JP2014009380A - Method for producing iron-zinc compound - Google Patents

Method for producing iron-zinc compound Download PDF

Info

Publication number
JP2014009380A
JP2014009380A JP2012146896A JP2012146896A JP2014009380A JP 2014009380 A JP2014009380 A JP 2014009380A JP 2012146896 A JP2012146896 A JP 2012146896A JP 2012146896 A JP2012146896 A JP 2012146896A JP 2014009380 A JP2014009380 A JP 2014009380A
Authority
JP
Japan
Prior art keywords
iron
zinc
powder
compound
zinc compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
JP2012146896A
Other languages
Japanese (ja)
Inventor
Masao Kimura
正雄 木村
Hidenori Sakauchi
英典 坂内
Yoshinobu Yamamoto
吉信 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Euro System Kk
Nippon Steel Corp
Original Assignee
Euro System Kk
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Euro System Kk, Nippon Steel and Sumitomo Metal Corp filed Critical Euro System Kk
Priority to JP2012146896A priority Critical patent/JP2014009380A/en
Publication of JP2014009380A publication Critical patent/JP2014009380A/en
Ceased legal-status Critical Current

Links

Images

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce an iron-zinc compound made of iron and zinc without melting a base material at high temperature.SOLUTION: The powders of iron and zinc with the average particle diameter of below 100 μm to above 1 μm are mixed in a vacuum or in an inert gas, thereafter, the powders are charged to the inside of a vessel made of BN conducting the pressure at the outside to the inside, and the whole of the vessel is placed in the powders of iron and zinc in which a difference between the ratio of iron/zinc is 10% or lower or in BN powders, and is heated in the temperature range of above 420°C to below 850°C for at least 1 hr or higher while applying pressure from the outside to produce an iron-zinc compound.

Description

本発明は、高温プロセスにより鉄亜鉛化合物を製造する方法として好適なものに関する。   The present invention relates to a suitable method for producing an iron zinc compound by a high temperature process.

一般に、金属系材料の作製には、目的とする組成を構成する各元素の金属塊もしくは粉を用いて、それらを順次、もしくは同時に溶融して混合し、冷却する方法が広く用いられる。   In general, for the production of metal-based materials, a method of using a metal lump or powder of each element constituting a target composition, melting them sequentially or simultaneously, mixing, and cooling is widely used.

しかし、この方法を用いて、鉄と亜鉛からなる鉄亜鉛化合物を作製しようとしても、鉄の融点(約1536℃)が亜鉛の沸点(約907℃)よりも高いため、鉄が溶融した状態で亜鉛が蒸発してしまい、目的とする組成の鉄亜鉛化合物を得ることが非常に困難であった。   However, even if an attempt is made to produce an iron-zinc compound composed of iron and zinc using this method, the melting point of iron (about 1536 ° C.) is higher than the boiling point of zinc (about 907 ° C.). Zinc was evaporated and it was very difficult to obtain an iron-zinc compound having the target composition.

この問題を回避するために、例えば、溶融した状態の鉄に亜鉛を少しずつ溶融させる溶解を繰り返すことにより、数mm角程度の小サイズのものであれば所定の化学組成の鉄亜鉛化合物を得ることに成功したことが報告されている(非特許文献1)。しかし、この方法を実際に試したところ、何度も溶解を繰り返す必要があるうえに、溶解中の亜鉛の蒸発を完全に防ぐことはできず、蒸発した亜鉛が溶解炉内壁に触れて冷却/析出し汚染が生じて、工業プロセスとしては問題があることが確認された。   In order to avoid this problem, for example, by repeating the melting of zinc in molten iron little by little, an iron-zinc compound having a predetermined chemical composition is obtained if it has a small size of about several square mm. It has been reported that it has succeeded (Non-Patent Document 1). However, when this method was actually tested, it was necessary to repeat melting many times, and it was not possible to completely prevent evaporation of zinc during melting, and the evaporated zinc touched the inner wall of the melting furnace to cool / As a result of precipitation and contamination, it was confirmed that there was a problem as an industrial process.

また、特許文献1には、鉄粉と鉄系合金鋼粉を含む原料粉末を加圧成形することにより鉄系焼結合金の製造方法が提示されているが、この製造方法は、フェライト−マルテンサイト二相組織である鉄粉を使用しなければならない制約があるうえに、鉄−亜鉛、のように融点・沸点の温度差が大きな場合には適用困難である。   Patent Document 1 proposes a method for producing an iron-based sintered alloy by press-molding a raw material powder containing iron powder and iron-based alloy steel powder. In addition to the restriction that iron powder that is a site two-phase structure must be used, it is difficult to apply when the temperature difference between the melting point and boiling point is large, such as iron-zinc.

特開2010−90470号公報JP 2010-90470 A

Hong, M. H. and Saka, H. (1997). Acta. Mater. 45(10): 4225.Hong, M. H. and Saka, H. (1997). Acta. Mater. 45 (10): 4225.

本発明は、以上のような問題点に鑑みてなされたものであり、鉄亜鉛化合物の製造方法を提供することを目的とする。   This invention is made | formed in view of the above problems, and it aims at providing the manufacturing method of an iron zinc compound.

本発明者らは、鉄亜鉛化合物の製造方法に関して検討した結果、鉄と亜鉛の粉末を用いて、できるだけ低温にて両者の拡散反応を加速することにより、高い歩留りで製造可能であることを見出し、本発明に至った。すなわち、本発明は、以下の通りである。   As a result of studying the method for producing an iron-zinc compound, the present inventors have found that by using an iron and zinc powder and accelerating the diffusion reaction of both at as low a temperature as possible, it can be produced with a high yield. The present invention has been reached. That is, the present invention is as follows.

鉄と亜鉛からなる鉄亜鉛化合物を製造するための製造方法であって、平均粒径が100μm未満1μm超の鉄および亜鉛の粉末を不活性ガス中で混合した後、該粉末を外部の圧力を内部に伝えるBN製の容器内に入れ、容器全体を該粉末と鉄/亜鉛比率の違いが10%以下である鉄および亜鉛の粉末、もしくは、BN粉中に入れて外部より圧力を加えながら、420℃超850℃未満の温度域で少なくとも1時間以上加熱して鉄亜鉛化合物を製造することを特徴とする鉄亜鉛化合物の製造方法。   A method for producing an iron-zinc compound comprising iron and zinc, wherein an iron and zinc powder having an average particle size of less than 100 μm and more than 1 μm is mixed in an inert gas, and then the external pressure is applied to the powder. Put it in a container made of BN that conveys to the inside, put the whole container in iron and zinc powder whose difference in iron / zinc ratio is 10% or less, or in BN powder and apply pressure from the outside, A method for producing an iron-zinc compound, which comprises producing an iron-zinc compound by heating at a temperature range of more than 420 ° C. and less than 850 ° C. for at least 1 hour.

また、前記鉄亜鉛化合物は、鉄亜鉛金属間化合物であることを特徴とする鉄亜鉛化合物の製造方法。   Moreover, the said iron zinc compound is an iron zinc intermetallic compound, The manufacturing method of the iron zinc compound characterized by the above-mentioned.

本発明の鉄亜鉛化合物の製造方法により、鉄の融点以上の温度に加熱することなく、鉄亜鉛化合物を非常に高い歩留りで、製造できる。さらに、本発明により提供される製造方法は、より環境的負荷を低減して、容器内壁への亜鉛の凝着といった問題を回避することができる。
従って、本発明は、環境や高効率化に対応した鉄亜鉛化合物の製造方法であり、工業的意義が大きい。
According to the method for producing an iron-zinc compound of the present invention, an iron-zinc compound can be produced with a very high yield without heating to a temperature higher than the melting point of iron. Furthermore, the manufacturing method provided by the present invention can further reduce the environmental load and avoid the problem of zinc adhesion to the inner wall of the container.
Therefore, the present invention is a method for producing an iron-zinc compound corresponding to the environment and high efficiency, and has great industrial significance.

本発明の鉄亜鉛金属間化合物の製造方法で用いる容器および圧力を加える形態の一例を示す断面図である。It is sectional drawing which shows an example of the form which applies the container used with the manufacturing method of the iron zinc intermetallic compound of this invention, and a pressure. 実施例2のX線回折パターンを示す図である。6 is a diagram showing an X-ray diffraction pattern of Example 2. FIG.

本発明において、原料の加熱温度を鉄の融点以上に保つことなく、鉄亜鉛化合物を作製可能な理由は、試料の相互拡散を活発にさせる方法を実現したからである。亜鉛単体での融点は約420℃、沸点は約907℃で、その沸点は鉄単体の融点(約1536℃)よりも低い。しかし、例えば、鉄亜鉛化合物のうち、常温において亜鉛の質量濃度が72〜74%の領域で安定に存在する鉄亜鉛金属間化合物(Γ相)が溶融して完全に分解する温度は、熱力学的平衡条件では約780℃である。つまり、鉄と亜鉛を高温にて相互拡散させて、融点の高い鉄亜鉛化合物を生成させながら、反応を進行させることにより、材料が溶融することのない範囲でも拡散が十分に進行できる高温での加熱が可能になり、目的とする化学組成を有する鉄亜鉛化合物が製造可能となる。   In the present invention, the reason why an iron-zinc compound can be produced without keeping the heating temperature of the raw material at or above the melting point of iron is that a method of actively diffusing samples is realized. The melting point of zinc alone is about 420 ° C. and the boiling point is about 907 ° C., which is lower than the melting point of iron alone (about 1536 ° C.). However, for example, among iron-zinc compounds, the temperature at which the iron-zinc intermetallic compound (Γ phase) stably present in the region where the mass concentration of zinc is 72 to 74% at normal temperature melts and completely decomposes is the thermodynamics. It is about 780 ° C. under the equilibrium condition. In other words, by interdiffusing iron and zinc at a high temperature to produce an iron-zinc compound having a high melting point, the reaction proceeds, so that the diffusion can proceed sufficiently even in a range where the material does not melt. Heating becomes possible, and an iron-zinc compound having a target chemical composition can be produced.

具体的には、平均粒径が100μm未満1μm超の鉄および亜鉛の粉末を真空もしくは不活性ガス中で混合した後、該粉末を外部の圧力を内部に伝えるBN製の容器内に入れ、該容器全体をBN粉もしくは原料と同じ粉末中に入れて外部より圧力を加えながら、420℃超850℃未満の温度域で1時間以上加熱して鉄亜鉛化合物を製造する。   Specifically, after iron and zinc powder having an average particle size of less than 100 μm and more than 1 μm is mixed in a vacuum or an inert gas, the powder is placed in a container made of BN that transmits external pressure to the inside, The whole container is put in BN powder or the same powder as the raw material, and heated from above 420 ° C. and less than 850 ° C. for 1 hour or more while applying pressure from outside to produce an iron zinc compound.

鉄亜鉛化合物を製造するために、平均粒径が100μm未満1μm超の鉄および亜鉛の粉末を真空もしくは不活性ガス中で混合するのは、亜鉛の沸点(約907℃)よりも低い温度で結晶粒子間の相互拡散を進行させるための条件を整えるためである。鉄および亜鉛の粉末粒子の平均粒径を100μm未満1μm超の範囲に限定したのは、平均粒径が100μm以上では工業的に妥当な時間(数〜数10時間)で表面から粒子内部まで拡散することが困難になるからであり、平均粒径が1μm以下では比表面積が大きくなり粒子が活性になり大気と反応して生成する酸化物が反応の障害になるからである。鉄および亜鉛の粉末粒子を不活性ガス中で混合するのは、酸素が存在すると、粒子間の相互拡散よりも、粒子表面の酸化反応が進行し、目的とする鉄亜鉛化合物が形成されないからである。具体的な雰囲気条件は、用いる鉄および亜鉛の粉末粒子の平均粒径やその状態に依存するが、例えば、平均粒径が数μm程度の粒子を用いる場合、10Pa以下の真空、もしくは窒素、ヘリウム、アルゴン、等の不活性ガス中で行えばよい。   In order to produce an iron-zinc compound, iron and zinc powder having an average particle size of less than 100 μm and more than 1 μm is mixed in a vacuum or an inert gas at a temperature lower than the boiling point of zinc (about 907 ° C.). This is for preparing conditions for promoting interdiffusion between particles. The average particle size of the iron and zinc powder particles was limited to the range of less than 100 μm and more than 1 μm. When the average particle size was 100 μm or more, it diffused from the surface to the inside of the particles in an industrially reasonable time (several to several tens of hours). This is because, when the average particle size is 1 μm or less, the specific surface area becomes large, the particles become active, and the oxide produced by reacting with the atmosphere hinders the reaction. The reason why iron and zinc powder particles are mixed in an inert gas is that, when oxygen is present, the oxidation reaction on the particle surface proceeds rather than interdiffusion between particles, and the target iron zinc compound is not formed. is there. The specific atmospheric conditions depend on the average particle size of iron and zinc powder particles used and the state thereof. For example, when using particles having an average particle size of about several μm, a vacuum of 10 Pa or less, or nitrogen, helium And in an inert gas such as argon.

続いて、こうして混合した鉄および亜鉛の粉末粒子を、外部の圧力を内部に伝えることが可能なBN製の容器内に入れ、さらに容器全体をBN粉もしくは原料と同じ粉末中に入れて外部より圧力を加えながら、420℃超850℃未満の温度域で少なくとも1時間以上加熱すればよい。   Subsequently, the iron and zinc powder particles thus mixed are placed in a BN container capable of transmitting the external pressure to the inside, and the entire container is placed in the same powder as the BN powder or raw material. Heating may be performed for at least 1 hour or more in a temperature range higher than 420 ° C. and lower than 850 ° C. while applying pressure.

加熱温度域を420℃超とするのは、420℃以下の温度では亜鉛が溶融しないため、鉄と亜鉛の結晶粒子間の相互拡散の速度が著しく遅くなり工業的に妥当な時間(数〜数10時間)で表面から粒子内部まで拡散することが困難になるからである。また、加熱温度域を850℃未満とするのは、850℃以上の温度では、加熱しながら外力を加える機能の実現に大掛かりな装置が必要になったり、亜鉛の蒸発の問題が発生したりするからである。加熱時間を1時間以上とするのは、加熱時間が1時間未満では、工業的に妥当な時間(数〜数10時間)で表面から粒子内部まで拡散せず、目的とする鉄亜鉛化合物が得られないからである。   The reason why the heating temperature range exceeds 420 ° C. is that zinc does not melt at a temperature of 420 ° C. or lower, so the speed of interdiffusion between iron and zinc crystal particles becomes extremely slow, and it is an industrially reasonable time (several to several This is because it becomes difficult to diffuse from the surface to the inside of the particles in 10 hours. In addition, the heating temperature range is set to less than 850 ° C. When the temperature is 850 ° C. or higher, a large-scale device is required to realize the function of applying external force while heating, or the problem of evaporation of zinc occurs. Because. The heating time is set to 1 hour or longer when the heating time is less than 1 hour, and it does not diffuse from the surface to the inside of the particles in an industrially reasonable time (several to several tens of hours), and the target iron zinc compound is obtained. Because it is not possible.

製造の目的が、「鉄亜鉛化合物」の中で、亜鉛の質量濃度が1%超72%以下、もしくは94%超99%以下の鉄と亜鉛の合金である場合には、原子が規則的配列をした構造をとる必要がないため、420℃超850℃未満の温度域で少なくとも1時間以上加熱すれば十分である。   When the purpose of the production is an iron-zinc alloy having a mass concentration of zinc of more than 1% and 72% or less, or more than 94% and 99% or less in the “iron-zinc compound”, the atoms are regularly arranged. Therefore, it is sufficient to heat at least one hour or more in a temperature range higher than 420 ° C. and lower than 850 ° C.

しかし、亜鉛の質量濃度が72%超94%以下の「鉄亜鉛金属間化合物」の場合には、原子が規則的配列をした構造をとる必要があるため、420℃超850℃未満の温度域で少なくとも1時間以上、好ましくは3時間以上加熱することが望ましい。   However, in the case of an “iron-zinc intermetallic compound” in which the mass concentration of zinc is more than 72% and 94% or less, it is necessary to take a structure in which atoms are regularly arranged, so that the temperature range is more than 420 ° C. and less than 850 ° C. It is desirable to heat at least 1 hour or more, preferably 3 hours or more.

上記試料を、上記した温度域において、外部の圧力を内部に伝えるBN製の容器内に入れ、容器全体をBN粉もしくは原料と同じ粉末中に入れて外部より圧力を加えながら加熱することにより、目的とする「鉄亜鉛化合物」もしくは「鉄亜鉛金属間化合物」を製造する。   In the above temperature range, the sample is placed in a BN container that conveys external pressure to the inside, and the entire container is placed in BN powder or the same powder as the raw material and heated while applying pressure from the outside, The desired “iron zinc compound” or “iron zinc intermetallic compound” is produced.

圧力を加えながら高温に保つことにより、粒子間の接触面積を大きくし、亜鉛の沸点(約907℃)よりも低い温度で反応を完了することができる。用いる容器および圧力を加える形態の一例を図1に示す。混合した鉄および亜鉛の粉末粒子を入れる容器として、例えば、BN製の円筒形と円盤状の板を組み合わせた容器を用いればよい。円筒形にするのは外部の圧力を均一化するからであり、円盤状の板で混合した鉄および亜鉛の粉末粒子を挟み込むことにより、外部からの圧力を均一に混合粒子に伝えることができる。容器の材質としては、850℃未満の温度で、鉄や亜鉛と反応せず、圧力を伝えるのに十分な強度を持つものであればよく、例えば、BN、アルミナ、ジルコニア等の酸化物を用いればよい。   By keeping the temperature high while applying pressure, the contact area between the particles can be increased, and the reaction can be completed at a temperature lower than the boiling point of zinc (about 907 ° C.). An example of a container to be used and a form in which pressure is applied is shown in FIG. What is necessary is just to use the container which combined the cylindrical shape and disk-shaped board made from BN, for example as a container which puts the powder particle | grains of mixed iron and zinc. The cylindrical shape is made uniform because the external pressure is made uniform, and the external pressure can be uniformly transmitted to the mixed particles by sandwiching the iron and zinc powder particles mixed by the disc-shaped plate. The material of the container may be any material that does not react with iron or zinc at a temperature lower than 850 ° C. and has sufficient strength to transmit pressure. For example, an oxide such as BN, alumina, zirconia, or the like is used. That's fine.

上記容器の上下の蓋に直接外力を加えてもよいが、例えば、図1のように、容器をさらにBN粉もしくは原料と同じ粉末等の粉中に埋め込み、その粉に外部から圧力を加えるとさらに望ましい。こうすることにより、外部の圧力が均一に内部の容器に伝わるとともに、外部の雰囲気と遮断する効果も期待できるからである。BN粉および原料と同じ粉末等の粉では同じように圧力を印加することができるが、BN粉を用いると試料容器との反応性が低いため再利用できるというメリットがさらにあり、原料と同じ鉄および亜鉛の粉末を用いると圧力の印加がより均一になるというメリットがさらにある。鉄および亜鉛の粉末を用いる場合、原料との化学成分組成(Fe/Zn比率)が全く同じでなくても、例えばFe/Zn比率が10%程度異なっていても実用上は問題ない。   Although external force may be directly applied to the upper and lower lids of the container, for example, as shown in FIG. 1, when the container is further embedded in powder such as BN powder or the same powder as the raw material and pressure is applied to the powder from the outside More desirable. This is because the external pressure is uniformly transmitted to the internal container, and the effect of blocking the external atmosphere can be expected. BN powder and the same powder as the raw material can be applied with the same pressure, but the use of BN powder has the advantage of being reusable because of its low reactivity with the sample container, and the same iron as the raw material. In addition, when zinc powder is used, there is a further merit that the application of pressure becomes more uniform. When iron and zinc powders are used, there is no practical problem even if the chemical composition (Fe / Zn ratio) is not exactly the same as that of the raw material, for example, the Fe / Zn ratio is different by about 10%.

外部から圧力を加える方法としては、例えば図1のように、上記粉末の上下に蓋をおき、その蓋を一軸プレスで押し込む等の簡易な方法でも十分である。加える圧力は、用いる鉄および亜鉛の粉末粒子の平均粒径やその状態、および加熱温度に依存するが、例えば、平均粒径が数10μm程度の粒子を用いて、600〜850℃程度で加熱する場合、数10MPa程度で十分である。加熱方法としては、試料からの脱水、脱ガスや熱膨張を考慮して、例えば10〜40℃/min程度の昇温速度で昇温し、420℃超850℃未満の温度域で1時間以上加熱すればよい。   As a method of applying pressure from the outside, for example, as shown in FIG. 1, a simple method such as placing lids on the top and bottom of the powder and pushing the lids with a uniaxial press is sufficient. The applied pressure depends on the average particle size and state of the iron and zinc powder particles used, and the heating temperature. For example, the particles are heated at about 600 to 850 ° C. using particles having an average particle size of about several tens of μm. In this case, about several tens of MPa is sufficient. As a heating method, in consideration of dehydration, degassing and thermal expansion from the sample, the temperature is raised at a rate of temperature increase of about 10 to 40 ° C./min, for example, in a temperature range of more than 420 ° C. and less than 850 ° C. for 1 hour or more. What is necessary is just to heat.

表1に示す各種粒径の鉄および亜鉛の粉末粒子を各種質量比で、10Pa以下の真空、もしくは窒素、ヘリウム、アルゴン、の不活性ガスで混合した後、図1に示すようにBN製の容器内に入れて、上下に可動式の蓋をした。この容器全体をBN粉中に入れて外部より一軸プレスで圧力を印加して450〜900℃で1〜15時間加熱し、実施例1〜9で示される鉄亜鉛化合物を生成した。得られた鉄亜鉛化合物についてX線回折法により構造解析を行い、存在する鉄亜鉛化合物の種類と相分率の割合を求めた(表1)。表1の実施例2のX線回折パターンの例を図2に示す。図2の回折ピークはすべて・・相(金属間化合物)に相当するものであり、定量解析の結果その相分率が92%であることが確認できた。同様に、各試料についてCuKα線を線源としてディフラクトメータを用いたX線回折法により構造解析を行い、存在する鉄亜鉛化合物の種類と相分率の割合を求めた(表1)。   After mixing powder particles of iron and zinc having various particle sizes shown in Table 1 in various mass ratios with a vacuum of 10 Pa or less, or an inert gas of nitrogen, helium, or argon, as shown in FIG. It was put in a container and a movable lid was placed up and down. The entire container was put in BN powder, pressure was applied from the outside by a uniaxial press and heated at 450 to 900 ° C. for 1 to 15 hours to produce the iron zinc compound shown in Examples 1 to 9. The obtained iron-zinc compound was subjected to structural analysis by X-ray diffractometry, and the type of the existing iron-zinc compound and the ratio of the phase fraction were determined (Table 1). An example of the X-ray diffraction pattern of Example 2 in Table 1 is shown in FIG. The diffraction peaks in FIG. 2 all correspond to phases (intermetallic compounds), and as a result of quantitative analysis, it was confirmed that the phase fraction was 92%. Similarly, structural analysis was performed on each sample by an X-ray diffraction method using a diffractometer using CuKα rays as a radiation source, and the types of existing iron zinc compounds and the ratio of phase fractions were obtained (Table 1).

これらの結果は、例えば非特許文献1等で報告されているFe−Zn系の二元系平衡状態の報告と一致する。即ち、Fe−Zn系の二元系平衡状態の報告では、室温において、亜鉛の質量濃度が、72%〜83%がΓ1もしくはΓ2相(金属間化合物)、83%〜93%がδ相(金属間化合物)、94%〜95%がζ相(金属間化合物)、に相当する。本発明の実施例1〜9の試料についての構造解析の結果は、この組成域に一致しており、本発明により目的通りの鉄亜鉛化合物が製造できることを示している。
[比較例1]
These results are consistent with the report of the Fe-Zn binary equilibrium state reported in Non-Patent Document 1, for example. That is, in the report of the Fe-Zn binary equilibrium state, at room temperature, the mass concentration of zinc is 72% to 83% is Γ 1 or Γ 2 phase (intermetallic compound), and 83% to 93% is δ. The phase (intermetallic compound), 94% to 95% corresponds to the ζ phase (intermetallic compound). The result of the structural analysis about the sample of Examples 1-9 of this invention corresponds to this composition range, and has shown that the intended iron zinc compound can be manufactured by this invention.
[Comparative Example 1]

従来の溶解法として真空溶解炉にて、粒径が300μmの鉄および亜鉛の粉末粒子粉末試料を質量濃度比が、Fe/Zn=10/90になるように混合したものを原料として、溶解を試みた。粉末試料を大気中で混合した後、25kgの真空溶解炉に挿入し、10Pa以下の真空に3時間保持した後、誘導加熱により試料を1時間溶解した。
その後冷却して試料を取り出し、その化学成分を蛍光X線にて測定したところ、鉄の質量濃度が99.2%であり、ほとんどの亜鉛が蒸発し、試料中に残存しないことが判明した。X線回折による構造解析の結果も、鉄もしくはその酸化物のみしか確認できず、目的とする鉄亜鉛化合物が製造できなかった。
[比較例2−6]
As a conventional melting method, in a vacuum melting furnace, a mixture of iron and zinc powder particles having a particle size of 300 μm mixed so that the mass concentration ratio is Fe / Zn = 10/90 is used as a raw material. Tried. After the powder sample was mixed in the air, it was inserted into a 25 kg vacuum melting furnace and kept at a vacuum of 10 Pa or less for 3 hours, and then the sample was dissolved by induction heating for 1 hour.
After cooling, the sample was taken out and its chemical composition was measured by fluorescent X-ray. As a result, it was found that the mass concentration of iron was 99.2%, and most of the zinc was evaporated and did not remain in the sample. As a result of structural analysis by X-ray diffraction, only iron or its oxide could be confirmed, and the target iron zinc compound could not be produced.
[Comparative Example 2-6]

実施例と同様に、表1に示す各種粒径の鉄および亜鉛の粉末粒子を10Pa以下の真空、もしくは窒素、ヘリウム、アルゴン、の不活性ガスで混合した後、図1に示すようにBN製の容器内に入れて、上下に可動式の蓋をした。この容器全体をBN粉中に入れて外部より一軸プレスで圧力を印加して400〜900℃に2〜10時間加熱した。得られた鉄亜鉛化合物について、実施例と同様に、CuKα線を線源としてディフラクトメータを用いたX線回折法により構造解析を行い、存在する鉄亜鉛化合物の種類と相分率の割合を求めた(表1)。比較例2,3の試料中に存在した鉄亜鉛化合物はΓ相(金属間化合物)であり、原料組成から期待されるδ相(金属間化合物)に比べて亜鉛の濃度が低いものである。比較例4−6の試料中には、鉄もしくは亜鉛の担体もしくは、その酸化物のみしか確認できなかった。つまり、これらの比較例では、鉄と亜鉛の結晶粒の間での拡散が不十分、目的とする組成および分率の鉄亜鉛化合物が製造できなかったと考えられる。   As in the examples, iron and zinc powder particles having various particle sizes shown in Table 1 were mixed in a vacuum of 10 Pa or less or an inert gas of nitrogen, helium, and argon, and then made of BN as shown in FIG. And a movable lid was placed up and down. The whole container was put in BN powder, pressure was applied from the outside by a uniaxial press, and the mixture was heated to 400 to 900 ° C. for 2 to 10 hours. The obtained iron-zinc compound is subjected to structural analysis by an X-ray diffraction method using a diffractometer using CuKα rays as a radiation source in the same manner as in the examples, and the types of the existing iron-zinc compounds and the ratio of the phase fraction are determined. (Table 1). The iron zinc compound present in the samples of Comparative Examples 2 and 3 is a Γ phase (intermetallic compound), and has a lower zinc concentration than the δ phase (intermetallic compound) expected from the raw material composition. In the sample of Comparative Example 4-6, only the iron or zinc carrier or its oxide could be confirmed. That is, in these comparative examples, it is considered that diffusion between iron and zinc crystal grains was insufficient, and an iron-zinc compound having a target composition and fraction could not be produced.

Figure 2014009380
Figure 2014009380

以上、実施例および比較例の結果から、本実施例の効果が明らかに示された。即ち、鉄の融点(1536℃)以上の温度に加熱することなく、鉄亜鉛化合物を非常に高い歩留りで、製造できる。   As described above, the effects of this example were clearly shown from the results of the examples and comparative examples. That is, an iron-zinc compound can be produced with a very high yield without heating to a temperature higher than the melting point of iron (1536 ° C.).

Claims (2)

鉄と亜鉛からなる鉄亜鉛化合物を製造するための製造方法であって、
平均粒径が100μm未満1μm超の鉄および亜鉛の粉末を真空もしくは不活性ガス中で混合した後、該粉末を外部の圧力を内部に伝えるBN製の容器内に入れ、該容器全体を該粉末と鉄/亜鉛比率の違いが10%以下である鉄および亜鉛の粉末、もしくは、BN粉中に入れて外部より圧力を加えながら、420℃超850℃未満の温度域で少なくとも1時間以上加熱して鉄亜鉛化合物を製造することを特徴とする鉄亜鉛化合物の製造方法。
A production method for producing an iron-zinc compound comprising iron and zinc,
After iron and zinc powder having an average particle size of less than 100 μm and more than 1 μm are mixed in a vacuum or an inert gas, the powder is put into a container made of BN that transmits external pressure to the inside, and the entire container is put into the powder And iron / zinc powder with a difference in iron / zinc ratio of 10% or less, or heating in a temperature range of more than 420 ° C. and less than 850 ° C. for at least 1 hour while applying pressure from outside. A method for producing an iron-zinc compound, comprising producing an iron-zinc compound.
前記鉄亜鉛化合物は、鉄亜鉛金属間化合物であることを特徴とする請求項1に記載の鉄亜鉛化合物の製造方法。   The method for producing an iron-zinc compound according to claim 1, wherein the iron-zinc compound is an iron-zinc intermetallic compound.
JP2012146896A 2012-06-29 2012-06-29 Method for producing iron-zinc compound Ceased JP2014009380A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012146896A JP2014009380A (en) 2012-06-29 2012-06-29 Method for producing iron-zinc compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012146896A JP2014009380A (en) 2012-06-29 2012-06-29 Method for producing iron-zinc compound

Publications (1)

Publication Number Publication Date
JP2014009380A true JP2014009380A (en) 2014-01-20

Family

ID=50106346

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012146896A Ceased JP2014009380A (en) 2012-06-29 2012-06-29 Method for producing iron-zinc compound

Country Status (1)

Country Link
JP (1) JP2014009380A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02197535A (en) * 1989-01-24 1990-08-06 Hagishita Shirou Manufacture of intermetallic compound
JPH03219003A (en) * 1989-11-22 1991-09-26 Kobe Steel Ltd Method and apparatus for forming with pseudo hot isostatic pressing

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02197535A (en) * 1989-01-24 1990-08-06 Hagishita Shirou Manufacture of intermetallic compound
JPH03219003A (en) * 1989-11-22 1991-09-26 Kobe Steel Ltd Method and apparatus for forming with pseudo hot isostatic pressing

Similar Documents

Publication Publication Date Title
Kanakala et al. Unique preparation of hexaboride nanocubes: A first example of boride formation by combustion synthesis
Lang et al. Ca2LiC3H: A new complex carbide hydride phase grown in metal flux
CN101289713A (en) Production process of vanadium-nitrogen alloy
CN102730690A (en) Al4SiC4 material synthetic method
CN106673653A (en) Preparation method for diamond/silicon composite material
Yang et al. Reactive synthesis for porous Ti3AlC2 ceramics through TiH2, Al and graphite powders
CN114956826A (en) (TiNbCrWTa) C x High-entropy ceramic and preparation method thereof
Devlin et al. Enhancement of the thermal stability and thermoelectric properties of Yb14MnSb11 by Ce substitution
Liu et al. Formation kinetics of Na2SnO3 from SnO2 and Na2CO3 roasted under CO-CO2 atmosphere
JP5356991B2 (en) Method for producing titanium silicon carbide ceramics
Morales et al. Reduction of Fe 2 MoO 4 by hydrogen gas
JP2014009380A (en) Method for producing iron-zinc compound
CN109384202B (en) Inorganic electronic material with room temperature flexibility and preparation method thereof
Huang et al. Recrystallization sintering and characterization of composite powders composed of two types of SiC with dissimilar particle sizes
Cai et al. Oxidation resistance of highly porous Fe-Al foams prepared by thermal explosion
Zou et al. The role of Al in the reactive synthesis of porous Mo2Ti2AlC3 ceramics
Zhihe et al. Research on preparation optimization of nano CeB6 powder and its high temperature stability
WO2006103930A1 (en) Method for producing material containing aluminum nitride
JP2011068538A (en) Method for producing titanium silicon carbide ceramic
CN109628794B (en) Low-temperature synthesis of Mg3-xZnxSb2(x is more than or equal to 0 and less than or equal to 0.3) material preparation method
Novák et al. Effect of reaction atmosphere and heating rate during reactive sintering of Ni–Ti intermetallics
Akçamlı et al. Synthesis of bulk nanocrystalline HfB 2 from HfCl 4–NaBH 4–Mg ternary system
CN104480352B (en) A kind of Al-Co-W alloy with alternate type lamellar microstructure feature and preparation method thereof
CN105603227B (en) A kind of preparation method of Al Co Ni quasi-crystalline substances
JP2008115068A (en) Process for producing aluminum nitride containing material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140829

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150512

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150709

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151201

A045 Written measure of dismissal of application [lapsed due to lack of payment]

Free format text: JAPANESE INTERMEDIATE CODE: A045

Effective date: 20160426