorney Yasuo Miyoshi Figure 2 G' Figure 4 Bubble diameter D (μm)

Claims (6)

【特許請求の範囲】[Claims] (1)液体圧送手段5により圧送された液体3を液体ノ
ズル61から噴出すると共に前記噴出する液体3により
発生する低圧部にガス67を吸引するエゼクタ式ガスノ
ズル11と、前記エゼクタ式ガスノズル11から前記液
体3と一緒に噴出するガス67により微細気泡81を発
生させる被発泡液体43を取り囲む壁とを備えたことを
特徴とする微細気泡発生装置。
(1) An ejector-type gas nozzle 11 that ejects the liquid 3 force-fed by the liquid pressure-feeding means 5 from a liquid nozzle 61 and sucks gas 67 into a low-pressure part generated by the ejected liquid 3; A micro-bubble generating device comprising: a wall surrounding a foaming liquid 43 that generates micro-bubbles 81 by a gas 67 ejected together with the liquid 3.
(2)前記エゼクタ式ガスノズル11は出口部から液体
3を噴出する液体ノズル61と、前記液体ノズル61の
出口面積より大きい出口面積の出口部を有し、当該出口
部からガス67を噴出するガスノズル63を備え、前記
液体ノズル61の出口部を前記ガスノズル63の内部又
は後方に配置したことを特徴とする特許請求の範囲第1
項に記載の微細気泡発生装置。
(2) The ejector type gas nozzle 11 has a liquid nozzle 61 that ejects the liquid 3 from the outlet portion, and an outlet portion having an outlet area larger than the outlet area of the liquid nozzle 61, and is a gas nozzle that ejects the gas 67 from the outlet portion. 63, and the outlet portion of the liquid nozzle 61 is disposed inside or behind the gas nozzle 63.
The microbubble generator described in Section 1.
(3)前記ガスノズル63は、前記液体ノズル61に対
して液体3の噴出方向に移動可能に設けられたことを特
徴とする特許請求の範囲第2項に記載の微細気泡発生装
置。
(3) The micro bubble generating device according to claim 2, wherein the gas nozzle 63 is provided movably in the jetting direction of the liquid 3 with respect to the liquid nozzle 61.
(4)前記ガスノズル63は、平行孔部を有することを
特徴とする特許請求の範囲第2項に記載の微細気泡発生
装置。
(4) The micro bubble generating device according to claim 2, wherein the gas nozzle 63 has a parallel hole.
(5)前記ガスノズル61は、前記液体ノズル63に対
して液体3の噴出方向に移動可能に設けられたことを特
徴とする特許請求の範囲第4項に記載の微細気泡発生装
置。
(5) The micro bubble generating device according to claim 4, wherein the gas nozzle 61 is provided movably in the jetting direction of the liquid 3 with respect to the liquid nozzle 63.
(6)前記液体ノズル61から噴出する液体3が水や油
などの粘度の低いニュートン流体か、または卵白やゼラ
チンなど粘度の高い非ニュートン流体かにより、ノズル
径及び液体送出圧力の大小並びに加熱ヒータ27及び熱
交換器45の有無を決定することを特徴とする特許請求
の範囲第1項に記載の微細気泡発生装置。
(6) Depending on whether the liquid 3 ejected from the liquid nozzle 61 is a Newtonian fluid with low viscosity such as water or oil, or a non-Newtonian fluid with high viscosity such as egg white or gelatin, the nozzle diameter, the size of the liquid delivery pressure, and the heating 27 and the presence or absence of a heat exchanger 45 is determined. The fine bubble generating device according to claim 1.
JP60030257A 1985-02-20 1985-02-20 Apparatus for generating fine air bubbles Granted JPS61192328A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60030257A JPS61192328A (en) 1985-02-20 1985-02-20 Apparatus for generating fine air bubbles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60030257A JPS61192328A (en) 1985-02-20 1985-02-20 Apparatus for generating fine air bubbles

Publications (2)

Publication Number Publication Date
JPS61192328A true JPS61192328A (en) 1986-08-26
JPH0133211B2 JPH0133211B2 (en) 1989-07-12

Family

ID=12298652

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60030257A Granted JPS61192328A (en) 1985-02-20 1985-02-20 Apparatus for generating fine air bubbles

Country Status (1)

Country Link
JP (1) JPS61192328A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4857350A (en) * 1986-03-15 1989-08-15 Kiyomoto Tekko Kabushiki Kaisha Method for maintaining or restoring freshness of plants, vegetables or fruits by treating with water supersaturated with air
JP2009112975A (en) * 2007-11-08 2009-05-28 Sumitomo Chemical Co Ltd Fine bubble generator and fine bubble generating method
JP2014012255A (en) * 2012-07-04 2014-01-23 Honda Motor Co Ltd Apparatus, system and method for generating and supplying bubble mixed liquid, and program thereof
CN103579053A (en) * 2012-08-09 2014-02-12 芝浦机械电子株式会社 Cleaning solution producing apparatus and method, and substrate cleaning apparatus and method
CN113522068A (en) * 2020-04-14 2021-10-22 宁波方太厨具有限公司 Micro-nano bubble generating device and cleaning machine with same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS457677Y1 (en) * 1966-10-15 1970-04-13
JPS50121862A (en) * 1974-03-06 1975-09-25
JPS56106723U (en) * 1980-01-16 1981-08-19
JPS56106722U (en) * 1980-01-16 1981-08-19

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS457677Y1 (en) * 1966-10-15 1970-04-13
JPS50121862A (en) * 1974-03-06 1975-09-25
JPS56106723U (en) * 1980-01-16 1981-08-19
JPS56106722U (en) * 1980-01-16 1981-08-19

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4857350A (en) * 1986-03-15 1989-08-15 Kiyomoto Tekko Kabushiki Kaisha Method for maintaining or restoring freshness of plants, vegetables or fruits by treating with water supersaturated with air
JP2009112975A (en) * 2007-11-08 2009-05-28 Sumitomo Chemical Co Ltd Fine bubble generator and fine bubble generating method
JP2014012255A (en) * 2012-07-04 2014-01-23 Honda Motor Co Ltd Apparatus, system and method for generating and supplying bubble mixed liquid, and program thereof
CN103579053A (en) * 2012-08-09 2014-02-12 芝浦机械电子株式会社 Cleaning solution producing apparatus and method, and substrate cleaning apparatus and method
CN113522068A (en) * 2020-04-14 2021-10-22 宁波方太厨具有限公司 Micro-nano bubble generating device and cleaning machine with same

Also Published As

Publication number Publication date
JPH0133211B2 (en) 1989-07-12

Similar Documents

Publication Publication Date Title
JP4751885B2 (en) Consumable powder reconstitution and foaming method and apparatus
JP2004535854A5 (en)
AU2011356239A1 (en) Milk frothing with pressurized gas
KR20040010693A (en) Apparatus and method for preparing a foamed beverage suitable for consumption
US20120256329A1 (en) Processing apparatus for dispersion, dissolution, solubilization, or emulsification of gas/liquid or liquid/liquid
US20040071841A1 (en) Froth showering
JP2015188857A (en) Nano-bubble hydrogen water and hydrogen foam producing system
JP7218016B2 (en) Fine bubble forming device
JP4145000B2 (en) Fine bubble feeder
KR101051367B1 (en) Micro bubble aerator
JPS61192328A (en) Apparatus for generating fine air bubbles
WO2017215097A1 (en) Coffee maker
CN110301818B (en) Equipment and method for extracting solid internal components by utilizing nano bubbles
JPS61212318A (en) Generating method for fine air foam
JP3141961U (en) Fine bubble mixer
JP6986512B2 (en) Centrifugal pumping and whipping device
JP2782924B2 (en) Mixing tank for powder and water
JP3479949B2 (en) Water extraction device for artificial warm bath
JP2005263825A (en) Method and apparatus for producing gas hydrate
JP2009178702A (en) Gas-liquid mixing equipment
CN212382493U (en) Equipment for extracting components in solid by utilizing nano bubbles
CN217782263U (en) Air pressure liquid supply foaming device
JPH04156928A (en) Production of carbonic acid soln.
KR20220151769A (en) Whipping cream producing device including the vessel
JPH03103132A (en) Oxygen feeding apparatus of culture pond