JP2014011928A - Non-contact power transmission system - Google Patents

Non-contact power transmission system Download PDF

Info

Publication number
JP2014011928A
JP2014011928A JP2012149100A JP2012149100A JP2014011928A JP 2014011928 A JP2014011928 A JP 2014011928A JP 2012149100 A JP2012149100 A JP 2012149100A JP 2012149100 A JP2012149100 A JP 2012149100A JP 2014011928 A JP2014011928 A JP 2014011928A
Authority
JP
Japan
Prior art keywords
power transmission
power
coil
primary
circuit unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012149100A
Other languages
Japanese (ja)
Inventor
Koji Takase
康治 高瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
NEC Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Tokin Corp filed Critical NEC Tokin Corp
Priority to JP2012149100A priority Critical patent/JP2014011928A/en
Publication of JP2014011928A publication Critical patent/JP2014011928A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Near-Field Transmission Systems (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a non-contact power transmission system in which a power-receiving device is reduced in size, thickness, or weight.SOLUTION: A non-contact power transmission system includes a power transmission device 1 that is provided with at least a primary coil 10, a primary power-transmission circuit section 11, and a voltage detection section 225; and a power-receiving device 2 that is provided with at least a secondary coil 20, a secondary communication circuit section 22, and a secondary power-receiving circuit section 21, and a load section 214. The non-contact power transmission system performs power transmission from the primary power-transmission circuit section 11 to the secondary coil 20 via the primary coil 10 when the electromotive force induced from the secondary communication circuit section 22 to the primary coil 10 via the secondary coil exceeds a predetermined value. The power received by the secondary coil 20 is supplied to the load section 214 via the secondary power-receiving circuit section 21.

Description

本発明は、送電装置より受電装置へ非接触送電を行う非接触電力伝送システムに関する。   The present invention relates to a non-contact power transmission system that performs non-contact power transmission from a power transmission device to a power reception device.

送電装置から受電装置へ電磁誘導により非接触で電力伝送を行う技術が開発されている。   Techniques have been developed to transmit power from a power transmission device to a power reception device in a contactless manner by electromagnetic induction.

特に送電装置における一次コイルより仮送電を行い、仮送電を受けた受電装置の二次コイルにおける誘起電圧から一次コイルと二次コイルの相対位置を検出し、一次コイルと二次コイルが電力伝送可能な対面配置になった場合に受電装置から送電装置へID認証を行い、送電装置から受電装置への送電を開始する技術が特許文献1の段落0104、段落0121、図3、図8、図11等に開示されている。   In particular, temporary power transmission is performed from the primary coil of the power transmission device, and the primary coil and secondary coil can transmit power by detecting the relative position of the primary coil and secondary coil from the induced voltage in the secondary coil of the power receiving device that received the temporary power transmission. Patent Document 1 discloses paragraph 0104, paragraph 0121, FIG. 3, FIG. 8, and FIG. 11 that perform ID authentication from the power receiving apparatus to the power transmitting apparatus and start power transmission from the power transmitting apparatus to the power receiving apparatus in the case of a facing arrangement. Etc. are disclosed.

特開2009−189231号公報JP 2009-189231 A

特許文献1記載の技術では、一次コイルと二次コイルが電力伝送可能な対面配置か判断するために受電装置側からのID認証を利用しているが、受電装置に一次コイルと二次コイルの相対位置を検出する機能を実装する必要があるため、受電装置の小型化、薄型化、または軽量化が阻害されるという課題がある。   In the technology described in Patent Document 1, ID authentication from the power receiving device side is used to determine whether the primary coil and the secondary coil are facing each other so that power can be transmitted. However, the primary coil and the secondary coil are not connected to the power receiving device. Since it is necessary to implement a function of detecting the relative position, there is a problem that the power receiving device is hindered from being reduced in size, thickness, or weight.

従って本発明の目的は、受電装置を小型化、薄型化、または軽量化した非接触電力伝送システムを提供することにある。   Accordingly, an object of the present invention is to provide a non-contact power transmission system in which a power receiving device is reduced in size, thickness, or weight.

上記課題を本発明は、一次コイルと一次送電回路部と電圧検出部を少なくとも備えた送電装置、並びに二次コイルと二次通信回路部と二次受電回路部と負荷部を少なくとも備えた受電装置を有し、二次通信回路部より二次コイルを介して一次コイルに誘起される起電力を電圧検出部により検出し、電圧検出部によって検出された起電力が所定の値を超えた場合に一次送電回路部より一次コイルを介して二次コイルに電力伝送を行い、二次コイルで受電した電力は、二次受電回路部を介して負荷に供給される非接触電力伝送システムにより解決する。   To solve the above problems, the present invention provides a power transmission device including at least a primary coil, a primary power transmission circuit unit, and a voltage detection unit, and a power reception device including at least a secondary coil, a secondary communication circuit unit, a secondary power reception circuit unit, and a load unit. When the electromotive force induced in the primary coil from the secondary communication circuit unit through the secondary coil is detected by the voltage detection unit, and the electromotive force detected by the voltage detection unit exceeds a predetermined value Power is transmitted from the primary power transmission circuit unit to the secondary coil via the primary coil, and the power received by the secondary coil is solved by a contactless power transmission system supplied to the load via the secondary power reception circuit unit.

なお、送電装置は、さらに一次通信回路部を備え、一次通信回路部より一次コイル及び二次コイルを介して二次通信回路部へ通信信号を伝達し、受電装置は通信信号に対応した認証信号を二次通信回路部より二次コイル及び一次コイルを介して一次通信回路部へ伝達し、認証信号を受けた送電装置は、一次コイルに誘起される起電力を電圧検出部により検出し、電圧検出部によって検出された起電力が所定の値を超えた場合に、一次送電回路部より一次コイルを介して二次コイルに電力伝送を行う非接触電力伝送システムであってもよい。   The power transmission device further includes a primary communication circuit unit, transmits a communication signal from the primary communication circuit unit to the secondary communication circuit unit via the primary coil and the secondary coil, and the power reception device is an authentication signal corresponding to the communication signal. Is transmitted from the secondary communication circuit unit to the primary communication circuit unit through the secondary coil and the primary coil, and the power transmission device that receives the authentication signal detects the electromotive force induced in the primary coil by the voltage detection unit, When the electromotive force detected by the detection unit exceeds a predetermined value, a non-contact power transmission system that performs power transmission from the primary power transmission circuit unit to the secondary coil via the primary coil may be used.

また、送電装置は、認証信号を伝達された後、所定時間経過するまで電力伝送を行わず、受電装置は、認証信号を伝達した後、所定時間経過する前に、二次コイルより二次通信回路部への電力伝送経路を遮断する非接触電力伝送システムであってもよい。   In addition, the power transmission device does not transmit power until a predetermined time elapses after the authentication signal is transmitted, and the power receiving device performs secondary communication from the secondary coil before the predetermined time elapses after the authentication signal is transmitted. A non-contact power transmission system that cuts off a power transmission path to the circuit unit may be used.

また、電力伝送される電力は、電力伝送の開始時点より徐々に増加しつつ所定電力に到達し、受電装置における二次コイルに誘起される起電力が所定の値を超えた場合には、二次コイルより二次通信回路部への電力伝送が遮断される非接触電力伝送システムであってもよい。   In addition, when the power to be transmitted reaches the predetermined power while gradually increasing from the start of power transmission, and the electromotive force induced in the secondary coil in the power receiving apparatus exceeds a predetermined value, A non-contact power transmission system in which power transmission from the secondary coil to the secondary communication circuit unit is cut off may be used.

また、電力伝送を開始した後、一次コイルのインピーダンスが所定の値以上であれば電力伝送を停止する非接触電力伝送システムであってもよい。   Moreover, after starting electric power transmission, if the impedance of a primary coil is more than predetermined value, the non-contact electric power transmission system which stops electric power transmission may be sufficient.

本発明により、受電装置を小型化、薄型化、または軽量化した非接触電力伝送システムを提供することができる。   According to the present invention, it is possible to provide a non-contact power transmission system in which a power receiving device is reduced in size, thickness, or weight.

本発明における実施形態1を示す回路ブロック図である。It is a circuit block diagram which shows Embodiment 1 in this invention. 本発明における送電判断プロセスに関する説明図である。It is explanatory drawing regarding the power transmission judgment process in this invention. 本発明における実施形態2を示す回路ブロック図である。It is a circuit block diagram which shows Embodiment 2 in this invention. 本発明における実施形態3の共振部について、その一例を示す回路図である。共振部とは、図3における共振部222のことである。It is a circuit diagram which shows the example about the resonance part of Embodiment 3 in this invention. A resonance part is the resonance part 222 in FIG. 本発明における実施形態3でのタイムチャート及び電圧振幅波形を示す図である。It is a figure which shows the time chart and voltage amplitude waveform in Embodiment 3 in this invention. 本発明における実施形態4を示す回路ブロック図である。It is a circuit block diagram which shows Embodiment 4 in this invention. 本発明における実施形態4でのタイムチャート及び電圧振幅波形を示す図である。It is a figure which shows the time chart and voltage amplitude waveform in Embodiment 4 in this invention. 本発明における実施形態5を示す回路ブロック図である。It is a circuit block diagram which shows Embodiment 5 in this invention.

本発明における実施形態の一例について、図面と共に説明する。   An example of an embodiment of the present invention will be described with reference to the drawings.

(実施形態1)
本発明は、例えば、一次コイルと一次送電回路部と電圧検出部を少なくとも備えた送電装置、並びに二次コイルと二次通信回路部と二次受電回路部と負荷部を少なくとも備えた受電装置を有し、二次通信回路部より二次コイルを介して一次コイルに誘起される起電力が所定の値を超えた場合に一次送電回路部より一次コイルを介して二次コイルに電力伝送を行い、二次コイルで受電した電力は、二次受電回路部を介して負荷に供給される非接触電力伝送システムの実施形態を取り得る。
(Embodiment 1)
The present invention includes, for example, a power transmission device including at least a primary coil, a primary power transmission circuit unit, and a voltage detection unit, and a power reception device including at least a secondary coil, a secondary communication circuit unit, a secondary power reception circuit unit, and a load unit. And when the electromotive force induced in the primary coil from the secondary communication circuit unit through the secondary coil exceeds a predetermined value, the primary power transmission circuit unit transmits power to the secondary coil through the primary coil. The power received by the secondary coil can take an embodiment of a non-contact power transmission system that is supplied to the load via the secondary power receiving circuit unit.

二次コイルからの通信信号により一次コイルに誘起される起電力によって一次コイルと二次コイルの位置関係を送電装置側で判定できるため、受電装置側に位置関係を判定する機能を設ける必要が無い。   Since the positional relationship between the primary coil and the secondary coil can be determined on the power transmitting device side by the electromotive force induced in the primary coil by the communication signal from the secondary coil, there is no need to provide a function for determining the positional relationship on the power receiving device side. .

従って、受電装置の小型化、薄型化、または軽量化が可能となり、本実施形態の構成は、受電装置が携帯電話等の携帯機器である場合に特に好適に適用される。   Accordingly, the power receiving device can be reduced in size, thickness, or weight, and the configuration of the present embodiment is particularly preferably applied when the power receiving device is a portable device such as a mobile phone.

さらに、位置関係の判定が送電を担う送電装置内部で行われるため、送電可否判定を迅速に行うことができる。   Furthermore, since the determination of the positional relationship is performed inside the power transmission device that is responsible for power transmission, it is possible to quickly determine whether power transmission is possible.

また、受電装置が小型化、薄型化、または軽量化が必要な携帯機器等であれば、送電機能を実装しない場合が多いため、一次コイルに誤って電力伝送されることで一次コイルに過大な起電力が誘起され、不具合が生じることはない。   In addition, if the power receiving device is a portable device that needs to be reduced in size, thickness, or weight, the power transmission function is often not implemented. An electromotive force is induced and no malfunction occurs.

図1は、本発明における第1実施形態を示す回路ブロック図である。   FIG. 1 is a circuit block diagram showing a first embodiment of the present invention.

送電装置1は、一次送電回路部11における発振部111より生成した交流電圧を電力増幅部112により電力を増幅させ、LC並列共振回路等により構成された共振部113によりインピーダンス整合を行いつつ一次コイル10に電力伝送を行う構成となっている。   The power transmission device 1 amplifies power by the power amplification unit 112 using the AC voltage generated from the oscillation unit 111 in the primary power transmission circuit unit 11, and performs impedance matching by the resonance unit 113 configured by an LC parallel resonance circuit or the like while performing the primary coil 10 is configured to perform power transmission.

なお、一次コイル10に過電圧が加わることを防ぐため、電力増幅部112には共振部113に一定電圧振幅の電力を供給する電力制御機能が搭載されていることが望ましい。   In order to prevent an overvoltage from being applied to the primary coil 10, it is desirable that the power amplifying unit 112 be equipped with a power control function that supplies power having a constant voltage amplitude to the resonance unit 113.

送電装置1における一次コイル10から受電装置2における二次コイル20へ電磁誘導により非接触で電力伝送が行われた場合は、二次コイル20で受電した電力が二次受電回路部21におけるインピーダンス整合を行う共振部211、直流電圧に変換する整流部212、昇圧や降圧等の電力制御を行う電力制御部213を介して負荷部214へ電力が伝送される。   When power is transmitted in a non-contact manner from the primary coil 10 in the power transmission device 1 to the secondary coil 20 in the power reception device 2 by electromagnetic induction, the power received by the secondary coil 20 is impedance matched in the secondary power reception circuit unit 21. The power is transmitted to the load unit 214 via the resonance unit 211 that performs the above, the rectification unit 212 that converts the voltage into a DC voltage, and the power control unit 213 that performs power control such as step-up and step-down.

上記電力伝送の可否判断を行うため、受電装置2における二次通信回路部22内の信号発信部221よりインピーダンス整合を行う共振部222を介して二次コイル20に通信信号が伝達され、電磁誘導により送電装置1の一次コイル10に通信信号が検出される。   In order to determine whether or not power transmission is possible, a communication signal is transmitted to the secondary coil 20 from the signal transmission unit 221 in the secondary communication circuit unit 22 in the power receiving device 2 via the resonance unit 222 that performs impedance matching, and electromagnetic induction is performed. Thus, a communication signal is detected in the primary coil 10 of the power transmission device 1.

さらに通信信号は電圧検出部1001を介して送電制御部114に伝達され、送電制御部114において通信信号の大きさが、一次コイル10より二次コイル20へ電力伝送可能な閾値を超えた場合にのみ送電可能とするよう発振部111を制御する。   Furthermore, the communication signal is transmitted to the power transmission control unit 114 via the voltage detection unit 1001, and when the magnitude of the communication signal in the power transmission control unit 114 exceeds a threshold at which power can be transmitted from the primary coil 10 to the secondary coil 20. The oscillation unit 111 is controlled so that only power can be transmitted.

図2は、本発明における送電判断プロセスに関する説明図である。   FIG. 2 is an explanatory diagram regarding a power transmission determination process in the present invention.

電磁誘導による非接触電力伝送を行う場合には、電力伝送の損失による発熱や電磁ノイズ発生を防ぐため、一定以上の電力伝送効率を求められ、そのためには一次コイル10と二次コイル20が対面し、ある程度近接させる必要がある。   When performing non-contact power transmission by electromagnetic induction, in order to prevent heat generation due to loss of power transmission and generation of electromagnetic noise, power transmission efficiency of a certain level or more is required. For that purpose, the primary coil 10 and the secondary coil 20 face each other. However, it needs to be close to some extent.

一方、電磁誘導による通信を行う場合には、一次コイル10と二次コイル20が通信信号の送受信を行う上で必要最小限の磁気結合を有していれば良く、一次コイル10と二次コイル20が電力伝送できない距離まで離れても通信できることとなる。   On the other hand, when performing communication by electromagnetic induction, it is sufficient that the primary coil 10 and the secondary coil 20 have the minimum magnetic coupling necessary for transmitting and receiving communication signals. Communication is possible even when the distance 20 cannot be transmitted.

従って、図2に示すように、送電装置1における一次コイル10による電力伝送可能領域Aは、受電装置2における二次コイル20による通信可能領域Bに含まれることとなる。   Therefore, as shown in FIG. 2, the power transmission possible area A by the primary coil 10 in the power transmitting device 1 is included in the communicable area B by the secondary coil 20 in the power receiving device 2.

本実施形態では、受電装置2からの通信信号を送電装置1側で受信する電圧の大きさから、送電可否を判断している。   In the present embodiment, whether or not power transmission is possible is determined from the magnitude of the voltage at which the communication signal from the power reception device 2 is received on the power transmission device 1 side.

(実施形態2)
本発明は、さらに、送電装置が一次通信回路部を備え、一次通信回路部より一次コイル及び二次コイルを介して二次通信回路部へ通信信号を伝達し、受電装置は通信信号に対応した認証信号を二次通信回路部より二次コイル及び一次コイルを介して一次通信回路部へ伝達し、認証信号を受けた送電装置は、一次コイルに誘起される起電力が所定の値を超えた場合に一次送電回路部より一次コイルを介して二次コイルに誘導起電力による電力伝送を行う非接触電力伝送システムの実施形態を取り得る。
(Embodiment 2)
In the present invention, the power transmission device further includes a primary communication circuit unit, the communication signal is transmitted from the primary communication circuit unit to the secondary communication circuit unit via the primary coil and the secondary coil, and the power receiving device corresponds to the communication signal. The power transmission device that transmits the authentication signal from the secondary communication circuit unit to the primary communication circuit unit via the secondary coil and the primary coil, and the electromotive force induced in the primary coil exceeds the predetermined value In this case, an embodiment of a non-contact power transmission system that performs power transmission by induced electromotive force from the primary power transmission circuit unit to the secondary coil via the primary coil can be taken.

受電装置を送電装置が認証する際の通信信号を利用して一次コイルと二次コイルの位置関係を判定するため、本実施形態を非接触電力伝送システムに適用する際はわずかな設計変更で良い。   Since the positional relationship between the primary coil and the secondary coil is determined using a communication signal when the power receiving device authenticates the power receiving device, a slight design change may be required when applying this embodiment to the non-contact power transmission system. .

図3は、本発明における第2実施形態を示す回路ブロック図である。   FIG. 3 is a circuit block diagram showing a second embodiment of the present invention.

実施形態1における図1とは、主に送電装置1から送電装置2への通信を可能とする一次通信回路部12を有している点が異なる。   The first embodiment is different from FIG. 1 in that it includes a primary communication circuit unit 12 that mainly enables communication from the power transmission device 1 to the power transmission device 2.

本実施形態では、以下の手順により送電装置1が受電装置2を認証する信号を利用して送電装置1が電力伝送の可否を判断する。   In the present embodiment, the power transmission device 1 determines whether power transmission is possible by using a signal for the power transmission device 1 to authenticate the power reception device 2 according to the following procedure.

まず、送電装置1内部の一次通信回路部12における信号発信部121より切替部122、共振部123を介して通信コイル101よりポーリング信号を一定時間ごとに発信する。   First, a polling signal is transmitted from the communication coil 101 at regular intervals through the switching unit 122 and the resonance unit 123 from the signal transmission unit 121 in the primary communication circuit unit 12 inside the power transmission device 1.

ここで、切替部122は、信号発信部121からの信号を共振部123に伝達し、共振部123からの信号を信号受信部124及び電圧検出部1001に伝達する機能を有する。切替部122は、例えばサーキュレータによって構成することができる。   Here, the switching unit 122 has a function of transmitting a signal from the signal transmission unit 121 to the resonance unit 123 and transmitting a signal from the resonance unit 123 to the signal reception unit 124 and the voltage detection unit 1001. The switching unit 122 can be configured by a circulator, for example.

受電装置2における二次コイル20が送電装置1からのポーリング信号を受信した場合には、ポーリング信号が二次通信回路部22における共振部222及び切替部223を介して信号受信部224に伝達される。   When the secondary coil 20 in the power receiving device 2 receives the polling signal from the power transmitting device 1, the polling signal is transmitted to the signal receiving unit 224 via the resonance unit 222 and the switching unit 223 in the secondary communication circuit unit 22. The

ここで、切替部223は、共振部222からの信号を信号受信部224に伝達し、信号発信部221からの信号を共振部222に伝達する機能を有する。   Here, the switching unit 223 has a function of transmitting a signal from the resonance unit 222 to the signal reception unit 224 and transmitting a signal from the signal transmission unit 221 to the resonance unit 222.

信号受信部224がポーリング信号を受信した場合は、信号発信部221より認証信号が切替部223及び共振部222を介して二次コイル20に伝達される。   When the signal reception unit 224 receives the polling signal, the authentication signal is transmitted from the signal transmission unit 221 to the secondary coil 20 via the switching unit 223 and the resonance unit 222.

送電装置1における通信コイル101が受電装置2からの認証信号を受信した場合には、認証信号が一次通信回路部12における共振部123及び切替部122を介して信号受信部124及び電圧検出部1001に伝達される。   When the communication coil 101 in the power transmission device 1 receives the authentication signal from the power reception device 2, the authentication signal is transmitted to the signal reception unit 124 and the voltage detection unit 1001 via the resonance unit 123 and the switching unit 122 in the primary communication circuit unit 12. Is transmitted to.

信号受信部124で受信した信号は認証判断部1002に伝達され、予め記憶された認証信号と照合し、合致する場合には送電制御部114に送電許可信号を伝達する。   The signal received by the signal receiving unit 124 is transmitted to the authentication determining unit 1002 and collated with an authentication signal stored in advance, and if they match, a power transmission permission signal is transmitted to the power transmission control unit 114.

信号受信部124で受信した信号は、電圧検出部1001にも伝達され、認証信号の大きさが、予め一次コイル10より二次コイル20へ電力伝送可能な閾値を超えた場合には、電圧検出部1001より送電制御部114に送電可能化信号を伝達する。   The signal received by the signal receiving unit 124 is also transmitted to the voltage detecting unit 1001. When the magnitude of the authentication signal exceeds a threshold that allows power transmission from the primary coil 10 to the secondary coil 20 in advance, voltage detection is performed. The power transmission enabling signal is transmitted from the unit 1001 to the power transmission control unit 114.

送電制御部114では、送電許可信号と送電可能化信号を受信した場合に発振部111を制御して実施形態1と同様の手順で電力伝送を行う。   When the power transmission control unit 114 receives the power transmission permission signal and the power transmission enabling signal, the power transmission control unit 114 controls the oscillation unit 111 to perform power transmission in the same procedure as in the first embodiment.

なお、予め共振部113と送電コイル102の間と、二次コイル20と共振部211の間にFET等の半導体スイッチを設けておき、通信コイル101と二次コイル20の間で通信を行う場合に半導体スイッチをOFFとすることで回路を切り離すことにより、送電コイル102と二次コイル20の交流電圧振幅を増加させ、通信感度を向上させてもよい。   When a semiconductor switch such as an FET is provided between the resonance unit 113 and the power transmission coil 102 and between the secondary coil 20 and the resonance unit 211 in advance, and communication is performed between the communication coil 101 and the secondary coil 20. In addition, by disconnecting the circuit by turning off the semiconductor switch, the AC voltage amplitude of the power transmission coil 102 and the secondary coil 20 may be increased to improve the communication sensitivity.

(実施形態3)
本発明は、さらに、送電装置が、認証信号を伝達された後、所定時間経過するまで電力伝送を行わず、受電装置は、認証信号を伝達した後、所定時間経過する前に、二次コイルより二次通信回路部への電力伝送が遮断される非接触電力伝送システムの実施形態を取り得る。
(Embodiment 3)
In the present invention, the power transmission device does not transmit power until a predetermined time has elapsed after the transmission of the authentication signal, and the power receiving device transmits the authentication signal and before the predetermined time elapses, the secondary coil An embodiment of a non-contact power transmission system in which power transmission to the secondary communication circuit unit is cut off can be taken.

受電装置からの通信信号により送電装置側が送電可能と判断した場合、電力伝送が行われる前に受電装置側の二次コイルから二次通信回路部を遮断することで保護する。本実施形態における回路ブロックは実施形態2における図3と同様であるが、共振部222に切替部223に電力伝送が行われることを防ぐ遮断部を設けている点が異なる。   When the power transmission device side determines that power transmission is possible based on a communication signal from the power reception device, protection is performed by cutting off the secondary communication circuit unit from the secondary coil on the power reception device side before power transmission is performed. The circuit block in the present embodiment is the same as that in FIG. 3 in the second embodiment, except that a blocking unit that prevents power transmission from being performed to the switching unit 223 is provided in the resonance unit 222.

図4は、本発明における第3実施形態の共振部について、その一例を示す回路図である。共振部とは、図3における共振部222のことである。   FIG. 4 is a circuit diagram showing an example of the resonance unit according to the third embodiment of the present invention. A resonance part is the resonance part 222 in FIG.

二次コイル20両端は、端子201、202を介して共振部222と接続される。二次コイル20より入力された交流電圧は、インダクタ2221とコンデンサ2222により構成された並列共振回路により電圧振幅を拡大し、端子2223、2224を介して図2における切替部223へ交流電圧信号が伝達される。   Both ends of the secondary coil 20 are connected to the resonance unit 222 via terminals 201 and 202. The AC voltage input from the secondary coil 20 is expanded in voltage amplitude by a parallel resonance circuit composed of an inductor 2221 and a capacitor 2222, and an AC voltage signal is transmitted to the switching unit 223 in FIG. 2 via terminals 2223 and 2224. Is done.

ここで、FET等の半導体スイッチ2225及びコンデンサ2226が並列共振回路と並列接続されており、半導体スイッチ2225を導通させることにより、並列共振回路の共振点を外し、二次コイル20から切替部223への交流電圧信号の伝達を遮断することができる。   Here, a semiconductor switch 2225 such as an FET and a capacitor 2226 are connected in parallel with the parallel resonance circuit, and by turning on the semiconductor switch 2225, the resonance point of the parallel resonance circuit is removed and the secondary coil 20 to the switching unit 223. The transmission of the AC voltage signal can be cut off.

図5は、本発明における第3実施形態でのタイムチャート及び電圧振幅波形を示す図である。   FIG. 5 is a diagram showing a time chart and a voltage amplitude waveform in the third embodiment of the present invention.

実施形態2と同様に、送電装置1における通信コイル101よりポーリング信号I1が発信され、受電装置2における二次コイル20にてポーリング信号I1を受信し、その後認証信号I2を発信する。認証信号I2を通信コイル101より受信した送電装置1は、実施形態2の手順で電力伝送可能と判断した場合は電力伝送Pを実行する。   As in the second embodiment, the polling signal I1 is transmitted from the communication coil 101 in the power transmission device 1, the polling signal I1 is received by the secondary coil 20 in the power reception device 2, and then the authentication signal I2 is transmitted. The power transmission device 1 that has received the authentication signal I2 from the communication coil 101 executes power transmission P when it is determined that power transmission is possible in the procedure of the second embodiment.

ここで、上記手順を実行している間、半導体スイッチ2225はOFFすなわち非導通の状態にあり、認証信号I2を発信した後、所定の時間t2経過後に半導体スイッチ2225をONすなわち導通状態とする。   Here, during execution of the above procedure, the semiconductor switch 2225 is in an OFF state, that is, a non-conductive state, and after transmitting the authentication signal I2, the semiconductor switch 2225 is turned on, that is, in a conductive state after a predetermined time t2.

送電装置1側では、認証信号I2受信後、送電開始までの時間t1を、所定の時間t2よりも長くすることで、受電装置2側での二次通信回路部が半導体スイッチ2225により保護された後に電力伝送を行うこととなる。   On the power transmission device 1 side, the secondary communication circuit unit on the power reception device 2 side is protected by the semiconductor switch 2225 by making the time t1 until the start of power transmission after receiving the authentication signal I2 longer than the predetermined time t2. Power transmission will be performed later.

なお、図3における共振部123を図4の構成として図5の手順で半導体スイッチを動作させることで、電力伝送時の過電圧より一次通信回路部12を保護してもよい。この場合は、通信コイル101と送電コイル102を1つの一次コイルに統合することが可能となる。   Note that the primary communication circuit unit 12 may be protected from overvoltage during power transmission by operating the semiconductor switch in the procedure of FIG. 5 with the resonance unit 123 in FIG. In this case, the communication coil 101 and the power transmission coil 102 can be integrated into one primary coil.

(実施形態4)
本発明は、さらに、電力伝送される電力が、電力伝送の開始時点より徐々に増加しつつ所定電力に到達し、受電装置における二次コイルに誘起される起電力が所定の値を超えた場合には、二次コイルより二次通信回路部への電力伝送が遮断される非接触電力伝送システムの実施形態を取り得る。
(Embodiment 4)
The present invention further provides a case where the power to be transmitted reaches a predetermined power while gradually increasing from the start of power transmission, and the electromotive force induced in the secondary coil in the power receiving apparatus exceeds a predetermined value. An embodiment of a non-contact power transmission system in which power transmission from the secondary coil to the secondary communication circuit unit is interrupted can be taken.

上記実施形態を取ることにより、受電装置が予期していない電力伝送が行われた場合に、二次コイルに誘起される起電力が二次通信回路部の許容上限を超える前に受電装置内部で二次コイルと二次通信回路部の接続を遮断することにより、二次通信回路部を保護することができる。   By taking the above embodiment, when power transmission that is not expected by the power receiving device is performed, before the electromotive force induced in the secondary coil exceeds the allowable upper limit of the secondary communication circuit unit, By blocking the connection between the secondary coil and the secondary communication circuit unit, the secondary communication circuit unit can be protected.

さらに、送電装置側から伝送される電力を電力伝送開始時点より徐々に増加させることで、許容上限を超える前に二次通信回路部の接続遮断を確実に行うことができる。   Furthermore, by gradually increasing the power transmitted from the power transmission device side from the start of power transmission, it is possible to reliably disconnect the secondary communication circuit unit before exceeding the allowable upper limit.

図6は、本発明における第4実施形態を示す回路ブロック図である。   FIG. 6 is a circuit block diagram showing a fourth embodiment of the present invention.

図3とは、電圧検出部225を設けている点が異なる。   3 is different from FIG. 3 in that a voltage detection unit 225 is provided.

本実施形態では、実施形態3と同様に、少なくとも共振部222には図4のような半導体スイッチを設け、電力伝送時の過電圧から二次通信回路を保護する構成を取る。   In the present embodiment, similarly to the third embodiment, at least the resonance unit 222 is provided with a semiconductor switch as shown in FIG. 4 to protect the secondary communication circuit from an overvoltage during power transmission.

さらに、本実施形態では共振部222の半導体スイッチを、二次コイル20の電圧振幅を検出する電圧検出部225により制御する点が実施形態3とは異なっている。   Further, the present embodiment is different from the third embodiment in that the semiconductor switch of the resonance unit 222 is controlled by the voltage detection unit 225 that detects the voltage amplitude of the secondary coil 20.

図7は、本発明における第4実施形態でのタイムチャート及び電圧振幅波形を示す図である。   FIG. 7 is a diagram showing a time chart and a voltage amplitude waveform in the fourth embodiment of the present invention.

ポーリング信号I1及び認証信号I2の送受信は実施形態3と同様の手順で行う。実施形態2及び実施形態3の手順により電力伝送可能と送電装置側で判断した場合、電力伝送Pは、電力伝送開始後徐々に伝送電力増加させ、所定電力に到達するように行う。このように電力伝送Pを行うことで、二次コイルに誘起される電圧振幅も徐々に増加する。   The polling signal I1 and the authentication signal I2 are transmitted and received in the same procedure as in the third embodiment. When the power transmission apparatus determines that power transmission is possible according to the procedure of the second and third embodiments, the power transmission P is performed so that the transmission power is gradually increased after reaching the power transmission and reaches a predetermined power. By performing power transmission P in this way, the voltage amplitude induced in the secondary coil also gradually increases.

上記手順を実行している間、図4における半導体スイッチ2225はOFFすなわち非導通の状態にあり、二次コイルに誘起される電圧振幅が所定値VLを越えたときに半導体スイッチ2225をONすなわち導通状態とする。   During the execution of the above procedure, the semiconductor switch 2225 in FIG. 4 is in an OFF state or non-conductive state, and when the voltage amplitude induced in the secondary coil exceeds a predetermined value VL, the semiconductor switch 2225 is ON or conductive. State.

このように構成することで、電力伝送Pにより生じる過電圧から二次通信回路部を保護することができる。   With this configuration, it is possible to protect the secondary communication circuit unit from an overvoltage generated by the power transmission P.

なお、図6における共振部123についても同様に一次通信回路を保護する構成を有していても良い。   Note that the resonance unit 123 in FIG. 6 may also have a configuration for similarly protecting the primary communication circuit.

(実施形態5)
本発明は、さらに、電力伝送を開始した後、一次コイルのインピーダンスが所定の値以上であれば電力伝送を停止する電力伝送システムの実施形態を取り得る。
(Embodiment 5)
Furthermore, the present invention can take an embodiment of a power transmission system that stops power transmission if the impedance of the primary coil is equal to or higher than a predetermined value after power transmission is started.

電力伝送が正常に行われている場合には、受電装置側の負荷により伝送された電力が消費されるため、二次コイルに電力伝送を行う一次コイルのインピーダンスは所定の値を下回る。   When power transmission is normally performed, the power transmitted by the load on the power receiving device side is consumed, and thus the impedance of the primary coil that performs power transmission to the secondary coil is lower than a predetermined value.

一方、負荷部が二次電池であり、満充電となった場合等には、負荷部は電力伝送を受け付けなくなるため、電力伝送を行う際の一次コイルのインピーダンスは所定の値以上となる。   On the other hand, when the load unit is a secondary battery and the battery is fully charged, the load unit does not accept power transmission, and thus the impedance of the primary coil when performing power transmission is equal to or greater than a predetermined value.

従って、電力伝送が正常に行われている場合における一次コイルのインピーダンス上限を特定し、所定の値として設定した上記実施形態を取ることで、負荷部が電力伝送を必要としない場合に電力伝送を停止し、受電装置側における過電圧等の不具合や、不必要な電力伝送による電力損失を防ぐことができる。   Therefore, by specifying the upper limit of the impedance of the primary coil when power transmission is normally performed and taking the above embodiment set as a predetermined value, the power transmission is performed when the load unit does not require power transmission. It is possible to stop and prevent problems such as overvoltage on the power receiving apparatus side and power loss due to unnecessary power transmission.

図8は、本発明における第5実施形態を示す回路ブロック図である。   FIG. 8 is a circuit block diagram showing a fifth embodiment of the present invention.

図6とは、送電装置1にインピーダンス検出部1003を設けている点が異なる。   FIG. 6 is different from FIG. 6 in that an impedance detection unit 1003 is provided in the power transmission device 1.

送電コイル102から電力伝送を行う際に、インピーダンス検出部1003が、例えば送電コイル102の交流電流振幅と交流電圧振幅の比などにより、インピーダンスを検出する。   When power is transmitted from the power transmission coil 102, the impedance detection unit 1003 detects the impedance based on, for example, the ratio of the AC current amplitude and the AC voltage amplitude of the power transmission coil 102.

インピーダンス検出部1003で検出したインピーダンスの大きさが所定の値以上となった場合は、送電制御部114に電力伝送を停止する信号を伝達する。   When the magnitude of the impedance detected by the impedance detection unit 1003 exceeds a predetermined value, a signal for stopping power transmission is transmitted to the power transmission control unit 114.

送電装置 1
受電装置 2
一次コイル 10
一次送電回路部 11
一次通信回路部 12
二次コイル 20
二次受電回路部 21
二次通信回路部 22
通信コイル 101
送電コイル 102
発振部 111
電力増幅部 112
共振部 113、123、211、222
送電制御部 114
信号発信部 121、221
切替部 122、223
信号受信部 124、224
端子 201、202、2223、2224
整流部 212
電力制御部 213
負荷部 214
電圧検出部 225
電圧検出部 1001
認証判断部 1002
インピーダンス検出部 1003
インダクタ 2221
コンデンサ 2222、2226
半導体スイッチ 2225
電力伝送可能領域 A
通信可能領域 B
時間 t1、t2
ポーリング信号 I1
認証信号 I2
電力伝送 P
所定値 VL
Power transmission device 1
Power receiving device 2
Primary coil 10
Primary power transmission circuit section 11
Primary communication circuit section 12
Secondary coil 20
Secondary power receiving circuit part 21
Secondary communication circuit unit 22
Communication coil 101
Power transmission coil 102
Oscillator 111
Power amplifier 112
Resonant part 113, 123, 211, 222
Power transmission control unit 114
Signal transmitter 121, 221
Switching unit 122, 223
Signal receiver 124, 224
Terminals 201, 202, 2223, 2224
Rectifier 212
Power control unit 213
Load section 214
Voltage detector 225
Voltage detection unit 1001
Authentication judgment unit 1002
Impedance detection unit 1003
Inductor 2221
Capacitors 2222 and 2226
Semiconductor switch 2225
Power transmission area A
Communication area B
Time t1, t2
Polling signal I1
Authentication signal I2
Power transmission P
Predetermined value VL

Claims (5)

一次コイルと一次送電回路部と電圧検出部を備えた送電装置、
並びに二次コイルと二次通信回路部と二次受電回路部と負荷部を少なくとも備えた受電装置を有し、
前記二次通信回路部より前記二次コイルを介して前記一次コイルに誘起される起電力を前記電圧検出部により検出し、
前記電圧検出部によって検出された起電力が所定の値を超えた場合に前記一次送電回路部より前記一次コイルを介して前記二次コイルに電力伝送を行い、
前記二次コイルで受電した電力は、前記二次受電回路部を介して前記負荷に供給されることを特徴とする非接触電力伝送システム。
A power transmission device including a primary coil, a primary power transmission circuit unit, and a voltage detection unit;
And a power receiving device including at least a secondary coil, a secondary communication circuit unit, a secondary power receiving circuit unit, and a load unit,
An electromotive force induced in the primary coil from the secondary communication circuit unit through the secondary coil is detected by the voltage detection unit,
When the electromotive force detected by the voltage detection unit exceeds a predetermined value, power is transmitted from the primary power transmission circuit unit to the secondary coil through the primary coil,
The electric power received by the secondary coil is supplied to the load via the secondary power receiving circuit unit.
前記送電装置は、さらに一次通信回路部を備え、
前記一次通信回路部より前記一次コイル及び前記二次コイルを介して前記二次通信回路部へ通信信号を伝達し、
前記受電装置は前記通信信号に対応した認証信号を前記二次通信回路部より前記二次コイル及び前記一次コイルを介して前記一次通信回路部へ伝達し、
前記認証信号を受けた前記送電装置は、前記一次コイルに誘起される起電力を前記電圧検出部により検出し、
前記電圧検出部によって検出された起電力が所定の値を超えた場合に前記一次送電回路部より前記一次コイルを介して前記二次コイルに電力伝送を行うことを特徴とする請求項1に記載の非接触電力伝送システム。
The power transmission device further includes a primary communication circuit unit,
A communication signal is transmitted from the primary communication circuit unit to the secondary communication circuit unit through the primary coil and the secondary coil,
The power receiving device transmits an authentication signal corresponding to the communication signal from the secondary communication circuit unit to the primary communication circuit unit via the secondary coil and the primary coil,
The power transmission device that has received the authentication signal detects an electromotive force induced in the primary coil by the voltage detection unit,
The power transmission is performed from the primary power transmission circuit unit to the secondary coil via the primary coil when an electromotive force detected by the voltage detection unit exceeds a predetermined value. Non-contact power transmission system.
前記送電装置は、前記認証信号を伝達された後、所定時間経過するまで前記電力伝送を行わず、
前記受電装置は、前記認証信号を伝達した後、前記所定時間経過する前に、前記二次コイルから前記二次通信回路部への電力伝送経路を遮断することを特徴とする請求項2に記載の非接触電力伝送システム。
The power transmission device does not perform the power transmission until a predetermined time elapses after the authentication signal is transmitted,
3. The power receiving device according to claim 2, wherein after the authentication signal is transmitted, the power receiving device blocks a power transmission path from the secondary coil to the secondary communication circuit unit before the predetermined time elapses. Non-contact power transmission system.
前記電力伝送される電力は、前記電力伝送の開始時点より徐々に増加しつつ所定電力に到達し、
前記受電装置における前記二次コイルに誘起される起電力が所定の値を超えた場合には、前記二次コイルより前記二次通信回路部への電力伝送が遮断されることを特徴とする請求項1から請求項3のいずれかに記載の非接触電力伝送システム。
The power transmitted power reaches a predetermined power while gradually increasing from the start of the power transmission,
The power transmission from the secondary coil to the secondary communication circuit unit is cut off when an electromotive force induced in the secondary coil in the power receiving device exceeds a predetermined value. The non-contact electric power transmission system in any one of Claims 1-3.
前記電力伝送を開始した後、前記一次コイルのインピーダンスが所定の値以上であれば前記電力伝送を停止することを特徴とする請求項1から請求項4のいずれかに記載の非接触電力伝送システム。   5. The non-contact power transmission system according to claim 1, wherein, after the power transmission is started, the power transmission is stopped if an impedance of the primary coil is equal to or higher than a predetermined value. .
JP2012149100A 2012-07-03 2012-07-03 Non-contact power transmission system Pending JP2014011928A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012149100A JP2014011928A (en) 2012-07-03 2012-07-03 Non-contact power transmission system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012149100A JP2014011928A (en) 2012-07-03 2012-07-03 Non-contact power transmission system

Publications (1)

Publication Number Publication Date
JP2014011928A true JP2014011928A (en) 2014-01-20

Family

ID=50108153

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012149100A Pending JP2014011928A (en) 2012-07-03 2012-07-03 Non-contact power transmission system

Country Status (1)

Country Link
JP (1) JP2014011928A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015220816A (en) * 2014-05-15 2015-12-07 Necトーキン株式会社 Non-contact signaling device, and non-contact power reception device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015220816A (en) * 2014-05-15 2015-12-07 Necトーキン株式会社 Non-contact signaling device, and non-contact power reception device

Similar Documents

Publication Publication Date Title
US10270277B2 (en) System and method for prevention of wireless charging cross connection
EP2932616B1 (en) Resolving communications in a wireless power system with co-located transmitters
US9608480B2 (en) Systems and methods for detecting and identifying a wireless power device
WO2014188744A1 (en) Communication apparatus and electronic device
JP6157878B2 (en) Non-contact power transmission system
JP6003172B2 (en) Power supply device and power supply system
KR20130016251A (en) Detection and protection of devices within a wireless power system
JP6007561B2 (en) Power supply device and power supply system
EP3036815A1 (en) Apparatus and method for non-compliant object detection
KR20130135260A (en) Wireless charging of devices
US9391442B2 (en) Protection device and method for power transmitter
US9892846B2 (en) Wireless power transmitter, wireless power receiver and wireless power transmission method
KR20150134307A (en) Wireless power transmission device
KR20160101936A (en) Resonant power-transfer system and resonant power-transmission device
JP2014093818A (en) Contactless charger
JP2013102665A (en) Power-feed device and power-feed system
JP2014011928A (en) Non-contact power transmission system
JP5699960B2 (en) Non-contact power transmission device
JP2012065455A (en) Non-contact charging system, electronic device, and method of protecting non-contact communication circuit
US11909220B2 (en) Wireless power Tx to Tx conflict and protection
KR20130048736A (en) Non-contact power transmission syatem with overheat protection and method thereof
JP5481598B1 (en) Communication device
KR20160010283A (en) Communication apparatus and electronic device
KR20130103704A (en) Non-contact power transmission syatem with overheat protection and method thereof