JPH0271510A - Apparatus for semiconductor vapor growth - Google Patents

Apparatus for semiconductor vapor growth

Info

Publication number
JPH0271510A
JPH0271510A JP22224288A JP22224288A JPH0271510A JP H0271510 A JPH0271510 A JP H0271510A JP 22224288 A JP22224288 A JP 22224288A JP 22224288 A JP22224288 A JP 22224288A JP H0271510 A JPH0271510 A JP H0271510A
Authority
JP
Japan
Prior art keywords
gas
reaction chamber
nozzle
bell jar
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22224288A
Other languages
Japanese (ja)
Inventor
Hisanori Oki
沖 久典
Hajime Hidaka
一 日高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP22224288A priority Critical patent/JPH0271510A/en
Publication of JPH0271510A publication Critical patent/JPH0271510A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enhance gas substitution efficiency by installing the following: a discharge port, of a gas for reaction use, to be installed in the center of a reaction chamber; a discharge port of a gas for purge use at the upper part of the reaction chamber. CONSTITUTION:A bell jar 1 is opened; a wafer 4 is placed on a diskshaped susceptor 3; the bell jar 1 is closed; N2 gas is supplied from a nozzle 5 and a hole 8 of an inner bell jar 7. Then, H2 gas is supplied to the inside of a reaction chamber from the nozzle 5 and the hole 8 of the inner bell jar 7; the N2 gas is evacuated. A flow rate of the H2 gas supplied from the hole 8 of the inner bell jar 7 is reduced; this gas is balanced with an atmosphere inside the reaction chamber; it is prevented that a reaction gas does not enter a part between the inner bell jar 7 and the bell jar 1; the H2 gas is supplied only from the nozzle 5; a high-frequency induction heating operation is started; a temperature of the disk-shaped susceptor 3 is raised to a prescribed temperature. Then, the reaction gas is mixed with the H2 gas; this mixed gas is supplied to the inside of the reaction chamber from the nozzle 5 in order to cause a vapor reaction. Then, the reaction gas is stopped; only the H2 gas is supplied to the inside of the reaction chamber from the nozzle 5; the high-frequency induction heating operation is stopped; a cooling operation is executed. The N2 gas is supplied to the inside of the reaction chamber from the nozzle 5 and the hole 8 of the inner bell jar 7; the H2 gas is evacuated; after that, the bell jar 1 is opened; the wafer 4 is taken out. Thereby, it is possible to shorten the gas substitution time.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、半導体装置の製造における気相成長工程で用
いる気相成長装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a vapor phase growth apparatus used in a vapor phase growth process in the manufacture of semiconductor devices.

(従来の技術) 従来、このような分野の技術としては、例えば以下に示
すようなものがあった。
(Prior Art) Conventionally, as technologies in this field, there have been the following, for example.

以下、その構成を図を用いて説明する。The configuration will be explained below using figures.

第2図は従来の半導体気相成長装置の断面図であり、ベ
ルジャlの内部を反応室として大気中と空間的に分離し
、反応室内を11□ガス雰囲気にして、渦巻状のワーク
コイル2に高周波電界を印加し、?ilt磁誘導により
円板状サセプタ3に渦電流を生じさせ、円)反状サセプ
タ3の電気抵抗を利用してそれを加熱することにより、
その上に置かれたウェハ4の表面で気相成長反応を起こ
さじるようにしている。
Figure 2 is a cross-sectional view of a conventional semiconductor vapor phase growth apparatus, in which the interior of the bell jar is used as a reaction chamber and is spatially separated from the atmosphere, the reaction chamber is made into a 11□ gas atmosphere, and a spiral work coil 2 Apply a high frequency electric field to ? By generating an eddy current in the disc-shaped susceptor 3 by magnetic induction and heating it using the electrical resistance of the circular-reverse-shaped susceptor 3,
A vapor phase growth reaction is caused on the surface of the wafer 4 placed thereon.

反応ガス、搬送ガスは、反応室中央のノズル5より水平
方向に噴出させることにより反応室内に供給され、円板
状サセプタ3上のウェハ4の上を流れ、反応室底部の排
気口6より反応室外へ排出される。
The reaction gas and the carrier gas are supplied into the reaction chamber by being ejected horizontally from a nozzle 5 at the center of the reaction chamber, flow over the wafer 4 on the disc-shaped susceptor 3, and are reacted through the exhaust port 6 at the bottom of the reaction chamber. It is discharged outside.

ここで、この’Ji’llを用いた気相成長工程を説明
する。
Here, a vapor phase growth process using this 'Ji'll will be explained.

(1)ベルジャlを開け、円板状サセプタ3上にウェハ
4を載置する。
(1) Open the bell jar l and place the wafer 4 on the disc-shaped susceptor 3.

(2)ベルジャ1を閉め、ノズル5よりN、ガスを反応
室内に供給することにより、反応室内の空気を排気する
(2) The air in the reaction chamber is exhausted by closing the bell jar 1 and supplying nitrogen and gas into the reaction chamber from the nozzle 5.

(3)ノズル5より1(2ガスを反応室内へ供給するこ
とにより、N2ガス排気を行う。
(3) N2 gas is exhausted by supplying 1 (2 gases) into the reaction chamber from the nozzle 5.

(4)渦巻状のワークコイル2に高周波電界を印加し、
高周波誘導加熱を始め、円板状サセプタ3を所定温度ま
で昇温する。
(4) Applying a high frequency electric field to the spiral work coil 2,
High frequency induction heating is started and the temperature of the disc-shaped susceptor 3 is raised to a predetermined temperature.

(5)反応ガスを搬送ガスである11□ガスに混合させ
、それをノズル5より反応室内へ供給することにより、
気相反応を起こさせる。
(5) By mixing the reaction gas with the carrier gas 11□ gas and supplying it into the reaction chamber from the nozzle 5,
Causes a gas phase reaction.

(6)反応ガスを止め、更に、高周波誘導加熱を止めて
反応室内を冷却する。
(6) Stop the reaction gas, and further stop the high-frequency induction heating to cool the inside of the reaction chamber.

(7)ノズル5よりN2ガスを反応室内へ供給すること
により、11□ガスの排気を行う。
(7) By supplying N2 gas into the reaction chamber from the nozzle 5, the 11□ gas is exhausted.

(8)ベルジャ1を開け、処理されたウェハ4を取り出
す。
(8) Open the bell jar 1 and take out the processed wafer 4.

(発明が解決しようとする課題) このように、上記した半導体気相成長工程においては、
反応ガスが円板状サセプタ3上をウェハ4に平行に流れ
、乱れを生じないことによって、安定な気相成長を行う
ように排気口6が反応室の底部に設けられている。しか
しながら、この構造では反応室内を11□ガス雰囲気か
らN2ガス雰囲気に置換する場合〔前項のステップ(7
)〕において、ノズル5から供給されるN2ガスが既に
反応室内に充満しているlltガスより重いため、流れ
の方向が低い方へ向かう。
(Problems to be Solved by the Invention) As described above, in the semiconductor vapor phase growth process described above,
An exhaust port 6 is provided at the bottom of the reaction chamber so that the reaction gas flows on the disk-shaped susceptor 3 in parallel to the wafer 4 and performs stable vapor phase growth without turbulence. However, with this structure, when replacing the reaction chamber from the 11□ gas atmosphere to the N2 gas atmosphere [step (7) in the previous section
)], the N2 gas supplied from the nozzle 5 is heavier than the llt gas already filling the reaction chamber, so the direction of flow is toward the lower side.

従って、反応室内のノズル5の噴出孔より高い部分のガ
ス置換は、ベルジャ壁にぶつかったガスの上方向への乱
流と拡散により行われるので、−・ルジャ開放時の爆発
の危険性がなくなる程度まで十分に反応室内のLガス濃
度を低くするには時間がかかる。
Therefore, the gas replacement in the portion of the reaction chamber higher than the ejection hole of the nozzle 5 is performed by the upward turbulent flow and diffusion of the gas that hits the belljar wall, eliminating the risk of explosion when the belljar is opened. It takes time to sufficiently lower the L gas concentration in the reaction chamber to this extent.

本発明は、反応室内を11□雰囲気からN2雰囲気に置
換するのに置換効率が悪く、パージ時間が長く必要であ
るという問題点を除去し、ガス置換効率が高く、サイク
ルタイムを短縮し得る半導体気相成長装置を提供するこ
とを目的とする。
The present invention eliminates the problems that the replacement efficiency is poor and requires a long purge time to replace the 11□ atmosphere in the reaction chamber with the N2 atmosphere. The purpose of the present invention is to provide a vapor phase growth apparatus.

(課題を解決するための手段) 本発明は、上記問題点を解決するために、反応室底部に
排気口を存する半導体気相成長装置において、前記反応
室の中央に設けられる反応用ガスの放出口と、前記反応
室の上部にパージ用ガスの放出口を設置するようにした
ものである。
(Means for Solving the Problems) In order to solve the above-mentioned problems, the present invention provides a semiconductor vapor phase growth apparatus having an exhaust port at the bottom of the reaction chamber, which is provided at the center of the reaction chamber to release a reaction gas. An outlet and a purge gas discharge port are installed at the top of the reaction chamber.

(作用) 本発明によれば、上記のように、反応室の上部にパージ
用ガスの放出口を設置する、即ち、ベルジャ内部にイン
ナーベルジャを設け、そのインナーベルジャのノズルよ
り高い部分にベルジャの強度が損なわれない程度の間隔
及び大きさの穴を設け、11.ガスとN2ガスの置換時
にインナーベルジャとベルジャ間にN2ガスを流し、イ
ンナーベルジャに設けた穴よりN2ガスを反応室上部か
ら供給する。
(Function) According to the present invention, as described above, a purge gas discharge port is installed in the upper part of the reaction chamber, that is, an inner bell jar is provided inside the bell jar, and a part of the inner bell jar that is higher than the nozzle is provided. 11. Provide holes at intervals and sizes that do not impair the strength of the bell jar; 11. When replacing gas with N2 gas, N2 gas is flowed between the inner belljar and the N2 gas is supplied from the upper part of the reaction chamber through a hole provided in the inner belljar.

或いは、パージ用ガスの供給を反応室上部まで伸びたノ
ズルにより行うようする。
Alternatively, the purge gas is supplied through a nozzle extending to the upper part of the reaction chamber.

従って、気相成長中のベルジャ内のガス流を乱すことな
(,11□ガスからN2ガスへの置換を短時間に行うこ
とができる。また、置換の際のガス使用量の削減を図る
ことができる。
Therefore, it is possible to replace gas with N2 gas in a short time without disturbing the gas flow inside the bell jar during vapor phase growth.It is also possible to reduce the amount of gas used during replacement. Can be done.

(実施例) 以下、本発明の実施例について図面を参照しながら詳細
に説明する。
(Example) Hereinafter, an example of the present invention will be described in detail with reference to the drawings.

第1図は本発明の実施例を示す半導体気相成長装置の断
面図である。
FIG. 1 is a sectional view of a semiconductor vapor phase growth apparatus showing an embodiment of the present invention.

この図において、ベルジヤ1内部を反応室として大気中
と空間的に分離し、更にインナーへルジャ7を設け、そ
の内部を11□ガス雰囲気にして反応を起こさせる。
In this figure, the inside of a bell jar 1 is used as a reaction chamber, spatially separated from the atmosphere, and an inner bell jar 7 is further provided, and the inside thereof is made into a gas atmosphere 11□ to cause a reaction.

渦巻状のワークコイル2には高周波電界を印加し、電磁
誘導によりカーボン等からなる円板状サセプタ3に渦電
流を生じさせ、円板状サセプタ3上に置かれたウェハ4
の表面で気相成長反応を起こさせる。
A high-frequency electric field is applied to the spiral work coil 2, and an eddy current is generated in the disc-shaped susceptor 3 made of carbon or the like by electromagnetic induction, and the wafer 4 placed on the disc-shaped susceptor 3 is
cause a vapor phase growth reaction to occur on the surface of the

反応ガス、搬送ガスは反応室中央の石英製のノズル5よ
り水平方向に噴出させることにより、反応室内へ供給さ
れ、円板状サセプタ3上のウェハ4の上を流れて、反応
室底部の排気口6より反応室外へ排出される。ただし、
反応室内のガス置換時は、ノズル5及びインナーへルジ
ャフの穴8よリガス供給を行う。このインナーベルジャ
7とへルジャI間へのガスの供給は、反応室のリークを
極力少なくするような位置に設けたガス供給口により行
われる。
The reaction gas and carrier gas are supplied into the reaction chamber by being ejected horizontally from a quartz nozzle 5 in the center of the reaction chamber, flow over the wafer 4 on the disc-shaped susceptor 3, and are exhausted to the bottom of the reaction chamber. It is discharged from the port 6 to the outside of the reaction chamber. however,
When replacing gas in the reaction chamber, regas is supplied through the nozzle 5 and the hole 8 in the inner jaff. Gas is supplied between the inner belljar 7 and the belljar I through a gas supply port located at a position that minimizes leakage from the reaction chamber.

そこで、この装こを用いた気相成長について説明する。Therefore, vapor phase growth using this mounting will be explained.

(a)ベルジャ1を開け、円板状サセプタ3上にウェハ
4を載置する。
(a) Open the bell jar 1 and place the wafer 4 on the disc-shaped susceptor 3.

(b)へルジャ1を閉め、ノズル5及びインナーへルジ
ャ7の六8よりN、ガスの供給を行う。
(b) Close the plunger 1 and supply nitrogen and gas from the nozzle 5 and 68 of the inner plunger 7.

(0ノズル5及びインナーベルジャ7の六8より11□
ガスを反応室内へ供給することにより、N2ガス排気を
行う。
(11□ from 0 nozzle 5 and 68 of inner belljar 7
N2 gas is exhausted by supplying gas into the reaction chamber.

(d)インナーベルジャ27の六8より供給する11g
ガスの流量を下げ、反応室内雰囲気とのバランスを取り
、反応ガスがインナーベルジャ7とベルジャ1間に入ら
ないようにし、ノズル5からのみ11□ガス供給を行い
、高周波誘導加熱を始め、円板状サセプタ3を所定温度
まで昇温させる。
(d) 11g supplied from 68 of inner belljar 27
Reduce the gas flow rate to balance the atmosphere in the reaction chamber, prevent the reaction gas from entering between the inner belljar 7 and the belljar 1, supply 11□ gas only from the nozzle 5, start high-frequency induction heating, and The plate-shaped susceptor 3 is heated to a predetermined temperature.

(e)反応ガス、例えばシラン系ガスを搬送ガスである
11□ガスに混合させ、それをノズル5より反応室内へ
供給することにより、気相反応を起こさせる。
(e) A reaction gas, such as a silane gas, is mixed with the carrier gas 11□ gas, and the mixture is supplied into the reaction chamber through the nozzle 5 to cause a gas phase reaction.

(f)反応ガスを止め、Il、ガスのみをノズル5より
反応室内へ供給し、高周波誘導加熱を止めて冷却する。
(f) Stop the reaction gas, supply only Il and gas into the reaction chamber from the nozzle 5, stop high-frequency induction heating, and cool.

この時、インナーへルジャ7の穴8より供給するIl、
ガスは、前記ステップ(d) と同じ状態にしておく。
At this time, Il, which is supplied from the hole 8 of the inner Luja 7,
The gas is kept in the same state as in step (d) above.

(ε)Nzガスをノズル5及びインナーベルジャ7の六
8より反応室内へ供給することにより、llzガスの排
気を行う。
(ε) By supplying Nz gas into the reaction chamber from the nozzle 5 and 68 of the inner belljar 7, the llz gas is exhausted.

(h)へルジャ1を開け、処理されたウェハ4を取り出
す。
(h) Open the carrier 1 and take out the processed wafer 4.

これにより、例えばベルジャ容積400βの反応室に毎
分110 JでN2ガスを供給する場合、従来方式によ
る11□ガスとN、ガスの置換時〔前記ステップ(7)
〕において、21分を要していたのに対し、上記ステッ
プ(g)では、同じ流量(ノズル5から601/分、 
インナーベルジャ7の穴8から501/分を供給)の条
件下で約6分にまで短縮され、この際に使われるHzガ
ス量は約277となる。
As a result, when supplying N2 gas at a rate of 110 J per minute to a reaction chamber with a bell jar volume of 400β, for example, when replacing gas with N gas using the conventional method [step (7)
], it took 21 minutes, whereas in step (g) above, the same flow rate (601/min from nozzle 5,
501/min from the hole 8 of the inner belljar 7), the time is shortened to about 6 minutes, and the amount of Hz gas used at this time is about 277 Hz.

第3図は本発明の他の実施例を示す半導体気相成長装置
の断面図である。
FIG. 3 is a sectional view of a semiconductor vapor phase growth apparatus showing another embodiment of the present invention.

この図において、ベルジヤ1内部を反応室として、大気
中と空間的に分離し、反応を起こさせる。
In this figure, the interior of the bell gear 1 is used as a reaction chamber, spatially separated from the atmosphere, and a reaction is caused.

渦巻状のワークコイル2には高周波電界を印加し、電磁
誘導によりカーボン等からなる円板状サセプタ3に渦電
流を生じさせ、円板状サセプタ3に置かれたウェハ4の
表面で気相成長反応を起こさせる。
A high-frequency electric field is applied to the spiral work coil 2, and an eddy current is generated in the disc-shaped susceptor 3 made of carbon or the like by electromagnetic induction, and vapor phase growth occurs on the surface of the wafer 4 placed on the disc-shaped susceptor 3. cause a reaction.

反応ガス、搬送ガスは反応室中央の石英製外側ノズル1
1より水平方向に噴出させることにより、反応室内へ供
給され、円板状サセプタ3上のウェハ4の上を流れて、
反応室底部の排気口6より反応室外へ排出される。ただ
し、反応室内のガス置換時は、外側ノズル11及びその
ノズル11の内側を通りベルジャの最高部へ伸びる内側
ノズル12により、ガス供給を行う。この内側ノズル1
2はN2ガスのみ供給する。
The reaction gas and carrier gas are supplied through the quartz outer nozzle 1 in the center of the reaction chamber.
By ejecting it horizontally from 1, it is supplied into the reaction chamber, flows over the wafer 4 on the disc-shaped susceptor 3,
It is discharged to the outside of the reaction chamber from the exhaust port 6 at the bottom of the reaction chamber. However, when replacing the gas in the reaction chamber, gas is supplied by an outer nozzle 11 and an inner nozzle 12 that passes through the inside of the nozzle 11 and extends to the highest part of the bell jar. This inner nozzle 1
2 supplies only N2 gas.

そこで、この!ACを用いた気相成長について説明する
So, this! Vapor phase growth using AC will be explained.

(a)へルジャlを開け、円板状サセプタ3上にウェハ
4を載置する。
(a) Open the housing and place the wafer 4 on the disc-shaped susceptor 3.

(b)へルジャIを閉め、外側ノズル11及び内側ノズ
ル12よりN2ガスの供給を行う。
(b) Close the Herjar I and supply N2 gas from the outer nozzle 11 and the inner nozzle 12.

(c)外側ノズル11より反応室内へ112ガスを供給
することにより、N2ガスのIF気を行う。
(c) IF gas of N2 gas is performed by supplying 112 gas into the reaction chamber from the outer nozzle 11.

(d)渦巻状のワークコイル2に高周波電界を印加し、
高周波誘導加熱を始め、円板状サセプタ3を所定温度ま
で昇温させる。
(d) Applying a high frequency electric field to the spiral work coil 2,
High frequency induction heating is started and the temperature of the disc-shaped susceptor 3 is raised to a predetermined temperature.

(e)反応ガスを搬送ガスである11□ガスに混合させ
、それを外側ノズル11より反応室内へ供給することに
より、気相反応を起こさせる。
(e) A gas phase reaction is caused by mixing the reaction gas with the carrier gas 11□ gas and supplying it into the reaction chamber from the outer nozzle 11.

Cf”)反応ガスを止め、11□ガスのみを外側ノズル
11より反応室内へ供給し、円板状サセプタ3の高周波
誘導加熱を止めて冷却する。
Cf'') reaction gas is stopped, only 11□ gas is supplied into the reaction chamber from the outer nozzle 11, high frequency induction heating of the disc-shaped susceptor 3 is stopped, and the disc-shaped susceptor 3 is cooled.

(g) Hzガスを外側ノズル11及び内側ノズル12
より反応室内へ供給することにより、N2ガスの排気を
行う。
(g) Hz gas to outer nozzle 11 and inner nozzle 12
By supplying more gas into the reaction chamber, the N2 gas is exhausted.

(h)ベルジャ1を開け、処理されたウェハ4を取り出
す。
(h) Open the bell jar 1 and take out the processed wafer 4.

これにより、例えばヘルジャ容積4002の反応室に毎
分1101でN2ガスを供給する条件の場合、従来の前
記ステップ(7)において、21分を要していたのに対
し、前記工程(りでは同し2t!i1(外側ノズルから
607!/分、内側ノズルから50p/分を供給)の条
件下で約6分に短縮され、この際に使われるN2ガスの
使用量は71%削減される。
As a result, for example, in the case of supplying N2 gas at a rate of 1101 per minute to a reaction chamber with a Herja volume of 4002, it took 21 minutes in the conventional step (7); Under the conditions of 2t!i1 (607!/min from the outer nozzle and 50p/min from the inner nozzle), the time is shortened to about 6 minutes, and the amount of N2 gas used at this time is reduced by 71%.

なお、本発明は上記実施例に限定されるものではなく、
本発明の趣旨に基づいて種々の変形が可能であり、これ
らを本発明の範囲から排除するものではない。
Note that the present invention is not limited to the above embodiments,
Various modifications are possible based on the spirit of the present invention, and these are not excluded from the scope of the present invention.

(発明の効果) 以上、詳細に説明したように、本発明によれば、I+、
ガスとN、ガスの置換時に、前記反応室の上部に設けた
パージ用ガスの放出口よりN2ガスを反応室上方から供
給するようにしたので、気相成長中のベルジャ内のガス
流を乱すことなく、11□ガスからN2ガスへの置換時
間の短縮を図ることができる。
(Effects of the Invention) As described above in detail, according to the present invention, I+,
When replacing gas with N gas, N2 gas was supplied from above the reaction chamber from the purge gas outlet provided at the top of the reaction chamber, which disturbed the gas flow inside the bell jar during vapor phase growth. The time required for replacing 11□ gas with N2 gas can be shortened.

また、置換の際のガス使用量の削減を図ることができる
Furthermore, it is possible to reduce the amount of gas used during replacement.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例を示す半導体気相成長装置の断
面図、第2図は従来の半導体気相成長装置の断面図、第
3図は本発明の他の実施例を示す半導体気相成長装置の
断面図である。 I・・ベルジャ、2・・・渦巻状のワークコイル、3・
・・円板状サセプタ、4・・ウェハ、5・・・ノズル、
6・・・排気口、7・・・インナーヘルジャ、8・・・
インナーヘルジャの穴、9・・・ガス供給口、11・・
・外側ノズル、12・・・内側ノズル。 特許出願人 沖電気工業株式会社 代理人 弁理士  清 水  守(外1名)4碗茫f川
の槽上の半型1カドj氏J呂1緻aaiのtM+ジク第
3図 第2図
FIG. 1 is a cross-sectional view of a semiconductor vapor phase growth apparatus showing an embodiment of the present invention, FIG. 2 is a cross-sectional view of a conventional semiconductor vapor phase growth apparatus, and FIG. 3 is a cross-sectional view of a semiconductor vapor growth apparatus showing another embodiment of the present invention. FIG. 2 is a cross-sectional view of a phase growth apparatus. I... Belljar, 2... Spiral work coil, 3...
... Disc-shaped susceptor, 4... Wafer, 5... Nozzle,
6...Exhaust port, 7...Inner health jacket, 8...
Inner healthja hole, 9...Gas supply port, 11...
・Outer nozzle, 12...inner nozzle. Patent Applicant Oki Electric Industry Co., Ltd. Agent Patent Attorney Mamoru Shimizu (1 other person) 4 bowls 1 half-type on a river tank 1 Mr. J Ro 1 Minami tM + Jiku Figure 3 Figure 2

Claims (3)

【特許請求の範囲】[Claims] (1)反応室底部に排気口を有する半導体気相成長装置
において、 (a)前記反応室の中央に設けられる反応用ガスの放出
口と、 (b)前記反応室の上部にパージ用ガスの放出口を設置
するようにしたことを特徴とする半導体気相成長装置。
(1) In a semiconductor vapor phase growth apparatus having an exhaust port at the bottom of the reaction chamber, (a) a reaction gas discharge port provided at the center of the reaction chamber; (b) a purge gas outlet provided at the top of the reaction chamber; A semiconductor vapor phase growth apparatus characterized in that a discharge port is installed.
(2)前記パージ用ガスの供給をインナーベルジャの上
部に形成される穴により行うことを特徴とする請求項1
記載の半導体気相成長装置。
(2) Claim 1 characterized in that the purge gas is supplied through a hole formed in the upper part of the inner bell jar.
The semiconductor vapor phase growth apparatus described above.
(3)前記パージ用ガスの供給を反応室上部まで伸びた
ノズルにより行うことを特徴とする請求項1記載の半導
体気相成長装置。
(3) The semiconductor vapor phase growth apparatus according to claim 1, wherein the purge gas is supplied through a nozzle extending to the upper part of the reaction chamber.
JP22224288A 1988-09-07 1988-09-07 Apparatus for semiconductor vapor growth Pending JPH0271510A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22224288A JPH0271510A (en) 1988-09-07 1988-09-07 Apparatus for semiconductor vapor growth

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22224288A JPH0271510A (en) 1988-09-07 1988-09-07 Apparatus for semiconductor vapor growth

Publications (1)

Publication Number Publication Date
JPH0271510A true JPH0271510A (en) 1990-03-12

Family

ID=16779327

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22224288A Pending JPH0271510A (en) 1988-09-07 1988-09-07 Apparatus for semiconductor vapor growth

Country Status (1)

Country Link
JP (1) JPH0271510A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011222960A (en) * 2010-02-26 2011-11-04 Hitachi Kokusai Electric Inc Substrate processor and method of manufacturing semiconductor device
US8956375B2 (en) 2002-08-26 2015-02-17 Flowcardia, Inc. Ultrasound catheter devices and methods
US8961423B2 (en) 2003-02-26 2015-02-24 Flowcardia, Inc. Ultrasound catheter apparatus
US9265520B2 (en) 2002-08-02 2016-02-23 Flowcardia, Inc. Therapeutic ultrasound system
US9282984B2 (en) 2006-04-05 2016-03-15 Flowcardia, Inc. Therapeutic ultrasound system
US9381027B2 (en) 2002-08-26 2016-07-05 Flowcardia, Inc. Steerable ultrasound catheter
US9402646B2 (en) 2009-06-12 2016-08-02 Flowcardia, Inc. Device and method for vascular re-entry
US9433433B2 (en) 2003-09-19 2016-09-06 Flowcardia, Inc. Connector for securing ultrasound catheter to transducer
US9629643B2 (en) 2006-11-07 2017-04-25 Flowcardia, Inc. Ultrasound catheter having improved distal end
US10004520B2 (en) 2004-08-26 2018-06-26 Flowcardia, Inc. Ultrasound catheter devices and methods
US10285719B2 (en) 2005-01-20 2019-05-14 Flowcardia, Inc. Vibrational catheter devices and methods for making same

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9265520B2 (en) 2002-08-02 2016-02-23 Flowcardia, Inc. Therapeutic ultrasound system
US8956375B2 (en) 2002-08-26 2015-02-17 Flowcardia, Inc. Ultrasound catheter devices and methods
US9381027B2 (en) 2002-08-26 2016-07-05 Flowcardia, Inc. Steerable ultrasound catheter
US9421024B2 (en) 2002-08-26 2016-08-23 Flowcardia, Inc. Steerable ultrasound catheter
US8961423B2 (en) 2003-02-26 2015-02-24 Flowcardia, Inc. Ultrasound catheter apparatus
US9433433B2 (en) 2003-09-19 2016-09-06 Flowcardia, Inc. Connector for securing ultrasound catheter to transducer
US10004520B2 (en) 2004-08-26 2018-06-26 Flowcardia, Inc. Ultrasound catheter devices and methods
US10285719B2 (en) 2005-01-20 2019-05-14 Flowcardia, Inc. Vibrational catheter devices and methods for making same
US9282984B2 (en) 2006-04-05 2016-03-15 Flowcardia, Inc. Therapeutic ultrasound system
US9629643B2 (en) 2006-11-07 2017-04-25 Flowcardia, Inc. Ultrasound catheter having improved distal end
US9402646B2 (en) 2009-06-12 2016-08-02 Flowcardia, Inc. Device and method for vascular re-entry
JP2011222960A (en) * 2010-02-26 2011-11-04 Hitachi Kokusai Electric Inc Substrate processor and method of manufacturing semiconductor device

Similar Documents

Publication Publication Date Title
US4825809A (en) Chemical vapor deposition apparatus having an ejecting head for ejecting a laminated reaction gas flow
JPH0271510A (en) Apparatus for semiconductor vapor growth
US7048869B2 (en) Plasma processing apparatus and a plasma processing method
US6039834A (en) Apparatus and methods for upgraded substrate processing system with microwave plasma source
US4323589A (en) Plasma oxidation
KR20180097154A (en) Film forming method and film forming apparatus
JPH1171680A (en) Device for improved remote microwave plasma source used together with substrate treating apparatus
JPS6230319A (en) Semiconductor reaction furnace chamber and improved purge process for determining condition of wafer homed therein
JPH09330884A (en) Epitaxial growth device
JP2005163183A (en) Cleaning method for substrate treatment apparatus
KR20050039709A (en) Induction heating devices and methods for controllably heating an article
JPH11312649A (en) Cvd device
JP3414475B2 (en) Crystal growth equipment
JP2013122067A (en) Microwave plasma processing device
KR101432415B1 (en) Plasma nitriding treatment method and plasma nitriding treatment device
RU99105927A (en) METHOD AND DEVICE FOR MANUFACTURING THIN SEMICONDUCTOR FILM
KR20160102897A (en) Film formation device
JP2001250821A (en) High-temperature high-pressure treatment device for semiconductor
JP3077516B2 (en) Plasma processing equipment
JPH04202091A (en) Vapor growth device of compound semiconductor
JP2001026871A (en) Film forming method and film forming device
JPH05166736A (en) Thin film vapor growth apparatus
JPH09241850A (en) Cvd device
KR102523367B1 (en) Method for recovering surface of silicon structure and apparatus for treating substrate
JPH10223620A (en) Semiconductor manufacturing device