JP2014010004A - Slab surface flaw inspection method and facility - Google Patents

Slab surface flaw inspection method and facility Download PDF

Info

Publication number
JP2014010004A
JP2014010004A JP2012145693A JP2012145693A JP2014010004A JP 2014010004 A JP2014010004 A JP 2014010004A JP 2012145693 A JP2012145693 A JP 2012145693A JP 2012145693 A JP2012145693 A JP 2012145693A JP 2014010004 A JP2014010004 A JP 2014010004A
Authority
JP
Japan
Prior art keywords
slab
dimensional
light source
hot
imaging device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012145693A
Other languages
Japanese (ja)
Inventor
Masashi Hamada
将志 濱田
Takeo Hosoi
威男 細井
Takahito Hiroi
貴仁 廣井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Priority to JP2012145693A priority Critical patent/JP2014010004A/en
Publication of JP2014010004A publication Critical patent/JP2014010004A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To inspect the full surface of a hot slab in a high temperature state.SOLUTION: During continuous steel casting, each of a top surface 1a, a ground surface 1b, and both side faces 1c and 1d of a hot slab 1 moved in a hot temperature state is irradiated with light from a one-dimensional line light source 3. The reflected lights of the lights applied to the top surface 1a, the ground surface 1b, and both the side faces 1c and 1d of the hot slab 1 from the one-dimensional line light source 3 are continuously picked up by a one-dimensional imaging device 4. An image processing device 5 generates a two-dimensional image from the reflected lights continuously imaged by the one-dimensional imaging device 4. A detection/determination device 6 detects, based on the two-dimensional image generated by the image processing device 5, a slab surface flaw, and determines to feed only a surface flaw detected slab to a precision processing step. Thus, only flaw detected slabs are selected to be fed to an offline slab precision processing step.

Description

本発明は、鉄鋼の製造プロセスにおいて、高温状態にあるスラブの表面品質を、熱間で検査する方法、及びその方法を実施する設備に関するものである。   The present invention relates to a method for inspecting the surface quality of a slab in a high temperature state in a steel manufacturing process, and equipment for performing the method.

連続鋳造した鋳片の表面には、縦割れなどの表面疵が発生する場合がある。
従って、従来の連続鋳造工程では、図7に示すように、連続鋳造したスラブに対して、抜き取りで熱間目視検査を実施している。なお、熱間目視検査とは、スラブを常温まで降温させることなく高温のまま実施する目視検査をいう。
Surface flaws such as vertical cracks may occur on the surface of a continuously cast slab.
Therefore, in the conventional continuous casting process, as shown in FIG. 7, the hot visual inspection is carried out by extracting the continuously cast slab. The hot visual inspection refers to a visual inspection performed at a high temperature without lowering the slab to room temperature.

抜き取りで検査をするのは、全てのスラブの全面をオンラインで検査するだけの時間、工数を確保できないためであるが、その弊害として疵が発生したスラブが熱間目視検査の対象とならず、手入れされることなく次工程へ送り出される場合がある。この場合、圧延コイルでスリバーやヘゲなどの欠陥が発生する。   The inspection by sampling is because it is not possible to secure the time and man-hours to inspect the entire surface of all slabs online, but the slab in which wrinkles occurred as a negative effect is not subject to hot visual inspection, There is a case where it is sent out to the next process without being maintained. In this case, defects such as sliver and scab occur in the rolling coil.

一方で、製品品質の要求が厳格な鋼種(以下、厳格材という。)は全量、一般的な鋼種(以下、一般材という。)は抜き取りで、スラブ精整工程においてオフラインでの冷間目視検査を行っている。なお、冷間目視検査とは、一旦スラブを常温まで降温させた後に実施する目視検査を言う。   On the other hand, all steel grades with strict product quality requirements (hereinafter referred to as strict grades) are extracted, and general steel grades (hereinafter referred to as generic grades) are extracted, and offline visual inspection is performed in the slab finishing process. It is carried out. The cold visual inspection refers to a visual inspection performed after the slab is once cooled to room temperature.

そして、この冷間目視検査で表面疵の発生が検出されたスラブは、その表面にノズルから高温ガスを吹き付けて溶削し、疵を除去するスカーフ処理、或いはグラインダによる表面研削を実施している。   And the generation | occurrence | production of surface wrinkles was detected by this cold visual inspection, the hot gas is sprayed from the nozzle to the surface, and it is cut and the scarf process which removes wrinkles, or the surface grinding by a grinder is implemented. .

これら冷間目視検査の対象となったスラブは、長時間の冷却工程が発生するだけではなく、次工程の圧延工程前にスラブの再加熱が必要となり、コストやプロセス面でのロスが生じる。一方、一般材において、抜き取り検査の対象とならなかったスラブに疵があった場合には、この欠陥スラブが次工程へ流出することになる。   These slabs subjected to the cold visual inspection not only require a long cooling process but also require reheating of the slab before the next rolling process, resulting in cost and process losses. On the other hand, if there is a flaw in the slab that was not subject to the sampling inspection in general materials, this defective slab will flow out to the next process.

従って、連続鋳造したスラブは全量、熱間で検査することが望ましいが、熱間状態のスラブの表面を撮像装置で撮像する場合には、後述する理由でスラブ自体が発する光を無視することができない。以下、スラブ自体が発する光を「自発光」という。   Therefore, it is desirable to inspect all the slabs continuously cast hot, but when imaging the surface of a hot slab with an imaging device, the light emitted by the slab itself may be ignored for reasons described later. Can not. Hereinafter, the light emitted by the slab itself is referred to as “self-luminous”.

この対策として、例えば特許文献1では、熱間状態にある高温スラブの自発光の波長に対して、より短い波長領域にピーク波長をもつ強度分布を有した光源からの反射光から求めた2次元画像を解析することで、表面疵を検出する方法が開示されている。   As a countermeasure, for example, in Patent Document 1, two-dimensionally obtained from reflected light from a light source having an intensity distribution having a peak wavelength in a shorter wavelength region with respect to the wavelength of self-emission of a high-temperature slab in a hot state. A method for detecting surface defects by analyzing an image is disclosed.

この特許文献1に開示された方法の場合、搬送ロール上を移動するスラブ表面に発生するあらゆる形状の疵を全て検知するためには、1次元光源及び2次元光源の2つの光源でスラブ表面の同一位置を同時に照射する必要がある。   In the case of the method disclosed in Patent Document 1, in order to detect all wrinkles of any shape generated on the surface of the slab moving on the transport roll, the slab surface is detected by two light sources, a one-dimensional light source and a two-dimensional light source. It is necessary to irradiate the same position simultaneously.

搬送ロール上を移動するスラブの天側表面の検査を行う場合は、例えば特許文献2の図4のように、搬送ロールの上方に特許文献1に開示された1次元光源及び2次元光源を配置して行えば良い。   When inspecting the top surface of the slab moving on the transport roll, for example, as shown in FIG. 4 of Patent Document 2, the one-dimensional light source and the two-dimensional light source disclosed in Patent Document 1 are arranged above the transport roll. Just do it.

しかしながら、搬送ロール上を移動するスラブの地側表面の検査を行う場合は、搬送ロールが邪魔をして一度に撮像できる面積が狭いので、所定面積範囲を照射する2次元光源を使用することができない。つまり、特許文献1に開示された方法で、スラブの地側表面の検査を行うことはできない。   However, when inspecting the ground-side surface of a slab that moves on a transport roll, the area that can be imaged at one time is obstructed by the transport roll, so a two-dimensional light source that irradiates a predetermined area range may be used. Can not. In other words, the ground side surface of the slab cannot be inspected by the method disclosed in Patent Document 1.

スラブの天側表面と地側表面で疵の発生は独立している場合もあるので、特許文献1で開示された方法で天側表面だけを検査してスラブに疵が無い場合でも、地側表面が健全であると判断することはできない。つまり、特許文献1で開示された検査方法の場合は、地側表面を検査するためにはオフラインの冷間目視検査や手入れが必要である。   Since the occurrence of wrinkles may be independent between the top surface and the ground surface of the slab, even if only the top surface is inspected by the method disclosed in Patent Document 1 and the slab is free of wrinkles, the ground side It cannot be judged that the surface is healthy. That is, in the case of the inspection method disclosed in Patent Document 1, an offline cold visual inspection and care are necessary to inspect the ground surface.

なお、特許文献3にはレーザ光を用いた圧延鋼板のキャンバの検知技術が、また、特許文献4には高温対象物の3次元形状測定技術が開示されており、これらの技術によって鋼の連続鋳造時に発生するバルジング等のスラブの形状異常を検知することは可能である。しかしながら、特許文献3,4で開示された技術では、スラブ表面に発生する疵を検知するほどの精度を得ることは困難である。   Patent Document 3 discloses a technique for detecting a rolled steel plate camber using laser light, and Patent Document 4 discloses a technique for measuring a three-dimensional shape of a high-temperature object. It is possible to detect abnormal slab shapes such as bulging that occur during casting. However, with the techniques disclosed in Patent Documents 3 and 4, it is difficult to obtain an accuracy enough to detect wrinkles generated on the slab surface.

特開平9‐152322号公報JP-A-9-152322 特表2010‐524695号公報Special table 2010-524695 gazette 特開平5‐118840号公報JP-A-5-118840 特開2001‐99615号公報Japanese Patent Laid-Open No. 2001-99615

本発明が解決しようとする問題点は、高温状態にあるスラブの全表面を、熱間で検査する方法はなかったという点である。   The problem to be solved by the present invention is that there was no method for inspecting the entire surface of a slab in a high temperature state hot.

本発明のスラブ表面疵検査方法は、
高温状態にあるスラブの全表面を、熱間で検査可能とするために、
鋼の連続鋳造において、高温状態で移動する熱間スラブの天側表面、地側表面、及び両側面の各面それぞれに、1次元の線光源から光を照射し、これら照射光がそれぞれ前記天側表面、地側表面、及び両側面で反射した反射光を1次元の撮像装置を使用して連続的に撮像することで2次元画像を生成し、これらの2次元画像を基にスラブの表面疵を検出し、スラブ表面疵が認められたスラブのみを精整工程へ回すように判定することを最も主要な特徴とするものである。
The slab surface wrinkle inspection method of the present invention is
In order to be able to inspect the entire surface of the slab at a high temperature hot,
In continuous casting of steel, each of the top surface, ground side surface, and both side surfaces of a hot slab moving in a high temperature state is irradiated with light from a one-dimensional line light source, and these irradiation lights are respectively transmitted to the ceiling. A two-dimensional image is generated by continuously capturing the reflected light reflected from the side surface, the ground surface, and both side surfaces using a one-dimensional imaging device, and the surface of the slab is based on these two-dimensional images. The main feature is to detect wrinkles and determine that only slabs with slab surface wrinkles are sent to the refining process.

本発明のスラブ表面疵検査方法は、熱間スラブの全面に1次元の線光源から光を照射し、熱間スラブの全面の画像を、1次元の撮像装置で均一な輝度で連続的に撮像して生成した2次元画像を基に表面疵を検出するので、2次元の面光源や撮像装置を用いることなく、高温状態にあるスラブの全表面を熱間で検査することができる。   The slab surface flaw inspection method of the present invention irradiates light on the entire surface of the hot slab from a one-dimensional line light source, and continuously captures an image of the entire surface of the hot slab with uniform luminance with a one-dimensional imaging device. Since the surface defect is detected based on the two-dimensional image generated in this manner, the entire surface of the slab in a high temperature state can be inspected hot without using a two-dimensional surface light source or an imaging device.

上記の本発明方法は、
鋼の連続鋳造時、高温状態で移動する熱間スラブの天側表面、地側表面、及び両側面の各面それぞれに、光を照射する1次元の線光源と、
これら1次元の線光源から前記熱間スラブの天側表面、地側表面、及び両側面のそれぞれの面に照射した光の反射光を連続的に撮像する1次元の撮像装置と、
これら1次元の撮像装置で連続的に撮像した反射光から2次元画像を生成する画像処理装置と、
この画像処理装置で生成した2次元画像を基にスラブの表面疵を検出し、スラブ表面疵が認められたスラブのみを精整工程へ回すように判定する検出・判定装置と、
を備えた本発明のスラブ表面疵検査設備を用いて実施することができる。
The method of the present invention described above
A one-dimensional line light source that irradiates light on each of the top surface, ground surface, and both side surfaces of a hot slab that moves in a high temperature state during continuous casting of steel;
A one-dimensional imaging device that continuously images reflected light of the light irradiated from the one-dimensional line light source to the top surface, the ground surface, and both side surfaces of the hot slab;
An image processing device that generates a two-dimensional image from reflected light continuously captured by the one-dimensional imaging device;
A detection / determination device that detects a surface slab surface of a slab based on a two-dimensional image generated by the image processing apparatus and determines that only a slab in which the slab surface surface defect is recognized is sent to a refining process;
It can implement using the slab surface flaw inspection equipment of this invention provided with.

本発明では、熱間状態でスラブの全面を対象とした表面品質検査を実施することができるので、表面疵が発見されたスラブのみを選別してオフラインのスラブ精整工程へ送ることが可能になる。また、厳格材についても熱間直送が可能になる。従って、リードタイムの短縮と、冷間検査実施によって生じる長時間の冷却工程や、次工程で発生する再加熱コストの削減が可能になる。   In the present invention, it is possible to carry out surface quality inspection on the entire surface of the slab in the hot state, so it is possible to select only slabs in which surface defects have been found and send them to an offline slab refining process Become. In addition, hot materials can be sent directly to strict materials. Therefore, it is possible to shorten the lead time and the long cooling process caused by the cold inspection and the reheating cost generated in the next process.

熱間スラブの自発光波長と放射エネルギー密度の関係を示した図である。It is the figure which showed the relationship between the self-light-emitting wavelength of a hot slab, and a radiant energy density. 光源から2100mm離れた位置での水平方向の放射照度分布を示した図である。It is the figure which showed the irradiance distribution of the horizontal direction in the position 2100mm away from the light source. 予備実験を行った撮像装置を使用した表面品質検査方法のブロック図である。It is a block diagram of the surface quality inspection method using the imaging device which performed the preliminary experiment. スラブに対する撮像装置の傾斜角度と計測位置での放射照度の関係を示した図である。It is the figure which showed the relationship between the inclination angle of the imaging device with respect to a slab, and the irradiance in a measurement position. オンラインでスラブ全面の表面画像を撮像するため、図3で説明した撮像装置をスラブの天側表面、地側表面、及び左右両側面に対して設置した本発明のスラブ表面疵検査設備の概略構成を示した模式図である。In order to capture the surface image of the entire surface of the slab online, the schematic configuration of the slab surface defect inspection equipment of the present invention in which the imaging device described in FIG. 3 is installed on the top surface, the ground surface, and the left and right sides of the slab It is the schematic diagram which showed. 本発明によるスラブ表面品質検査導入後のスラブ精整工程を示した図である。It is the figure which showed the slab adjustment process after the slab surface quality inspection introduction by this invention. 従来のスラブ表面検査工程を説明する図である。It is a figure explaining the conventional slab surface inspection process.

本発明は、高温状態にあるスラブの全表面を熱間で検査可能とするという目的を、熱間スラブの全面に照射した1次元の照射光がそれぞれの面で反射した反射光を1次元の撮像装置で連続的に撮像して生成した2次元画像を基に検出することで実現した。   The object of the present invention is to make it possible to inspect the entire surface of a slab in a high temperature state in a hot manner. The reflected light reflected by the respective surfaces of the one-dimensional irradiation light irradiated on the entire surface of the hot slab is reflected in a one-dimensional manner. This was realized by detecting based on a two-dimensional image generated by continuously capturing images with an imaging device.

以下、本発明の課題解決に至るまでの経過と共に本発明について説明する。
スラブの地側表面を熱間オンラインで検査するためには、落下物や高温雰囲気への機械的耐久性を有した光源と撮像装置を使用して、搬送ロール間の限られた視野の範囲で撮像しなければならない。
Hereinafter, the present invention will be described along with the progress up to the solution of the problems of the present invention.
In order to inspect the ground side surface of the slab hot online, use a light source and an imaging device that have mechanical durability to falling objects and high-temperature atmospheres, with a limited field of view between the transport rolls. You have to image.

そのためには、光源の必要幅や、測定対象のスラブに対する撮像装置の傾斜角度、スラブと撮像装置間の距離、等を最適範囲に決定する必要があるが、これまでは従来技術で説明したように、前記点についての記載や示唆は無い。   For that purpose, it is necessary to determine the necessary range of the light source, the inclination angle of the imaging device with respect to the slab to be measured, the distance between the slab and the imaging device, etc. within the optimum range, but so far as explained in the prior art However, there is no description or suggestion about the above point.

そこで、発明者らは、プロセスの簡略化や不良鋳片の次工程流出防止のために熱間オンラインでのスラブ全面の表面品質検査方法を確立するために、以下に説明する検討を行った。   Therefore, the inventors conducted the following studies in order to establish a hot online surface quality inspection method for the entire surface of the slab in order to simplify the process and prevent the outflow of the defective slab to the next process.

熱間状態の高温スラブの表面を撮像する場合、スラブから発せられる自発光を無視できない。このスラブから発せられる自発光は、波長が0.6μm以上の赤色光、または赤外線光であり、その発光強度(黒体放射強度を意味する。)はスラブの表面温度と波長から一義的に決定されるプランク分布に従う。   When imaging the surface of a hot slab in a hot state, the self-emission emitted from the slab cannot be ignored. The self-emission emitted from this slab is red light or infrared light having a wavelength of 0.6 μm or more, and its emission intensity (meaning black body radiation intensity) is uniquely determined from the surface temperature and wavelength of the slab. Follow the plank distribution.

プランク分布によれば、光を含む電磁波の黒体放射強度B(λ,T)、放射エネルギー密度u’(λ,T)は、温度T、波長λとして、下記数式1で表される。   According to the Planck distribution, the black body radiation intensity B (λ, T) and radiant energy density u ′ (λ, T) of an electromagnetic wave including light is expressed by the following formula 1 as a temperature T and a wavelength λ.

Figure 2014010004
Figure 2014010004

プランク分布を全波長領域で積分すると黒体放射の全エネルギーEが得られ、その値は下記数式2で示すように、温度T(絶対温度(K))の4乗に比例する。   When the plank distribution is integrated over the entire wavelength region, the total energy E of the blackbody radiation is obtained, and its value is proportional to the fourth power of the temperature T (absolute temperature (K)) as shown in the following equation 2.

Figure 2014010004
Figure 2014010004

すなわち、スラブの表面温度の4乗に比例する自発光の放射エネルギー密度は波長によって大きく変化する。熱間スラブは幅方向に温度差を有しているため、図1に示すように、表面温度が高くなる幅中央部ほど発光強度が高くなる。   That is, the radiant energy density of the self-light emission proportional to the fourth power of the surface temperature of the slab varies greatly depending on the wavelength. Since the hot slab has a temperature difference in the width direction, as shown in FIG. 1, the emission intensity is higher at the center of the width where the surface temperature is higher.

よって、スラブの幅方向中央部に発生する疵と、幅方向コーナー部に発生する疵を同時に検出するためには、スラブの幅方向で生じる発光強度の差を抑制し、幅方向に均一な輝度でスラブ表面の画像を撮像する必要がある。   Therefore, in order to simultaneously detect wrinkles generated at the center in the width direction of the slab and wrinkles generated at the corners in the width direction, the difference in light emission intensity generated in the width direction of the slab is suppressed, and uniform brightness in the width direction. Therefore, it is necessary to take an image of the slab surface.

そこで、スラブの自発光の波長範囲を遮断する光学フィルターと、スラブ表面に照射するための、スラブの自発光と波長範囲が異なる光源を備えた撮像装置を使用してスラブの全幅で均一な輝度の反射光を得てスラブ表面の画像を生成し、疵検査に使用することとした。   Therefore, using an optical filter that cuts off the wavelength range of the slab's self-emission and an imaging device that irradiates the surface of the slab with a light source that has a different wavelength range from the slab's self-emission, uniform brightness over the entire width of the slab An image of the slab surface was generated from the reflected light and used for wrinkle inspection.

また、搬送ロール上でスラブの地側表面を検査するために、スラブの地側表面を撮像するには、クレーンなどで搬送ロール上からスラブを吊上げない限り、搬送ロールの下方に設置した撮像装置から搬送ロールの隙間を介して撮像するので、視野が狭くなって2次元画像を撮像することは困難である。   Also, in order to inspect the ground side surface of the slab on the transport roll, in order to image the ground side surface of the slab, an imaging device installed below the transport roll unless the slab is lifted from the transport roll by a crane or the like Therefore, it is difficult to capture a two-dimensional image with a narrow field of view.

さらに、搬送ロールの下方は切断バリやスケールなどが落下し、上部を高温のスラブが通過する過酷な環境である。   Furthermore, a cutting burr, a scale, etc. fall under the conveyance roll, and it is a severe environment where a high temperature slab passes through the upper part.

従って、落下物や高温雰囲気への機械的耐久性を有した光源と撮像装置を使用して、搬送ロール間の限られた視野の範囲でスラブの地側表面を撮像しなければならず、光源の選択とその必要幅や、測定対象のスラブに対する撮像装置の傾斜角度、スラブと撮像装置間の距離の検討が重要となる。   Therefore, the ground side surface of the slab must be imaged within a limited field of view between the transport rolls using a light source and an imaging device having mechanical durability to falling objects and high-temperature atmospheres. And the necessary width, the inclination angle of the imaging device with respect to the slab to be measured, and the distance between the slab and the imaging device are important.

そこで、発明者らは、上記課題を解決するために、光源と撮像装置は、ともに1次元の線光線でスラブ表面を連続的に撮像することで、全長に亘ってスラブ表面の2次元画像を収集することとした。   Therefore, in order to solve the above-mentioned problems, the inventors of the present invention have both a light source and an imaging device that continuously capture a two-dimensional image of the slab surface over the entire length by imaging the slab surface with one-dimensional line rays. It was decided to collect.

さらに、発明者らは、上記検討のために、予備実験として、実機の連続鋳造機を想定し、スラブの表面から2100mm離れた位置に設置した線光源(幅400mmの青色発光ダイオード)から長辺側の幅が1200mmのスラブに投光し、その撮像画像から表面疵の判別可否についての調査を行った。   Furthermore, for the above examination, the inventors assumed a continuous casting machine as a preliminary experiment as a preliminary experiment, and a long side from a line light source (blue light emitting diode having a width of 400 mm) placed 2100 mm away from the surface of the slab. A slab having a side width of 1200 mm was projected, and an investigation was made as to whether or not surface defects could be discriminated from the captured image.

先ず、前提条件として、予備実験に使用した撮像装置の場合、スラブ表面に生じる疵を判別するためには、撮像位置での放射照度を55mW/m2以上確保する必要があった。但し、前記の放射照度値は使用する撮像装置(の例えば絞り値)によって変化することは言うまでもない。 First, as a precondition, in the case of the imaging apparatus used in the preliminary experiment, it was necessary to secure an irradiance of 55 mW / m 2 or more at the imaging position in order to determine wrinkles generated on the slab surface. However, it goes without saying that the irradiance value changes depending on the imaging device used (for example, the aperture value).

前記幅が400mmの線光源から投光された光線の2100mm離れた位置での放射照度分布を図2に示す。図2より、前記予備実験では、スラブの長辺幅1200mmの全域に亘って55mW/m2以上の安定した放射照度分布が得られていることが分かる。これより、計測対象とするスラブの長辺幅の少なくとも1/3の有効幅を有する線光源を使用することで、スラブの長辺側の幅のみならず短辺側の幅も撮像が可能であることが分かった。 FIG. 2 shows an irradiance distribution at a position 2100 mm away from a light beam projected from a line light source having a width of 400 mm. From FIG. 2, it can be seen that in the preliminary experiment, a stable irradiance distribution of 55 mW / m 2 or more was obtained over the entire area of the long side width of 1200 mm of the slab. Thus, by using a line light source having an effective width of at least 1/3 of the long side width of the slab to be measured, it is possible to image not only the long side width but also the short side width of the slab. I found out.

前記予備実験を行った撮像装置を使用した表面品質検査方法のブロック図を図3に示す。1は搬送ロール2上の検査対象であるスラブであり、このスラブ1の長辺幅の1/3の有効幅を有する青色発光ダイオードを用いた線光源3よりスラブ1の地側表面1bにスリット光を照射する。   FIG. 3 shows a block diagram of the surface quality inspection method using the imaging apparatus for which the preliminary experiment was performed. Reference numeral 1 denotes a slab to be inspected on the transport roll 2, and a slit is formed on the ground-side surface 1 b of the slab 1 from a line light source 3 using a blue light emitting diode having an effective width of 1/3 of the long side width of the slab 1. Irradiate light.

照射したスリット光はスラブ1の地側表面1bで反射し、レンズ4aを介して光学フィルター4bを通過するときにスラブ1から発せられる自発光による赤色光や赤外線光を遮断され、選択分離された光を撮像素子4cで1次元画像として撮像する。なお、4はレンズ4a、光学フィルター4b、撮像素子4cを関連配置した撮像装置である。   The irradiated slit light is reflected by the ground-side surface 1b of the slab 1, and is selectively separated by blocking red light and infrared light due to self-emission emitted from the slab 1 when passing through the optical filter 4b through the lens 4a. Light is imaged as a one-dimensional image by the image sensor 4c. Reference numeral 4 denotes an image pickup apparatus in which a lens 4a, an optical filter 4b, and an image pickup element 4c are arranged in association with each other.

このようにして得られるスラブ1の表面品質検査用画像を画像処理装置5へ入力し、スラブ1の全幅かつ全長に亘る連続的な表面品質検査用画像を作成して表面疵の検査を実施する。   The surface quality inspection image of the slab 1 obtained in this way is input to the image processing device 5, and a continuous surface quality inspection image over the entire width and length of the slab 1 is created to inspect the surface defects. .

なお、搬送ロール2の下方に設置する前記線光源3、撮像装置4は、切断時のバリや表面スケールの落下物への対策として鋼製の保護ジャケット内に収納し、高温スラブ1の上部通過に備えて水冷装置を設けた。加えて、スラブ1の天側表面1a及び地側表面1bの疵を検出する場合は、前記表面1a,1bに対して鉛直方向からスラブ1の移動方向に対して傾斜θを付与して設置した。   The linear light source 3 and the imaging device 4 installed below the transport roll 2 are housed in a steel protective jacket as a countermeasure against burrs and falling objects on the surface scale at the time of cutting, and pass above the high-temperature slab 1. In preparation for this, a water cooling device was provided. In addition, when detecting wrinkles on the top surface 1a and the ground surface 1b of the slab 1, the surface 1a, 1b is installed with an inclination θ from the vertical direction to the moving direction of the slab 1. .

図4にスラブに対する撮像装置の傾斜θと計測位置での放射照度の関係を示す。図4より、撮像装置の傾斜θは10〜45°の範囲とすることで、落下物や放射照度低下、搬送ロールとの干渉の影響を受けずに表面疵の検出が可能であることが分かった。   FIG. 4 shows the relationship between the inclination θ of the imaging device relative to the slab and the irradiance at the measurement position. From FIG. 4, it is understood that the surface defect can be detected without being affected by falling objects, a decrease in irradiance, and interference with the transport roll when the inclination θ of the imaging device is in the range of 10 to 45 °. It was.

本発明は、上記の知見に基づいてなされたものであり、
鋼の連続鋳造において、高温状態で移動する熱間スラブの天側表面、地側表面、及び両側面の各面それぞれに、1次元の線光源から光を照射し、これら照射光がそれぞれ前記天側表面、地側表面、及び両側面で反射した反射光を1次元の撮像装置を使用して連続的に撮像することで2次元画像を生成し、これらの2次元画像を基にスラブの表面疵を検出し、スラブ表面疵が認められたスラブのみを精整工程へ回すように判定することを特徴とするスラブ表面疵検査方法である。
The present invention has been made based on the above findings,
In continuous casting of steel, each of the top surface, ground side surface, and both side surfaces of a hot slab moving in a high temperature state is irradiated with light from a one-dimensional line light source, and these irradiation lights are respectively transmitted to the ceiling. A two-dimensional image is generated by continuously capturing the reflected light reflected from the side surface, the ground surface, and both side surfaces using a one-dimensional imaging device, and the surface of the slab is based on these two-dimensional images. It is a slab surface wrinkle inspection method characterized by detecting wrinkles and determining that only slabs with slab surface wrinkles are sent to a refining process.

そして、上記本発明のスラブ表面疵検査方法は、
鋼の連続鋳造時、高温状態で移動する熱間スラブの天側表面、地側表面、及び両側面の各面それぞれに、光を照射する1次元の線光源と、
これら線光源から前記熱間スラブの天側表面、地側表面、及び両側面のそれぞれの面に照射した光の反射光を連続的に撮像する1次元の撮像装置と、
これら1次元の撮像装置で連続的に撮像した反射光から2次元画像を生成する画像処理装置と、
この画像処理装置で生成した2次元画像を基にスラブの表面疵を検出し、スラブ表面疵が認められたスラブのみを精整工程へ回すように判定する検出・判定装置と、
を備えた本発明のスラブ表面疵検査設備を用いて実施できる。
And, the slab surface wrinkle inspection method of the present invention,
A one-dimensional line light source that irradiates light on each of the top surface, ground surface, and both side surfaces of a hot slab that moves in a high temperature state during continuous casting of steel;
A one-dimensional imaging device that continuously images reflected light of the light emitted from these line light sources to the top surface, the ground surface, and both sides of the hot slab;
An image processing device that generates a two-dimensional image from reflected light continuously captured by the one-dimensional imaging device;
A detection / determination device that detects a surface slab surface of a slab based on a two-dimensional image generated by the image processing apparatus and determines that only a slab in which the slab surface surface defect is recognized is sent to a refining process;
It can implement using the slab surface flaw inspection equipment of this invention provided with.

上記本発明の実施に使用する1次元の線光源は、可視光域の下限値以上、0.6μm以下の波長を有するものであることが望ましい。可視光域の波長範囲は、JIS Z 8120によれば、可視光線に相当する電磁波の波長の下界はおおよそ360〜400nm、上界はおおよそ760〜830nmとの定義されていることから、上限は余裕を見て0.6μm以下とした。なお、下限を可視光域の下限値としたのは、可視光でない場合、1次元の撮像装置の視野と1次元の線光源を合致させる操作が目視で行うことができず、困難になるためである。   The one-dimensional linear light source used in the implementation of the present invention preferably has a wavelength of not less than the lower limit of the visible light region and not more than 0.6 μm. According to JIS Z 8120, the wavelength range of the visible light region is defined such that the lower limit of the wavelength of the electromagnetic wave corresponding to visible light is approximately 360 to 400 nm, and the upper limit is approximately 760 to 830 nm. As shown in FIG. The reason why the lower limit is set to the lower limit of the visible light range is that it is difficult to visually match the field of view of the one-dimensional imaging device and the one-dimensional line light source when it is not visible light. It is.

具体的には、上記本発明の実施に使用する1次元の線光源は、長寿命かつ低電力で高輝度が得られる発光ダイオードの中でも、自発光と波長域に大きな差がある青色発光ダイオードを使用することが望ましい。   Specifically, the one-dimensional line light source used in the implementation of the present invention is a blue light-emitting diode having a large difference in wavelength range from the self-light-emitting diode among the light-emitting diodes having a long lifetime, low power and high brightness. It is desirable to use it.

これは、波長が0.45μm未満になると、撮像装置の感度が低下する一方、0.5μmを超えると、熱間スラブの自発光のピーク波長に近くなり、自発光の影響を無視できなくなるためである。   This is because when the wavelength is less than 0.45 μm, the sensitivity of the imaging device is lowered. On the other hand, when the wavelength is more than 0.5 μm, it becomes close to the peak wavelength of self-emission of the hot slab. It is.

また、1次元の線光源の幅は、スラブの全幅で安定した輝度を確保するためには、前記予備実験の結果より、スラブの長辺幅の少なくとも1/3とすることが望ましい。   Also, the width of the one-dimensional line light source is preferably at least 1/3 of the long side width of the slab, based on the result of the preliminary experiment, in order to ensure stable brightness over the entire width of the slab.

また、スラブの地側表面側に設置された撮像装置の、鉛直に対するスラブの移動方向への傾斜角度は、疵検知成功率を確保するために10〜45°の範囲とすることが望ましい。上限を45°とした理由は、放射照度の低下と搬送ロールとの干渉を回避するためであり、下限を10°とした理由は、切断バリやスケールなどの落下物の影響を回避するためである。   Moreover, it is desirable that the inclination angle of the imaging device installed on the ground surface side of the slab in the moving direction of the slab with respect to the vertical is within a range of 10 to 45 ° in order to ensure a success rate of wrinkle detection. The reason why the upper limit is 45 ° is to avoid a decrease in irradiance and interference with the transport roll, and the reason why the lower limit is 10 ° is to avoid the effects of falling objects such as cutting burrs and scales. is there.

次に、本発明の実施例について説明する。
図5は、オンラインでスラブ全面の表面画像を撮像するため、図3で説明した撮像装置をスラブの天側表面、地側表面、左右両側面に対して設置した本発明のスラブ表面疵検査設備の概略構成を示した模式図である。
Next, examples of the present invention will be described.
FIG. 5 is a slab surface flaw inspection apparatus according to the present invention in which the imaging device described in FIG. 3 is installed on the top surface, the ground surface, and the left and right sides of the slab in order to capture a surface image of the entire surface of the slab online. It is the schematic diagram which showed schematic structure.

3は、鋳型から引き抜かれた700〜850℃のスラブ1の全面、すなわち、天側表面1a、地側表面1b、及び両側面1c,1dの各面それぞれに光を照射すべく、搬送ロール2上を20m/minで移動するスラブ1の上方、下方、及び両側方に配置した1次元の線光源である。   3 is a transport roll 2 for irradiating light on the entire surface of the slab 1 of 700 to 850 ° C. drawn from the mold, that is, the top surface 1a, the ground surface 1b, and the both side surfaces 1c and 1d. This is a one-dimensional line light source arranged above, below and on both sides of the slab 1 that moves at a speed of 20 m / min.

この線光源3は、スラブ1の上方及び下方に配置したものは、スラブ1の天側表面1a及び地側表面1bからそれぞれ2100mm離した位置に設けている。また、スラブ1の両側面1c,1dに配置したものは、スラブ1の側面1c,1dからそれぞれ500mm離した位置に設けている。   The line light sources 3 arranged above and below the slab 1 are provided at positions 2100 mm apart from the top surface 1a and the ground surface 1b of the slab 1, respectively. Moreover, what was arrange | positioned on the both sides | surfaces 1c and 1d of the slab 1 is provided in the position 500 mm away from the side surfaces 1c and 1d of the slab 1, respectively.

この線光源3の発光体は、スラブ1の幅方向で生じる発光強度の差を抑制し、均一な輝度でスラブ表面の画像を撮像するために、例えば波長が0.45μmの青色発光ダイオードを採用している。   The light source of the line light source 3 employs, for example, a blue light emitting diode with a wavelength of 0.45 μm in order to suppress a difference in light emission intensity generated in the width direction of the slab 1 and to capture an image of the slab surface with uniform brightness. doing.

また、天側表面1a及び地側表面1bに光を照射する線光源3は、スラブ1の幅(1250mm)の少なくとも1/3となるように420mm幅のものを使用している。一方、側面1c、1dに光を照射する線光源3は、スラブ1の厚さが227mmであることから、100mm幅のものを使用している。   The linear light source 3 for irradiating light on the top surface 1a and the ground surface 1b is 420 mm wide so that it is at least 1/3 of the width (1250 mm) of the slab 1. On the other hand, the linear light source 3 that irradiates the side surfaces 1c and 1d with light has a width of 100 mm because the thickness of the slab 1 is 227 mm.

4は前記1次元の光源3から搬送ロール2上を移動するスラブ1の天側表面1a、地側表面1b、及び両側面1c,1dのそれぞれの面に照射した光の反射光を連続的に撮像する1次元の撮像装置である。   Reference numeral 4 denotes continuously reflected light of light irradiated from the one-dimensional light source 3 onto the top surface 1a, the ground surface 1b, and both side surfaces 1c and 1d of the slab 1 moving on the transport roll 2. It is a one-dimensional imaging device that images.

この1次元の撮像装置4のうち、スラブ1の天側表面1aからの反射光を撮像するものは、前記反射光を鉛直線上から撮像するように配置している。また、スラブ1の地側表面1bからの反射光を撮像するものは、鉛直に対してスラブ1の移動方向に30°傾けた位置から撮像するように配置している。   Among the one-dimensional image pickup devices 4, one that picks up the reflected light from the top surface 1 a of the slab 1 is arranged so as to pick up the reflected light from the vertical line. Moreover, what image | photographs the reflected light from the ground side surface 1b of the slab 1 is arrange | positioned so that it may image from the position inclined 30 degrees in the moving direction of the slab 1 with respect to the perpendicular | vertical.

一方、スラブ1の側面1c,1dからの反射光を撮像するものは、鉛直に対してスラブ1の天側表面1a側が狭まるように30°傾けた位置から撮像するように配置している。   On the other hand, what picks up the reflected light from the side surfaces 1c and 1d of the slab 1 is arranged so as to pick up an image from a position inclined by 30 ° so that the top surface 1a side of the slab 1 narrows with respect to the vertical.

なお、線光源3は、前記の位置に配置した撮像装置4によって反射光が撮像できるようにスラブ1の天側表面1a、地側表面1b、及び両側面1c,1dの各面それぞれに光を照射するような位置に配置していることは言うまでもない。   The line light source 3 emits light to each of the top surface 1a, the ground surface 1b, and the both side surfaces 1c and 1d of the slab 1 so that the reflected light can be imaged by the imaging device 4 arranged at the above position. Needless to say, it is arranged at a position to irradiate.

前記1次元の撮像装置4は、図5では図示省略したが、図3で説明したように、レンズと、スラブ1から発せられる自発光による赤色光や赤外線光等の波長が0.6μmを超える光を遮断する光学フィルターと、光学フィルターで選択分離された光を撮像する撮像素子を備えている。   Although the one-dimensional imaging device 4 is not shown in FIG. 5, as described in FIG. 3, the wavelengths of red light, infrared light, and the like due to self-emission emitted from the lens and the slab 1 exceed 0.6 μm. An optical filter for blocking light and an image sensor for imaging light selectively separated by the optical filter are provided.

そして、画像処理装置5は、この1次元の撮像装置4で連続的に撮像した反射光から2次元画像を生成し、検出・判定装置6は、この生成した2次元画像を基にスラブ1の表面疵を検出し、スラブ表面疵が認められたスラブ1のみを精整工程へ回すよう判定する。   Then, the image processing device 5 generates a two-dimensional image from the reflected light continuously captured by the one-dimensional imaging device 4, and the detection / determination device 6 uses the generated two-dimensional image for the slab 1. A surface flaw is detected, and it is determined that only the slab 1 in which the slab surface flaw is recognized is sent to the refining process.

本発明方法は、上記構成の本発明のスラブ表面疵検査設備を使用して、高温状態で移動する熱間スラブ1の天側表面1a、地側表面1b、及び両側面1c,1dの各面の表面疵を検出し、表面疵が認められたスラブ1のみを精整工程へ回すよう判定するものである。   The method of the present invention uses the slab surface flaw inspection facility of the present invention having the above-described configuration, and each surface of the top surface 1a, the ground surface 1b, and both side surfaces 1c and 1d of the hot slab 1 moving in a high temperature state. The surface wrinkles are detected, and only the slab 1 in which the surface wrinkles are recognized is determined to be sent to the refining process.

図6に本発明によるスラブ表面品質検査導入後のスラブ精整工程を示すが、本発明により、疵が発見されたスラブのみをオフラインでスラブ精整工程へ送ることが可能になる。また、厳格材についても熱間直送が可能になることから、リードタイムが短縮されるだけでなく、スラブ精整、次工程での再加熱に必要なコストを削減できる。   FIG. 6 shows a slab refining process after the introduction of the slab surface quality inspection according to the present invention. According to the present invention, only the slab in which wrinkles are found can be sent offline to the slab refining process. In addition, since strict materials can be directly sent hot, not only the lead time is shortened, but also the cost required for slab refining and reheating in the next process can be reduced.

前記の検査条件でスラブの表面疵検査を熱間で行った発明例と、冷間での目視検査を行った従来例との比較を下記表1に示す。   Table 1 below shows a comparison between the invention example in which the surface slab inspection of the slab was performed hot under the above-described inspection conditions and the conventional example in which the visual inspection was performed in cold.

Figure 2014010004
Figure 2014010004

一般材の従来例において、3383枚の鋳造スラブから285枚を抜き取って冷間鋳片とした例では、抜き取った285枚を除いた3098枚の鋳造スラブを熱間直送するので、熱間直送率(鋳造スラブの最終的な合格率)は91.6%となる。   In the conventional example of a general material, 285 sheets are extracted from 3383 cast slabs to form cold cast pieces, and 3098 cast slabs excluding the extracted 285 sheets are directly transferred hot. (The final acceptance rate of the casting slab) is 91.6%.

しかしながら、前記抜き取った冷間鋳片の目視表面疵調査での不合格判定材は8枚で、実質の鋳造スラブの表面疵の合格率は99.7%であった。   However, the number of rejected judgment materials in the visual surface flaw inspection of the cold cast slab thus extracted was 8, and the pass rate of the actual surface flaw of the cast slab was 99.7%.

これに対して、本発明の熱間検査を2540枚の鋳造スラブで行った一般材の場合、不合格とされた判定材は5枚で、熱間直送率は99.8%であった。これは、従来例の実質の鋳造スラブの合格率99.7%とほぼ同等の値となり、本発明の熱間検査だけで鋳造スラブの表面疵の合格判定が可能となることが分かる。   On the other hand, in the case of a general material in which the hot inspection of the present invention was performed with 2540 cast slabs, the number of rejected judgment materials was 5, and the hot direct feed rate was 99.8%. This is a value substantially equal to the acceptance rate of 99.7% of the actual cast slab of the conventional example, and it can be seen that the pass judgment of the surface defect of the cast slab can be performed only by the hot inspection of the present invention.

一方、厳格材の従来例において、706枚の鋳造スラブを全量冷間鋳片とし、目視表面疵調査を実施した所、不合格判定材は66枚で、鋳造スラブの最終的な表面疵の合格率は90.7%であった。なお、この場合、熱間直送率はもちろん0%である。   On the other hand, in the conventional example of strict materials, 706 cast slabs were all made into cold slabs, and visual surface flaw inspection was conducted. The number of rejected judgment materials was 66, and the final surface flaw of the cast slab was accepted. The rate was 90.7%. In this case, the hot direct feed rate is of course 0%.

これに対し、本発明の熱間検査を503枚の鋳造スラブで行った厳格材の場合、不合格とされた判定材は48枚で、熱間直送率は90.5%であった。これは、従来例の鋳造スラブの合格率90.7%とほぼ同等の値となり、本発明の熱間検査だけで鋳造スラブの表面疵の合格判定が可能となることが分かる。   On the other hand, in the case of the strict material in which the hot inspection of the present invention was performed with 503 cast slabs, the number of determination materials that were rejected was 48, and the hot direct feed rate was 90.5%. This is a value almost equivalent to the acceptance rate of 90.7% of the casting slab of the conventional example, and it can be seen that the acceptance judgment of the surface defect of the casting slab can be performed only by the hot inspection of the present invention.

よって、本発明により、これまでのように、冷間で表面疵を検査する必要がなくなり、冷間でのスラブ精整工程を省略することが可能となって、リードタイムが短縮されるほか、熱間検査だけで十分な表面品質検査精度を得ることができることが判明した。   Therefore, according to the present invention, as before, it is not necessary to inspect the surface flaws in the cold, it is possible to omit the cold slab refining process, the lead time is shortened, It has been found that sufficient surface quality inspection accuracy can be obtained only by hot inspection.

また、特に厳格材では、これまで不可能であった熱間直送を実現することができ、スラブ表面疵が認められたスラブのみを精整工程へ回すよう判定する表面疵の品質管理が可能になり、厳格材でも90%以上の合格率で安定して生産することが可能となった。   In addition, especially for strict materials, it is possible to realize hot direct feeding, which was impossible before, and it is possible to control the quality of surface flaws so that only slabs with slab surface flaws are sent to the refining process. As a result, even strict materials can be produced stably with an acceptance rate of 90% or more.

本発明は上記した例に限らないことは勿論であり、請求項に記載の技術的思想の範疇であれば、適宜実施の形態を変更しても良いことは言うまでもない。   Needless to say, the present invention is not limited to the above-described examples, and the embodiments may be appropriately changed within the scope of the technical idea described in the claims.

1 スラブ
1a 天側表面
1b 地側表面
1c,1d 側面
3 線光源
4 撮像装置
5 画像処理装置
6 検出・判定装置
DESCRIPTION OF SYMBOLS 1 Slab 1a Top surface 1b Ground side surface 1c, 1d Side surface 3 Line light source 4 Imaging device 5 Image processing device 6 Detection / determination device

Claims (9)

鋼の連続鋳造において、高温状態で移動する熱間スラブの天側表面、地側表面、及び両側面の各面それぞれに、1次元の線光源から光を照射し、これら照射光がそれぞれ前記天側表面、地側表面、及び両側面で反射した反射光を1次元の撮像装置を使用して連続的に撮像することで2次元画像を生成し、これらの2次元画像を基にスラブの表面疵を検出し、スラブ表面疵が認められたスラブのみを精整工程へ回すように判定することを特徴とするスラブ表面疵検査方法。   In continuous casting of steel, each of the top surface, ground side surface, and both side surfaces of a hot slab moving in a high temperature state is irradiated with light from a one-dimensional line light source, and these irradiation lights are respectively transmitted to the ceiling. A two-dimensional image is generated by continuously capturing the reflected light reflected from the side surface, the ground surface, and both side surfaces using a one-dimensional imaging device, and the surface of the slab is based on these two-dimensional images. A slab surface wrinkle inspection method characterized by detecting wrinkles and determining that only slabs with slab surface wrinkles are sent to a refining process. 前記スラブに照射する1次元の線光源は、可視光域の下限値以上、0.6μm以下の波長を有するものであることを特徴とする請求項1に記載のスラブ表面検査方法。   2. The slab surface inspection method according to claim 1, wherein the one-dimensional line light source that irradiates the slab has a wavelength that is not less than a lower limit value of a visible light region and not more than 0.6 μm. 前記スラブに照射する1次元の線光源は、0.45以上、0.5μm以下の波長を有するものであることを特徴とする請求項1に記載のスラブ表面検査方法。   2. The slab surface inspection method according to claim 1, wherein the one-dimensional line light source that irradiates the slab has a wavelength of 0.45 or more and 0.5 μm or less. 前記撮像は、スラブの地側表面の場合は、前記地側表面に対して鉛直方向からスラブの移動方向に対し10°以上、45°以下の角度を付与して行うことを特徴とする請求項1〜3の何れかに記載のスラブ表面検査方法。   In the case of the ground side surface of a slab, the imaging is performed by giving an angle of 10 ° or more and 45 ° or less with respect to the moving direction of the slab from the vertical direction to the ground side surface. The slab surface inspection method in any one of 1-3. 鋼の連続鋳造時、高温状態で移動する熱間スラブの天側表面、地側表面、及び両側面の各面それぞれに、光を照射する1次元の線光源と、
これら1次元の線光源から前記熱間スラブの天側表面、地側表面、及び両側面のそれぞれの面に照射した光の反射光を連続的に撮像する1次元の撮像装置と、
これら1次元の撮像装置で連続的に撮像した反射光から2次元画像を生成する画像処理装置と、
この画像処理装置で生成した2次元画像を基にスラブの表面疵を検出し、スラブ表面疵が認められたスラブのみを精整工程へ回すように判定する検出・判定装置と、
を備えたことを特徴とするスラブ表面疵検査設備。
A one-dimensional line light source that irradiates light on each of the top surface, ground surface, and both side surfaces of a hot slab that moves in a high temperature state during continuous casting of steel;
A one-dimensional imaging device that continuously images reflected light of the light irradiated from the one-dimensional line light source to the top surface, the ground surface, and both side surfaces of the hot slab;
An image processing device that generates a two-dimensional image from reflected light continuously captured by the one-dimensional imaging device;
A detection / determination device that detects a surface slab surface of a slab based on a two-dimensional image generated by the image processing apparatus and determines that only a slab in which the slab surface surface defect is recognized is sent to a refining process;
Slab surface flaw inspection facility characterized by comprising
前記スラブに照射する1次元の線光源の光源幅は、前記スラブの長辺幅の少なくとも1/3であることを特徴とする請求項5に記載のスラブ表面検査設備。   6. The slab surface inspection facility according to claim 5, wherein a light source width of the one-dimensional line light source applied to the slab is at least 1/3 of a long side width of the slab. 前記スラブに照射する1次元の線光源は、可視光域の下限値以上、0.6μm以下の波長を有するものであることを特徴とする請求項5又は6に記載のスラブ表面検査設備。   7. The slab surface inspection facility according to claim 5, wherein the one-dimensional line light source that irradiates the slab has a wavelength that is not less than a lower limit value of a visible light region and not more than 0.6 μm. 前記スラブに照射する1次元の線光源は、0.45以上、0.5μm以下の波長を有するものであることを特徴とする請求項5又は6に記載のスラブ表面検査設備。   The slab surface inspection facility according to claim 5 or 6, wherein the one-dimensional line light source irradiated to the slab has a wavelength of 0.45 or more and 0.5 µm or less. 前記撮像装置は、スラブの地側表面の場合は、前記地側表面に対して鉛直方向からスラブの移動方向に対し10°以上、45°以下の角度を付与して設置されていることを特徴とする請求項5〜8の何れかに記載のスラブ表面検査設備。   In the case of the ground side surface of the slab, the imaging device is installed with an angle of 10 ° or more and 45 ° or less from the vertical direction to the moving direction of the slab with respect to the ground side surface. The slab surface inspection equipment according to any one of claims 5 to 8.
JP2012145693A 2012-06-28 2012-06-28 Slab surface flaw inspection method and facility Pending JP2014010004A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012145693A JP2014010004A (en) 2012-06-28 2012-06-28 Slab surface flaw inspection method and facility

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012145693A JP2014010004A (en) 2012-06-28 2012-06-28 Slab surface flaw inspection method and facility

Publications (1)

Publication Number Publication Date
JP2014010004A true JP2014010004A (en) 2014-01-20

Family

ID=50106844

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012145693A Pending JP2014010004A (en) 2012-06-28 2012-06-28 Slab surface flaw inspection method and facility

Country Status (1)

Country Link
JP (1) JP2014010004A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015200529A (en) * 2014-04-07 2015-11-12 大同特殊鋼株式会社 Shape measurement device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53128379A (en) * 1977-04-15 1978-11-09 Kawasaki Heavy Ind Ltd Detecting apparatus for surface state of red heated materials
JPS54126084A (en) * 1978-03-23 1979-09-29 Hiyuutetsuku Kk Method of detecting surface flaw of continuously cast steel ingot
JPS61149814A (en) * 1984-12-24 1986-07-08 Kawasaki Steel Corp Lighting method for detecting surface defect of hot metallic material
JP2001242089A (en) * 2000-02-28 2001-09-07 Nkk Corp Surface flaw detecting method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53128379A (en) * 1977-04-15 1978-11-09 Kawasaki Heavy Ind Ltd Detecting apparatus for surface state of red heated materials
JPS54126084A (en) * 1978-03-23 1979-09-29 Hiyuutetsuku Kk Method of detecting surface flaw of continuously cast steel ingot
JPS61149814A (en) * 1984-12-24 1986-07-08 Kawasaki Steel Corp Lighting method for detecting surface defect of hot metallic material
JP2001242089A (en) * 2000-02-28 2001-09-07 Nkk Corp Surface flaw detecting method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015200529A (en) * 2014-04-07 2015-11-12 大同特殊鋼株式会社 Shape measurement device

Similar Documents

Publication Publication Date Title
WO2021248638A1 (en) System for online real-time monitoring of metal additive manufacturing by multiple monitoring devices
WO2021248588A1 (en) Real-time monitoring device for laser near-net shape manufacturing, and manufacturing apparatus and method
Sreedhar et al. Automatic defect identification using thermal image analysis for online weld quality monitoring
US9952236B2 (en) Method and device for process monitoring
JP5828817B2 (en) Shape inspection method for steel bars
JP5488953B2 (en) Method and apparatus for inspection of uneven surface
CN102608126A (en) On-line detection method and device for surface defects of high-temperature continuously cast bloom
JP2012236215A (en) Surface inspection method and surface inspection device for scarfed steel material
JP5439008B2 (en) High-temperature object shape measuring apparatus and shape measuring method
JP2015175761A (en) Surface flaw detection method and surface flaw detection device
CN202548069U (en) On-line detection device for surface defects of high temperature continuous casting billet
WO2021082467A1 (en) Method and device for detecting surface defects of hot rolled steel material
Veitch-Michaelis et al. Crack detection in" as-cast" steel using laser triangulation and machine learning
JP2019039798A (en) Inspection method for metal strip surface and inspection equipment
JP5611177B2 (en) Ablation abnormality detection device and anomaly detection method
JP2014010004A (en) Slab surface flaw inspection method and facility
JP2005156420A (en) Inspection method and device of surface irregularity
JP2004117193A (en) Internal defect detector for tunnel lining
JP2002156347A (en) Structure inspection device, carrier car for inspecting structure, and structure inspection method
JP2005134362A (en) Inspection method and inspection device for surface irregularity
JP2005207858A (en) Inspection method and inspection device for steel product surface defect
JP2015010936A (en) Surface flaw detection device and surface flaw detection method
Herzer et al. Detection of Defects in Solidified Layers within Laser-based Powder Bed Fusion using Active Thermography
Usha In situ monitoring of metal additive manufacturing process: a review
Bian et al. On-line detection device for high temperature forgings based on laser triangulation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140811

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150602

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150710

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20151201