JP2014012191A - Steerable ultrasonic catheter - Google Patents
Steerable ultrasonic catheter Download PDFInfo
- Publication number
- JP2014012191A JP2014012191A JP2013169148A JP2013169148A JP2014012191A JP 2014012191 A JP2014012191 A JP 2014012191A JP 2013169148 A JP2013169148 A JP 2013169148A JP 2013169148 A JP2013169148 A JP 2013169148A JP 2014012191 A JP2014012191 A JP 2014012191A
- Authority
- JP
- Japan
- Prior art keywords
- catheter
- ultrasonic
- transmission member
- catheter body
- distal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000005540 biological transmission Effects 0.000 abstract description 173
- 210000004204 blood vessel Anatomy 0.000 abstract description 59
- 230000002708 enhancing effect Effects 0.000 abstract description 2
- 238000002604 ultrasonography Methods 0.000 description 137
- 230000008878 coupling Effects 0.000 description 27
- 238000010168 coupling process Methods 0.000 description 27
- 238000005859 coupling reaction Methods 0.000 description 27
- 238000000034 method Methods 0.000 description 23
- 239000000463 material Substances 0.000 description 15
- 206010053648 Vascular occlusion Diseases 0.000 description 10
- 208000021331 vascular occlusion disease Diseases 0.000 description 9
- 239000012530 fluid Substances 0.000 description 8
- 210000004351 coronary vessel Anatomy 0.000 description 6
- WYTGDNHDOZPMIW-RCBQFDQVSA-N alstonine Natural products C1=CC2=C3C=CC=CC3=NC2=C2N1C[C@H]1[C@H](C)OC=C(C(=O)OC)[C@H]1C2 WYTGDNHDOZPMIW-RCBQFDQVSA-N 0.000 description 5
- 239000007788 liquid Substances 0.000 description 5
- 229910000734 martensite Inorganic materials 0.000 description 5
- 229910001092 metal group alloy Inorganic materials 0.000 description 5
- 230000007704 transition Effects 0.000 description 5
- 239000000853 adhesive Substances 0.000 description 4
- 230000001070 adhesive effect Effects 0.000 description 4
- 229910045601 alloy Inorganic materials 0.000 description 4
- 239000000956 alloy Substances 0.000 description 4
- 239000002826 coolant Substances 0.000 description 4
- 229920000642 polymer Polymers 0.000 description 4
- 229910001285 shape-memory alloy Inorganic materials 0.000 description 4
- 210000005166 vasculature Anatomy 0.000 description 4
- 229920002614 Polyether block amide Polymers 0.000 description 3
- 238000004873 anchoring Methods 0.000 description 3
- 229910001566 austenite Inorganic materials 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 238000004140 cleaning Methods 0.000 description 3
- 230000000295 complement effect Effects 0.000 description 3
- 230000006378 damage Effects 0.000 description 3
- 239000012634 fragment Substances 0.000 description 3
- 229910000838 Al alloy Inorganic materials 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 238000007792 addition Methods 0.000 description 2
- 230000006399 behavior Effects 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000037430 deletion Effects 0.000 description 2
- 238000012217 deletion Methods 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 230000003902 lesion Effects 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 238000002271 resection Methods 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 208000037260 Atherosclerotic Plaque Diseases 0.000 description 1
- 235000003801 Castanea crenata Nutrition 0.000 description 1
- 244000209117 Castanea crenata Species 0.000 description 1
- 241001645095 Parisis Species 0.000 description 1
- 239000004830 Super Glue Substances 0.000 description 1
- 229910001069 Ti alloy Inorganic materials 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 238000002679 ablation Methods 0.000 description 1
- 230000002745 absorbent Effects 0.000 description 1
- 239000002250 absorbent Substances 0.000 description 1
- 230000001154 acute effect Effects 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 210000002376 aorta thoracic Anatomy 0.000 description 1
- 230000003190 augmentative effect Effects 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 235000012438 extruded product Nutrition 0.000 description 1
- 210000001105 femoral artery Anatomy 0.000 description 1
- 230000002262 irrigation Effects 0.000 description 1
- 238000003973 irrigation Methods 0.000 description 1
- 210000003141 lower extremity Anatomy 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910001000 nickel titanium Inorganic materials 0.000 description 1
- 210000005259 peripheral blood Anatomy 0.000 description 1
- 239000011886 peripheral blood Substances 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 230000009424 thromboembolic effect Effects 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 230000003313 weakening effect Effects 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/32—Surgical cutting instruments
- A61B17/3205—Excision instruments
- A61B17/3207—Atherectomy devices working by cutting or abrading; Similar devices specially adapted for non-vascular obstructions
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/22—Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
- A61B17/22004—Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for using mechanical vibrations, e.g. ultrasonic shock waves
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/22—Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
- A61B17/22004—Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for using mechanical vibrations, e.g. ultrasonic shock waves
- A61B17/22012—Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for using mechanical vibrations, e.g. ultrasonic shock waves in direct contact with, or very close to, the obstruction or concrement
- A61B17/2202—Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for using mechanical vibrations, e.g. ultrasonic shock waves in direct contact with, or very close to, the obstruction or concrement the ultrasound transducer being inside patient's body at the distal end of the catheter
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/32—Surgical cutting instruments
- A61B17/320068—Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/00234—Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery
- A61B2017/00238—Type of minimally invasive operation
- A61B2017/00243—Type of minimally invasive operation cardiac
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/22—Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
- A61B17/22004—Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for using mechanical vibrations, e.g. ultrasonic shock waves
- A61B17/22012—Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for using mechanical vibrations, e.g. ultrasonic shock waves in direct contact with, or very close to, the obstruction or concrement
- A61B2017/22014—Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for using mechanical vibrations, e.g. ultrasonic shock waves in direct contact with, or very close to, the obstruction or concrement the ultrasound transducer being outside patient's body; with an ultrasound transmission member; with a wave guide; with a vibrated guide wire
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/30—Surgical pincettes without pivotal connections
- A61B2017/306—Surgical pincettes without pivotal connections holding by means of suction
- A61B2017/308—Surgical pincettes without pivotal connections holding by means of suction with suction cups
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/32—Surgical cutting instruments
- A61B17/320068—Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic
- A61B2017/32007—Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic with suction or vacuum means
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/32—Surgical cutting instruments
- A61B17/320068—Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic
- A61B2017/320071—Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic with articulating means for working tip
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M25/00—Catheters; Hollow probes
- A61M25/0043—Catheters; Hollow probes characterised by structural features
- A61M25/0054—Catheters; Hollow probes characterised by structural features with regions for increasing flexibility
Landscapes
- Health & Medical Sciences (AREA)
- Surgery (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- General Health & Medical Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Animal Behavior & Ethology (AREA)
- Mechanical Engineering (AREA)
- Vascular Medicine (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Dentistry (AREA)
- Ultra Sonic Daignosis Equipment (AREA)
- Media Introduction/Drainage Providing Device (AREA)
- Surgical Instruments (AREA)
Abstract
Description
(関連出願の引用)
本願は、米国特許出願番号10/722,209(代理人事件番号021577−000900US)(2003年11月24日出願、この全開示は、本明細書中に参考として援用される)に対して優先権を主張する。この米国特許出願は、以下の係属中の米国特許出願に関連し、これらの全開示は全て、本明細書中に参考として援用される:出願番号10/229,371(2002年8月26日出願、発明の名称「Ultrasound Catheter for Disrupting Blood Vessel Obstructions」、代理人事件番号21577−000400US);出願番号10/345078(2003年1月14日出願、発明の名称「Ultrasound Catheter and Methods for Making and Using Same」、代理人事件番号21577−000600US);出願番号10/375,903(2003年2月26日出願、発明の名称「Ultrasound Catheter Apparatus」、代理人事件番号21577−000700US);および出願番号10/410617(2003年4月8日出願、発明の名称「Improved Ultrasound Catheter Devices and Methods」)。
(Citation of related application)
This application takes precedence over US patent application Ser. No. 10 / 722,209 (Attorney Case No. 021577-000900 US, filed Nov. 24, 2003, the entire disclosure of which is incorporated herein by reference). Insist on the right. This US patent application is related to the following pending US patent applications, the entire disclosures of all of which are hereby incorporated by reference:
(発明の背景)
本発明は、一般に、医療用のデバイスおよび方法に関する。より特定すると、本発明は、閉塞した脈管内病巣を処置するための、超音波カテーテルデバイスおよび方法に関する。
(Background of the Invention)
The present invention relates generally to medical devices and methods. More particularly, the present invention relates to ultrasonic catheter devices and methods for treating occluded intravascular lesions.
種々の型の超音波伝達部材を使用するカテーテルは、血管内の閉塞物を切除するかまたは他の様式で破壊するために、首尾よく使用されている。特に、末梢血管(例えば、大腿動脈)からのアテローム性動脈硬化症の斑または血栓塞栓閉塞物の切除は、特に成功している。血管から閉塞性物質を切除するかまたは他の様式で除去する際に使用するための、種々の超音波カテーテルデバイスが、開発されている。例えば、特許文献1および特許文献2(本発明の発明者らに対して発行され、そして本明細書中に参考として援用される)は、閉塞物を除去するための超音波カテーテルデバイスを記載する。血管から閉塞物を除去するための、超音波切除デバイスの他の例は、米国特許第3,433,226号(Boyd)、同第3,823,717号(Pohlmanら)、同第4,808,153号(Parisi)、同第4,936,281号(Stasz)、同第3,565,062(Kuris)、同第4,924,863号(Sterzer)、同第4,870,953号(Don Michaelら)、および同第4,920,954号(Alligerら)、ならびに他の特許出願公開WO87−05739(Cooper)、WO89−06515(Bernsteinら)、WO90−0130(Sonic Needle Corp.)、EP、EP316789 (Don Michaelら)、DE3,821,836(Schubert)およびDE2438648(Pohlman)に記載されるものである。多くの超音波カテーテルが開発されているが、改善が、なお続いている。 Catheters that use various types of ultrasound transmission members have been successfully used to resect or otherwise destroy obstructions in blood vessels. In particular, resection of atherosclerotic plaques or thromboembolic obstructions from peripheral blood vessels (eg, femoral artery) has been particularly successful. Various ultrasonic catheter devices have been developed for use in excising or otherwise removing occlusive material from blood vessels. For example, U.S. Patent Nos. 5,099,086 and 5,037,097 (issued to the inventors of the present invention and incorporated herein by reference) describe ultrasonic catheter devices for removing obstructions. . Other examples of ultrasonic ablation devices for removing obstructions from blood vessels are described in US Pat. Nos. 3,433,226 (Boyd), 3,823,717 (Pohlman et al.), 4, 808,153 (Parisi), 4,936,281 (Stazz), 3,565,062 (Kuris), 4,924,863 (Sterzer), 4,870,953 (Don Michael et al.) And 4,920,954 (Alliger et al.), As well as other published patent applications WO 87-05739 (Cooper), WO 89-06515 (Bernstein et al.), WO 90-0130 (Sonic Needle Corp.). ), EP, EP 316789 (Don Michael et al.), DE 3,821,836 (S Chubert) and DE 2438648 (Pohlman). Many ultrasonic catheters have been developed, but improvements continue.
代表的に、閉塞性物質を切除するための超音波カテーテルシステムは、3つの基本的な構成要素(超音波発生器、超音波変換器、および超音波カテーテル)を備える。この発生器は、電線からの電力(line power)を高周波数電流に変換し、この電流が、この変換器に送達される。この変換器は、圧電結晶を備え、この結晶は、次に、この高周波数電流によって励起され、そして高周波数で膨張および収縮する。これらの(変換器の軸およびカテーテルに対して)小さい高周波数での膨張は、変換器ホーンによって、振動エネルギーに増幅される。次いで、この振動は、この変換器から、この超音波カテーテルを通って長手軸方向に延びる超音波伝達部材(またはワイヤ)を介して、この超音波カテーテルを通って伝達される。この伝達部材は、この超音波エネルギーを、このカテーテルの遠位端に伝達し、この遠位端で、このエネルギーは、脈管閉塞物を切除するかまたは他の様式で破壊するために使用される。 Typically, an ultrasonic catheter system for ablating occlusive material comprises three basic components: an ultrasonic generator, an ultrasonic transducer, and an ultrasonic catheter. The generator converts line power to high frequency current, which is delivered to the converter. The transducer comprises a piezoelectric crystal, which is then excited by the high frequency current and expands and contracts at a high frequency. These small, high frequency expansions (relative to the transducer shaft and catheter) are amplified to vibrational energy by the transducer horn. The vibration is then transmitted from the transducer through the ultrasound catheter via an ultrasound transmission member (or wire) extending longitudinally through the ultrasound catheter. The transmission member transmits the ultrasonic energy to the distal end of the catheter where the energy is used to resect or otherwise destroy the vascular occlusion. The
脈管内閉塞物の処置のための種々の領域に効果的に到達するために、上に記載された型の超音波カテーテルは、代表的に、約150cm以上の長さを有する。このような超音波カテーテルを、小さい、そして/または蛇行した血管(例えば、大動脈弓、冠状血管、および下肢の末梢脈管)に通して進めることを可能にするために、これらのカテーテル(およびそれらのそれぞれの超音波伝達ワイヤ)は、代表的に、十分に小さくかつ可撓性でなければならない。また、長くて細い超音波伝達ワイヤに沿った、超音波エネルギーの減衰に起因して、所望の量のエネルギーを遠位端に提供するために、十分な量の振動エネルギーが、このワイヤの近位端で適用されなければならない。 In order to effectively reach various areas for the treatment of intravascular occlusions, ultrasonic catheters of the type described above typically have a length of about 150 cm or more. To allow such ultrasound catheters to be advanced through small and / or tortuous blood vessels (eg, aortic arch, coronary vessels, and peripheral vessels of the lower limb) (and these Each ultrasonic transmission wire) typically must be sufficiently small and flexible. Also, due to the attenuation of ultrasonic energy along the long and thin ultrasonic transmission wire, a sufficient amount of vibrational energy is present in the vicinity of this wire to provide the desired amount of energy to the distal end. Must be applied at the edge.
多数の超音波カテーテルデバイスが、例えば、先に参考として援用された、特許出願番号10/229,371、同10/345078、同10/375,903、および同10/410617に記載されている。しかし、改善が、常に求められている。例えば、脈管を通して押すことが可能であるため、または「操縦可能」であるために十分に剛性であり、かつ小さい蛇行した血管(例えば、冠状動脈または蛇行した末梢脈管構造)を通り抜けるために、少なくともその長さに沿って十分に可撓性であるカテーテルを開発するという挑戦が、続いている。現在入手可能な超音波カテーテルデバイスを、例えば、このカテーテルの近位端をねじるかまたは回転させて、その遠位端を、これらの脈管構造を通り抜けることを補助する様式で動かすように操作することもまた、時々困難である。超音波カテーテルを通るガイドワイヤの通過はまた、このガイドワイヤが脈管閉塞物の破壊を妨害しないように、そしてなお増強し得るように、改良され得る。 A number of ultrasonic catheter devices are described, for example, in patent application Nos. 10 / 229,371, 10/345078, 10 / 375,903, and 10/410617, previously incorporated by reference. However, improvements are always sought. For example, to be able to push through a vessel, or to be “steerable” sufficiently rigid and to pass through small serpentine vessels (eg, coronary arteries or serpentine peripheral vasculature) The challenge continues to develop a catheter that is at least sufficiently flexible along its length. Manipulating currently available ultrasound catheter devices, for example, twisting or rotating the proximal end of the catheter to move its distal end in a manner that assists in passing through these vasculature It is also sometimes difficult. The passage of the guide wire through the ultrasound catheter can also be improved so that the guide wire does not interfere with the destruction of the vascular occlusion and can still be enhanced.
従って、脈管閉塞物の切除および破壊を提供する、改善された超音波カテーテルデバイスおよび方法に対する必要性が、存在する。理想的には、このような超音波カテーテルは、小さい蛇行した血管(例えば、冠状動脈)を通り抜ける、増強された能力を有する。使用者によって容易に操作され得るカテーテルを有することもまた、有利である。理想的には、このようなデバイスは、脈管閉塞物の破壊を妨害することなく、そしておそらく増強さえしながら、ガイドワイヤの通過を可能にする。これらの目的のうちの少なくともいくつかが、本発明によって対処される。 Accordingly, there is a need for improved ultrasonic catheter devices and methods that provide for resection and destruction of vascular occlusions. Ideally, such ultrasound catheters have an enhanced ability to pass through small tortuous blood vessels (eg, coronary arteries). It is also advantageous to have a catheter that can be easily manipulated by the user. Ideally, such a device allows the passage of a guidewire without disturbing and possibly even augmenting the vascular occlusion. At least some of these objectives are addressed by the present invention.
(発明の簡単な要旨)
超音波カテーテルデバイスおよび方法は、血管の閉塞物の増強された破壊を提供する。一般に、超音波カテーテルは、1つ以上の管腔を有する細長い可撓性のカテーテル本体、このカテーテル本体の管腔を通って長手軸方向に延びる超音波伝達部材、およびこの超音波伝達部材に連結されてこのカテーテル本体の遠位端に隣接して位置決めされた、閉塞物を破壊するための遠位ヘッドを備える。改善された特徴としては、遠位端に向かって次第に可撓性になるカテーテル本体および超音波伝達部材、ガイドワイヤおよび/または血管における1つ以上の屈曲部に付随して屈曲するデバイス、超音波カテーテル本体の操作を増強するための、この超音波カテーテル本体に連結された近位ハウジング、ガイドワイヤと超音波伝達部材との間の接触を可能にするように構成されたガイドワイヤ管腔、ガイドワイヤ管腔が改善された遠位ヘッドなどが挙げられるが、これらに限定されない。
(Simple Summary of Invention)
Ultrasonic catheter devices and methods provide enhanced destruction of vascular occlusions. In general, an ultrasound catheter is an elongated flexible catheter body having one or more lumens, an ultrasound transmission member extending longitudinally through the lumen of the catheter body, and coupled to the ultrasound transmission member And a distal head for breaking the obstruction positioned adjacent the distal end of the catheter body. Improved features include a catheter body and ultrasound transmission member that becomes progressively more flexible toward the distal end, a guide wire and / or a device that bends associated with one or more bends in a blood vessel, ultrasound A proximal housing coupled to the ultrasound catheter body for enhancing the operation of the catheter body, a guidewire lumen configured to allow contact between the guidewire and the ultrasound transmission member, a guide Examples include, but are not limited to, distal heads with improved wire lumens.
本発明の1つの局面において、血管内の閉塞物を破壊するための超音波カテーテルが提供され、このカテーテルは、患者の身体のアクセス部位から、閉塞物に隣接する標的部位まで、ガイドされ得る。この超音波カテーテルは、一般に、細長い可撓性のカテーテル本体、超音波伝達部材、遠位ヘッド、および少なくとも1つの連結部材を備え、この超音波伝達部材は、このカテーテル本体の管腔を通って長手軸方向に延び、この遠位ヘッドは、この超音波伝達部材の遠位端に連結され、そしてカテーテル本体の遠位端に隣接して配置され、そしてこの連結部材は、この超音波伝達器を、超音波エネルギーの供給源に連結するためのものである。このカテーテル本体は、近位部分、遠位部分、および少なくとも1つの管腔を有し、この近位部分は、この遠位部分より堅く、そしてこの遠位部分は、このカテーテル本体の近位端の近くよりも、このカテーテルの遠位端の近くで、より可撓性である。この超音波伝達部材は、近位端および遠位端を有し、そしてその近位端の近くよりも、その遠位端の近くで、より可撓性である。従って、このカテーテル本体の遠位部分と、この超音波伝達部材との両方が、このデバイスの遠位端に向かって、より可撓性になる。 In one aspect of the present invention, an ultrasound catheter for breaking an obstruction in a blood vessel is provided, which can be guided from an access site in a patient's body to a target site adjacent to the obstruction. The ultrasound catheter generally includes an elongated flexible catheter body, an ultrasound transmission member, a distal head, and at least one connecting member, the ultrasound transmission member passing through the lumen of the catheter body. Extending longitudinally, the distal head is coupled to the distal end of the ultrasound transmission member and is disposed adjacent to the distal end of the catheter body, and the coupling member is coupled to the ultrasound transmitter. For coupling to a source of ultrasonic energy. The catheter body has a proximal portion, a distal portion, and at least one lumen, the proximal portion is stiffer than the distal portion, and the distal portion is the proximal end of the catheter body. It is more flexible near the distal end of this catheter than near. The ultrasonic transmission member has a proximal end and a distal end and is more flexible near its distal end than near its proximal end. Thus, both the distal portion of the catheter body and the ultrasound transmission member become more flexible toward the distal end of the device.
このカテーテル本体と、この超音波伝達ワイヤとの可撓性が、このカテーテルデバイスの遠位端に向かって次第に増加することは、あらゆる適切な製造方法によって、達成され得る。いくつかの実施形態において、例えば、この超音波伝達ワイヤ、カテーテル本体、またはこれらの両方は、それらの断面直径が遠位に向かって減少するように、先細であり得る。1つの実施形態において、例えば、このカテーテル本体の断面直径は、その近位端に沿って、約0.102cmと約0.718cmとの間から、その遠位端に沿って、約0.076cmと約0.127cmとの間までの範囲であり得、そして超音波伝達部材の断面直径は、その近位端の近くの、約0.051cmと約0.102cmとの間から、その遠位端の近くの、約0.013cmと約0.038cmとの間までの範囲であり得る。さらに、または代替的に、このカテーテル本体の壁厚は、近位から遠位へと、減少し得る。例えば、1つの実施形態において、カテーテル本体の壁厚は、その近位部分に沿って、約0.007cm〜約0.020cm、およびその遠位部分に沿って、約0.005cm〜約0.013cmであり得る。これらまたは他の実施形態において、材料の種々の組み合わせが、このカテーテル本体、伝達ワイヤ、またはその両方に、所望の可撓性プロフィールを与えるために、使用され得る。カテーテル本体と超音波伝達ワイヤとの両方が、デバイスの遠位端に向かって可撓性を増加させる、超音波カテーテルを提供することは、蛇行した血管を通る、このデバイスの遠位端の通り抜けを増強する。1つの実施形態において、例えば、このデバイスの遠位部分は、少なくとも1つの屈曲部および約2mmと約5mmとの間の内径を有する血管を、少なくとも5cmの長さだけ、ねじれることなく通過するために、十分に可撓性である。本願の目的で、「蛇行した脈管」とは、少なくとも1つの屈曲部または湾曲部を有すること、およびこの屈曲部または湾曲部が、任意の角度または曲率半径を有し得ることを意味する。いくつかの実施形態において、例えば、脈管における少なくとも1つの屈曲部は、約1.0mm以下の半径を有し得る。いくつかの例において、もちろん、蛇行した血管は、複数の屈曲部または湾曲部を有する。 Increasing the flexibility of the catheter body and the ultrasound transmission wire toward the distal end of the catheter device can be achieved by any suitable manufacturing method. In some embodiments, for example, the ultrasound transmission wire, the catheter body, or both can be tapered such that their cross-sectional diameter decreases distally. In one embodiment, for example, the catheter body has a cross-sectional diameter between about 0.102 cm and about 0.718 cm along its proximal end and about 0.076 cm along its distal end. And the cross-sectional diameter of the ultrasonic transmission member can vary from between about 0.051 cm and about 0.102 cm near its proximal end to its distal end. It can range up to between about 0.013 cm and about 0.038 cm near the edge. Additionally or alternatively, the wall thickness of the catheter body may decrease from proximal to distal. For example, in one embodiment, the wall thickness of the catheter body is about 0.007 cm to about 0.020 cm along its proximal portion, and about 0.005 cm to about 0.00 along its distal portion. It can be 013 cm. In these or other embodiments, various combinations of materials can be used to provide the desired flexibility profile to the catheter body, transmission wire, or both. Providing an ultrasound catheter in which both the catheter body and the ultrasound transmission wire increase flexibility towards the distal end of the device passes through the serpentine blood vessel through the distal end of the device. To strengthen. In one embodiment, for example, the distal portion of the device passes through a blood vessel having at least one bend and an inner diameter between about 2 mm and about 5 mm without twisting by a length of at least 5 cm. And is sufficiently flexible. For purposes of this application, “serpentine vessel” means having at least one bend or curve, and that the bend or curve may have any angle or radius of curvature. In some embodiments, for example, at least one bend in the vessel can have a radius of about 1.0 mm or less. In some examples, of course, a tortuous blood vessel has multiple bends or curves.
本発明の別の局面において、脈管内の閉塞物を破壊するための超音波カテーテルは、ガイドワイヤに沿って、患者の本体のアクセス部位から、閉塞物に隣接する標的部位へとガイドされ得、このカテーテルは、細長い可撓性のカテーテル本体、超音波伝達部材、遠位ヘッド、および少なくとも1つの連結部材を備え、この超音波伝達部材は、このカテーテル本体の管腔を通って長手軸方向に延び、この遠位ヘッドは、この超音波伝達部材の遠位端に連結され、そしてこのカテーテル本体の遠位端に隣接させて位置決めされ、そしてこの少なくとも1つの連結部材は、この超音波伝達部材を、超音波エネルギーの供給源に連結するためのものである。この局面において、このカテーテル本体は、近位部分、遠位部分、および少なくとも1つの管腔を有し、この近位部分は、この遠位部分より大きい断面直径を有し、この近位部分は、少なくとも1つの屈曲部を有する血管を通してこの遠位部分を押すために十分に剛性であり、そしてこの遠位部分は、この血管における屈曲部を通過するために十分に可撓性である。この超音波伝達部材は、近位端および遠位端を有し、この超音波伝達部材の断面直径は、その近位端の近くよりも、その遠位端の近くにおいて、より小さく、そしてこの超音波伝達部材の遠位部分は、血管における屈曲部を通過するために十分に可撓性である。ここでまた、いくつかの実施形態において、このカテーテル本体の壁は、その近位部分に沿ってよりも、その遠位部分に沿って、より薄くあり得る。 In another aspect of the invention, an ultrasonic catheter for breaking an intravascular occlusion can be guided along a guidewire from a patient body access site to a target site adjacent to the occlusion, The catheter includes an elongate flexible catheter body, an ultrasound transmission member, a distal head, and at least one connecting member, the ultrasound transmission member extending longitudinally through the lumen of the catheter body. The distal head is coupled to the distal end of the ultrasonic transmission member and positioned adjacent to the distal end of the catheter body, and the at least one coupling member is the ultrasonic transmission member For coupling to a source of ultrasonic energy. In this aspect, the catheter body has a proximal portion, a distal portion, and at least one lumen, the proximal portion having a larger cross-sectional diameter than the distal portion, the proximal portion being , Sufficiently rigid to push the distal portion through a blood vessel having at least one bend, and the distal portion is sufficiently flexible to pass the bend in the blood vessel. The ultrasonic transmission member has a proximal end and a distal end, the cross-sectional diameter of the ultrasonic transmission member is smaller near the distal end than near the proximal end, and The distal portion of the ultrasound transmission member is sufficiently flexible to pass through the bend in the blood vessel. Again, in some embodiments, the wall of the catheter body can be thinner along its distal portion than along its proximal portion.
本発明の別の局面において、血管内の閉塞物を破壊するための超音波カテーテルは、患者の本体のアクセス部位から、閉塞物に隣接する標的部位へとガイドされ得、このカテーテルは、細長い可撓性のカテーテル本体、超音波伝達部材、遠位ヘッド、および少なくとも1つの連結部材を備え、このカテーテル本体は、近位部分、遠位部分、および少なくとも1つの管腔を有し、この超音波伝達部材は、このカテーテル本体の管腔を通って長手軸方向に延び、この遠位ヘッドは、この超音波伝達部材の遠位端に連結し、そしてこのカテーテル本体の遠位端に隣接して配置され、そしてこの連結部材は、この超音波伝達部材を、超音波エネルギーの供給源に連結するためのものである。この局面において、このカテーテル本体の遠位部分は、このカテーテル本体の近位端の近くよりも、このカテーテル本体の遠位端の近くで、より可撓性であり、そしてこの超音波伝達部材は、その近位端の近くよりも、その遠位端の近くで、より可撓性である。さらに、このカテーテル本体の遠位部分およびこの超音波伝達部材は、少なくとも1つの管腔を通って延びるガイドワイヤにおける、少なくとも1つの屈曲部に付随して適合するように、十分に可撓性である。 In another aspect of the present invention, an ultrasonic catheter for breaking an obstruction in a blood vessel can be guided from an access site in a patient's body to a target site adjacent to the obstruction, the catheter being elongated. A flexible catheter body, an ultrasound transmission member, a distal head, and at least one connecting member, the catheter body having a proximal portion, a distal portion, and at least one lumen, the ultrasound The transmission member extends longitudinally through the lumen of the catheter body, the distal head is coupled to the distal end of the ultrasound transmission member, and adjacent to the distal end of the catheter body. Arranged and the coupling member is for coupling the ultrasonic transmission member to a source of ultrasonic energy. In this aspect, the distal portion of the catheter body is more flexible near the distal end of the catheter body than near the proximal end of the catheter body, and the ultrasound transmission member is It is more flexible near its distal end than near its proximal end. Further, the distal portion of the catheter body and the ultrasound transmission member are sufficiently flexible to conform with at least one bend in a guidewire extending through the at least one lumen. is there.
「付随して適合する」とは、カテーテル本体および超音波伝達部材が、このカテーテル本体、伝達部材およびガイドワイヤが、およそ同じ角度で屈曲するように、ガイドワイヤにおける少なくとも1つの屈曲部に適合することを意味する。いくつかの実施形態において、このカテーテル本体の遠位部分、およびこの超音波伝達ワイヤは、ガイドワイヤの複数の屈曲部に付随して適合するように、十分に可撓性である。いくつかの実施形態においてはまた、このカテーテル本体の遠位部分、およびこの超音波伝達部材は、血管における複数の屈曲部に付随して適合するように、十分に可撓性である。種々の実施形態において、このカテーテルは、ガイドワイヤ上を進められ得、ガイドワイヤは、このカテーテル本体を通って延び得るか、またはこのカテーテル本体、超音波伝達ワイヤおよびガイドワイヤは、血管を通して同時に進められ得る。従って、種々の実施形態において、このカテーテル本体の遠位部分、この超音波伝達ワイヤ、およびこのガイドワイヤは、血管における複数の屈曲部に付随して適合しながら、これらの複数の屈曲部を、一緒にかまたは連続して通過し得る。 “Concomitantly fit” means that the catheter body and ultrasound transmission member conform to at least one bend in the guide wire such that the catheter body, transmission member and guide wire bend at approximately the same angle. Means that. In some embodiments, the distal portion of the catheter body, and the ultrasound transmission wire, are sufficiently flexible to conform with multiple bends of the guidewire. In some embodiments, the distal portion of the catheter body and the ultrasound transmission member are also sufficiently flexible to conform to multiple bends in the blood vessel. In various embodiments, the catheter can be advanced over a guide wire, the guide wire can extend through the catheter body, or the catheter body, ultrasound transmission wire and guide wire can be advanced through the blood vessel simultaneously. Can be. Thus, in various embodiments, the distal portion of the catheter body, the ultrasound transmission wire, and the guide wire conform to the plurality of bends in the blood vessel, while the plurality of bends are They can pass together or sequentially.
本発明の別の局面において、血管内の閉塞物を破壊するための超音波カテーテルは、患者の本体のアクセス部位から、閉塞物に隣接する標的部位へとガイドされ得、このカテーテルは、細長い可撓性のカテーテル本体、超音波伝達部材、遠位ヘッド、および少なくとも1つの連結部材を備え、このカテーテル本体は、近位部分、遠位部分、および少なくとも1つの管腔を有し、この超音波伝達部材は、このカテーテル本体の管腔を通って長手軸方向に延び、この遠位ヘッドは、この超音波伝達部材の遠位端に連結され、そしてこのカテーテル本体の遠位端に隣接して位置決めされ、そしてこの連結部材は、この超音波伝達部材を、超音波エネルギーの供給源に連結するためのものである。この局面において、このカテーテル本体の遠位部分は、少なくとも1つの屈曲部、および少なくとも1つの管腔を有し、このカテーテル本体の近位部分は、この遠位部分より堅く、そしてこの遠位部分は、このカテーテル本体の近位部分の近くよりも、このカテーテル本体の遠位部分の近くで、より可撓性である。この超音波伝達部材は、その近位部分の近くよりも、その遠位部分の近くで、より可撓性であり、この超音波伝達部材は、このカテーテル本体の遠位部分における、少なくとも1つの屈曲部に適合し、そしてこのカテーテル本体の遠位部分およびこの超音波伝達部材は、ガイドワイヤにおける少なくとも1つの屈曲部に付随して適合するように、十分に可撓性である。 In another aspect of the present invention, an ultrasonic catheter for breaking an obstruction in a blood vessel can be guided from an access site in a patient's body to a target site adjacent to the obstruction, the catheter being elongated. A flexible catheter body, an ultrasound transmission member, a distal head, and at least one connecting member, the catheter body having a proximal portion, a distal portion, and at least one lumen, the ultrasound The transmission member extends longitudinally through the lumen of the catheter body, the distal head is coupled to the distal end of the ultrasound transmission member, and adjacent the distal end of the catheter body. Positioned and the coupling member is for coupling the ultrasonic transmission member to a source of ultrasonic energy. In this aspect, the distal portion of the catheter body has at least one bend and at least one lumen, the proximal portion of the catheter body is stiffer than the distal portion, and the distal portion Is more flexible near the distal portion of the catheter body than near the proximal portion of the catheter body. The ultrasonic transmission member is more flexible near its distal portion than near its proximal portion, and the ultrasonic transmission member is at least one at the distal portion of the catheter body. The bend is adapted and the distal portion of the catheter body and the ultrasound transmission member are sufficiently flexible to conform with at least one bend in the guidewire.
本発明のなお別の局面において、血管内の閉塞物を破壊するための超音波カテーテルは、患者の身体のアクセス部位から、閉塞物に隣接する標的部位へとガイドされ得、このカテーテルは、細長い可撓性のカテーテル本体、超音波伝達部材、遠位ヘッド、および少なくとも1つの連結部材を備え、このカテーテル本体は、近位部分、遠位部分、および少なくとも1つの管腔を有し、この超音波伝達部材は、このカテーテル本体の管腔を通って長手軸方向に延び、この遠位ヘッドは、この超音波伝達部材の遠位端に連結され、そしてこのカテーテル本体の遠位端に隣接して配置され、そしてこの連結部材は、この超音波伝達部材を、超音波エネルギーの供給源に連結するためのものである。この局面において、このカテーテル本体は、この管腔内に配置されるガイドワイヤ管を備え、そしてこの本体の近位部分は、遠位部分より堅い。このガイドワイヤ管は、少なくとも1つの開口部を備え、この開口部内で、このカテーテル本体は、このガイドワイヤ管を通って延びるガイドワイヤと、この超音波伝達部材との間に、接触を提供する。 In yet another aspect of the invention, an ultrasound catheter for breaking an obstruction in a blood vessel can be guided from an access site in a patient's body to a target site adjacent to the obstruction, the catheter being elongated A flexible catheter body, an ultrasound transmission member, a distal head, and at least one connecting member, the catheter body having a proximal portion, a distal portion, and at least one lumen, The acoustic transmission member extends longitudinally through the lumen of the catheter body, the distal head is coupled to the distal end of the ultrasonic transmission member, and is adjacent to the distal end of the catheter body. And the connecting member is for connecting the ultrasonic transmission member to a source of ultrasonic energy. In this aspect, the catheter body includes a guidewire tube disposed within the lumen, and the proximal portion of the body is stiffer than the distal portion. The guidewire tube includes at least one opening in which the catheter body provides contact between the guidewire extending through the guidewire tube and the ultrasound transmission member. .
ガイドワイヤを、超音波伝達部材と接触させることは、この伝達部材によって伝達される超音波エネルギーの一部をこのガイドワイヤに移動させることによって、このガイドワイヤの、血管閉塞物内への通過、またはこの閉塞物を通る通過を容易にし得る。種々の実施形態において、このガイドワイヤは、この伝達部材に、このカテーテルデバイスの近位端の近く、遠位端の近く、中央の近く、またはこれらの何らかの組み合わせで、接触し得る。いくつかの実施形態において、このガイドワイヤ管は、2つの開口部を備え、これらの開口部内で、このカテーテル本体は、伝達部材がこの管を通過することを可能にする。ガイドワイヤと超音波伝達部材との間の接触を可能にするための、他の任意の構成がまた、企図される。 Contacting the guide wire with the ultrasound transmission member means passing the guide wire into the vascular occlusion by moving a portion of the ultrasound energy transmitted by the transmission member to the guide wire. Or it can facilitate passage through this obstruction. In various embodiments, the guidewire may contact the transmission member near the proximal end of the catheter device, near the distal end, near the center, or some combination thereof. In some embodiments, the guidewire tube includes two openings, within which the catheter body allows the transmission member to pass through the tube. Any other configuration for allowing contact between the guidewire and the ultrasound transmission member is also contemplated.
本発明の別の局面において、血管内の閉塞物を破壊するための超音波カテーテルは、患者の身体のアクセス部位から、閉塞物に隣接する標的部位へとガイドされ得、このカテーテルは、細長い可撓性のカテーテル本体、超音波伝達部材、遠位ヘッド、および少なくとも1つの連結部材を備え、このカテーテル本体は、近位部分、遠位部分、および少なくとも1つの管腔を有し、この超音波伝達部材は、このカテーテル本体の管腔を通って長手軸方向に延び、この遠位ヘッドは、この超音波伝達部材の遠位端に連結され、そしてこのカテーテル本体の遠位端に隣接して配置され、そしてこの連結部材は、この超音波伝達部材を、超音波エネルギーの供給源に連結するためのものである。この局面において、この遠位ヘッドは、その遠位端の中心のガイドワイヤ開口部分、およびこの遠位ヘッドを通って延びるガイドワイヤ管腔を備える。このガイドワイヤ管腔は、次に、このカテーテル本体の長手方向軸とは異なる長手方向軸を有する。 In another aspect of the present invention, an ultrasound catheter for breaking an intravascular occlusion can be guided from an access site in a patient's body to a target site adjacent to the occlusion, the catheter being elongated. A flexible catheter body, an ultrasound transmission member, a distal head, and at least one connecting member, the catheter body having a proximal portion, a distal portion, and at least one lumen, the ultrasound The transmission member extends longitudinally through the lumen of the catheter body, the distal head is coupled to the distal end of the ultrasound transmission member, and adjacent the distal end of the catheter body. Arranged and the coupling member is for coupling the ultrasonic transmission member to a source of ultrasonic energy. In this aspect, the distal head comprises a guide wire opening at the center of the distal end and a guide wire lumen extending through the distal head. The guidewire lumen then has a longitudinal axis that is different from the longitudinal axis of the catheter body.
この遠位ヘッドの中心から延びるガイドワイヤ管腔を有することは、このガイドワイヤおよびカテーテルデバイスを進めるために有利である。このガイドワイヤ管腔を、このカテーテル本体の長手方向軸から離れるような角度にすることによって、ガイドワイヤおよびこの超音波伝達部材が、より細いカテーテル本体を通過することが可能になり、従って、カテーテルデバイスの直径が減少し、そして蛇行した脈管を通る通過が容易になる。いくつかの実施形態において、この遠位ヘッド内のガイドワイヤ管腔は、空洞を備え、この空洞内に、このカテーテル本体のガイドワイヤ管の遠位端が配置される。いくつかの実施形態において、この空洞は、この遠位ヘッドの遠位端を通って延び、その結果、このガイドワイヤ管の遠位端が、この遠位ヘッドの遠位端と同一面になる。他の実施形態において、この空洞は、この遠位ヘッドを部分的に通って延び、その結果、このガイドワイヤ管の遠位端は、この遠位ヘッドの遠位端の近くに配置される。 Having a guidewire lumen extending from the center of the distal head is advantageous for advancing the guidewire and catheter device. By angling the guidewire lumen away from the longitudinal axis of the catheter body, the guidewire and the ultrasound transmission member can pass through the thinner catheter body, and thus the catheter The device diameter is reduced and passage through the tortuous vessels is facilitated. In some embodiments, the guidewire lumen in the distal head comprises a cavity in which the distal end of the catheter body guidewire tube is disposed. In some embodiments, the cavity extends through the distal end of the distal head so that the distal end of the guidewire tube is flush with the distal end of the distal head. . In other embodiments, the cavity extends partially through the distal head so that the distal end of the guidewire tube is positioned near the distal end of the distal head.
本発明の別の局面において、血管内の閉塞物を破壊するための超音波カテーテルは、患者の身体のアクセス部位から、閉塞物に隣接する標的部位へとガイドされ得、このカテーテルは、細長い可撓性のカテーテル本体、超音波伝達部材、遠位ヘッド、および少なくとも1つの連結部材を備え、このカテーテル本体は、近位部分、遠位部分、および少なくとも1つの管腔を有し、この超音波伝達部材は、このカテーテル本体の管腔を通って長手軸方向に延び、この遠位ヘッドは、この超音波伝達部材の遠位端に連結され、そしてこのカテーテル本体の遠位端に隣接して配置され、そしてこの連結部材は、この超音波伝達部材を、超音波エネルギーの供給源に連結するためのものである。本発明のこの局面において、この少なくとも1つの連結部材は、このカテーテル本体の近位端にしっかりと連結されるハウジングを備え、その結果、このハウジングに付与されるトルクが、このカテーテル本体に沿ってその遠位部分へと伝達される。 In another aspect of the present invention, an ultrasound catheter for breaking an intravascular occlusion can be guided from an access site in a patient's body to a target site adjacent to the occlusion, the catheter being elongated. A flexible catheter body, an ultrasound transmission member, a distal head, and at least one connecting member, the catheter body having a proximal portion, a distal portion, and at least one lumen, the ultrasound The transmission member extends longitudinally through the lumen of the catheter body, the distal head is coupled to the distal end of the ultrasound transmission member, and adjacent the distal end of the catheter body. Arranged and the coupling member is for coupling the ultrasonic transmission member to a source of ultrasonic energy. In this aspect of the invention, the at least one connecting member comprises a housing that is securely connected to the proximal end of the catheter body so that a torque applied to the housing is along the catheter body. Transmitted to its distal portion.
本発明のなお別の局面において、血管内の閉塞物を破壊するための方法は、以下の工程を包含する:超音波カテーテルを、少なくとも1つの屈曲部を有する血管に通して進める工程であって、このカテーテルは、この少なくとも1つの屈曲部に付随して適合し、この進める工程は、この超音波カテーテルの超音波伝達部材を、このカテーテル内の1つ以上の位置で、ガイドワイヤと接触させる工程を包含する、工程;この超音波カテーテルの遠位端を、この血管内の閉塞物に隣接させて位置決めする工程;および超音波エネルギーをこの超音波伝達部材に伝達して、この閉塞物を、複数の閉塞物断片に破壊する工程であって、この伝達する工程は、超音波エネルギーをこのガイドワイヤに伝達する工程を包含する、方法。必要に応じて、この方法は、これらの閉塞物断片のうちの少なくとも数個を、超音波カテーテルを介して血管から除去する工程を、さらに包含し得る。いくつかの実施形態において、この超音波カテーテルは、ガイドワイヤに沿って進められる。あるいは、このガイドワイヤは、このカテーテルを通過し得るか、またはこのカテーテルとこのガイドワイヤとが、血管を通して一緒に進められ得る。位置決めする工程はまた、超音波カテーテルおよびガイドワイヤを、血管における複数の屈曲部に沿って進める工程を包含し得、ここで、このカテーテルのカテーテル本体、超音波伝達部材およびガイドワイヤは、これらの複数の屈曲部に付随して適合する。屈曲部は、あらゆる適切な角度または曲率半径を有し得る。1つの実施形態において、例えば、1つ以上の屈曲部は、約1.0cm以下の半径を有し得る。この方法はまた、この超音波カテーテルの近位ハウジングに、半径方向の力を付与して、この超音波カテーテルの遠位端を、血管内で半径方向に曲げる工程を包含し得る。 In yet another aspect of the invention, a method for breaking an obstruction in a blood vessel includes the following steps: advancing an ultrasound catheter through a blood vessel having at least one bend. The catheter conforms to the at least one bend, and the advancing step contacts the ultrasound transmission member of the ultrasound catheter with a guide wire at one or more locations within the catheter. Positioning the distal end of the ultrasound catheter adjacent to the occlusion in the blood vessel; and transmitting ultrasonic energy to the ultrasound transmission member to , Breaking into a plurality of obstruction pieces, wherein the transmitting step comprises transmitting ultrasonic energy to the guidewire. Optionally, the method can further include removing at least some of these obstruction fragments from the blood vessel via the ultrasound catheter. In some embodiments, the ultrasound catheter is advanced along a guide wire. Alternatively, the guidewire can pass through the catheter, or the catheter and the guidewire can be advanced together through the blood vessel. The positioning step may also include advancing the ultrasound catheter and guide wire along a plurality of bends in the blood vessel, wherein the catheter body, ultrasound transmission member and guide wire of the catheter are provided by these catheters. Fits along multiple bends. The bend may have any suitable angle or radius of curvature. In one embodiment, for example, the one or more bends can have a radius of about 1.0 cm or less. The method may also include the step of applying a radial force to the proximal housing of the ultrasound catheter to bend the distal end of the ultrasound catheter radially within the blood vessel.
本発明のさらなる局面および具体的な実施形態が、添付の図面を参照して、以下に記載される。
より特定すれば、本願発明は以下の項目に関し得る。
(項目1)
血管内の閉塞物を破壊するための超音波カテーテルであって、上記超音波カテーテルは、患者の身体のアクセス部位から、閉塞物に隣接する標的部位へとガイドされ得、上記超音波カテーテルは、以下:
細長い可撓性のカテーテル本体であって、上記カテーテル本体は、近位部分、遠位部分、および少なくとも1つの管腔を有し、上記近位部分は、上記遠位部分より堅く、そして上記遠位部分は、上記カテーテル本体の上記近位部分の近くよりも、上記カテーテル本体の遠位端の近くにおいて、より可撓性である、細長い可撓性のカテーテル本体;
超音波伝達部材であって、上記超音波伝達部材は、上記カテーテル本体の上記管腔を通って長手軸方向に延び、そして近位端および遠位端を有し、上記超音波伝達部材は、上記近位端の近くよりも、上記遠位端の近くにおいて、より可撓性である、超音波伝達部材;
遠位ヘッドであって、上記遠位ヘッドは、上記超音波伝達部材の上記遠位端と連結しており、そして上記カテーテル本体の上記遠位端に隣接して配置されている、遠位ヘッド;
ならびに
上記超音波伝達部材を超音波エネルギーの供給源に連結するための、少なくとも1つの連結部材、
を備える、超音波カテーテル。
(項目2)
上記遠位部分が、少なくとも1つの屈曲部および約2mmと約5mmとの間の内径を有する血管を少なくとも5cm、捻じれることなく通過するために十分に可撓性である、項目1に記載の超音波カテーテル。
(項目3)
上記少なくとも1つの屈曲部が、約1.0cm以下の半径を有する、項目2に記載の超音波カテーテル。
(項目4)
上記カテーテル本体の断面半径が、上記近位部分に沿ってよりも、上記遠位部分に沿って、より小さく、そして上記超音波伝達ワイヤの断面直径が、上記近位端の近くよりも、上記遠位端の近くにおいて、より小さい、項目1に記載の超音波カテーテル。
(項目5)
上記カテーテル本体の断面直径が、上記近位端に沿って、約0.102cmと約0.178cmとの間であり、そして上記遠位端に沿って、約0.076cmと約0.127cmとの間であり、そして上記超音波伝達部材の断面直径が、上記近位端の近くで、約0.051cmと約0.102cmとの間であり、そして上記遠位端の近くで、約0.013cmと約0.038cmとの間である、項目4に記載の超音波カテーテル。
(項目6)
上記カテーテル本体の壁厚が、上記近位部分に沿ってよりも、上記遠位部分に沿って、
より小さい、項目4に記載の超音波カテーテル。
(項目7)
上記壁厚が、上記近位部分に沿って、約0.007cmと約0.020cmとの間であり、そして上記遠位部分に沿って、約0.005cmと約0.013cmとの間である、項目6に記載の超音波カテーテル。
(項目8)
血管内の閉塞物を破壊するための超音波カテーテルであって、上記超音波カテーテルは、患者の身体のアクセス部位から、閉塞物に隣接する標的部位へと、ガイドワイヤに沿ってガイドされ得、上記超音波カテーテルは、以下:
細長い可撓性のカテーテル本体であって、上記カテーテル本体は、近位部分、遠位部分、および少なくとも1つの管腔を有し、上記近位部分は、上記遠位部分より大きい断面直径を有し、上記近位部分は、少なくとも1つの屈曲部を有する血管を通して上記遠位部分を押すために十分に堅く、そして上記遠位部分は、上記血管内の上記屈曲部を通過するための十分に可撓性である、細長い可撓性のカテーテル本体;
超音波伝達部材であって、上記超音波伝達部材は、上記カテーテル本体の上記管腔を通って長手軸方向に延び、そして近位端および遠位端を有し、上記超音波伝達部材の断面直径は、上記近位端の近くにおいてよりも、上記遠位端の近くにおいて、より小さく、そして上記超音波伝達部材の遠位部分は、上記血管内の上記屈曲部を通過するために十分に可撓性である、超音波伝達部材;
遠位ヘッドであって、上記遠位ヘッドは、上記超音波伝達部材の上記遠位端に連結して
おり、そして上記カテーテル本体の上記遠位端に隣接して配置されている、遠位ヘッド;
ならびに
上記超音波伝達部材を超音波エネルギーの供給源に連結するための、少なくとも1つの連結部材、
を備える、超音波カテーテル。
(項目9)
上記遠位部分は、血管を少なくとも5cm、捻じれることなく通過するために十分に可撓性であり、上記血管は、約2mmと約5mmとの間の内径を有し、そして上記少なくとも1つの屈曲部は、約1.0cm以下の半径を有する、項目8に記載の超音波カテーテル。
(項目10)
上記カテーテル本体の壁厚が、上記近位部分に沿ってよりも、上記遠位部分に沿って、
より小さい、項目8に記載の超音波カテーテル。
(項目11)
上記壁厚が、上記近位部分に沿って、約0.007cm〜約0.020cmの間であり、そして上記遠位部分に沿って、約0.005cm〜約0.013cmである、項目10に記載の超音波カテーテル。
(項目12)
血管内の閉塞物を破壊するための超音波カテーテルであって、上記超音波カテーテルは、患者の身体のアクセス部位から、閉塞物に隣接する標的部位まで、ガイドワイヤに沿ってガイドされ得、上記超音波カテーテルは、以下:
細長い可撓性のカテーテル本体であって、上記カテーテル本体は、近位部分、遠位部分、および少なくとも1つの管腔を有し、上記近位部分は、上記遠位部分より堅く、そして上記遠位部分は、上記カテーテル本体の上記近位部分の近くよりも、上記カテーテル本体の遠位端の近くにおいて、より可撓性である、細長い可撓性のカテーテル本体;
超音波伝達部材であって、上記超音波伝達部材は、上記カテーテル本体の上記管腔を通って長手軸方向に伸び、そして近位端および遠位端を有し、上記超音波伝達部材は、上記近位端の近くよりも、上記遠位端の近くにおいて、より可撓性であり、そして上記カテーテル本体の上記遠位部分と、上記超音波伝達部材とは、上記少なくとも1つの管腔を通って延びるガイドワイヤにおける少なくとも1つの屈曲部に付随して適合するために十分に可撓性である、超音波伝達部材;
遠位ヘッドであって、上記遠位ヘッドは、上記超音波伝達部材の上記遠位端に連結されており、そして上記カテーテル本体の上記遠位端に隣接して配置されている、遠位ヘッド;ならびに
上記超音波伝達部材を、超音波エネルギーの供給源に連結するための、少なくとも1つの連結部材、を備える、超音波カテーテル。
(項目13)
上記カテーテル本体の上記遠位部分と、上記超音波伝達ワイヤとが、上記ガイドワイヤにおける複数の屈曲部に付随して適合するために十分に可撓性である、項目12に記載の超音波カテーテル。
(項目14)
上記カテーテル本体の上記遠位部分と、上記超音波伝達部材とが、血管における複数の屈曲部に付随して適合するために十分に可撓性である、項目13に記載の超音波カテーテル。
(項目15)
上記カテーテル本体の上記遠位部分、上記超音波伝達ワイヤ、および上記ガイドワイヤが、上記血管における複数の屈曲部に付随して適合しながら、上記複数の屈曲部を一緒にかまたは連続的に通過し得る、項目14に記載の超音波カテーテル。
(項目16)
血管内の閉塞物を破壊するための超音波カテーテルであって、上記超音波カテーテルは、ガイドワイヤに沿って、患者の身体のアクセス部位から閉塞物に隣接する標的部位へとガイドされ得、上記超音波カテーテルは、以下:
細長い可撓性のカテーテル本体であって、上記カテーテル本体は、近位部分、少なくとも1つの屈曲部を有する遠位部分、および少なくとも1つの管腔を有し、上記近位部分は、上記遠位部分より堅く、そして上記遠位部分は、上記カテーテル本体の上記近位部分の近くよりも、上記カテーテル本体の遠位端の近くにおいて、より可撓性である、細長い可撓性のカテーテル本体;
超音波伝達部材であって、上記超音波伝達部材は、上記カテーテル本体の上記管腔を通って長手軸方向に伸び、そして近位端および遠位端を有し、上記超音波伝達部材は、上記近位端の近くよりも、上記遠位端の近くにおいて、より可撓性であり、上記超音波伝達部材は、上記カテーテル本体の上記遠位部分の上記少なくとも1つの屈曲部に適合し、そして上記カテーテル本体の上記遠位部分と、上記超音波伝達部材とは、上記少なくとも1つの管腔を通って延びるガイドワイヤにおける少なくとも1つの屈曲部に付随して適合するために十分に可撓性である、超音波伝達部材;
遠位ヘッドであって、上記遠位ヘッドは、上記超音波伝達部材の上記遠位端に連結され、そして上記カテーテル本体の上記遠位端に隣接して配置される、遠位ヘッド;ならびに
上記超音波伝達部材を超音波エネルギーの供給源に連結するための、少なくとも1つの連結部材、
を備える、超音波カテーテル。
(項目17)
上記カテーテル本体の上記遠位部分と、上記超音波伝達ワイヤとが、上記ガイドワイヤにおける複数の屈曲部に付随して適合するために十分に可撓性である、項目16に記載の超音波カテーテル。
(項目18)
上記カテーテル本体の上記遠位部分と、上記伝達部材とが、血管における複数の屈曲部に付随して適合するために十分に可撓性である、項目17に記載の超音波カテーテル。
(項目19)
上記カテーテル本体の上記遠位部分と、上記超音波伝達ワイヤと、上記ガイドワイヤとが、上記血管の複数の屈曲部に付随して適合しながら、上記複数の屈曲部を一緒にかまたは連続的に通過し得る、項目18に記載の超音波カテーテル。
(項目20)
血管内の閉塞物を破壊するための超音波カテーテルであって、上記超音波カテーテルは、患者の身体のアクセス部位から、閉塞物に隣接する標的部位へとガイドされ得、上記超音波カテーテルは、以下:
細長い可撓性のカテーテル本体であって、上記カテーテル本体は、近位部分、遠位部分、少なくとも1つの管腔、および上記管腔内に配置されたガイドワイヤ管を有し、上記近位部分は、上記遠位部分より堅い、細長い可撓性カテーテル本体;
上記カテーテル本体の上記管腔を通って長手軸方向に延びる、超音波伝達部材;
遠位ヘッドであって、上記遠位ヘッドは、上記超音波伝達部材の上記遠位端に連結され、そして上記カテーテル本体の上記遠位端に隣接して配置される、遠位ヘッド;ならびに
上記超音波伝達部材を超音波エネルギーの供給源に連結するための、少なくとも1つの連結部材、を備え;
上記ガイドワイヤ管は、上記カテーテル本体の内部に、少なくとも1つの開口部を備え、上記開口部は、上記ガイドワイヤ管を通って延びるガイドワイヤと、上記超音波伝達部材との間の接触を提供するためのものである、超音波カテーテル。
(項目21)
上記カテーテル本体の上記遠位部分が、上記カテーテル本体の上記近位部分の近くよりも、上記カテーテル本体の遠位端の近くで、より可撓性である、項目20に記載の超音波カテーテル。
(項目22)
上記超音波伝達部材が、近位端および遠位端を備え、上記超音波伝達部材が、上記近位端の近くよりも、上記遠位端の近くにおいて、より可撓性である、項目20に記載の超音波カテーテル。
(項目23)
上記ガイドワイヤが、上記カテーテル本体の上記近位端よりも、上記カテーテル本体の上記遠位端のより近くで、上記超音波伝達ワイヤと接触する、項目20に記載の超音波カテーテル。
(項目24)
上記ガイドワイヤが、上記カテーテル本体の上記遠位端よりも、上記カテーテル本体の上記近位端のより近くで、上記超音波伝達ワイヤと接触する、項目20に記載の超音波カテーテル。
(項目25)
上記ガイドワイヤが、上記超音波伝達ワイヤと、上記カテーテル本体の中央の近くで接触する、項目20に記載の超音波カテーテル。
(項目26)
血管内の閉塞物を破壊するための超音波カテーテルであって、上記超音波カテーテルは、患者の身体のアクセス部位から、閉塞物に隣接する標的部位へとガイドされ得、上記超音波カテーテルは、以下:
細長い可撓性のカテーテル本体であって、上記カテーテル本体は、近位部分、遠位部分、および少なくとも1つの管腔を有し、上記近位部分は、上記遠位部分より堅い、細長い可撓性のカテーテル本体;
上記カテーテル本体の上記管腔を通って長手軸方向に延びる、超音波伝達部材;
遠位ヘッドであって、上記遠位ヘッドは、上記超音波伝達部材の遠位端に連結し、そして上記カテーテル本体の遠位端に隣接して配置され、上記遠位ヘッドは、以下:
上記遠位ヘッドの遠位端の中心のガイドワイヤ開口部分;および
上記遠位ヘッドを通って延びるガイドワイヤ管腔であって、上記ガイドワイヤ管腔は、上記カテーテル本体の長手方向軸とは異なる長手方向軸を有する、ガイドワイヤ管腔、
を備える、遠位ヘッド;ならびに
上記超音波伝達部材を超音波エネルギーの供給源に連結するための、少なくとも1つの連結部材、
を備える、超音波カテーテル。
(項目27)
上記カテーテル本体の上記遠位部分が、上記カテーテル本体の上記近位部分の近くよりも、上記カテーテルの遠位端の近くにおいて、より可撓性である、項目26に記載の超音波カテーテル。
(項目28)
上記超音波伝達部材が、近位端および遠位端を備え、そして上記超音波伝達部材が、上記近位端の近くよりも、上記遠位端の近くにおいて、より可撓性である、項目26に記載の超音波カテーテル。
(項目29)
上記ガイドワイヤ管腔が、空洞を備え、上記空洞内に、上記カテーテル本体のガイドワイヤ管の遠位端が配置される、項目26に記載の超音波カテーテル。
(項目30)
上記空洞が、上記遠位ヘッドの上記遠位端を通って延び、その結果、上記ガイドワイヤ管の上記遠位端が、上記遠位ヘッドの上記遠位端と同一面になる、項目29に記載の超音波カテーテル。
(項目31)
上記空洞が、上記遠位ヘッドを部分的に通って近位に延び、その結果、上記ガイドワイヤ管の上記遠位端が、上記遠位ヘッドの上記遠位端の近くに配置される、項目29に記載の超音波カテーテル。
(項目32)
血管内の閉塞物を破壊するための超音波カテーテルであって、上記超音波カテーテルは、患者の身体のアクセス部位から、閉塞物に隣接する標的部位へとガイドされ得、上記超音波カテーテルは、以下:
細長い可撓性のカテーテル本体であって、上記カテーテル本体は、近位部分、遠位部分、および少なくとも1つの管腔を有し、上記近位部分は、上記遠位部分より堅く、そして上記遠位部分は、上記カテーテル本体の上記近位部分の近くよりも、上記カテーテル本体の遠位端の近くにおいて、より可撓性である、細長い可撓性のカテーテル本体;
超音波伝達部材であって、上記超音波伝達部材は、上記カテーテル本体の上記管腔を通って長手軸方向に伸び、そして近位端および遠位端を有し、上記超音波伝達部材は、上記近位端の近くよりも、上記遠位端の近くにおいて、より可撓性である、超音波伝達部材;
遠位ヘッドであって、上記遠位ヘッドは、上記超音波伝達部材の上記遠位端に連結され、そして上記カテーテル本体の上記遠位端の近くに配置される、遠位ヘッド;ならびに
上記超音波伝達部材を超音波エネルギーの供給源に連結するための、少なくとも1つの連結部材であって、上記少なくとも1つの連結部材は、上記カテーテル本体の上記近位端にしっかりと連結されるハウジングを備え、その結果、上記ハウジングに付与されるトルクが、上記カテーテル本体に沿って上記遠位部分まで伝達される、連結部材、
を備える、超音波カテーテル。
(項目33)
血管内の閉塞物を破壊するための方法であって、上記方法は、以下:
超音波カテーテルを、少なくとも1つの屈曲部を有する血管に通して進める工程であって、上記カテーテルは、上記少なくとも1つの屈曲部に付随して適合し、上記進める工程は、上記超音波カテーテルの超音波伝達部材を、上記カテーテル内の1つ以上の位置で、ガイドワイヤと接触させる工程を包含する、工程;
上記超音波カテーテルの遠位端を、上記血管内の閉塞物に隣接させて位置決めする工程;および
超音波エネルギーを上記超音波伝達部材に伝達して、上記閉塞物を、複数の閉塞物断片に破壊する工程であって、上記伝達する工程は、超音波エネルギーを上記ガイドワイヤに伝達する工程を包含する、工程、
を包含する、方法。
(項目34)
上記閉塞物断片の少なくとも数個を、上記超音波カテーテルを介して、上記血管から除去する工程をさらに包含する、項目33に記載の方法。
(項目35)
上記超音波カテーテルが、上記ガイドワイヤに沿って進めされる、項目33に記載の方法。
(項目36)
上記ガイドワイヤが、上記カテーテルを通過させられる、項目33に記載の方法。
(項目37)
上記カテーテルおよび上記ガイドワイヤが、上記血管を通して一緒に進められる、項目33に記載の方法。
(項目38)
上記超音波カテーテルが、約1.0cm以下の半径を有する少なくとも1つの屈曲部を通して進められる、項目33に記載の方法。
(項目39)
上記超音波カテーテルおよび上記ガイドワイヤが、上記血管における複数の屈曲部に沿って進められ、上記カテーテルのカテーテル本体と、上記超音波伝達部材と、上記ガイドワイヤとが、上記複数の屈曲部に付随して適合するために十分に可撓性である、項目33に記載の方法。
(項目40)
上記超音波カテーテルの近位ハウジングに半径方向の力を付与して、上記超音波カテーテルの上記遠位端を、上記血管内で、半径方向に曲げる工程をさらに包含する、項目33
に記載の方法。
Further aspects and specific embodiments of the present invention are described below with reference to the accompanying drawings.
More specifically, the present invention can relate to the following items.
(Item 1)
An ultrasonic catheter for breaking an obstruction in a blood vessel, wherein the ultrasonic catheter can be guided from an access site in a patient's body to a target site adjacent to the occlusion, the ultrasonic catheter comprising: Less than:
An elongated flexible catheter body, the catheter body having a proximal portion, a distal portion, and at least one lumen, the proximal portion being stiffer than the distal portion and the distal portion An elongated flexible catheter body that is more flexible near the distal end of the catheter body than near the proximal portion of the catheter body;
An ultrasonic transmission member, wherein the ultrasonic transmission member extends longitudinally through the lumen of the catheter body and has a proximal end and a distal end, the ultrasonic transmission member comprising: An ultrasonic transmission member that is more flexible near the distal end than near the proximal end;
A distal head, wherein the distal head is coupled to the distal end of the ultrasound transmission member and disposed adjacent to the distal end of the catheter body ;
And at least one coupling member for coupling the ultrasonic transmission member to a source of ultrasonic energy,
An ultrasonic catheter comprising:
(Item 2)
(Item 3)
The ultrasonic catheter of
(Item 4)
The cross-sectional radius of the catheter body is smaller along the distal portion than along the proximal portion, and the cross-sectional diameter of the ultrasound transmission wire is greater than near the proximal end. 2. The ultrasound catheter of item 1, which is smaller near the distal end.
(Item 5)
The catheter body has a cross-sectional diameter between about 0.102 cm and about 0.178 cm along the proximal end and about 0.076 cm and about 0.127 cm along the distal end. And the cross-sectional diameter of the ultrasound transmission member is between about 0.051 cm and about 0.102 cm near the proximal end and about 0 near the distal end. Item 5. The ultrasound catheter of item 4, wherein the ultrasound catheter is between 013 cm and about 0.038 cm.
(Item 6)
The wall thickness of the catheter body is along the distal portion rather than along the proximal portion;
The ultrasonic catheter of item 4, which is smaller.
(Item 7)
The wall thickness is between about 0.007 cm and about 0.020 cm along the proximal portion and between about 0.005 cm and about 0.013 cm along the distal portion. Item 7. The ultrasonic catheter according to Item 6.
(Item 8)
An ultrasonic catheter for breaking an obstruction in a blood vessel, wherein the ultrasonic catheter can be guided along a guide wire from an access site in a patient's body to a target site adjacent to the obstruction; The ultrasonic catheter is as follows:
An elongate flexible catheter body, the catheter body having a proximal portion, a distal portion, and at least one lumen, the proximal portion having a larger cross-sectional diameter than the distal portion. The proximal portion is stiff enough to push the distal portion through a blood vessel having at least one bend, and the distal portion is sufficient to pass the bend in the vessel An elongate flexible catheter body that is flexible;
An ultrasonic transmission member, wherein the ultrasonic transmission member extends longitudinally through the lumen of the catheter body and has a proximal end and a distal end, the cross section of the ultrasonic transmission member The diameter is smaller near the distal end than near the proximal end, and the distal portion of the ultrasound transmission member is sufficient to pass through the bend in the blood vessel. An ultrasonic transmission member that is flexible;
A distal head, wherein the distal head is coupled to the distal end of the ultrasound transmission member and is disposed adjacent to the distal end of the catheter body. ;
And at least one coupling member for coupling the ultrasonic transmission member to a source of ultrasonic energy,
An ultrasonic catheter comprising:
(Item 9)
The distal portion is flexible enough to pass through the blood vessel at least 5 cm without twisting, the blood vessel has an inner diameter between about 2 mm and about 5 mm, and the at least one Item 9. The ultrasonic catheter according to Item 8, wherein the bent portion has a radius of about 1.0 cm or less.
(Item 10)
The wall thickness of the catheter body is along the distal portion rather than along the proximal portion;
9. The ultrasonic catheter of item 8, which is smaller.
(Item 11)
(Item 12)
An ultrasonic catheter for breaking an obstruction in a blood vessel, wherein the ultrasonic catheter can be guided along a guide wire from an access site in a patient's body to a target site adjacent to the obstruction, Ultrasonic catheters are:
An elongated flexible catheter body, the catheter body having a proximal portion, a distal portion, and at least one lumen, the proximal portion being stiffer than the distal portion and the distal portion An elongated flexible catheter body that is more flexible near the distal end of the catheter body than near the proximal portion of the catheter body;
An ultrasonic transmission member, wherein the ultrasonic transmission member extends longitudinally through the lumen of the catheter body and has a proximal end and a distal end, the ultrasonic transmission member comprising: More flexible near the distal end than near the proximal end, and the distal portion of the catheter body and the ultrasound transmission member pass the at least one lumen. An ultrasound transmission member that is sufficiently flexible to conform to at least one bend in a guidewire extending therethrough;
A distal head, wherein the distal head is coupled to the distal end of the ultrasound transmission member and disposed adjacent to the distal end of the catheter body An ultrasonic catheter comprising: at least one connecting member for connecting the ultrasonic transmission member to a source of ultrasonic energy.
(Item 13)
The ultrasound catheter of
(Item 14)
14. The ultrasound catheter of
(Item 15)
The distal portion of the catheter body, the ultrasound transmission wire, and the guide wire pass together or sequentially through the plurality of bends, with concomitant attachment to the plurality of bends in the blood vessel. 15. The ultrasound catheter of item 14, which can be.
(Item 16)
An ultrasonic catheter for breaking an obstruction in a blood vessel, wherein the ultrasonic catheter can be guided along a guide wire from an access site of a patient's body to a target site adjacent to the obstruction, Ultrasonic catheters are:
An elongate flexible catheter body, the catheter body having a proximal portion, a distal portion having at least one bend, and at least one lumen, the proximal portion being the distal An elongate flexible catheter body that is stiffer than the portion and wherein the distal portion is more flexible near the distal end of the catheter body than near the proximal portion of the catheter body;
An ultrasonic transmission member, wherein the ultrasonic transmission member extends longitudinally through the lumen of the catheter body and has a proximal end and a distal end, the ultrasonic transmission member comprising: More flexible near the distal end than near the proximal end, and the ultrasound transmission member fits the at least one bend in the distal portion of the catheter body; And the distal portion of the catheter body and the ultrasound transmission member are sufficiently flexible to conform with at least one bend in a guidewire extending through the at least one lumen. An ultrasonic transmission member;
A distal head coupled to the distal end of the ultrasonic transmission member and disposed adjacent to the distal end of the catheter body; and At least one coupling member for coupling the ultrasonic transmission member to a source of ultrasonic energy;
An ultrasonic catheter comprising:
(Item 17)
The ultrasonic catheter of
(Item 18)
18. An ultrasound catheter according to
(Item 19)
The distal portions of the catheter body, the ultrasound transmission wire, and the guide wire are adapted to be associated with or sequentially attached to the plurality of bends of the blood vessel. Item 19. The ultrasound catheter according to Item 18, which can pass through.
(Item 20)
An ultrasonic catheter for breaking an obstruction in a blood vessel, wherein the ultrasonic catheter can be guided from an access site in a patient's body to a target site adjacent to the occlusion, the ultrasonic catheter comprising: Less than:
An elongated flexible catheter body, the catheter body having a proximal portion, a distal portion, at least one lumen, and a guidewire tube disposed within the lumen, the proximal portion An elongate flexible catheter body stiffer than the distal portion;
An ultrasonic transmission member extending longitudinally through the lumen of the catheter body;
A distal head coupled to the distal end of the ultrasonic transmission member and disposed adjacent to the distal end of the catheter body; and At least one coupling member for coupling the ultrasonic transmission member to a source of ultrasonic energy;
The guide wire tube includes at least one opening within the catheter body, the opening providing contact between the guide wire extending through the guide wire tube and the ultrasonic transmission member. An ultrasound catheter that is intended for use.
(Item 21)
21. The ultrasound catheter of
(Item 22)
(Item 23)
21. The ultrasound catheter of
(Item 24)
21. The ultrasound catheter of
(Item 25)
(Item 26)
An ultrasonic catheter for breaking an obstruction in a blood vessel, wherein the ultrasonic catheter can be guided from an access site in a patient's body to a target site adjacent to the occlusion, the ultrasonic catheter comprising: Less than:
An elongate flexible catheter body, the catheter body having a proximal portion, a distal portion, and at least one lumen, the proximal portion being stiffer than the distal portion, elongate flexible Sex catheter body;
An ultrasonic transmission member extending longitudinally through the lumen of the catheter body;
A distal head coupled to the distal end of the ultrasound transmission member and disposed adjacent to the distal end of the catheter body, the distal head comprising:
A guidewire opening at the center of the distal end of the distal head; and a guidewire lumen extending through the distal head, the guidewire lumen being different from the longitudinal axis of the catheter body A guidewire lumen having a longitudinal axis;
A distal head; and at least one coupling member for coupling the ultrasonic transmission member to a source of ultrasonic energy;
An ultrasonic catheter comprising:
(Item 27)
27. The ultrasound catheter of item 26, wherein the distal portion of the catheter body is more flexible near the distal end of the catheter than near the proximal portion of the catheter body.
(Item 28)
The ultrasonic transmission member comprises a proximal end and a distal end, and the ultrasonic transmission member is more flexible near the distal end than near the proximal end. The ultrasonic catheter according to 26.
(Item 29)
27. The ultrasound catheter of item 26, wherein the guidewire lumen comprises a cavity, and the distal end of the guidewire tube of the catheter body is disposed in the cavity.
(Item 30)
Item 29, wherein the cavity extends through the distal end of the distal head such that the distal end of the guidewire tube is flush with the distal end of the distal head. The described ultrasonic catheter.
(Item 31)
The cavity extends proximally partially through the distal head so that the distal end of the guidewire tube is disposed near the distal end of the distal head; The ultrasonic catheter according to 29.
(Item 32)
An ultrasonic catheter for breaking an obstruction in a blood vessel, wherein the ultrasonic catheter can be guided from an access site in a patient's body to a target site adjacent to the occlusion, the ultrasonic catheter comprising: Less than:
An elongated flexible catheter body, the catheter body having a proximal portion, a distal portion, and at least one lumen, the proximal portion being stiffer than the distal portion and the distal portion An elongated flexible catheter body that is more flexible near the distal end of the catheter body than near the proximal portion of the catheter body;
An ultrasonic transmission member, wherein the ultrasonic transmission member extends longitudinally through the lumen of the catheter body and has a proximal end and a distal end, the ultrasonic transmission member comprising: An ultrasonic transmission member that is more flexible near the distal end than near the proximal end;
A distal head, wherein the distal head is coupled to the distal end of the ultrasound transmission member and disposed near the distal end of the catheter body; At least one connecting member for connecting a sonic transmission member to a source of ultrasonic energy, the at least one connecting member comprising a housing that is securely connected to the proximal end of the catheter body. A coupling member, so that torque applied to the housing is transmitted along the catheter body to the distal portion;
An ultrasonic catheter comprising:
(Item 33)
A method for breaking an obstruction in a blood vessel, the method comprising:
Advancing an ultrasonic catheter through a blood vessel having at least one bend, wherein the catheter conforms to the at least one bend, and the advancing step comprises: Contacting the sonic transmission member with a guide wire at one or more locations within the catheter;
Positioning the distal end of the ultrasonic catheter adjacent to an obstruction in the blood vessel; and transmitting ultrasonic energy to the ultrasonic transmission member to convert the obstruction into a plurality of obstruction fragments. A step of breaking, wherein the step of transmitting includes transmitting ultrasonic energy to the guide wire;
Including the method.
(Item 34)
34. A method according to item 33, further comprising removing at least some of the obstruction fragments from the blood vessel via the ultrasound catheter.
(Item 35)
34. The method of item 33, wherein the ultrasound catheter is advanced along the guidewire.
(Item 36)
34. A method according to item 33, wherein the guide wire is passed through the catheter.
(Item 37)
34. The method of item 33, wherein the catheter and the guidewire are advanced together through the blood vessel.
(Item 38)
34. The method of item 33, wherein the ultrasound catheter is advanced through at least one bend having a radius of about 1.0 cm or less.
(Item 39)
The ultrasonic catheter and the guide wire are advanced along a plurality of bent portions in the blood vessel, and the catheter main body of the catheter, the ultrasonic transmission member, and the guide wire are attached to the plurality of bent portions. 34. The method of item 33, wherein the method is sufficiently flexible to fit.
(Item 40)
Item 33 further comprising the step of applying a radial force to the proximal housing of the ultrasound catheter to bend the distal end of the ultrasound catheter radially within the blood vessel.
The method described in 1.
(発明の詳細な説明)
本発明の超音波カテーテルデバイスおよび方法は、一般に、閉塞性の脈管内病巣の増強された処置を提供する。カテーテルデバイスは、一般に、カテーテル本体、このカテーテル本体に内部に配置された超音波エネルギー伝達部材、およびこのエネルギー伝達部材に接続されてこのカテーテル本体の遠位端に隣接して配置された遠位ヘッドを備える。この超音波伝達部材は、超音波エネルギーを、超音波変換器から遠位ヘッドへと伝達し、このヘッドを振動させ、これによって、脈管の閉塞物を破壊する。このような超音波カテーテルデバイスの多数の改善された特徴が、以下により完全に記載される。
(Detailed description of the invention)
The ultrasonic catheter devices and methods of the present invention generally provide enhanced treatment of occlusive intravascular lesions. A catheter device generally includes a catheter body, an ultrasonic energy transfer member disposed therein, and a distal head connected to the energy transfer member and disposed adjacent to the distal end of the catheter body Is provided. The ultrasonic transmission member transmits ultrasonic energy from the ultrasonic transducer to the distal head, causing the head to vibrate, thereby breaking the vascular occlusion. A number of improved features of such ultrasonic catheter devices are described more fully below.
ここで図1を参照すると、超音波カテーテルシステム20の1つの実施形態は、適切に、超音波カテーテルデバイス10を備え、この超音波カテーテルデバイスは、近位端コネクタ12および超音波発生器16を備え、この近位端コネクタは、デバイス10を超音波変換器14に連結するためのものであり、そしてこの超音波発生器は、変換器14および足で作動されるオン/オフスイッチ18に連結されて、超音波エネルギーを、変換器14および従って超音波カテーテル10に提供する。一般に、カテーテル10は、エネルギーを変換器14からカテーテル10の遠位ヘッド26に伝達するための、超音波伝達部材(またはワイヤ)(図示せず)を備える。いくつかの実施形態において、変換器14は、カテーテル10の変換器14への連結を増強するための、固定デバイス15をさらに備える。システム20の構成要素は、任意の適切な手段(例えば、任意の種類の接続ワイヤ、ワイヤレス接続など)を介して、連結され得る。
Referring now to FIG. 1, one embodiment of an
近位コネクタ12に加えて、超音波カテーテルデバイス10は、1つ以上の他の種々の構成要素(例えば、洗浄、ガイドワイヤの通過、吸引などのためのアクセスを提供するための、Y字型コネクタ11など)を備え得る。いくつかの実施形態のデバイスは、モノレールガイドワイヤ13を備え、いくつかは、ワイヤを超えてのガイドワイヤの送達のための近位ガイドワイヤポート17を備え、そしていくつかの実施形態は、これらの両方を備える。いくつかの実施形態において、Y字型コネクタは、洗浄管24のためのアクセスを提供するための洗浄ポートを備え得る。洗浄管24は、いくつかの実施形態において、1つ以上の流体を導入するため、減圧を適用するため、またはこれらの両方のために、使用され得る。一般に、カテーテルデバイス10は、ガイドワイヤの通過のため、洗浄流体、染料などを注入しそして/または引き抜くための任意の適切な数のサイドアームまたはポート、あるいは他の任意の適切なポートまたはコネクタを備え得る。また、本発明の超音波カテーテル10は、任意の適切な近位デバイス(例えば、任意の適切な超音波変換器14、超音波発生器16、連結デバイスなど)と共に使用され得る。従って、超音波カテーテル10と供に使用するための近位装置またはシステムの、例示的な図1、および以下の任意の説明は、添付の特許請求の範囲に規定されるような本発明の範囲を限定することは意図しない。
In addition to the
ここで図1Aを参照すると、超音波カテーテルデバイス10の1つの実施形態の断面側面図が示されている。一般に、超音波カテーテル10は、細長カテーテル本体22を適切に備え、超音波伝達部材24が、カテーテル管腔21を通って長手軸方向に配置され、そして遠位ヘッド(図示せず)で終わっている。カテーテル本体22は、一般に、可撓性の管状の細長部材であり、処置のための脈管閉塞物に到達するための、任意の適切な直径および長さを有する。1つの実施形態において、例えば、カテーテル本体22は、好ましくは、約0.5mmと約5.0mmとの間の外径を有する。他の実施形態において、比較的小さい血管において使用することが意図されたカテーテルにおいて、カテーテル本体22は、約0.25mmと約2.5mmとの間の外径を有し得る。カテーテル本体22はまた、任意の適切な長さを有し得る。上で簡単に議論されたように、例えば、いくつかの超音波カテーテルは、約150cmの範囲の長さを有する。しかし、他の任意の適切な長さが、本発明の範囲から逸脱することなく使用され得る。本発明において使用され得るカテーテル本体と類似のカテーテル本体の例は、先に本明細書中に参考として援用された、米国特許第5,267,954号および同第5,989,208号に記載されている。
Referring now to FIG. 1A, a cross-sectional side view of one embodiment of an
いくつかの実施形態において、カテーテル本体22は、ポリマー材料から作製される。時々、このポリマーは、所望の量の可撓性を有し、例えば、1つの実施形態において、カテーテル本体22は、約160psi未満の曲げ係数を有するポリマーから作製される。いくつかの実施形態において、このようなポリマーは、多数のポリエーテルブロックアミドのうちの1つであるが、他のポリマーが、もちろん、使用され得る。いくつかの実施形態において、このようなポリエーテルブロックアミドは、約55〜約75の範囲のShore D硬度値を有し得、一方で、他の実施形態において、これらのポリエーテルブロックアミドは、約25〜約55のShore D硬度値を有し得る。いくつかの実施形態において、このポリマー材料は、約5重量%までの着色料を含有する。 In some embodiments, the catheter body 22 is made from a polymeric material. Sometimes the polymer has a desired amount of flexibility, for example, in one embodiment, the catheter body 22 is made from a polymer having a bending modulus of less than about 160 psi. In some embodiments, such a polymer is one of a number of polyether block amides, although other polymers can of course be used. In some embodiments, such polyether block amides can have a Shore D hardness value in the range of about 55 to about 75, while in other embodiments, these polyether block amides are It may have a Shore D hardness value of about 25 to about 55. In some embodiments, the polymeric material contains up to about 5% by weight colorant.
ほとんどの実施形態において、超音波伝達部材24(これは、ワイヤ、導派管などを備え得る)は、カテーテル本体の管腔21を長手軸方向に延びて、超音波エネルギーを、超音波変換器14(図1)からカテーテル10の遠位端まで伝達する。超音波伝達部材24は、超音波エネルギーを、超音波変換器14からカテーテル本体22の遠位端まで効果的に伝達し得る、任意の材料から形成され得、この材料としては、例えば、金属(例えば、純粋なチタンまたはアルミニウム、あるいはチタン合金またはアルミニウム合金)が挙げられるが、これらに限定されない。本発明の1つの局面に従って、超音波伝達部材24の全体または一部は、超弾性特性を示す1種以上の材料から形成され得る。このような材料は、好ましくは、超音波伝達部材24が超音波カテーテル装置10の作動の間に通常遭遇する温度の範囲内で一貫して、超弾性を示すべきである。例えば、いくつかの実施形態において、この材料は、約170,000psiと約250,000psiとの間の引張り強度を有する合金である。いくつかの実施形態において、この合金は、約7%と約17%との間の伸びを示す。例えば、いくつかの実施形態において、この合金は、約50.50と約51.50との間の原子量のニッケル含有量を有する、ニッケル−チタン合金である。
In most embodiments, the ultrasonic transmission member 24 (which may comprise a wire, a conduit tube, etc.) extends longitudinally through the
超弾性金属合金を、超音波伝達部材において使用することは、先に参考として援用された、米国特許第5,267,954号に記載されている。使用され得る超弾性金属合金の例は、米国特許第4,665,906号(Jervis);同第4,565,589号(Harrison);同第4,505,767号(Quin);および同第4,337,090号(Harrison)に詳細に記載されており、これらが本発明の超音波伝達部材24が作動する温度範囲内で超弾性である特定の金属合金の組成物、特性、化学および挙動を記載する限りにおいて、これらの全開示は、本明細書中に参考として援用され、これらの超弾性金属合金のいずれかまたは全てが、本発明の超音波伝達部材24を形成するために使用され得る。いくつかの実施形態において、例えば、この合金は、約10℃〜約50℃の超弾性温度範囲を示す。
The use of superelastic metal alloys in ultrasonic transmission members is described in US Pat. No. 5,267,954, previously incorporated by reference. Examples of superelastic metal alloys that may be used are US Pat. Nos. 4,665,906 (Jervis); 4,565,589 (Harrison); 4,505,767 (Quin); No. 4,337,090 (Harrison), which describes the composition, properties, and chemistry of certain metal alloys that are superelastic within the temperature range at which the
図1Aを続けて参照すると、近位端コネクタ12の1つの実施形態は、中空内部ボア44を有するハウジング42を適切に備える。ボア44は、その長さに沿って均一な内径を有し得るか、あるいは、複数のセグメント(例えば、近位セグメント47、中間セグメント45および遠位セグメント49)を有し得、これらのセグメントの各々は、近位端部コネクタ12の1つ以上の種々の構成要素で囲まれ得る。一般に、ボア44の近位セグメント47は、任意の適切な連結手段(例えば、圧力ばめ、相補的なねじ山など)を介して、超音波変換器14(図示せず)と連結されるように構成される。近位セグメント47は、振動エネルギーを変換器14から超音波伝達部材24へと伝達するための、音響コネクタ52を備える。音響コネクタ52は、任意の適切な手段によって、ハウジング42の内部に保持され得る。いくつかの実施形態において、例えば、ダウエルピンが、音響コネクタ52を通って延びて、このコネクタをハウジング42の内部に保持し得る。別の実施形態において、音響コネクタ52は、ハウジング42の空洞によって、ハウジング42の内部に固定され得る。
With continued reference to FIG. 1A, one embodiment of the
ボア44の中間セグメント45は、いくつかの実施形態において、音響コネクタ52の一部分を囲み得、一方で、他の実施形態において、音響コネクタ52は、近位セグメント47の内部のみによって収容され得る。音響コネクタ52は、超音波エネルギーを変換器14から伝達部材24へと伝達するために適切な任意の手段によって、超音波伝達部材24の近位端に連結される。吸収部材50(例えば、Oリング)が、横方向振動の吸収を提供するために、超音波伝達部材24の一部分を囲む。吸収部材50は、任意の数または組み合わせで使用され得、そして所望のレベルの振動の吸収または弱化に依存して、任意の適切なサイズおよび構成を有し得る。あるいは、またはさらに、他の弱化構造体が使用され得る。従って、本発明は、図1Aに示される組み合わせに限定されない。
The intermediate segment 45 of the
ボア44の遠位セグメント49は、代表的に、超音波伝達部材24の一部分を囲み、そしてまた、1つ以上のさらなるセットの吸収部材50を備え得る。遠位セグメント49はまた、Y字型コネクタ11の一部分を備え得、このY字型コネクタは、ハウジング42の遠位端と連結される。Y字型コネクタ11をハウジング42の遠位端に連結することは、相補的なねじ山、圧力ばめ、または他の任意の適切な手段を介して、達成され得る。Y字型コネクタ11のY字型コネクタ管腔48は、超音波伝達部材24の通過を可能にし、そしてカテーテル本体の管腔21と流体連絡する。
The
一般に、加圧された流体(例えば、冷却剤液体)が、Y字型コネクタの側部アーム13を通し、Y字型コネクタの管腔48を通し、そしてカテーテル本体の管腔21を通して注入され得、その結果、この流体は、遠位ヘッド26の1つ以上の流体流出開口部分から流れる。このような冷却剤液体の温度および流量は、超音波伝達部材24の温度を、その最適な動作範囲内の所望の温度に維持するために、特に制御され得る。具体的には、超音波伝達部材24が、特定の温度範囲内で最適な物理的特性(例えば、超弾性)を示す金属合金から作製される、本発明の実施形態において、流体注入側部アーム13を通して注入される冷却材液体の温度および流量は、この超音波伝達部材の最も望ましい物理的特性を示す温度範囲内に、超音波伝達部材24の温度を維持するように、特に制御され得る。例えば、超音波伝達部材24が、そのマルテンサイト相にある場合に超弾性を示すが、そのオーステナイト相への遷移においては超弾性を失う形状記憶合金から形成される、本発明の実施形態において、液体注入側部アーム13を通して注入される冷却材液体の温度および流量は、超音波伝達部材24の形状記憶合金を、この合金がそのマルテンサイト相を維持し、そしてオーステナイト相に遷移しない温度範囲内に維持するように、調節されることが望ましい。このような形状記憶合金がマルテンサイト相からオーステナイト相へと遷移する温度は、その材料の「マルテンサイト遷移温度」として公知である。従って、これらの実施形態において、側部アーム13を通して注入される流体は、超音波伝達部材24の形状記憶合金を、そのマルテンサイト遷移温度未満に維持するような温度であり、そしてそのような速度で注入される。
In general, pressurized fluid (eg, coolant liquid) may be injected through the Y-
ここで図2を参照すると、超音波カテーテルデバイス100は、ヒトの心臓Hにおける1つ以上の冠状動脈CAを処置するために使用され得る。いくつかの実施形態は、冠状動脈CAまたは他の脈管における1つ以上の屈曲部102を通り抜けるように構成された、可撓性の遠位部分を備える。いくつかの実施形態において、カテーテルデバイス100は、このデバイスをガイドワイヤ104を覆って(またはこのガイドワイヤと一緒に)進めることによって、冠状動脈CAまたは他の脈管内に位置決めされる。いくつかの実施形態はまた、ガイドカテーテル106を備え得るか、またはガイドカテーテル106と共に使用され得る。
Referring now to FIG. 2, the
上述のように、「蛇行した血管」とは、本願の目的で、任意の曲率半径を有する少なくとも1つの屈曲部(これはまた、「湾曲部」などともまた称され得る)を有する血管を意味する。いくつかの場合においては、もちろん、蛇行した血管はまた、比較的小さい内径および複数の屈曲部を有し、そして超音波カテーテルデバイス100の種々の実施形態は、脈管における複数の屈曲部を通り抜けるように構成される。いくつかの実施形態において、超音波カテーテルデバイス100は、脈管における1つ以上の屈曲部に適合するように構成され、その結果、このデバイスの2つ以上の構成要素が、互いに付随して屈曲する。例えば、いくつかの実施形態において、デバイス100が脈管における屈曲部を通って延びる場合、デバイス100の超音波伝達部材およびカテーテル本体は、およそ同じ角度で屈曲する。いくつかの実施形態において、超音波伝達部材、カテーテル本体およびこのカテーテルを通って延びるガイドワイヤは、全て、血管における屈曲部に適合するように、付随して屈曲し得る。このような付随した屈曲は、いくつかの先行技術のデバイスとは異なる。先行技術のデバイスにおいて、超音波伝達部材が、例えば、カテーテル本体の遠位部分より比較的堅く、その結果、このデバイスが、血管における屈曲部に配置される場合、このカテーテル本体は、この伝達部材よりも鋭角で屈曲する。
As mentioned above, “serpentine blood vessel” means, for the purposes of this application, a blood vessel that has at least one bend having an arbitrary radius of curvature (which may also be referred to as “curved” etc.). To do. In some cases, of course, tortuous blood vessels also have a relatively small inner diameter and multiple bends, and various embodiments of the
ここで図3を参照すると、1つの実施形態において、本発明の超音波カテーテルデバイス110は、近位部分112および遠位部分114を有するカテーテル本体116、超音波伝達部材118、ならびに遠位ヘッド111を備える。上で議論されたように、カテーテル本体116、伝達部材118、および遠位ヘッド111は、任意の適切な材料から製造され得、そして多数の適切な構成、寸法などのうちのいずれかを有し得る。実際に、図3は、同一縮尺で描かれておらず、そして例えば、遠位部分114は、図3に示されるより比較的ずっと長くあり得る。
Referring now to FIG. 3, in one embodiment, the
カテーテル本体116の近位部分112は、一般に、遠位部分114より堅く、このような近位部分112は、押すためまたは操縦するために使用され、そして遠位部分114は、蛇行した血管を通り抜けて閉塞物の部位に達するために十分に可撓性である。この合成/可撓性の差異は、遠位部分について異なる材料を使用することによってか、近位部分112を遠位部分114より厚い壁で構成することによってか、近位部分112により大きい外形を与えることによってか、これらの任意の組み合わせによってか、または他の任意の適切な技術によって、達成され得る。いくつかの実施形態において、近位部分112および遠位部分114は、1片の材料または1つの押出し成型品から作製され、一方で、他の実施形態において、2つ以上の片の材料が、一緒に接合され得る。超音波伝達部材118はまた、その遠位端に向かって、より可撓性に(より堅さが少なく)なる。このことは、代表的に、伝達部材118を先細にすることによって達成され、そしてこの先細は、図3に示されるように、漸進的であり得るか、または1つ以上の非漸進的な段で達成され得る。カテーテル本体116および超音波伝達部材118に、その遠位端に向かって次第に増加する可撓性を提供することによって、カテーテル本体110は、増強された「押し性」または「操縦性」を提供し得、一方でまた、遠位部分114での蛇行した脈管の通り抜けを容易にする。
The
ここで図4を参照すると、超音波カテーテルデバイス120の別の実施形態は、カテーテル本体126、本体126の内部に配置された超音波伝達部材128およびガイドワイヤ管124、ならびに超音波伝達部材121に連結された遠位ヘッドを備える。ガイドワイヤ管124は、以下でより十分に説明されるように、カテーテル本体126に、任意の適切な位置で入り得、そして遠位ヘッド121を通って遠位を超えて延びても、部分的に延びても、完全に通ってもよい。1つの実施形態において、ガイドワイヤ管124は、カテーテル本体126の内部に配置された、少なくとも1つの開口部125を備え、この開口部は、ガイドワイヤ122が1つ以上の位置で超音波伝達部材128に接触することを可能にするためのものである。示される実施形態において、ガイドワイヤ管124は、超音波伝達部材128が管124を通過することを可能にするための、2つの開口部125を備える。他の任意の適切な開口部がまた、本発明の範囲内であることが企図される。ガイドワイヤ122を超音波伝達部材128に接触させることによって、ある量の超音波エネルギーが、伝達部材128からガイドワイヤ122へと移動され得る。この移動されるエネルギーは、ガイドワイヤ122を振動させ得、そしてこのような振動エネルギーは、ガイドワイヤ122が脈管の閉塞物を横切る能力を増強し得る。多くの手順において、ガイドワイヤ122で閉塞物を貫通するかまたは横切ることは、しばしば有利であり、そして伝達部材128からガイドワイヤ122へと移動される超音波エネルギーを利用することは、このような手順を増強する。
Referring now to FIG. 4, another embodiment of the
ここで図5および図6を参照すると、超音波カテーテルデバイス130の別の実施形態は、カテーテル本体136、カテーテル本体136の内部に配置された超音波伝達部材138およびガイドワイヤ管134、ならびに伝達部材128の遠位端およびガイドワイヤ管134の遠位端に連結された遠位ヘッド131を適切に備える。この実施形態において、遠位ヘッド131は、ガイドワイヤ管腔135を備える。ガイドワイヤ管腔135は、その近位端に、ガイドワイヤ管134の遠位端を受容するための空洞を有する。代替の実施形態において、遠位ヘッド131は、空洞を備えないかもしれず、そしてガイドワイヤ管134は、遠位ヘッド131の近位端に接し得るか、またはこの空洞は、遠位ヘッド131全体にわたって延び得、その結果、ガイドワイヤ管134が、遠位ヘッド131全体にわたって延び、そして遠位ヘッド131の遠位端と同一面になる。また、図5および図6に図示される実施形態において、遠位ヘッド131のガイドワイヤ管腔135は、長手方向軸139を有し、この軸は、カテーテルデバイス130の全体の長手方向軸137に対して平行ではない。従って、ガイドワイヤ管134の少なくとも遠位部分はまた、カテーテルデバイス130の長手方向軸137に対して平行ではない長手方向軸139上に配置される。同時に、遠位ヘッド131のガイドワイヤ管腔135は、遠位ヘッド131の遠位端のおよそ中心に存在する。代表的に、ガイドワイヤ132を遠位ヘッド131のおよそ中心に存在させて、ガイドワイヤ132に沿ったカテーテルデバイス130の追跡を容易にすることが、有利である。しかし、ガイドワイヤ134をカテーテル本体136の内部でずらし、その結果、ガイドワイヤ管134および超音波伝達部材138が、より小さい内径を有するカテーテル本体内にフィットし得ることもまた、有利であり得る。より小さい直径のカテーテルは、もちろん、蛇行した脈管構造を通してより容易に進められる。
Referring now to FIGS. 5 and 6, another embodiment of the
一般に、上記の任意の連結された構成要素は、任意の適切な手段(たとえば、接着剤、相補的なねじ切りされた部材、圧力ばめなど)によって、連結され得る。例えば、遠位ヘッド131は、超音波伝達部材138、ガイドワイヤ管134、および/またはカテーテル本体136に、任意の適切な接着物質を用いて、または溶接、結合、圧力ばめ、螺合ばめなどを介して、連結され得る。接着剤としては、シアノアクリレート接着剤(例えば、LoctiteTM、Loctite Corp.,Ontario,CANADAまたはDron AlphaTM、Borden,Inc.,Columbus,OH)あるいはポリウレタン接着剤(例えば、DymaxTM、Dymax Engineering Adhesive,Torrington,CT)が挙げられ得るが、これらに限定されない。いくつかの実施形態はまた、遠位ヘッド131を超音波カテーテルデバイス130にさらに固定するための、1つ以上の係留部材を備え得る。このような係留部材の例は、出願番号10/410617により十分に記載されており、この出願は、先に参考として援用された。
In general, any of the above-described connected components may be connected by any suitable means (eg, adhesive, complementary threaded member, pressure fit, etc.). For example, the
ここで図7を参照すると、超音波カテーテルデバイス140の別の実施形態は、カテーテル本体146、超音波伝達部材148、ガイドワイヤ管144、およびガイドワイヤ管腔145を有する遠位ヘッド141を備える。この実施形態において、上で簡単に言及されたように、ガイドワイヤ管腔145は、ガイドワイヤ管144が、遠位ヘッド141の全長にわたって延び、そして遠位ヘッド141の遠位端と同一面で終わるように、構成される。一般に、遠位ヘッド141およびガイドワイヤ管腔145は、任意の適切なサイズ、形状、構成、寸法などを有し得、そして本発明は、示される実施形態によっていかなる方法でも限定されない。
Referring now to FIG. 7, another embodiment of the
ここで図8を参照すると、超音波カテーテルデバイス150のいくつかの実施形態は、カテーテル本体156にしっかりと連結された近位ハウジング152を備える。ハウジング152は、ハンドルであっても、デバイス150を超音波変換器に連結するための連結部材であっても、使用者がカテーテルデバイス150を操作することを可能にする他の任意の適切な近位デバイスであってもよい。ハウジング152とカテーテル本体との間にしっかりとした連結を提供することによって、ハウジング152に付与される近位の回転力155a(またはトルクまたはねじり)が、カテーテル本体156に伝達されて、カテーテル本体156の遠位端および遠位ヘッド151を、回転させる(155b)。超音波カテーテルデバイス150にトルクをかけるか、ねじるか、または回転させることによって、このデバイスを、蛇行した脈管構造を通して操作すること、および/またはこのデバイスを使用して脈管閉塞物を消滅させることを容易にし得ることが見出された。
Referring now to FIG. 8, some embodiments of the
本発明は、種々の実施形態および実施例を特に参照して上に記載されたが、種々の追加、改変、削除および変更が、このような実施形態に対して、本発明の精神または範囲から逸脱することなくなされ得ることが、理解されるべきである。従って、合理的に予測され得る全ての追加、削除、変更および改変は、添付の特許請求の範囲において規定される本発明の範囲内に含まれることが、意図される。 Although the invention has been described above with particular reference to various embodiments and examples, various additions, modifications, deletions and changes can be made to such embodiments from the spirit or scope of the invention. It should be understood that this can be done without departing. Accordingly, all additions, deletions, modifications and alterations that can be reasonably foreseen are intended to be included within the scope of the invention as defined in the appended claims.
Claims (1)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/722,209 US7335180B2 (en) | 2003-11-24 | 2003-11-24 | Steerable ultrasound catheter |
US10/722,209 | 2003-11-24 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010181956A Division JP2011005269A (en) | 2003-11-24 | 2010-08-16 | Steerable ultrasound catheter |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2014012191A true JP2014012191A (en) | 2014-01-23 |
JP5766243B2 JP5766243B2 (en) | 2015-08-19 |
Family
ID=34591981
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006541200A Expired - Lifetime JP4805841B2 (en) | 2003-11-24 | 2004-10-25 | Steerable ultrasound catheter |
JP2010181956A Withdrawn JP2011005269A (en) | 2003-11-24 | 2010-08-16 | Steerable ultrasound catheter |
JP2013169148A Expired - Lifetime JP5766243B2 (en) | 2003-11-24 | 2013-08-16 | Steerable ultrasound catheter |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006541200A Expired - Lifetime JP4805841B2 (en) | 2003-11-24 | 2004-10-25 | Steerable ultrasound catheter |
JP2010181956A Withdrawn JP2011005269A (en) | 2003-11-24 | 2010-08-16 | Steerable ultrasound catheter |
Country Status (5)
Country | Link |
---|---|
US (7) | US7335180B2 (en) |
EP (1) | EP1701750B1 (en) |
JP (3) | JP4805841B2 (en) |
ES (1) | ES2432550T3 (en) |
WO (1) | WO2005053769A2 (en) |
Families Citing this family (147)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6723063B1 (en) | 1998-06-29 | 2004-04-20 | Ekos Corporation | Sheath for use with an ultrasound element |
US6582392B1 (en) | 1998-05-01 | 2003-06-24 | Ekos Corporation | Ultrasound assembly for use with a catheter |
US6855123B2 (en) * | 2002-08-02 | 2005-02-15 | Flow Cardia, Inc. | Therapeutic ultrasound system |
US8506519B2 (en) | 1999-02-16 | 2013-08-13 | Flowcardia, Inc. | Pre-shaped therapeutic catheter |
US20040158150A1 (en) * | 1999-10-05 | 2004-08-12 | Omnisonics Medical Technologies, Inc. | Apparatus and method for an ultrasonic medical device for tissue remodeling |
US20040097996A1 (en) | 1999-10-05 | 2004-05-20 | Omnisonics Medical Technologies, Inc. | Apparatus and method of removing occlusions using an ultrasonic medical device operating in a transverse mode |
US8241274B2 (en) | 2000-01-19 | 2012-08-14 | Medtronic, Inc. | Method for guiding a medical device |
AU2002359576A1 (en) | 2001-12-03 | 2003-06-17 | Ekos Corporation | Catheter with multiple ultrasound radiating members |
US7087061B2 (en) * | 2002-03-12 | 2006-08-08 | Lithotech Medical Ltd | Method for intracorporeal lithotripsy fragmentation and apparatus for its implementation |
US8226629B1 (en) | 2002-04-01 | 2012-07-24 | Ekos Corporation | Ultrasonic catheter power control |
US8150519B2 (en) | 2002-04-08 | 2012-04-03 | Ardian, Inc. | Methods and apparatus for bilateral renal neuromodulation |
US7617005B2 (en) | 2002-04-08 | 2009-11-10 | Ardian, Inc. | Methods and apparatus for thermally-induced renal neuromodulation |
US9955994B2 (en) | 2002-08-02 | 2018-05-01 | Flowcardia, Inc. | Ultrasound catheter having protective feature against breakage |
US8133236B2 (en) * | 2006-11-07 | 2012-03-13 | Flowcardia, Inc. | Ultrasound catheter having protective feature against breakage |
US6942677B2 (en) | 2003-02-26 | 2005-09-13 | Flowcardia, Inc. | Ultrasound catheter apparatus |
US7137963B2 (en) | 2002-08-26 | 2006-11-21 | Flowcardia, Inc. | Ultrasound catheter for disrupting blood vessel obstructions |
US7604608B2 (en) * | 2003-01-14 | 2009-10-20 | Flowcardia, Inc. | Ultrasound catheter and methods for making and using same |
US7220233B2 (en) | 2003-04-08 | 2007-05-22 | Flowcardia, Inc. | Ultrasound catheter devices and methods |
US7335180B2 (en) | 2003-11-24 | 2008-02-26 | Flowcardia, Inc. | Steerable ultrasound catheter |
US20050010237A1 (en) * | 2003-06-09 | 2005-01-13 | Niazi Imran K. | Catheter to cannulate coronary sinus branches |
DE202004021950U1 (en) | 2003-09-12 | 2013-06-19 | Vessix Vascular, Inc. | Selectable eccentric remodeling and / or ablation of atherosclerotic material |
US7758510B2 (en) | 2003-09-19 | 2010-07-20 | Flowcardia, Inc. | Connector for securing ultrasound catheter to transducer |
CA2553165A1 (en) | 2004-01-29 | 2005-08-11 | Ekos Corporation | Method and apparatus for detecting vascular conditions with a catheter |
US7794414B2 (en) | 2004-02-09 | 2010-09-14 | Emigrant Bank, N.A. | Apparatus and method for an ultrasonic medical device operating in torsional and transverse modes |
US7540852B2 (en) | 2004-08-26 | 2009-06-02 | Flowcardia, Inc. | Ultrasound catheter devices and methods |
US9713730B2 (en) | 2004-09-10 | 2017-07-25 | Boston Scientific Scimed, Inc. | Apparatus and method for treatment of in-stent restenosis |
US8396548B2 (en) | 2008-11-14 | 2013-03-12 | Vessix Vascular, Inc. | Selective drug delivery in a lumen |
US20060116610A1 (en) * | 2004-11-30 | 2006-06-01 | Omnisonics Medical Technologies, Inc. | Apparatus and method for an ultrasonic medical device with variable frequency drive |
US8038696B2 (en) * | 2004-12-06 | 2011-10-18 | Boston Scientific Scimed, Inc. | Sheath for use with an embolic protection filter |
US8221343B2 (en) | 2005-01-20 | 2012-07-17 | Flowcardia, Inc. | Vibrational catheter devices and methods for making same |
JP2009529372A (en) * | 2006-03-09 | 2009-08-20 | オムニソニックス メディカル テクノロジーズ インコーポレイテッド | Catheter and related systems and methods |
US9282984B2 (en) * | 2006-04-05 | 2016-03-15 | Flowcardia, Inc. | Therapeutic ultrasound system |
US20070265560A1 (en) | 2006-04-24 | 2007-11-15 | Ekos Corporation | Ultrasound Therapy System |
US8019435B2 (en) | 2006-05-02 | 2011-09-13 | Boston Scientific Scimed, Inc. | Control of arterial smooth muscle tone |
US20080039746A1 (en) | 2006-05-25 | 2008-02-14 | Medtronic, Inc. | Methods of using high intensity focused ultrasound to form an ablated tissue area containing a plurality of lesions |
EP3257462B1 (en) | 2006-10-18 | 2022-12-21 | Vessix Vascular, Inc. | System for inducing desirable temperature effects on body tissue |
EP2076198A4 (en) | 2006-10-18 | 2009-12-09 | Minnow Medical Inc | Inducing desirable temperature effects on body tissue |
AU2007310988B2 (en) | 2006-10-18 | 2013-08-15 | Vessix Vascular, Inc. | Tuned RF energy and electrical tissue characterization for selective treatment of target tissues |
US8192363B2 (en) | 2006-10-27 | 2012-06-05 | Ekos Corporation | Catheter with multiple ultrasound radiating members |
US8246643B2 (en) | 2006-11-07 | 2012-08-21 | Flowcardia, Inc. | Ultrasound catheter having improved distal end |
EP2526880A3 (en) * | 2007-01-08 | 2013-02-20 | Ekos Corporation | Power parameters for ultrasonic catheter |
US10182833B2 (en) * | 2007-01-08 | 2019-01-22 | Ekos Corporation | Power parameters for ultrasonic catheter |
EP2164401B1 (en) * | 2007-05-23 | 2015-08-26 | Medinol Ltd. | Apparatus for guided chronic total occlusion penetration |
PL2170181T3 (en) | 2007-06-22 | 2014-08-29 | Ekos Corp | Method and apparatus for treatment of intracranial hemorrhages |
US20090264898A1 (en) * | 2008-04-17 | 2009-10-22 | Medtronic Vascular, Inc. | Steerable Endovascular Retrieval Device |
AU2009314133B2 (en) | 2008-11-17 | 2015-12-10 | Vessix Vascular, Inc. | Selective accumulation of energy with or without knowledge of tissue topography |
US8226566B2 (en) | 2009-06-12 | 2012-07-24 | Flowcardia, Inc. | Device and method for vascular re-entry |
EP2448636B1 (en) * | 2009-07-03 | 2014-06-18 | Ekos Corporation | Power parameters for ultrasonic catheter |
US8740835B2 (en) | 2010-02-17 | 2014-06-03 | Ekos Corporation | Treatment of vascular occlusions using ultrasonic energy and microbubbles |
US8777963B2 (en) * | 2010-02-24 | 2014-07-15 | Lithotech Medical Ltd | Method and system for destroying of undesirable formations in mammalian body |
US9743980B2 (en) | 2010-02-24 | 2017-08-29 | Safepass Vascular Ltd | Method and system for assisting a wire guide to cross occluded ducts |
CN103068330B (en) | 2010-04-09 | 2016-06-29 | Vessix血管股份有限公司 | Power for treating tissue occurs and controls device |
US9192790B2 (en) | 2010-04-14 | 2015-11-24 | Boston Scientific Scimed, Inc. | Focused ultrasonic renal denervation |
US8473067B2 (en) | 2010-06-11 | 2013-06-25 | Boston Scientific Scimed, Inc. | Renal denervation and stimulation employing wireless vascular energy transfer arrangement |
US9408661B2 (en) | 2010-07-30 | 2016-08-09 | Patrick A. Haverkost | RF electrodes on multiple flexible wires for renal nerve ablation |
US9084609B2 (en) | 2010-07-30 | 2015-07-21 | Boston Scientific Scime, Inc. | Spiral balloon catheter for renal nerve ablation |
US9155589B2 (en) | 2010-07-30 | 2015-10-13 | Boston Scientific Scimed, Inc. | Sequential activation RF electrode set for renal nerve ablation |
US9358365B2 (en) | 2010-07-30 | 2016-06-07 | Boston Scientific Scimed, Inc. | Precision electrode movement control for renal nerve ablation |
US9463062B2 (en) | 2010-07-30 | 2016-10-11 | Boston Scientific Scimed, Inc. | Cooled conductive balloon RF catheter for renal nerve ablation |
EP3556307B1 (en) | 2010-08-27 | 2021-12-01 | Ekos Corporation | Apparatus for treatment of intracranial hemorrhages |
US8974451B2 (en) | 2010-10-25 | 2015-03-10 | Boston Scientific Scimed, Inc. | Renal nerve ablation using conductive fluid jet and RF energy |
US9220558B2 (en) | 2010-10-27 | 2015-12-29 | Boston Scientific Scimed, Inc. | RF renal denervation catheter with multiple independent electrodes |
JP5511627B2 (en) * | 2010-10-28 | 2014-06-04 | 日立アロカメディカル株式会社 | Ultrasound probe for spine surgery support and manufacturing method thereof |
US9028485B2 (en) | 2010-11-15 | 2015-05-12 | Boston Scientific Scimed, Inc. | Self-expanding cooling electrode for renal nerve ablation |
US9089350B2 (en) | 2010-11-16 | 2015-07-28 | Boston Scientific Scimed, Inc. | Renal denervation catheter with RF electrode and integral contrast dye injection arrangement |
US9668811B2 (en) | 2010-11-16 | 2017-06-06 | Boston Scientific Scimed, Inc. | Minimally invasive access for renal nerve ablation |
US9326751B2 (en) | 2010-11-17 | 2016-05-03 | Boston Scientific Scimed, Inc. | Catheter guidance of external energy for renal denervation |
US9060761B2 (en) | 2010-11-18 | 2015-06-23 | Boston Scientific Scime, Inc. | Catheter-focused magnetic field induced renal nerve ablation |
US9023034B2 (en) | 2010-11-22 | 2015-05-05 | Boston Scientific Scimed, Inc. | Renal ablation electrode with force-activatable conduction apparatus |
US9192435B2 (en) | 2010-11-22 | 2015-11-24 | Boston Scientific Scimed, Inc. | Renal denervation catheter with cooled RF electrode |
US20120157993A1 (en) | 2010-12-15 | 2012-06-21 | Jenson Mark L | Bipolar Off-Wall Electrode Device for Renal Nerve Ablation |
US9220561B2 (en) | 2011-01-19 | 2015-12-29 | Boston Scientific Scimed, Inc. | Guide-compatible large-electrode catheter for renal nerve ablation with reduced arterial injury |
US11458290B2 (en) | 2011-05-11 | 2022-10-04 | Ekos Corporation | Ultrasound system |
CN103813745B (en) | 2011-07-20 | 2016-06-29 | 波士顿科学西美德公司 | In order to visualize, be directed at and to melt transcutaneous device and the method for nerve |
AU2012287189B2 (en) | 2011-07-22 | 2016-10-06 | Boston Scientific Scimed, Inc. | Nerve modulation system with a nerve modulation element positionable in a helical guide |
WO2013055826A1 (en) | 2011-10-10 | 2013-04-18 | Boston Scientific Scimed, Inc. | Medical devices including ablation electrodes |
WO2013055815A1 (en) | 2011-10-11 | 2013-04-18 | Boston Scientific Scimed, Inc. | Off -wall electrode device for nerve modulation |
US9420955B2 (en) | 2011-10-11 | 2016-08-23 | Boston Scientific Scimed, Inc. | Intravascular temperature monitoring system and method |
US9364284B2 (en) | 2011-10-12 | 2016-06-14 | Boston Scientific Scimed, Inc. | Method of making an off-wall spacer cage |
US9162046B2 (en) | 2011-10-18 | 2015-10-20 | Boston Scientific Scimed, Inc. | Deflectable medical devices |
EP2768568B1 (en) | 2011-10-18 | 2020-05-06 | Boston Scientific Scimed, Inc. | Integrated crossing balloon catheter |
EP3366250A1 (en) | 2011-11-08 | 2018-08-29 | Boston Scientific Scimed, Inc. | Ostial renal nerve ablation |
WO2013074813A1 (en) | 2011-11-15 | 2013-05-23 | Boston Scientific Scimed, Inc. | Device and methods for renal nerve modulation monitoring |
US9119632B2 (en) | 2011-11-21 | 2015-09-01 | Boston Scientific Scimed, Inc. | Deflectable renal nerve ablation catheter |
US9265969B2 (en) | 2011-12-21 | 2016-02-23 | Cardiac Pacemakers, Inc. | Methods for modulating cell function |
WO2013096913A2 (en) | 2011-12-23 | 2013-06-27 | Vessix Vascular, Inc. | Methods and apparatuses for remodeling tissue of or adjacent to a body passage |
US9433760B2 (en) | 2011-12-28 | 2016-09-06 | Boston Scientific Scimed, Inc. | Device and methods for nerve modulation using a novel ablation catheter with polymeric ablative elements |
US9050106B2 (en) | 2011-12-29 | 2015-06-09 | Boston Scientific Scimed, Inc. | Off-wall electrode device and methods for nerve modulation |
CA2857320C (en) | 2012-01-18 | 2020-08-11 | Bard Peripheral Vascular, Inc. | Vascular re-entry device |
US10660703B2 (en) | 2012-05-08 | 2020-05-26 | Boston Scientific Scimed, Inc. | Renal nerve modulation devices |
US9492140B2 (en) * | 2012-06-12 | 2016-11-15 | Volcano Corporation | Devices, systems, and methods for forward looking imaging |
EP2879596A2 (en) | 2012-08-02 | 2015-06-10 | Flowcardia, Inc. | Ultrasound catheter system |
US10321946B2 (en) | 2012-08-24 | 2019-06-18 | Boston Scientific Scimed, Inc. | Renal nerve modulation devices with weeping RF ablation balloons |
EP2895095A2 (en) | 2012-09-17 | 2015-07-22 | Boston Scientific Scimed, Inc. | Self-positioning electrode system and method for renal nerve modulation |
WO2014047454A2 (en) | 2012-09-21 | 2014-03-27 | Boston Scientific Scimed, Inc. | Self-cooling ultrasound ablation catheter |
US10398464B2 (en) | 2012-09-21 | 2019-09-03 | Boston Scientific Scimed, Inc. | System for nerve modulation and innocuous thermal gradient nerve block |
EP2906135A2 (en) | 2012-10-10 | 2015-08-19 | Boston Scientific Scimed, Inc. | Renal nerve modulation devices and methods |
US9173667B2 (en) | 2012-10-16 | 2015-11-03 | Med-Sonics Corporation | Apparatus and methods for transferring ultrasonic energy to a bodily tissue |
US9339284B2 (en) | 2012-11-06 | 2016-05-17 | Med-Sonics Corporation | Systems and methods for controlling delivery of ultrasonic energy to a bodily tissue |
EP2931131B1 (en) * | 2012-12-13 | 2022-11-09 | Philips Image Guided Therapy Corporation | Rotational catheter with extended catheter body drive shaft support |
JP6353462B2 (en) * | 2012-12-13 | 2018-07-04 | ボルケーノ コーポレイション | Rotating sensing catheter with self-supporting drive shaft location |
CN105188830B (en) | 2012-12-28 | 2019-06-07 | 巴德血管外围设备公司 | Pass through the drug delivery of mechanical oscillation sacculus |
US9693821B2 (en) | 2013-03-11 | 2017-07-04 | Boston Scientific Scimed, Inc. | Medical devices for modulating nerves |
WO2014163987A1 (en) | 2013-03-11 | 2014-10-09 | Boston Scientific Scimed, Inc. | Medical devices for modulating nerves |
US9808311B2 (en) | 2013-03-13 | 2017-11-07 | Boston Scientific Scimed, Inc. | Deflectable medical devices |
SG11201506154RA (en) | 2013-03-14 | 2015-09-29 | Ekos Corp | Method and apparatus for drug delivery to a target site |
US10265122B2 (en) | 2013-03-15 | 2019-04-23 | Boston Scientific Scimed, Inc. | Nerve ablation devices and related methods of use |
JP6139772B2 (en) | 2013-03-15 | 2017-05-31 | ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. | Control unit for use with electrode pads and method for estimating leakage |
JP6220044B2 (en) | 2013-03-15 | 2017-10-25 | ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. | Medical device for renal nerve ablation |
US9943365B2 (en) | 2013-06-21 | 2018-04-17 | Boston Scientific Scimed, Inc. | Renal denervation balloon catheter with ride along electrode support |
EP3010436A1 (en) | 2013-06-21 | 2016-04-27 | Boston Scientific Scimed, Inc. | Medical devices for renal nerve ablation having rotatable shafts |
US9707036B2 (en) | 2013-06-25 | 2017-07-18 | Boston Scientific Scimed, Inc. | Devices and methods for nerve modulation using localized indifferent electrodes |
WO2015002787A1 (en) | 2013-07-01 | 2015-01-08 | Boston Scientific Scimed, Inc. | Medical devices for renal nerve ablation |
EP3019106A1 (en) | 2013-07-11 | 2016-05-18 | Boston Scientific Scimed, Inc. | Medical device with stretchable electrode assemblies |
US10660698B2 (en) | 2013-07-11 | 2020-05-26 | Boston Scientific Scimed, Inc. | Devices and methods for nerve modulation |
WO2015010074A1 (en) | 2013-07-19 | 2015-01-22 | Boston Scientific Scimed, Inc. | Spiral bipolar electrode renal denervation balloon |
US10695124B2 (en) | 2013-07-22 | 2020-06-30 | Boston Scientific Scimed, Inc. | Renal nerve ablation catheter having twist balloon |
US10342609B2 (en) | 2013-07-22 | 2019-07-09 | Boston Scientific Scimed, Inc. | Medical devices for renal nerve ablation |
JP6159888B2 (en) | 2013-08-22 | 2017-07-05 | ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. | Flexible circuit with improved adhesion to renal neuromodulation balloon |
WO2015035047A1 (en) | 2013-09-04 | 2015-03-12 | Boston Scientific Scimed, Inc. | Radio frequency (rf) balloon catheter having flushing and cooling capability |
EP3043733A1 (en) | 2013-09-13 | 2016-07-20 | Boston Scientific Scimed, Inc. | Ablation balloon with vapor deposited cover layer |
US11246654B2 (en) | 2013-10-14 | 2022-02-15 | Boston Scientific Scimed, Inc. | Flexible renal nerve ablation devices and related methods of use and manufacture |
WO2015057521A1 (en) | 2013-10-14 | 2015-04-23 | Boston Scientific Scimed, Inc. | High resolution cardiac mapping electrode array catheter |
EP3057520A1 (en) | 2013-10-15 | 2016-08-24 | Boston Scientific Scimed, Inc. | Medical device balloon |
US9770606B2 (en) | 2013-10-15 | 2017-09-26 | Boston Scientific Scimed, Inc. | Ultrasound ablation catheter with cooling infusion and centering basket |
US8882713B1 (en) | 2013-10-17 | 2014-11-11 | Arizona Medical Systems, LLC | Over-the-needle guidewire vascular access system |
WO2015057961A1 (en) | 2013-10-18 | 2015-04-23 | Boston Scientific Scimed, Inc. | Balloon catheters with flexible conducting wires and related methods of use and manufacture |
US10271898B2 (en) | 2013-10-25 | 2019-04-30 | Boston Scientific Scimed, Inc. | Embedded thermocouple in denervation flex circuit |
EP3091922B1 (en) | 2014-01-06 | 2018-10-17 | Boston Scientific Scimed, Inc. | Tear resistant flex circuit assembly |
WO2015119890A1 (en) | 2014-02-04 | 2015-08-13 | Boston Scientific Scimed, Inc. | Alternative placement of thermal sensors on bipolar electrode |
US11000679B2 (en) | 2014-02-04 | 2021-05-11 | Boston Scientific Scimed, Inc. | Balloon protection and rewrapping devices and related methods of use |
US10092742B2 (en) | 2014-09-22 | 2018-10-09 | Ekos Corporation | Catheter system |
US9763684B2 (en) | 2015-04-02 | 2017-09-19 | Med-Sonics Corporation | Devices and methods for removing occlusions from a bodily cavity |
CN107708581B (en) | 2015-06-10 | 2021-11-19 | Ekos公司 | Ultrasonic wave guide tube |
BR112018075579B1 (en) | 2016-06-09 | 2023-02-07 | C.R. Bard, Inc | PATENT DEVICES AND METHOD TO PROVIDE PATENT |
US20180140321A1 (en) | 2016-11-23 | 2018-05-24 | C. R. Bard, Inc. | Catheter With Retractable Sheath And Methods Thereof |
US11596726B2 (en) | 2016-12-17 | 2023-03-07 | C.R. Bard, Inc. | Ultrasound devices for removing clots from catheters and related methods |
US10758256B2 (en) * | 2016-12-22 | 2020-09-01 | C. R. Bard, Inc. | Ultrasonic endovascular catheter |
US10582983B2 (en) | 2017-02-06 | 2020-03-10 | C. R. Bard, Inc. | Ultrasonic endovascular catheter with a controllable sheath |
US10470748B2 (en) | 2017-04-03 | 2019-11-12 | C. R. Bard, Inc. | Ultrasonic endovascular catheter with expandable portion |
US11284860B2 (en) | 2017-09-15 | 2022-03-29 | Infraredx, Inc. | Imaging catheter |
US11160959B2 (en) * | 2019-10-23 | 2021-11-02 | Imam Abdulrahman Bin Faisal University | Flexible-tip-catheter (bisher catheter) |
US12016579B2 (en) | 2020-02-03 | 2024-06-25 | Boston Scientific Scimed, Inc. | Steerable crossing catheter |
CN111135425B (en) * | 2020-03-06 | 2021-09-10 | 广东博迈医疗科技股份有限公司 | Medical micro catheter |
WO2021201937A1 (en) * | 2020-03-31 | 2021-10-07 | Dib UltraNav Medical LLC | Handle assembly for medical devices |
AU2022226603A1 (en) * | 2021-02-23 | 2023-09-07 | Waveclear Inc. | Method for controlling a therapeutic ultrasonic interventional system |
WO2024054648A1 (en) | 2022-09-08 | 2024-03-14 | Sonovascular, Inc. | Systems and methods for an ultrasound catheter |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6450975B1 (en) * | 1999-12-30 | 2002-09-17 | Advanced Cardiovascular Systems, Inc. | Ultrasonic transmission guide wire |
Family Cites Families (487)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3296620A (en) | 1963-11-20 | 1967-01-03 | Ellsworth N Rodda | Convertible horn radiator-coupler for separable missile |
GB1106957A (en) | 1965-04-06 | 1968-03-20 | Oleg Gavrilovich Balaev | Instrument for crushing concretions in the urinary bladder |
US3433226A (en) * | 1965-07-21 | 1969-03-18 | Aeroprojects Inc | Vibratory catheterization apparatus and method of using |
DE1596290B1 (en) | 1966-04-23 | 1970-07-30 | Varta Gmbh | Closing valve for galvanic elements |
US3443226A (en) | 1966-05-02 | 1969-05-06 | Richard B D Knight | Rebalance voltage measuring apparatus employing an a.c. potentiometer |
US3565062A (en) * | 1968-06-13 | 1971-02-23 | Ultrasonic Systems | Ultrasonic method and apparatus for removing cholesterol and other deposits from blood vessels and the like |
FR1583261A (en) | 1968-07-10 | 1969-10-24 | Eni Elect Nijverheidsinstall | |
US3631848A (en) * | 1968-09-04 | 1972-01-04 | Us Catheter & Instr Corp | Extensible catheter |
US3835690A (en) | 1968-11-02 | 1974-09-17 | Zueblin Ag | Device for connecting metallic sleeves to finned reinforcing bars |
US3612038A (en) | 1969-02-03 | 1971-10-12 | Becton Dickinson Co | Preformable catheter package assembly and method of preforming |
US3585085A (en) * | 1969-04-02 | 1971-06-15 | Westinghouse Electric Corp | Process of making tape wound magnetic cores having cube on face orientation |
DE2049918A1 (en) | 1970-10-10 | 1972-04-13 | Metallgesellschaft Ag, 6000 Frankfurt | Shock-absorbing components |
US3719737A (en) * | 1970-12-09 | 1973-03-06 | Bard Inc C R | Method of making a preformed curved epidural catheter |
US3739460A (en) | 1971-06-01 | 1973-06-19 | Thomas & Betts Corp | Method of joining concentric members |
DE2219790C3 (en) * | 1972-04-22 | 1974-11-07 | R Pohlman | Device for generating brittle fractures in hard stones |
US3839841A (en) | 1972-07-13 | 1974-10-08 | K Amplatz | Method for forming and sterilizing catheters |
DE2242863A1 (en) | 1972-08-31 | 1974-03-14 | Karl Storz | SURGICAL ELEMENT FOR CRUSHING STONES IN THE HUMAN BODY BY ULTRASOUND |
DE2256127A1 (en) | 1972-11-16 | 1974-05-22 | Reimar Prof Dr Phil Pohlman | DEVICE FOR CRUSHING HARNSTONE |
DE2438648A1 (en) | 1974-08-12 | 1976-02-26 | Reimar Prof Dr Phil Pohlman | Dispersal and removal of thromboses within blood vessels - using ultrasonic sound conducting cannulae bundle with central suction opening and transmission facility for infusion liquids |
US4016882A (en) * | 1975-03-05 | 1977-04-12 | Cavitron Corporation | Neurosonic aspirator and method |
US4033331A (en) | 1975-07-17 | 1977-07-05 | Guss Stephen B | Cardiac catheter and method of using same |
US4425115A (en) | 1977-12-19 | 1984-01-10 | Wuchinich David G | Ultrasonic resonant vibrator |
US4337090A (en) * | 1980-09-05 | 1982-06-29 | Raychem Corporation | Heat recoverable nickel/titanium alloy with improved stability and machinability |
US4368410A (en) * | 1980-10-14 | 1983-01-11 | Dynawave Corporation | Ultrasound therapy device |
US4417578A (en) | 1981-03-20 | 1983-11-29 | Surgical Design | Ultrasonic transducer with energy shielding |
GB2116046B (en) | 1982-03-04 | 1985-05-22 | Wolf Gmbh Richard | Apparatus for disintegrating and removing calculi |
US4565589A (en) * | 1982-03-05 | 1986-01-21 | Raychem Corporation | Nickel/titanium/copper shape memory alloy |
US4453935A (en) | 1982-04-16 | 1984-06-12 | Chester Labs, Inc. | Disposable container-applicator with leak-proof cover |
US4449523A (en) | 1982-09-13 | 1984-05-22 | Implant Technologies, Inc. | Talking tracheostomy tube |
US4535759A (en) | 1982-09-30 | 1985-08-20 | Cabot Medical Corporation | Ultrasonic medical instrument |
JPS5991476A (en) * | 1982-11-17 | 1984-05-26 | 東京電力株式会社 | Training sumilator |
US4565787A (en) * | 1983-05-09 | 1986-01-21 | The United States Of America As Represented By The Secretary Of The Army | High performance liquid chromatography (HPLC) analysis of sulfur mustards and their decomposition by-products by derivatization |
US4665906A (en) * | 1983-10-14 | 1987-05-19 | Raychem Corporation | Medical devices incorporating sim alloy elements |
US4505767A (en) * | 1983-10-14 | 1985-03-19 | Raychem Corporation | Nickel/titanium/vanadium shape memory alloy |
JPS6086822A (en) | 1983-10-19 | 1985-05-16 | Furukawa Electric Co Ltd:The | Vapor growth device for semiconductor thin-film |
US4572184A (en) * | 1983-10-28 | 1986-02-25 | Blackstone Corporation | Wave guide attachment means and methods |
US4781186A (en) | 1984-05-30 | 1988-11-01 | Devices For Vascular Intervention, Inc. | Atherectomy device having a flexible housing |
US5114414A (en) * | 1984-09-18 | 1992-05-19 | Medtronic, Inc. | Low profile steerable catheter |
US4664112A (en) * | 1985-08-12 | 1987-05-12 | Intravascular Surgical Instruments, Inc. | Catheter based surgical methods and apparatus therefor |
US4700705A (en) | 1985-08-12 | 1987-10-20 | Intravascular Surgical Instruments, Inc. | Catheter based surgical methods and apparatus therefor |
US4679558A (en) | 1985-08-12 | 1987-07-14 | Intravascular Surgical Instruments, Inc. | Catheter based surgical methods and apparatus therefor |
US4750902A (en) | 1985-08-28 | 1988-06-14 | Sonomed Technology, Inc. | Endoscopic ultrasonic aspirators |
US5000185A (en) * | 1986-02-28 | 1991-03-19 | Cardiovascular Imaging Systems, Inc. | Method for intravascular two-dimensional ultrasonography and recanalization |
FR2595860A1 (en) | 1986-03-17 | 1987-09-18 | Kodak Pathe | COMPENSATION FILTER FOR RADIOGRAPHY |
US4827911A (en) | 1986-04-02 | 1989-05-09 | Cooper Lasersonics, Inc. | Method and apparatus for ultrasonic surgical fragmentation and removal of tissue |
US6702750B2 (en) * | 1986-04-15 | 2004-03-09 | Cardiovascular Imaging Systems, Inc. | Angioplasty apparatus facilitating rapid exchanges and methods |
US4721117A (en) * | 1986-04-25 | 1988-01-26 | Advanced Cardiovascular Systems, Inc. | Torsionally stabilized guide wire with outer jacket |
US4808153A (en) * | 1986-11-17 | 1989-02-28 | Ultramed Corporation | Device for removing plaque from arteries |
US5058570A (en) | 1986-11-27 | 1991-10-22 | Sumitomo Bakelite Company Limited | Ultrasonic surgical apparatus |
US4838853A (en) | 1987-02-05 | 1989-06-13 | Interventional Technologies Inc. | Apparatus for trimming meniscus |
DE3807004A1 (en) | 1987-03-02 | 1988-09-15 | Olympus Optical Co | ULTRASONIC TREATMENT DEVICE |
US4936845A (en) | 1987-03-17 | 1990-06-26 | Cordis Corporation | Catheter system having distal tip for opening obstructions |
US4923462A (en) * | 1987-03-17 | 1990-05-08 | Cordis Corporation | Catheter system having a small diameter rotatable drive member |
US5116350B1 (en) * | 1987-03-17 | 1997-06-17 | Cordis Corp | Catheter system having distal tip for opening obstructions |
SE459711B (en) | 1987-03-20 | 1989-07-31 | Swedemed Ab | EQUIPMENT FOR USE IN SURGICAL INTERVENTIONS TO DISPOSE TISSUE |
US4811743A (en) * | 1987-04-21 | 1989-03-14 | Cordis Corporation | Catheter guidewire |
US4931047A (en) | 1987-09-30 | 1990-06-05 | Cavitron, Inc. | Method and apparatus for providing enhanced tissue fragmentation and/or hemostasis |
US5015227A (en) * | 1987-09-30 | 1991-05-14 | Valleylab Inc. | Apparatus for providing enhanced tissue fragmentation and/or hemostasis |
JPH0199547A (en) | 1987-10-13 | 1989-04-18 | Olympus Optical Co Ltd | Ultrasonic treatment apparatus |
US4854325A (en) | 1987-11-09 | 1989-08-08 | Stevens Robert C | Reciprocating guidewire method |
US4870953A (en) | 1987-11-13 | 1989-10-03 | Donmicheal T Anthony | Intravascular ultrasonic catheter/probe and method for treating intravascular blockage |
DE3738797A1 (en) | 1987-11-14 | 1989-05-24 | Rentrop Hubbert & Wagner | LINEAR ADJUSTABLE FORCE TRANSMISSION ELEMENT WITH CONTINUOUS, INACCESSIVE SENSITIVITY BLOCKING |
JPH0199547U (en) | 1987-12-22 | 1989-07-04 | ||
US5163421A (en) | 1988-01-22 | 1992-11-17 | Angiosonics, Inc. | In vivo ultrasonic system with angioplasty and ultrasonic contrast imaging |
CA1325458C (en) | 1988-01-22 | 1993-12-21 | Jonathan Bernstein | Vivo ultrasonic system for angioplasty and ultrasonic contrast imaging |
US5425711A (en) * | 1988-02-29 | 1995-06-20 | Scimed Life Systems, Inc. | Intravascular catheter with distal guide wire lumen and transition member |
US5372138A (en) * | 1988-03-21 | 1994-12-13 | Boston Scientific Corporation | Acousting imaging catheters and the like |
US4924863A (en) * | 1988-05-04 | 1990-05-15 | Mmtc, Inc. | Angioplastic method for removing plaque from a vas |
DE3821836A1 (en) | 1988-06-29 | 1990-01-04 | Fraunhofer Ges Forschung | AERODYNAMIC WINDOW FOR A GAS LASER |
JPH027150U (en) | 1988-06-30 | 1990-01-17 | ||
JP2682549B2 (en) | 1988-07-01 | 1997-11-26 | フオルクスウアーゲン・アクチェンゲゼルシャフト | Device for producing a particularly controllable counter-axial axial force on a rotating shaft which is axially slidable by an axial force |
US4920954A (en) | 1988-08-05 | 1990-05-01 | Sonic Needle Corporation | Ultrasonic device for applying cavitation forces |
DE8910040U1 (en) | 1988-09-03 | 1989-12-14 | Leybold Ag | Turbomolecular vacuum pump |
JPH0271510A (en) | 1988-09-07 | 1990-03-12 | Oki Electric Ind Co Ltd | Apparatus for semiconductor vapor growth |
US4989583A (en) | 1988-10-21 | 1991-02-05 | Nestle S.A. | Ultrasonic cutting tip assembly |
US4978333A (en) | 1988-12-20 | 1990-12-18 | Valleylab, Inc. | Resonator for surgical handpiece |
US5091205A (en) * | 1989-01-17 | 1992-02-25 | Union Carbide Chemicals & Plastics Technology Corporation | Hydrophilic lubricious coatings |
US5318570A (en) | 1989-01-31 | 1994-06-07 | Advanced Osseous Technologies, Inc. | Ultrasonic tool |
US5255669A (en) | 1989-04-12 | 1993-10-26 | Olympus Optical Co., Ltd. | Ultrasonic treatment apparatus |
US4936281A (en) * | 1989-04-13 | 1990-06-26 | Everest Medical Corporation | Ultrasonically enhanced RF ablation catheter |
US5046503A (en) | 1989-04-26 | 1991-09-10 | Advanced Cardiovascular Systems, Inc. | Angioplasty autoperfusion catheter flow measurement method and apparatus |
US5180363A (en) * | 1989-04-27 | 1993-01-19 | Sumitomo Bakelite Company Company Limited | Operation device |
JPH02286149A (en) | 1989-04-27 | 1990-11-26 | Sumitomo Bakelite Co Ltd | Surgery operating device |
EP0401158B1 (en) | 1989-06-01 | 1996-02-28 | Schneider (Europe) Ag | Catheter apparatus with a guide wire and method for the production of such a guide wire |
NL8901654A (en) | 1989-06-29 | 1991-01-16 | Cordis Europ | METHOD FOR MANUFACTURING CATHETER, AND CATHETER MANUFACTURED WITH THIS METHOD |
US5269793A (en) | 1989-07-20 | 1993-12-14 | Devices For Vascular Intervention, Inc. | Guide wire systems for intravascular catheters |
US5171216A (en) | 1989-08-28 | 1992-12-15 | Thermedics, Inc. | Multi-lumen catheter coupling |
US5109859A (en) * | 1989-10-04 | 1992-05-05 | Beth Israel Hospital Association | Ultrasound guided laser angioplasty |
FR2653040B1 (en) | 1989-10-18 | 1994-05-13 | Aerospatiale Ste Nationale Indle | ULTRASONIC PERCUSSION DEVICE. |
US5076276A (en) | 1989-11-01 | 1991-12-31 | Olympus Optical Co., Ltd. | Ultrasound type treatment apparatus |
US5026384A (en) | 1989-11-07 | 1991-06-25 | Interventional Technologies, Inc. | Atherectomy systems and methods |
US5344395A (en) | 1989-11-13 | 1994-09-06 | Scimed Life Systems, Inc. | Apparatus for intravascular cavitation or delivery of low frequency mechanical energy |
US5195955A (en) * | 1989-11-14 | 1993-03-23 | Don Michael T Anthony | Device for removal of embolic debris |
US5030201A (en) | 1989-11-24 | 1991-07-09 | Aubrey Palestrant | Expandable atherectomy catheter device |
WO1991007917A2 (en) | 1989-11-27 | 1991-06-13 | Beat Krattiger | Ultrasonic surgical instrument |
US5221255A (en) * | 1990-01-10 | 1993-06-22 | Mahurkar Sakharam D | Reinforced multiple lumen catheter |
IL93141A0 (en) | 1990-01-23 | 1990-11-05 | Urcan Medical Ltd | Ultrasonic recanalization system |
US5391144A (en) | 1990-02-02 | 1995-02-21 | Olympus Optical Co., Ltd. | Ultrasonic treatment apparatus |
DE4042435C3 (en) | 1990-02-02 | 1998-12-10 | Olympus Optical Co | Ultrasound treatment device |
US5238004A (en) | 1990-04-10 | 1993-08-24 | Boston Scientific Corporation | High elongation linear elastic guidewire |
US5100424A (en) * | 1990-05-21 | 1992-03-31 | Cardiovascular Imaging Systems, Inc. | Intravascular catheter having combined imaging abrasion head |
JP2649185B2 (en) | 1990-06-25 | 1997-09-03 | 富士写真光機株式会社 | Ultrasonic inspection equipment |
US5279546A (en) | 1990-06-27 | 1994-01-18 | Lake Region Manufacturing Company, Inc. | Thrombolysis catheter system |
US6007513A (en) * | 1990-07-17 | 1999-12-28 | Aziz Yehia Anis | Removal of tissue |
US5100423A (en) * | 1990-08-21 | 1992-03-31 | Medical Engineering & Development Institute, Inc. | Ablation catheter |
US5030357A (en) | 1990-09-11 | 1991-07-09 | Lowe Engineering Company | Oil/grease recovery method and apparatus |
US5389096A (en) * | 1990-12-18 | 1995-02-14 | Advanced Cardiovascular Systems | System and method for percutaneous myocardial revascularization |
US5053008A (en) * | 1990-11-21 | 1991-10-01 | Sandeep Bajaj | Intracardiac catheter |
US5269291A (en) | 1990-12-10 | 1993-12-14 | Coraje, Inc. | Miniature ultrasonic transducer for plaque ablation |
US5341818A (en) | 1992-12-22 | 1994-08-30 | Advanced Cardiovascular Systems, Inc. | Guidewire with superelastic distal portion |
US5380316A (en) * | 1990-12-18 | 1995-01-10 | Advanced Cardiovascular Systems, Inc. | Method for intra-operative myocardial device revascularization |
US5248296A (en) | 1990-12-24 | 1993-09-28 | Sonic Needle Corporation | Ultrasonic device having wire sheath |
US5312328A (en) * | 1991-01-11 | 1994-05-17 | Baxter International Inc. | Ultra-sound catheter for removing obstructions from tubular anatomical structures such as blood vessels |
US5368557A (en) * | 1991-01-11 | 1994-11-29 | Baxter International Inc. | Ultrasonic ablation catheter device having multiple ultrasound transmission members |
US5447509A (en) | 1991-01-11 | 1995-09-05 | Baxter International Inc. | Ultrasound catheter system having modulated output with feedback control |
US5380274A (en) * | 1991-01-11 | 1995-01-10 | Baxter International Inc. | Ultrasound transmission member having improved longitudinal transmission properties |
US5542917A (en) * | 1991-01-11 | 1996-08-06 | Baxter International, Inc. | Ultrasound delivery catheters incorporating improved distal tip construction |
US5957882A (en) * | 1991-01-11 | 1999-09-28 | Advanced Cardiovascular Systems, Inc. | Ultrasound devices for ablating and removing obstructive matter from anatomical passageways and blood vessels |
US5304115A (en) * | 1991-01-11 | 1994-04-19 | Baxter International Inc. | Ultrasonic angioplasty device incorporating improved transmission member and ablation probe |
US5997497A (en) * | 1991-01-11 | 1999-12-07 | Advanced Cardiovascular Systems | Ultrasound catheter having integrated drug delivery system and methods of using same |
US5324255A (en) | 1991-01-11 | 1994-06-28 | Baxter International Inc. | Angioplasty and ablative devices having onboard ultrasound components and devices and methods for utilizing ultrasound to treat or prevent vasopasm |
US5267954A (en) * | 1991-01-11 | 1993-12-07 | Baxter International Inc. | Ultra-sound catheter for removing obstructions from tubular anatomical structures such as blood vessels |
US5368558A (en) | 1991-01-11 | 1994-11-29 | Baxter International Inc. | Ultrasonic ablation catheter device having endoscopic component and method of using same |
US5405318A (en) * | 1992-05-05 | 1995-04-11 | Baxter International Inc. | Ultra-sound catheter for removing obstructions from tubular anatomical structures such as blood vessels |
US5916192A (en) * | 1991-01-11 | 1999-06-29 | Advanced Cardiovascular Systems, Inc. | Ultrasonic angioplasty-atherectomy catheter and method of use |
US5183470A (en) * | 1991-03-04 | 1993-02-02 | International Medical, Inc. | Laparoscopic cholangiogram catheter and method of using same |
US5353798A (en) * | 1991-03-13 | 1994-10-11 | Scimed Life Systems, Incorporated | Intravascular imaging apparatus and methods for use and manufacture |
JPH0611308B2 (en) | 1991-04-19 | 1994-02-16 | 克弥 高須 | Liposuction device and its equipment |
NZ272209A (en) * | 1991-05-01 | 2001-02-23 | Univ Columbia | Myocardial revascularisation of the heart by a laser |
US5480379A (en) * | 1991-05-22 | 1996-01-02 | La Rosa; Antonio | Ultrasonic dissector and detacher for atherosclerotic plaque and method of using same |
US5234416A (en) | 1991-06-06 | 1993-08-10 | Advanced Cardiovascular Systems, Inc. | Intravascular catheter with a nontraumatic distal tip |
US5304131A (en) * | 1991-07-15 | 1994-04-19 | Paskar Larry D | Catheter |
US5290229A (en) * | 1991-07-15 | 1994-03-01 | Paskar Larry D | Transformable catheter and method |
US5795325A (en) | 1991-07-16 | 1998-08-18 | Heartport, Inc. | Methods and apparatus for anchoring an occluding member |
US6029671A (en) * | 1991-07-16 | 2000-02-29 | Heartport, Inc. | System and methods for performing endovascular procedures |
US5242385A (en) | 1991-10-08 | 1993-09-07 | Surgical Design Corporation | Ultrasonic handpiece |
US5376084A (en) | 1991-10-17 | 1994-12-27 | Imagyn Medical, Inc. | Catheter with internal mandrel and method |
WO1993008750A2 (en) | 1991-11-04 | 1993-05-13 | Baxter International Inc. | Ultrasonic ablation device adapted for guidewire passage |
US5325860A (en) | 1991-11-08 | 1994-07-05 | Mayo Foundation For Medical Education And Research | Ultrasonic and interventional catheter and method |
US5217565A (en) | 1991-11-13 | 1993-06-08 | Wisconsin Alumni Research Foundation | Contactless heater floating zone refining and crystal growth |
DE4137698A1 (en) * | 1991-11-15 | 1993-05-19 | Wacker Chemie Gmbh | MASSES CONTAINING TIN CONNECTION AS ONE OF THE TWO COMPONENTS FROM ROOM TEMPERATURE TO ORGANOPOLYSILOXANELASTOMER CROSSLINKING TWO-COMPONENT SYSTEMS |
US5695510A (en) | 1992-02-20 | 1997-12-09 | Hood; Larry L. | Ultrasonic knife |
US5269297A (en) | 1992-02-27 | 1993-12-14 | Angiosonics Inc. | Ultrasonic transmission apparatus |
US5226421A (en) | 1992-03-06 | 1993-07-13 | Cardiometrics, Inc. | Doppler elongate flexible member having an inflatable balloon mounted thereon |
US6277084B1 (en) | 1992-03-31 | 2001-08-21 | Boston Scientific Corporation | Ultrasonic medical device |
US5324260A (en) | 1992-04-27 | 1994-06-28 | Minnesota Mining And Manufacturing Company | Retrograde coronary sinus catheter |
EP0820727B1 (en) | 1992-05-05 | 1999-12-15 | Advanced Cardiovascular Systems, Inc. | Ultrasonic angioplasty catheter device |
US5290230A (en) | 1992-05-11 | 1994-03-01 | Advanced Cardiovascular Systems, Inc. | Intraluminal catheter with a composite shaft |
US5380273A (en) | 1992-05-19 | 1995-01-10 | Dubrul; Will R. | Vibrating catheter |
US5713848A (en) | 1993-05-19 | 1998-02-03 | Dubrul; Will R. | Vibrating catheter |
US6936025B1 (en) | 1992-05-19 | 2005-08-30 | Bacchus Vascular, Inc. | Thrombolysis device |
US5382228A (en) * | 1992-07-09 | 1995-01-17 | Baxter International Inc. | Method and device for connecting ultrasound transmission member (S) to an ultrasound generating device |
US5328004A (en) | 1992-08-21 | 1994-07-12 | General Motors Corporation | Bypass valve assembly for a hydraulic damper |
US5243997A (en) | 1992-09-14 | 1993-09-14 | Interventional Technologies, Inc. | Vibrating device for a guide wire |
US5362309A (en) | 1992-09-14 | 1994-11-08 | Coraje, Inc. | Apparatus and method for enhanced intravascular phonophoresis including dissolution of intravascular blockage and concomitant inhibition of restenosis |
US5443078A (en) | 1992-09-14 | 1995-08-22 | Interventional Technologies, Inc. | Method for advancing a guide wire |
US5318014A (en) | 1992-09-14 | 1994-06-07 | Coraje, Inc. | Ultrasonic ablation/dissolution transducer |
US5287858A (en) * | 1992-09-23 | 1994-02-22 | Pilot Cardiovascular Systems, Inc. | Rotational atherectomy guidewire |
US5383460A (en) * | 1992-10-05 | 1995-01-24 | Cardiovascular Imaging Systems, Inc. | Method and apparatus for ultrasound imaging and atherectomy |
US5397293A (en) | 1992-11-25 | 1995-03-14 | Misonix, Inc. | Ultrasonic device with sheath and transverse motion damping |
WO1994012234A1 (en) | 1992-12-01 | 1994-06-09 | Intelliwire, Inc. | Vibratory element for crossing stenoses |
US5409483A (en) * | 1993-01-22 | 1995-04-25 | Jeffrey H. Reese | Direct visualization surgical probe |
CA2114988A1 (en) * | 1993-02-05 | 1994-08-06 | Matthew O'boyle | Ultrasonic angioplasty balloon catheter |
US5538512A (en) | 1993-02-25 | 1996-07-23 | Zenzon; Wendy J. | Lubricious flow directed catheter |
US5329927A (en) | 1993-02-25 | 1994-07-19 | Echo Cath, Inc. | Apparatus and method for locating an interventional medical device with a ultrasound color imaging system |
US5378234A (en) * | 1993-03-15 | 1995-01-03 | Pilot Cardiovascular Systems, Inc. | Coil polymer composite |
US5346502A (en) | 1993-04-15 | 1994-09-13 | Ultracision, Inc. | Laparoscopic ultrasonic surgical instrument and methods for manufacturing the instruments |
US5873835A (en) | 1993-04-29 | 1999-02-23 | Scimed Life Systems, Inc. | Intravascular pressure and flow sensor |
US5449370A (en) | 1993-05-12 | 1995-09-12 | Ethicon, Inc. | Blunt tipped ultrasonic trocar |
US5417703A (en) * | 1993-07-13 | 1995-05-23 | Scimed Life Systems, Inc. | Thrombectomy devices and methods of using same |
US5487757A (en) * | 1993-07-20 | 1996-01-30 | Medtronic Cardiorhythm | Multicurve deflectable catheter |
US5431168A (en) | 1993-08-23 | 1995-07-11 | Cordis-Webster, Inc. | Steerable open-lumen catheter |
US5462529A (en) | 1993-09-29 | 1995-10-31 | Technology Development Center | Adjustable treatment chamber catheter |
US5427118A (en) | 1993-10-04 | 1995-06-27 | Baxter International Inc. | Ultrasonic guidewire |
US5417672A (en) * | 1993-10-04 | 1995-05-23 | Baxter International Inc. | Connector for coupling an ultrasound transducer to an ultrasound catheter |
US5465733A (en) | 1993-10-14 | 1995-11-14 | Hinohara; Tomoaki | Guide wire for catheters and method for its use |
JPH07116260A (en) * | 1993-10-27 | 1995-05-09 | Sumitomo Bakelite Co Ltd | Catheter for medical treatment and its production |
US5421923A (en) | 1993-12-03 | 1995-06-06 | Baxter International, Inc. | Ultrasonic welding horn with sonics dampening insert |
AU691854B2 (en) | 1993-12-03 | 1998-05-28 | Edwards Lifesciences Ag | Cardiopulmonary bypass system for closed-chest intervention |
CA2160698A1 (en) | 1993-12-09 | 1995-06-15 | Charles Milo | Composite drive shaft |
US5403324A (en) | 1994-01-14 | 1995-04-04 | Microsonic Engineering Devices Company, Inc. | Flexible catheter with stone basket and ultrasonic conductor |
US5658282A (en) | 1994-01-18 | 1997-08-19 | Endovascular, Inc. | Apparatus for in situ saphenous vein bypass and less-invasive varicose vein treatment |
FR2715588B1 (en) | 1994-02-03 | 1996-03-01 | Aerospatiale | Ultrasonic percussion device. |
US5484398A (en) * | 1994-03-17 | 1996-01-16 | Valleylab Inc. | Methods of making and using ultrasonic handpiece |
JP3425615B2 (en) | 1994-03-24 | 2003-07-14 | 科学技術庁長官官房会計課長 | Scanning near-field atomic force microscope |
US5618266A (en) * | 1994-03-31 | 1997-04-08 | Liprie; Samuel F. | Catheter for maneuvering radioactive source wire to site of treatment |
ZA954936B (en) | 1994-06-17 | 1996-02-27 | Trudell Medical Ltd | Nebulizing catheter system and methods of use and manufacture |
US6729334B1 (en) | 1994-06-17 | 2004-05-04 | Trudell Medical Limited | Nebulizing catheter system and methods of use and manufacture |
US5516043A (en) * | 1994-06-30 | 1996-05-14 | Misonix Inc. | Ultrasonic atomizing device |
AU694225B2 (en) | 1994-08-02 | 1998-07-16 | Ethicon Endo-Surgery, Inc. | Ultrasonic hemostatic and cutting instrument |
US5507738A (en) * | 1994-08-05 | 1996-04-16 | Microsonic Engineering Devices Company, Inc. | Ultrasonic vascular surgical system |
US5509896A (en) | 1994-09-09 | 1996-04-23 | Coraje, Inc. | Enhancement of thrombolysis with external ultrasound |
WO1996010366A1 (en) | 1994-10-03 | 1996-04-11 | Heart Technology, Inc. | Transluminal thrombectomy apparatus |
US5527273A (en) | 1994-10-06 | 1996-06-18 | Misonix, Inc. | Ultrasonic lipectomy probe and method for manufacture |
US6689086B1 (en) * | 1994-10-27 | 2004-02-10 | Advanced Cardiovascular Systems, Inc. | Method of using a catheter for delivery of ultrasonic energy and medicament |
US6676900B1 (en) * | 1994-12-09 | 2004-01-13 | Therox, Inc. | Method for the preparation and delivery of gas-enriched fluids |
US6607698B1 (en) | 1997-08-15 | 2003-08-19 | Therox, Inc. | Method for generalized extracorporeal support |
US6180059B1 (en) | 1995-06-05 | 2001-01-30 | Therox, Inc. | Method for the preparation and delivery of gas-enriched fluids |
US5597497A (en) * | 1994-12-20 | 1997-01-28 | Hypertherm, Inc. | Switch mechanism for operating a plasma arc torch, other tools or weapons |
DE69504104T2 (en) * | 1995-01-04 | 1999-05-06 | Medtronic, Inc., Minneapolis, Minn. | IMPROVED METHOD FOR PRODUCING A SOFT TIP |
US5665062A (en) | 1995-01-23 | 1997-09-09 | Houser; Russell A. | Atherectomy catheter and RF cutting method |
US6210356B1 (en) * | 1998-08-05 | 2001-04-03 | Ekos Corporation | Ultrasound assembly for use with a catheter |
CA2220689A1 (en) | 1995-05-10 | 1996-11-14 | Cardiogenesis Corporation | System for treating or diagnosing heart tissue |
US5738100A (en) * | 1995-06-30 | 1998-04-14 | Terumo Kabushiki Kaisha | Ultrasonic imaging catheter |
AU6404596A (en) | 1995-06-30 | 1997-02-05 | Boston Scientific Corporation | Ultrasound imaging catheter with a cutting element |
EP0842578A4 (en) | 1995-08-01 | 1998-12-09 | Auravision Corp | Transition aligned video synchronization system |
US5685841A (en) | 1995-08-14 | 1997-11-11 | Mackool; Richard J. | Support for fluid infusion tube for use during eye surgery |
US6283983B1 (en) | 1995-10-13 | 2001-09-04 | Transvascular, Inc. | Percutaneous in-situ coronary bypass method and apparatus |
KR19990064209A (en) | 1995-10-13 | 1999-07-26 | 트랜스바스큘라, 인코포레이티드 | Apparatus, Systems, and Methods for Interstitial Acupoint Intervention |
US6302875B1 (en) | 1996-10-11 | 2001-10-16 | Transvascular, Inc. | Catheters and related devices for forming passageways between blood vessels or other anatomical structures |
IL124038A (en) * | 1995-10-13 | 2004-02-19 | Transvascular Inc | Apparatus for bypassing arterial obstructions and/or performing other transvascular procedures |
US6235007B1 (en) | 1995-11-27 | 2001-05-22 | Therox, Inc. | Atraumatic fluid delivery devices |
US5797876A (en) | 1995-11-27 | 1998-08-25 | Therox, Inc. | High pressure perfusion device |
US5957899A (en) | 1995-11-27 | 1999-09-28 | Therox, Inc. | High pressure transluminal fluid delivery device |
US5728062A (en) * | 1995-11-30 | 1998-03-17 | Pharmasonics, Inc. | Apparatus and methods for vibratory intraluminal therapy employing magnetostrictive transducers |
US5725494A (en) | 1995-11-30 | 1998-03-10 | Pharmasonics, Inc. | Apparatus and methods for ultrasonically enhanced intraluminal therapy |
US5733296A (en) | 1996-02-06 | 1998-03-31 | Devices For Vascular Intervention | Composite atherectomy cutter |
US6022309A (en) | 1996-04-24 | 2000-02-08 | The Regents Of The University Of California | Opto-acoustic thrombolysis |
US5843109A (en) | 1996-05-29 | 1998-12-01 | Allergan | Ultrasonic handpiece with multiple piezoelectric elements and heat dissipator |
US5827971A (en) | 1996-05-31 | 1998-10-27 | Lockheed Martin Idaho Technologies Company | Optical vibration detection spectral analysis assembly and method for detecting vibration in an object of interest |
US6652546B1 (en) | 1996-07-26 | 2003-11-25 | Kensey Nash Corporation | System and method of use for revascularizing stenotic bypass grafts and other occluded blood vessels |
US5830127A (en) | 1996-08-05 | 1998-11-03 | Cybersonics, Inc. | Method and apparatus for cleaning endoscopes and the like |
US5971949A (en) | 1996-08-19 | 1999-10-26 | Angiosonics Inc. | Ultrasound transmission apparatus and method of using same |
US6241703B1 (en) | 1996-08-19 | 2001-06-05 | Angiosonics Inc. | Ultrasound transmission apparatus having a tip |
US5846218A (en) | 1996-09-05 | 1998-12-08 | Pharmasonics, Inc. | Balloon catheters having ultrasonically driven interface surfaces and methods for their use |
JP3563540B2 (en) | 1996-09-13 | 2004-09-08 | テルモ株式会社 | catheter |
US5989274A (en) | 1996-10-17 | 1999-11-23 | Ethicon Endo-Surgery, Inc. | Methods and devices for improving blood flow to a heart of a patient |
US6165188A (en) | 1996-12-02 | 2000-12-26 | Angiotrax, Inc. | Apparatus for percutaneously performing myocardial revascularization having controlled cutting depth and methods of use |
US6159187A (en) * | 1996-12-06 | 2000-12-12 | Target Therapeutics, Inc. | Reinforced catheter with a formable distal tip |
US6048329A (en) | 1996-12-19 | 2000-04-11 | Ep Technologies, Inc. | Catheter distal assembly with pull wires |
US6051010A (en) * | 1996-12-23 | 2000-04-18 | Ethicon Endo-Surgery, Inc. | Methods and devices for joining transmission components |
JPH10216140A (en) | 1997-02-12 | 1998-08-18 | Olympus Optical Co Ltd | Ultrasonic therapeutic system |
US5989275A (en) | 1997-02-28 | 1999-11-23 | Ethicon Endo-Surgery, Inc. | Damping ultrasonic transmission components |
US5944737A (en) | 1997-10-10 | 1999-08-31 | Ethicon Endo-Surgery, Inc. | Ultrasonic clamp coagulator apparatus having improved waveguide support member |
US5904667A (en) * | 1997-03-17 | 1999-05-18 | C.R. Bard, Inc. | Rotatable control mechanism for steerable catheter |
US5827203A (en) | 1997-04-21 | 1998-10-27 | Nita; Henry | Ultrasound system and method for myocardial revascularization |
US6723063B1 (en) * | 1998-06-29 | 2004-04-20 | Ekos Corporation | Sheath for use with an ultrasound element |
US6582392B1 (en) * | 1998-05-01 | 2003-06-24 | Ekos Corporation | Ultrasound assembly for use with a catheter |
US5989208A (en) | 1997-05-16 | 1999-11-23 | Nita; Henry | Therapeutic ultrasound system |
EP0929338A1 (en) | 1997-05-23 | 1999-07-21 | Biosense, Inc. | Catheter with oblique lumen |
US5916912A (en) | 1997-06-16 | 1999-06-29 | The Regents Of The University Of California | Dietary composition for enhancing metabolism and alleviating oxidative stress |
US6071292A (en) | 1997-06-28 | 2000-06-06 | Transvascular, Inc. | Transluminal methods and devices for closing, forming attachments to, and/or forming anastomotic junctions in, luminal anatomical structures |
US6547788B1 (en) | 1997-07-08 | 2003-04-15 | Atrionx, Inc. | Medical device with sensor cooperating with expandable member |
US6514249B1 (en) | 1997-07-08 | 2003-02-04 | Atrionix, Inc. | Positioning system and method for orienting an ablation element within a pulmonary vein ostium |
US7037316B2 (en) | 1997-07-24 | 2006-05-02 | Mcguckin Jr James F | Rotational thrombectomy device |
US6004280A (en) | 1997-08-05 | 1999-12-21 | Cordis Corporation | Guiding sheath having three-dimensional distal end |
US5893838A (en) | 1997-08-15 | 1999-04-13 | Therox, Inc. | System and method for high pressure delivery of gas-supersaturated fluids |
US6024764A (en) | 1997-08-19 | 2000-02-15 | Intermedics, Inc. | Apparatus for imparting physician-determined shapes to implantable tubular devices |
US5937301A (en) | 1997-08-19 | 1999-08-10 | Advanced Micro Devices | Method of making a semiconductor device having sidewall spacers with improved profiles |
US5902287A (en) * | 1997-08-20 | 1999-05-11 | Medtronic, Inc. | Guiding catheter and method of making same |
US5913192A (en) | 1997-08-22 | 1999-06-15 | At&T Corp | Speaker identification with user-selected password phrases |
US6179809B1 (en) * | 1997-09-24 | 2001-01-30 | Eclipse Surgical Technologies, Inc. | Drug delivery catheter with tip alignment |
US6113558A (en) | 1997-09-29 | 2000-09-05 | Angiosonics Inc. | Pulsed mode lysis method |
US6007514A (en) | 1997-09-30 | 1999-12-28 | Nita; Henry | Ultrasound system with pathfinding guidewire |
US6007499A (en) | 1997-10-31 | 1999-12-28 | University Of Washington | Method and apparatus for medical procedures using high-intensity focused ultrasound |
US6183432B1 (en) | 1997-11-13 | 2001-02-06 | Lumend, Inc. | Guidewire and catheter with rotating and reciprocating symmetrical or asymmetrical distal tip |
JP4384271B2 (en) | 1997-11-14 | 2009-12-16 | オリンパス株式会社 | Ultrasonic surgical device |
US6695810B2 (en) * | 1997-11-21 | 2004-02-24 | Advanced Interventional Technologies, Inc. | Endolumenal aortic isolation assembly and method |
US6159165A (en) * | 1997-12-05 | 2000-12-12 | Micrus Corporation | Three dimensional spherical micro-coils manufactured from radiopaque nickel-titanium microstrand |
AU1817599A (en) | 1997-12-11 | 1999-06-28 | Sonics & Materials Inc. | Sheath and support for ultrasonic elongate tip |
DE19800416C2 (en) | 1998-01-08 | 2002-09-19 | Storz Karl Gmbh & Co Kg | Device for the treatment of body tissue, in particular soft tissue close to the surface, by means of ultrasound |
US6231546B1 (en) | 1998-01-13 | 2001-05-15 | Lumend, Inc. | Methods and apparatus for crossing total occlusions in blood vessels |
US6379378B1 (en) * | 2000-03-03 | 2002-04-30 | Innercool Therapies, Inc. | Lumen design for catheter |
US6221425B1 (en) | 1998-01-30 | 2001-04-24 | Advanced Cardiovascular Systems, Inc. | Lubricious hydrophilic coating for an intracorporeal medical device |
US6824550B1 (en) | 2000-04-06 | 2004-11-30 | Norbon Medical, Inc. | Guidewire for crossing occlusions or stenosis |
JP3559441B2 (en) | 1998-03-05 | 2004-09-02 | テルモ株式会社 | Tube unit system |
DE19814395C2 (en) | 1998-03-31 | 2000-09-21 | Ferton Holding Sa | Flexible metal probe for use in intracorporeal shock wave lithotripsy |
US5935144A (en) | 1998-04-09 | 1999-08-10 | Ethicon Endo-Surgery, Inc. | Double sealed acoustic isolation members for ultrasonic |
US6126684A (en) | 1998-04-21 | 2000-10-03 | The Regents Of The University Of California | Indwelling heat exchange catheter and method of using same |
US6338727B1 (en) | 1998-08-13 | 2002-01-15 | Alsius Corporation | Indwelling heat exchange catheter and method of using same |
US6331171B1 (en) | 1998-06-04 | 2001-12-18 | Alcon Laboratories, Inc. | Tip for a liquefracture handpiece |
US6217565B1 (en) | 1998-07-16 | 2001-04-17 | Mark Cohen | Reinforced variable stiffness tubing |
US6533766B1 (en) | 1998-07-24 | 2003-03-18 | Therox, Inc. | Coating medical device surfaces for delivering gas-supersaturated fluids |
US6602467B1 (en) | 1998-07-24 | 2003-08-05 | Therox, Inc. | Apparatus and method for blood oxygenation |
US20030009153A1 (en) * | 1998-07-29 | 2003-01-09 | Pharmasonics, Inc. | Ultrasonic enhancement of drug injection |
US6206842B1 (en) * | 1998-08-03 | 2001-03-27 | Lily Chen Tu | Ultrasonic operation device |
US6573470B1 (en) | 1998-08-05 | 2003-06-03 | Dct, Inc. | Weld gun heat removal |
US6319227B1 (en) | 1998-08-05 | 2001-11-20 | Scimed Life Systems, Inc. | Automatic/manual longitudinal position translator and rotary drive system for catheters |
US6241744B1 (en) | 1998-08-14 | 2001-06-05 | Fox Hollow Technologies, Inc. | Apparatus for deploying a guidewire across a complex lesion |
US6036689A (en) | 1998-09-24 | 2000-03-14 | Tu; Lily Chen | Ablation device for treating atherosclerotic tissues |
US6544215B1 (en) * | 1998-10-02 | 2003-04-08 | Scimed Life Systems, Inc. | Steerable device for introducing diagnostic and therapeutic apparatus into the body |
US6241692B1 (en) | 1998-10-06 | 2001-06-05 | Irvine Biomedical, Inc. | Ultrasonic ablation device and methods for lead extraction |
US7621893B2 (en) | 1998-10-29 | 2009-11-24 | Medtronic Minimed, Inc. | Methods and apparatuses for detecting occlusions in an ambulatory infusion pump |
US6149596A (en) | 1998-11-05 | 2000-11-21 | Bancroft; Michael R. | Ultrasonic catheter apparatus and method |
AU1128600A (en) | 1998-11-20 | 2000-06-13 | Joie P. Jones | Methods for selectively dissolving and removing materials using ultra-high frequency ultrasound |
JP4048026B2 (en) | 1998-12-01 | 2008-02-13 | ソシエテ ジェネラル プール レ テクニーク ヌーヴェル − エスジェエヌ | Method and apparatus for incineration and vitrification of waste, especially radioactive waste |
US20040024393A1 (en) | 2002-08-02 | 2004-02-05 | Henry Nita | Therapeutic ultrasound system |
US6855123B2 (en) | 2002-08-02 | 2005-02-15 | Flow Cardia, Inc. | Therapeutic ultrasound system |
US8506519B2 (en) | 1999-02-16 | 2013-08-13 | Flowcardia, Inc. | Pre-shaped therapeutic catheter |
US6210408B1 (en) | 1999-02-24 | 2001-04-03 | Scimed Life Systems, Inc. | Guide wire system for RF recanalization of vascular blockages |
CA2299997A1 (en) | 1999-03-05 | 2000-09-05 | Thomas Peterson | Method and apparatus for cleaning medical instruments and the like |
US6398772B1 (en) * | 1999-03-26 | 2002-06-04 | Coraje, Inc. | Method and apparatus for emergency treatment of patients experiencing a thrombotic vascular occlusion |
US6484052B1 (en) | 1999-03-30 | 2002-11-19 | The Regents Of The University Of California | Optically generated ultrasound for enhanced drug delivery |
US6398736B1 (en) | 1999-03-31 | 2002-06-04 | Mayo Foundation For Medical Education And Research | Parametric imaging ultrasound catheter |
JP2000291543A (en) | 1999-04-05 | 2000-10-17 | Rozensutaa Kk | Air pump for wine bottle |
WO2000067830A1 (en) | 1999-05-11 | 2000-11-16 | Atrionix, Inc. | Catheter positioning system |
ATE353001T1 (en) | 1999-05-11 | 2007-02-15 | Atrionix Inc | BALLOON ANCHORING WIRE |
US6346192B2 (en) | 1999-05-14 | 2002-02-12 | Therox, Inc. | Apparatus for high pressure fluid filtration |
US7935108B2 (en) | 1999-07-14 | 2011-05-03 | Cardiofocus, Inc. | Deflectable sheath catheters |
US20020022858A1 (en) | 1999-07-30 | 2002-02-21 | Demond Jackson F. | Vascular device for emboli removal having suspension strut and methods of use |
US7837116B2 (en) | 1999-09-07 | 2010-11-23 | American Express Travel Related Services Company, Inc. | Transaction card |
US6719715B2 (en) | 1999-09-16 | 2004-04-13 | Vasogen Ireland Limited | Apparatus and process for conditioning organic fluid |
US6576191B1 (en) | 1999-09-30 | 2003-06-10 | Therox, Inc. | Apparatus for blood oxygenation |
US6759008B1 (en) | 1999-09-30 | 2004-07-06 | Therox, Inc. | Apparatus and method for blood oxygenation |
US6596235B2 (en) | 1999-09-30 | 2003-07-22 | Therox, Inc. | Method for blood oxygenation |
US6387324B1 (en) | 1999-09-30 | 2002-05-14 | Therox, Inc. | Apparatus and method for blood oxygenation |
US6695781B2 (en) * | 1999-10-05 | 2004-02-24 | Omnisonics Medical Technologies, Inc. | Ultrasonic medical device for tissue remodeling |
US6695782B2 (en) | 1999-10-05 | 2004-02-24 | Omnisonics Medical Technologies, Inc. | Ultrasonic probe device with rapid attachment and detachment means |
US6733451B2 (en) | 1999-10-05 | 2004-05-11 | Omnisonics Medical Technologies, Inc. | Apparatus and method for an ultrasonic probe used with a pharmacological agent |
US6551337B1 (en) * | 1999-10-05 | 2003-04-22 | Omnisonics Medical Technologies, Inc. | Ultrasonic medical device operating in a transverse mode |
US6652547B2 (en) | 1999-10-05 | 2003-11-25 | Omnisonics Medical Technologies, Inc. | Apparatus and method of removing occlusions using ultrasonic medical device operating in a transverse mode |
US20030036705A1 (en) * | 1999-10-05 | 2003-02-20 | Omnisonics Medical Technologies, Inc. | Ultrasonic probe device having an impedance mismatch with rapid attachment and detachment means |
US6524251B2 (en) * | 1999-10-05 | 2003-02-25 | Omnisonics Medical Technologies, Inc. | Ultrasonic device for tissue ablation and sheath for use therewith |
US20020077550A1 (en) | 1999-10-05 | 2002-06-20 | Rabiner Robert A. | Apparatus and method for treating gynecological diseases using an ultrasonic medical device operating in a transverse mode |
US6660013B2 (en) * | 1999-10-05 | 2003-12-09 | Omnisonics Medical Technologies, Inc. | Apparatus for removing plaque from blood vessels using ultrasonic energy |
JP2001104356A (en) | 1999-10-08 | 2001-04-17 | Toshiba Corp | Ultrasonic therapy apparatus |
US8465468B1 (en) | 2000-06-29 | 2013-06-18 | Becton, Dickinson And Company | Intradermal delivery of substances |
JP2001116565A (en) | 1999-10-15 | 2001-04-27 | Yazaki Corp | On-vehicle navigation system and recording medium where processing program is recorded for it |
US8414543B2 (en) | 1999-10-22 | 2013-04-09 | Rex Medical, L.P. | Rotational thrombectomy wire with blocking device |
US6423026B1 (en) | 1999-12-09 | 2002-07-23 | Advanced Cardiovascular Systems, Inc. | Catheter stylet |
US6296620B1 (en) * | 1999-12-09 | 2001-10-02 | Advanced Cardiovascular Systems, Inc. | Polymer blends for ultrasonic catheters |
US6589253B1 (en) | 1999-12-30 | 2003-07-08 | Advanced Cardiovascular Systems, Inc. | Ultrasonic angioplasty transmission wire |
US6508781B1 (en) * | 1999-12-30 | 2003-01-21 | Advanced Cardiovascular Systems, Inc. | Ultrasonic ablation catheter transmission wire connector assembly |
US6494891B1 (en) | 1999-12-30 | 2002-12-17 | Advanced Cardiovascular Systems, Inc. | Ultrasonic angioplasty transmission member |
US7166098B1 (en) | 1999-12-30 | 2007-01-23 | Advanced Cardiovascular Systems, Inc. | Medical assembly with transducer for local delivery of a therapeutic substance and method of using same |
US6663613B1 (en) | 2000-01-25 | 2003-12-16 | Bacchus Vascular, Inc. | System and methods for clot dissolution |
US6758846B2 (en) | 2000-02-08 | 2004-07-06 | Gyrus Medical Limited | Electrosurgical instrument and an electrosurgery system including such an instrument |
US6635017B1 (en) | 2000-02-09 | 2003-10-21 | Spentech, Inc. | Method and apparatus combining diagnostic ultrasound with therapeutic ultrasound to enhance thrombolysis |
US6394956B1 (en) | 2000-02-29 | 2002-05-28 | Scimed Life Systems, Inc. | RF ablation and ultrasound catheter for crossing chronic total occlusions |
US6494894B2 (en) | 2000-03-16 | 2002-12-17 | Scimed Life Systems, Inc. | Coated wire |
US6298620B1 (en) * | 2000-04-10 | 2001-10-09 | Michael Hatzinikolas | Moisture control panel |
US6434418B1 (en) | 2000-04-12 | 2002-08-13 | Randall H. Neal | Apparatus for measuring intrauterine pressure and fetal heart rate and method for using same |
US7056294B2 (en) | 2000-04-13 | 2006-06-06 | Ev3 Sunnyvale, Inc | Method and apparatus for accessing the left atrial appendage |
US6650923B1 (en) | 2000-04-13 | 2003-11-18 | Ev3 Sunnyvale, Inc. | Method for accessing the left atrium of the heart by locating the fossa ovalis |
JP2001321388A (en) | 2000-05-17 | 2001-11-20 | Aloka Co Ltd | Ultrasonic surgical tool |
US6508784B1 (en) * | 2000-05-19 | 2003-01-21 | Yan-Ho Shu | Balloon catheter having adjustable centering capabilities and methods thereof |
US7534242B2 (en) | 2003-02-25 | 2009-05-19 | Artemis Medical, Inc. | Tissue separating catheter assembly and method |
US6761698B2 (en) | 2000-07-28 | 2004-07-13 | Olympus Corporation | Ultrasonic operation system |
JP2002186627A (en) | 2000-10-11 | 2002-07-02 | Olympus Optical Co Ltd | Ultrasonic manipulation device |
AU2002235159A1 (en) * | 2000-12-05 | 2002-06-18 | Lumend, Inc. | Catheter system for vascular re-entry from a sub-intimal space |
US6610077B1 (en) | 2001-01-23 | 2003-08-26 | Endovascular Technologies, Inc. | Expandable emboli filter and thrombectomy device |
US6613280B2 (en) | 2001-03-20 | 2003-09-02 | Therox, Inc. | Disposable cartridge for producing gas-enriched fluids |
US6622542B2 (en) | 2001-03-20 | 2003-09-23 | Therox, Inc. | Bubble detector and method of use thereof |
US6582387B2 (en) | 2001-03-20 | 2003-06-24 | Therox, Inc. | System for enriching a bodily fluid with a gas |
US6623448B2 (en) | 2001-03-30 | 2003-09-23 | Advanced Cardiovascular Systems, Inc. | Steerable drug delivery device |
US6615062B2 (en) | 2001-05-31 | 2003-09-02 | Infraredx, Inc. | Referencing optical catheters |
US6595058B2 (en) | 2001-06-19 | 2003-07-22 | Computed Ultrasound Global Inc. | Method and apparatus for determining dynamic response of microstructure by using pulsed broad bandwidth ultrasonic transducer as BAW hammer |
US20030040762A1 (en) | 2001-08-22 | 2003-02-27 | Gerald Dorros | Apparatus and methods for treating stroke and controlling cerebral flow characteristics |
DE10146011A1 (en) | 2001-09-19 | 2003-04-03 | Klaus Zimmermann | Method for destruction of a thrombus in a blood vessel by use of ultrasonic vibrations transmitted to a vibration head via an ultrasonic wave-guide from a generator |
US6554846B2 (en) * | 2001-09-28 | 2003-04-29 | Scimed Life Systems, Inc. | Sonic burr |
WO2003030975A2 (en) | 2001-10-11 | 2003-04-17 | Emphasys Medical, Inc. | Bronchial flow control devices and methods of use |
US8974446B2 (en) | 2001-10-11 | 2015-03-10 | St. Jude Medical, Inc. | Ultrasound ablation apparatus with discrete staggered ablation zones |
US20030216732A1 (en) | 2002-05-20 | 2003-11-20 | Csaba Truckai | Medical instrument with thermochromic or piezochromic surface indicators |
US7776025B2 (en) | 2001-10-29 | 2010-08-17 | Edwards Lifesciences Corporation | Method for providing medicament to tissue |
US7150853B2 (en) | 2001-11-01 | 2006-12-19 | Advanced Cardiovascular Systems, Inc. | Method of sterilizing a medical device |
KR100572236B1 (en) | 2001-11-14 | 2006-04-19 | 가부시끼가이샤 도시바 | Ultrasonic Examination Devices, Ultrasonic Transducers, and Ultrasound Imaging Devices |
AU2002353016A1 (en) | 2001-12-03 | 2003-06-17 | Ekos Corporation | Small vessel ultrasound catheter |
AU2007240154B2 (en) | 2001-12-21 | 2010-08-12 | Sound Surgical Technologies, Llc | Pulsed ultrasonic device and method |
JP2003190180A (en) | 2001-12-27 | 2003-07-08 | Miwatec:Kk | Compound vibration ultrasonic hand piece |
JP4109096B2 (en) | 2002-01-11 | 2008-06-25 | オリンパス株式会社 | Ultrasonic treatment device |
WO2003072165A2 (en) | 2002-02-28 | 2003-09-04 | Ekos Corporation | Ultrasound assembly for use with a catheter |
JP2004000336A (en) | 2002-05-31 | 2004-01-08 | Olympus Corp | Ultrasonic treatment apparatus |
US7115134B2 (en) * | 2002-07-22 | 2006-10-03 | Chambers Technology, Llc. | Catheter with flexible tip and shape retention |
US6866662B2 (en) | 2002-07-23 | 2005-03-15 | Biosense Webster, Inc. | Ablation catheter having stabilizing array |
US8133236B2 (en) | 2006-11-07 | 2012-03-13 | Flowcardia, Inc. | Ultrasound catheter having protective feature against breakage |
US6702748B1 (en) | 2002-09-20 | 2004-03-09 | Flowcardia, Inc. | Connector for securing ultrasound catheter to transducer |
US9955994B2 (en) | 2002-08-02 | 2018-05-01 | Flowcardia, Inc. | Ultrasound catheter having protective feature against breakage |
US7335180B2 (en) * | 2003-11-24 | 2008-02-26 | Flowcardia, Inc. | Steerable ultrasound catheter |
US6942677B2 (en) * | 2003-02-26 | 2005-09-13 | Flowcardia, Inc. | Ultrasound catheter apparatus |
US7137963B2 (en) | 2002-08-26 | 2006-11-21 | Flowcardia, Inc. | Ultrasound catheter for disrupting blood vessel obstructions |
US7220233B2 (en) * | 2003-04-08 | 2007-05-22 | Flowcardia, Inc. | Ultrasound catheter devices and methods |
US7604608B2 (en) | 2003-01-14 | 2009-10-20 | Flowcardia, Inc. | Ultrasound catheter and methods for making and using same |
US6780183B2 (en) | 2002-09-16 | 2004-08-24 | Biosense Webster, Inc. | Ablation catheter having shape-changing balloon |
US6942620B2 (en) | 2002-09-20 | 2005-09-13 | Flowcardia Inc | Connector for securing ultrasound catheter to transducer |
JP2006500991A (en) | 2002-09-26 | 2006-01-12 | サバコア インコーポレイテッド | Cardiovascular fixation device and method of placing the same |
US20040193033A1 (en) | 2002-10-04 | 2004-09-30 | Badehi Avner Pierre | Noninvasive methods and apparatuses for measuring the intraocular pressure of a mammal eye |
AU2003290806A1 (en) | 2002-11-15 | 2004-06-15 | The Government Of The United States As Represented By The Secretary Of The Department Of Health And Human Services | Variable curve catheter |
US7267650B2 (en) | 2002-12-16 | 2007-09-11 | Cardiac Pacemakers, Inc. | Ultrasound directed guiding catheter system and method |
US7445605B2 (en) | 2003-01-31 | 2008-11-04 | The Board Of Trustees Of The Leland Stanford Junior University | Detection of apex motion for monitoring cardiac dysfunction |
US20080208084A1 (en) | 2003-02-05 | 2008-08-28 | Timi 3 Systems, Inc. | Systems and methods for applying ultrasound energy to increase tissue perfusion and/or vasodilation without substantial deep heating of tissue |
US6878291B2 (en) | 2003-02-24 | 2005-04-12 | Scimed Life Systems, Inc. | Flexible tube for cartridge filter |
EP1619995A2 (en) | 2003-04-22 | 2006-02-01 | Ekos Corporation | Ultrasound enhanced central venous catheter |
US7060038B2 (en) * | 2003-04-24 | 2006-06-13 | Medtronic Vascular, Inc. | Device for delivering a sensor to the endovascular system and method of use |
AU2003242367A1 (en) | 2003-06-13 | 2005-01-04 | Matsushita Electric Works, Ltd. | Ultrasound applying skin care device |
EP1641512A1 (en) | 2003-06-20 | 2006-04-05 | Coloplast A/S | A medical device comprising a braided portion |
US7758510B2 (en) | 2003-09-19 | 2010-07-20 | Flowcardia, Inc. | Connector for securing ultrasound catheter to transducer |
US7004176B2 (en) | 2003-10-17 | 2006-02-28 | Edwards Lifesciences Ag | Heart valve leaflet locator |
US20050149110A1 (en) | 2003-12-16 | 2005-07-07 | Wholey Mark H. | Vascular catheter with an expandable section and a distal tip for delivering a thromboembolic protection device and method of use |
DE602004032574D1 (en) | 2003-12-31 | 2011-06-16 | Biosense Webster Inc | EXTENSIVE ABLATION DEVICE ARRANGEMENT WITH DUAL EXPANDABLE ELEMENTS |
EP1703850A1 (en) | 2003-12-31 | 2006-09-27 | Biosense Webster, Inc. | Circumferential ablation device assembly with an expandable member |
CA2553165A1 (en) | 2004-01-29 | 2005-08-11 | Ekos Corporation | Method and apparatus for detecting vascular conditions with a catheter |
US7341569B2 (en) | 2004-01-30 | 2008-03-11 | Ekos Corporation | Treatment of vascular occlusions using ultrasonic energy and microbubbles |
JP4253605B2 (en) | 2004-03-15 | 2009-04-15 | オリンパス株式会社 | Ultrasonic treatment device |
WO2005094283A2 (en) | 2004-03-25 | 2005-10-13 | Hauser David L | Vascular filter device |
US20050228286A1 (en) | 2004-04-07 | 2005-10-13 | Messerly Jeffrey D | Medical system having a rotatable ultrasound source and a piercing tip |
JP2007536985A (en) | 2004-05-13 | 2007-12-20 | オムニソニックス メディカル テクノロジーズ インコーポレイテッド | Ultrasound medical device and method for treating urolithiasis |
US7540852B2 (en) | 2004-08-26 | 2009-06-02 | Flowcardia, Inc. | Ultrasound catheter devices and methods |
JP4183669B2 (en) | 2004-09-16 | 2008-11-19 | 三洋電機株式会社 | Digital watermark embedding apparatus and method, and digital watermark extraction apparatus and method |
WO2006049593A1 (en) | 2004-10-27 | 2006-05-11 | Omnisonics Medical Technologies, Inc. | Apparatus and method for using an ultrasonic medical device to reinforce bone |
US8221343B2 (en) | 2005-01-20 | 2012-07-17 | Flowcardia, Inc. | Vibrational catheter devices and methods for making same |
CA2604380A1 (en) | 2005-04-12 | 2006-10-19 | Ekos Corporation | Ultrasound catheter with cavitation promoting surface |
US7771358B2 (en) | 2005-05-20 | 2010-08-10 | Spentech, Inc. | System and method for grading microemboli monitored by a multi-gate doppler ultrasound system |
US8155910B2 (en) | 2005-05-27 | 2012-04-10 | St. Jude Medical, Atrial Fibrillation Divison, Inc. | Robotically controlled catheter and method of its calibration |
US20110313328A1 (en) | 2005-06-24 | 2011-12-22 | Penumbra, Inc. | Methods and apparatus for dissolving blockages in intracranial catheters |
US20120330196A1 (en) | 2005-06-24 | 2012-12-27 | Penumbra Inc. | Methods and Apparatus for Removing Blood Clots and Tissue from the Patient's Head |
US7771452B2 (en) | 2005-07-12 | 2010-08-10 | Cook Incorporated | Embolic protection device with a filter bag that disengages from a basket |
US8632560B2 (en) * | 2005-08-11 | 2014-01-21 | Cook Medical Technologies Llc | System for breaking up thrombi and plaque in the vasculature |
US8083727B2 (en) | 2005-09-12 | 2011-12-27 | Bridgepoint Medical, Inc. | Endovascular devices and methods for exploiting intramural space |
US7938819B2 (en) | 2005-09-12 | 2011-05-10 | Bridgepoint Medical, Inc. | Endovascular devices and methods |
JP2007116260A (en) | 2005-10-18 | 2007-05-10 | Kyocera Corp | Communication apparatus and communication method |
US7850623B2 (en) | 2005-10-27 | 2010-12-14 | Boston Scientific Scimed, Inc. | Elongate medical device with continuous reinforcement member |
US20070178767A1 (en) | 2006-01-30 | 2007-08-02 | Harshman E S | Electrical connector |
US9282984B2 (en) | 2006-04-05 | 2016-03-15 | Flowcardia, Inc. | Therapeutic ultrasound system |
US7942809B2 (en) | 2006-05-26 | 2011-05-17 | Leban Stanley G | Flexible ultrasonic wire in an endoscope delivery system |
US8343134B2 (en) | 2006-06-13 | 2013-01-01 | Ben Gurion University Of The Negev Research And Development Authority | System and method for transfetal (amnion-chorion) membranes transport |
US7819013B2 (en) | 2006-07-05 | 2010-10-26 | The Hong Kong Polytechnic University | Method and apparatus for measuring oscillation amplitude of an ultrasonic device |
US20080071343A1 (en) | 2006-09-15 | 2008-03-20 | Kevin John Mayberry | Multi-segmented graft deployment system |
US8246643B2 (en) | 2006-11-07 | 2012-08-21 | Flowcardia, Inc. | Ultrasound catheter having improved distal end |
US7775994B2 (en) | 2006-12-11 | 2010-08-17 | Emigrant Bank, N.A. | Ultrasound medical systems and related methods |
EP2120768A1 (en) | 2007-03-07 | 2009-11-25 | Koninklijke Philips Electronics N.V. | Positioning device for positioning an object on a surface |
US8057498B2 (en) | 2007-11-30 | 2011-11-15 | Ethicon Endo-Surgery, Inc. | Ultrasonic surgical instrument blades |
EP2164401B1 (en) | 2007-05-23 | 2015-08-26 | Medinol Ltd. | Apparatus for guided chronic total occlusion penetration |
US8328738B2 (en) | 2007-06-29 | 2012-12-11 | Actuated Medical, Inc. | Medical tool for reduced penetration force with feedback means |
US10219832B2 (en) | 2007-06-29 | 2019-03-05 | Actuated Medical, Inc. | Device and method for less forceful tissue puncture |
US8110288B2 (en) | 2007-07-11 | 2012-02-07 | Nissei Plastic Industrial Co., Ltd. | Carbon nanocomposite material comprising a SiC film coating, and method of manufacturing the same |
US8070762B2 (en) | 2007-10-22 | 2011-12-06 | Atheromed Inc. | Atherectomy devices and methods |
WO2009062150A1 (en) | 2007-11-11 | 2009-05-14 | Imacor Llc | Transesophageal ultrasound probe with an adaptive bending section |
US20160328998A1 (en) | 2008-03-17 | 2016-11-10 | Worcester Polytechnic Institute | Virtual interactive system for ultrasound training |
US8052607B2 (en) | 2008-04-22 | 2011-11-08 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Ultrasound imaging catheter with pivoting head |
US9101387B2 (en) | 2008-06-05 | 2015-08-11 | Cardiovascular Systems, Inc. | Directional rotational atherectomy device with offset spinning abrasive element |
US8257378B1 (en) | 2008-07-28 | 2012-09-04 | O'connor Lawrence R | Ultrasonic guide wire for disintegration and dispersion of arterial occlusions of thrombi and plaque |
US20100069854A1 (en) | 2008-09-12 | 2010-03-18 | Onajite Okoh | Elastomeric Devices Containing Chlorhexidine/Fatty Acid Salts Made From Fatty Acids of 12 to 18 Carbons |
US9867529B2 (en) | 2008-11-07 | 2018-01-16 | Izoscope Inc | Endoscope accessory |
US9480390B2 (en) | 2008-11-07 | 2016-11-01 | Ashkan Farhadi | Endoscope accessory |
GB0822110D0 (en) | 2008-12-03 | 2009-01-07 | Angiomed Ag | Catheter sheath for implant delivery |
CN105212984B (en) | 2009-02-20 | 2017-12-22 | 柯惠有限合伙公司 | For the method and apparatus for the venous occlusion for treating venous insufficiency |
US8725228B2 (en) | 2009-02-20 | 2014-05-13 | Boston Scientific Scimed, Inc. | Steerable catheter having intermediate stiffness transition zone |
US8372066B2 (en) | 2009-04-17 | 2013-02-12 | Domain Surgical, Inc. | Inductively heated multi-mode surgical tool |
US8226566B2 (en) | 2009-06-12 | 2012-07-24 | Flowcardia, Inc. | Device and method for vascular re-entry |
WO2010148088A2 (en) | 2009-06-16 | 2010-12-23 | Surgivision, Inc. | Mri-guided devices and mri-guided interventional systems that can track and generate dynamic visualizations of the devices in near real time |
WO2011022251A2 (en) | 2009-08-21 | 2011-02-24 | Boston Scientific Scimed, Inc. | Ultrasound energy delivery assembly |
US20110105960A1 (en) | 2009-10-06 | 2011-05-05 | Wallace Michael P | Ultrasound-enhanced Stenosis therapy |
US20110237982A1 (en) | 2009-10-06 | 2011-09-29 | Wallace Michael P | Ultrasound-enhanced stenosis therapy |
US8038693B2 (en) | 2009-10-21 | 2011-10-18 | Tyco Healthcare Group Ip | Methods for ultrasonic tissue sensing and feedback |
EP2446802B1 (en) | 2010-01-29 | 2013-02-13 | Olympus Medical Systems Corp. | Insertion instrument, endoscope |
US8579928B2 (en) | 2010-02-11 | 2013-11-12 | Ethicon Endo-Surgery, Inc. | Outer sheath and blade arrangements for ultrasonic surgical instruments |
US9259234B2 (en) | 2010-02-11 | 2016-02-16 | Ethicon Endo-Surgery, Llc | Ultrasonic surgical instruments with rotatable blade and hollow sheath arrangements |
JP5249975B2 (en) | 2010-02-26 | 2013-07-31 | 三菱重工業株式会社 | Laser ultrasonic flaw detector |
US8663259B2 (en) | 2010-05-13 | 2014-03-04 | Rex Medical L.P. | Rotational thrombectomy wire |
US20120010506A1 (en) | 2010-07-08 | 2012-01-12 | Immersion Corporation | Multimodal laparoscopic ultrasound device with feedback system |
CN102469919B (en) | 2010-07-29 | 2014-07-09 | 奥林巴斯医疗株式会社 | Bending mechanism |
US20120109021A1 (en) | 2010-10-27 | 2012-05-03 | Roger Hastings | Renal denervation catheter employing acoustic wave generator arrangement |
WO2012063825A1 (en) | 2010-11-10 | 2012-05-18 | オリンパスメディカルシステムズ株式会社 | Surgical device and ultrasonic treatment method |
US20120130475A1 (en) | 2010-11-16 | 2012-05-24 | Shaw Edward E | Sleeves for expandable medical devices |
US11040140B2 (en) | 2010-12-31 | 2021-06-22 | Philips Image Guided Therapy Corporation | Deep vein thrombosis therapeutic methods |
WO2012132637A1 (en) | 2011-03-29 | 2012-10-04 | オリンパスメディカルシステムズ株式会社 | Endoscope |
WO2013022005A1 (en) | 2011-08-08 | 2013-02-14 | オリンパスメディカルシステムズ株式会社 | Treatment tool |
US9005196B2 (en) | 2011-08-16 | 2015-04-14 | Boston Scientific Scimed, Inc. | Medical device handles and related methods of use |
CA2857320C (en) | 2012-01-18 | 2020-08-11 | Bard Peripheral Vascular, Inc. | Vascular re-entry device |
EP2689715A4 (en) | 2012-01-30 | 2015-07-08 | Olympus Medical Systems Corp | Insertion device |
EP2820999A4 (en) | 2012-02-27 | 2015-11-25 | Olympus Corp | Endoscope |
EP2821000A4 (en) | 2012-02-27 | 2015-11-11 | Olympus Corp | Insertion device comprising operation input unit |
WO2014005155A1 (en) | 2012-06-30 | 2014-01-03 | Cibiem, Inc. | Carotid body ablation via directed energy |
US20140350401A1 (en) | 2012-06-30 | 2014-11-27 | Yegor D. Sinelnikov | Carotid body ablation via directed energy |
EP2879596A2 (en) | 2012-08-02 | 2015-06-10 | Flowcardia, Inc. | Ultrasound catheter system |
US10314649B2 (en) | 2012-08-02 | 2019-06-11 | Ethicon Endo-Surgery, Inc. | Flexible expandable electrode and method of intraluminal delivery of pulsed power |
JP6353462B2 (en) | 2012-12-13 | 2018-07-04 | ボルケーノ コーポレイション | Rotating sensing catheter with self-supporting drive shaft location |
CN105188830B (en) | 2012-12-28 | 2019-06-07 | 巴德血管外围设备公司 | Pass through the drug delivery of mechanical oscillation sacculus |
JP6377634B2 (en) | 2013-01-07 | 2018-08-22 | タルヤグ メディカル リミテッド | Expandable atherectomy device |
US8912573B2 (en) | 2013-02-26 | 2014-12-16 | Taiwan Semiconductor Manufacturing Company, Ltd. | Semiconductor device containing HEMT and MISFET and method of forming the same |
US20140243712A1 (en) | 2013-02-28 | 2014-08-28 | Doheny Eye Institute | Thrombolysis in retinal vessels with ultrasound |
US20140358029A1 (en) | 2013-05-28 | 2014-12-04 | Transmed7, Llc | Soft tissue coring devices and methods |
US9463001B2 (en) | 2013-05-28 | 2016-10-11 | Transmed7, Llc | Soft tissue coring biopsy devices and methods |
US20160128767A1 (en) | 2013-06-05 | 2016-05-12 | Metavention, Inc. | Modulation of targeted nerve fibers |
JP5781252B1 (en) | 2013-09-27 | 2015-09-16 | オリンパス株式会社 | Treatment tool and treatment system |
US9770606B2 (en) | 2013-10-15 | 2017-09-26 | Boston Scientific Scimed, Inc. | Ultrasound ablation catheter with cooling infusion and centering basket |
US20150133918A1 (en) | 2013-11-08 | 2015-05-14 | Contego Medical, Llc | Percutaneous catheter-based arterial denervation with integral emobolic filter |
US20150148795A1 (en) | 2013-11-26 | 2015-05-28 | Boston Scientific Scimed, Inc. | Radio frequency ablation coil |
US11083869B2 (en) | 2015-03-16 | 2021-08-10 | Bard Peripheral Vascular, Inc. | Braided crescent ribbon catheter reinforcement |
JP6578164B2 (en) | 2015-09-07 | 2019-09-18 | テルモ株式会社 | Medical device |
KR20180110081A (en) | 2016-02-08 | 2018-10-08 | 텔리플렉스 메디컬 인코포레이티드 | Rotary mechanical thrombectomy device |
EP3429487B1 (en) | 2016-03-17 | 2024-08-28 | Trice Medical, Inc. | Clot evacuation and visualization devices |
US20180140321A1 (en) | 2016-11-23 | 2018-05-24 | C. R. Bard, Inc. | Catheter With Retractable Sheath And Methods Thereof |
US11596726B2 (en) | 2016-12-17 | 2023-03-07 | C.R. Bard, Inc. | Ultrasound devices for removing clots from catheters and related methods |
US10758256B2 (en) | 2016-12-22 | 2020-09-01 | C. R. Bard, Inc. | Ultrasonic endovascular catheter |
US10582983B2 (en) | 2017-02-06 | 2020-03-10 | C. R. Bard, Inc. | Ultrasonic endovascular catheter with a controllable sheath |
US10470748B2 (en) | 2017-04-03 | 2019-11-12 | C. R. Bard, Inc. | Ultrasonic endovascular catheter with expandable portion |
-
2003
- 2003-11-24 US US10/722,209 patent/US7335180B2/en active Active
-
2004
- 2004-10-25 EP EP04796612.2A patent/EP1701750B1/en not_active Expired - Lifetime
- 2004-10-25 WO PCT/US2004/035767 patent/WO2005053769A2/en active Application Filing
- 2004-10-25 JP JP2006541200A patent/JP4805841B2/en not_active Expired - Lifetime
- 2004-10-25 ES ES04796612T patent/ES2432550T3/en not_active Expired - Lifetime
-
2008
- 2008-01-28 US US12/021,082 patent/US8613751B2/en active Active
- 2008-02-25 US US12/036,870 patent/US8668709B2/en active Active
-
2010
- 2010-08-16 JP JP2010181956A patent/JP2011005269A/en not_active Withdrawn
-
2013
- 2013-08-16 JP JP2013169148A patent/JP5766243B2/en not_active Expired - Lifetime
- 2013-12-23 US US14/139,447 patent/US9381027B2/en not_active Expired - Lifetime
-
2014
- 2014-03-07 US US14/201,649 patent/US9421024B2/en not_active Expired - Lifetime
-
2016
- 2016-08-04 US US15/229,034 patent/US10285727B2/en not_active Expired - Lifetime
-
2019
- 2019-03-28 US US16/368,095 patent/US11109884B2/en not_active Expired - Lifetime
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6450975B1 (en) * | 1999-12-30 | 2002-09-17 | Advanced Cardiovascular Systems, Inc. | Ultrasonic transmission guide wire |
Also Published As
Publication number | Publication date |
---|---|
US7335180B2 (en) | 2008-02-26 |
EP1701750A4 (en) | 2011-11-02 |
JP5766243B2 (en) | 2015-08-19 |
US8668709B2 (en) | 2014-03-11 |
US20140188146A1 (en) | 2014-07-03 |
US9381027B2 (en) | 2016-07-05 |
WO2005053769A3 (en) | 2006-08-17 |
US11109884B2 (en) | 2021-09-07 |
US20190216487A1 (en) | 2019-07-18 |
US20160338722A1 (en) | 2016-11-24 |
US20140180304A1 (en) | 2014-06-26 |
US10285727B2 (en) | 2019-05-14 |
JP2007512087A (en) | 2007-05-17 |
EP1701750B1 (en) | 2013-08-07 |
WO2005053769A2 (en) | 2005-06-16 |
US20050113688A1 (en) | 2005-05-26 |
US20080167602A1 (en) | 2008-07-10 |
JP4805841B2 (en) | 2011-11-02 |
EP1701750A2 (en) | 2006-09-20 |
US8613751B2 (en) | 2013-12-24 |
ES2432550T3 (en) | 2013-12-04 |
US20080172067A1 (en) | 2008-07-17 |
JP2011005269A (en) | 2011-01-13 |
US9421024B2 (en) | 2016-08-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5766243B2 (en) | Steerable ultrasound catheter | |
JP4744434B2 (en) | Improved ultrasonic catheter device and ultrasonic catheterization | |
US9770250B2 (en) | Ultrasound catheter for disrupting blood vessel obstructions | |
US20050096669A1 (en) | Apparatus and method for an ultrasonic medical device to treat coronary thrombus bearing lesions | |
US20050256410A1 (en) | Apparatus and method for an ultrasonic probe capable of bending with aid of a balloon | |
EP1744813A1 (en) | Ultrasonic probe capable of bending with aid of a balloon | |
WO2006049600A1 (en) | Apparatus and method for an ultrasonic medical device to treat coronary thrombus bearing lesions |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140804 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20141030 |
|
A602 | Written permission of extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A602 Effective date: 20141105 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150122 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20150609 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20150616 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5766243 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |