JP2014008492A - Interface advancing freeze concentration apparatus and interface advancing freeze concentration method - Google Patents

Interface advancing freeze concentration apparatus and interface advancing freeze concentration method Download PDF

Info

Publication number
JP2014008492A
JP2014008492A JP2012148988A JP2012148988A JP2014008492A JP 2014008492 A JP2014008492 A JP 2014008492A JP 2012148988 A JP2012148988 A JP 2012148988A JP 2012148988 A JP2012148988 A JP 2012148988A JP 2014008492 A JP2014008492 A JP 2014008492A
Authority
JP
Japan
Prior art keywords
solution
temperature
ice
container
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012148988A
Other languages
Japanese (ja)
Other versions
JP6121661B2 (en
Inventor
Shizuo Namamura
靜夫 中村
Akira Matsuda
章 松田
Nagahito Miyawaki
長人 宮脇
Shigeru Kitano
滋 北野
Shuji Kimura
修二 木村
Hajime Matsubara
肇 松原
Ayana Tagami
綾那 田上
Takeo Matsumoto
武雄 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ishikawa Prefecture
Meiwa Industry Co Ltd
Ishikawa Prefectural Public University Corp
Original Assignee
Ishikawa Prefecture
Meiwa Industry Co Ltd
Ishikawa Prefectural Public University Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishikawa Prefecture, Meiwa Industry Co Ltd, Ishikawa Prefectural Public University Corp filed Critical Ishikawa Prefecture
Priority to JP2012148988A priority Critical patent/JP6121661B2/en
Publication of JP2014008492A publication Critical patent/JP2014008492A/en
Application granted granted Critical
Publication of JP6121661B2 publication Critical patent/JP6121661B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an interface advancing freeze concentration apparatus and an interface advancing freeze concentration method which are capable of increasing yield of concentrated liquid and suppressing quality deterioration by preventing supercooling and by shortening concentration time.SOLUTION: An interface advancing freeze concentration apparatus 10 is equipped with at least: a stirring mechanism 30 which stirs solution 1 in a container 20 in which a seed crystal 3 is arranged; a cooling mechanism 40 which cools down the solution 1 in the container 20 by cooling medium; an ice crystal removing mechanism 60 which removes generated ice crystal to obtain concentrated liquid, in which the apparatus is equipped with: a temperature adjusting mechanism 70 which adjusts temperature of the cooling medium such that temperature of the solution gradually drops while the ice crystal is being generated.

Description

本発明は、日本酒・果汁等の各種溶液を冷却・凍結し、氷結晶を除去することで濃縮液を生成する界面前進凍結濃縮装置及び界面前進凍結濃縮法に関する。   The present invention relates to an interfacial forward freeze concentration apparatus and an interfacial forward freeze concentration method for producing a concentrate by cooling and freezing various solutions such as sake and fruit juice and removing ice crystals.

従来、食品や医薬品等の様々な分野で原材料の濃縮液が利用されており、濃縮液の生成方法の一つとして凍結濃縮法が知られている。
凍結濃縮法は蒸発濃縮法や膜濃縮法と比較して、原材料となる溶液の高品質濃縮が可能であり、また、低温濃縮という特徴によって熱的に不安定な溶質の晶析法として優れている。
Conventionally, concentrated concentrates of raw materials have been used in various fields such as foods and pharmaceuticals, and freeze concentration methods are known as one of the methods for producing concentrated liquids.
Compared with evaporative concentration and membrane concentration methods, freeze concentration methods enable high-quality concentration of the raw material solution, and are superior as a method for crystallization of thermally unstable solutes due to the low-temperature concentration feature. Yes.

凍結濃縮法のうち界面前進凍結濃縮法は、果物等の溶液を容器に入れておき、撹拌しながら容器を冷媒中へ沈めていく。そして、容器下部の冷却面に生成した氷相を成長させる、すなわち未凍結溶液相と氷相との界面を未凍結溶液相側に前進させて1個の氷結晶を作ることで、氷結晶の上部に濃縮液を生成するものである。
この方法は1個の大きな氷結晶を生成するため、従来の凍結法(懸濁結晶法)と比較して固液分離が極めて容易でシステムを単純化できるという利点や、溶質(栄養成分やフレーバ成分)の保存性に優れるため、日本酒・果汁等の香味を高めることができるという利点がある。
Of the freeze concentration methods, the interfacial forward freeze concentration method involves placing a solution of fruit or the like in a container and submerging the container in a refrigerant while stirring. Then, the ice phase generated on the cooling surface at the bottom of the container is grown, that is, the interface between the unfrozen solution phase and the ice phase is advanced to the unfrozen solution phase side, thereby creating one ice crystal. A concentrated liquid is produced in the upper part.
Since this method produces one large ice crystal, solid-liquid separation is extremely easy compared to the conventional freezing method (suspension crystal method), and the system can be simplified. Solutes (nutrients and flavors) Since the component) is excellent in preservability, there is an advantage that flavors such as sake and fruit juice can be enhanced.

しかし、濃縮工程の初期、すなわち核となる氷結晶を生成する際に過冷却が起こることがあり、過冷却により溶質の一部が氷結晶中に取り込まれる結果、溶質の損失が生じて歩留まりが低下するという問題がある。   However, supercooling may occur at the beginning of the concentration process, that is, when generating ice crystals serving as nuclei. As a result, a part of the solute is incorporated into the ice crystals due to the supercooling, resulting in a loss of the solute and an increase in yield. There is a problem of lowering.

そこで、例えば特許文献1には、容器内部の底面に多数の小穴を設けた前進凍結濃縮法が開示されている。
この方法では、溶液を撹拌しながら容器を冷媒中へ徐々に沈め始めていくことで、まず各小穴内の溶液に温度勾配を生じさせ、各小穴内の最深部に核となる氷結晶を生成させる。そして、この核となる氷結晶を各小穴内で次第に成長させていくことで氷結晶を容器の底面全体に薄膜状に広げ、この氷結晶の上に新たな氷結晶を順次生成していくことで1個の大きな氷結晶を得るものである。
この方法によれば、最初に核となる氷結晶を生成することで、過冷却に至る前の高い温度で氷結晶を生成できるので過冷却の発生をある程度抑制できる。
Thus, for example, Patent Document 1 discloses a forward freeze concentration method in which a large number of small holes are provided on the bottom surface inside a container.
In this method, the solution is gradually submerged in the coolant while stirring the solution, so that a temperature gradient is first generated in the solution in each small hole, and ice crystals serving as nuclei are generated in the deepest part in each small hole. . Then, by gradually growing the ice crystals as the core in each small hole, the ice crystals are spread out in a thin film over the entire bottom surface of the container, and new ice crystals are sequentially generated on the ice crystals. To obtain one large ice crystal.
According to this method, by first generating ice crystals serving as nuclei, ice crystals can be generated at a high temperature before reaching supercooling, so that the occurrence of supercooling can be suppressed to some extent.

また、例えば特許文献2には、容器の周囲に熱交換器を配置し、濃縮工程で得た氷結晶の表層を加熱して融かすことで、表層に取り込まれた溶質を分離・回収する凍結濃縮装置が開示されている。   Also, for example, in Patent Document 2, a heat exchanger is arranged around a container, and the surface layer of ice crystals obtained in the concentration step is heated and melted to separate and recover the solute taken into the surface layer. A concentrator is disclosed.

特開平11−216301号公報JP-A-11-216301 特開2000−334203号公報JP 2000-334203 A

ところが、上記各特許文献に開示されたような従来の技術では以下のような問題があった。
すなわち、特許文献1の技術は容器内に氷結晶を1個だけ生成するものであり、氷結晶の生成に時間がかかるため、濃縮液を工業的に大量生産することが困難という問題や、酸化等により品質が劣化するという問題があった。
また、氷結晶の生成時間を早めるべく冷媒の温度を低くすると過冷却が発生し易くなるという問題がある。
However, the conventional techniques as disclosed in the above patent documents have the following problems.
That is, the technique of Patent Document 1 generates only one ice crystal in a container, and since it takes time to generate ice crystals, there is a problem that it is difficult to mass-produce the concentrate industrially, and oxidation. There was a problem that the quality deteriorated due to the above.
Further, there is a problem that supercooling is likely to occur if the temperature of the refrigerant is lowered in order to accelerate the generation time of ice crystals.

また、特許文献2の技術は溶質が氷結晶の表層に取り込まれた後でこれを加熱により回収する仕組みであり、過冷却を積極的に防止できないという問題がある。   Further, the technique of Patent Document 2 is a mechanism in which a solute is recovered by heating after being taken into the surface layer of ice crystals, and there is a problem that overcooling cannot be actively prevented.

本発明はこのような問題に鑑み、過冷却を防止し、濃縮時間を短縮することで濃縮液の歩留まりを高めると共に品質劣化を抑えることができる界面前進凍結濃縮装置及び界面前進凍結濃縮方法を提供することを目的とする。   In view of such problems, the present invention provides an interfacial forward freeze concentration apparatus and an interfacial forward freeze concentration method that can prevent overcooling and shorten the concentration time to increase the yield of the concentrate and suppress quality degradation. The purpose is to do.

本発明の界面前進凍結濃縮装置は、種結晶を配置した容器内の溶液を撹拌する撹拌機構と、容器内の溶液を冷媒で冷却する冷却機構と、生成した氷結晶を除去して濃縮液を得る氷結晶除去機構とを少なくとも備える界面前進凍結濃縮装置において、氷結晶生成中に溶液の温度がなだらかに下降するように冷媒の温度を調節する温度調節機構を備えることを特徴とする。   The interfacial forward freeze concentration apparatus of the present invention includes a stirring mechanism for stirring the solution in the container in which the seed crystals are arranged, a cooling mechanism for cooling the solution in the container with a refrigerant, and the generated ice crystals are removed to remove the concentrated liquid. An interface forward freeze concentration apparatus comprising at least an ice crystal removal mechanism to be obtained, further comprising a temperature adjustment mechanism for adjusting the temperature of the refrigerant so that the temperature of the solution gradually falls during the formation of ice crystals.

また、前記氷結晶生成中に、容器の内面に生成した氷結晶を連続的に掻き取っていく氷結晶掻き取り機構を備えることを特徴とする。
また、溶液を容器に入れる前に、凍結しない温度範囲内で溶液を冷却しておく予備冷却機構を備えることを特徴とする。
また、前記氷結晶除去機構が、濾過により溶液中の氷結晶を除去することを特徴とする。
In addition, an ice crystal scraping mechanism for continuously scraping the ice crystals generated on the inner surface of the container during the ice crystal generation is provided.
In addition, a pre-cooling mechanism is provided that cools the solution within a temperature range that does not freeze before the solution is put into the container.
Further, the ice crystal removing mechanism is characterized in that ice crystals in the solution are removed by filtration.

本発明の界面前進凍結濃縮法は、溶液内に種結晶を配置する種結晶配置工程と、容器内の溶液を撹拌する撹拌工程と、容器内の溶液を冷媒で冷却する冷却工程と、容器の内面に氷結晶を生成させる氷結晶生成工程と、溶液中の氷結晶を除去して濃縮液を得る氷結晶除去工程とを少なくとも備える界面前進凍結濃縮法において、前記氷結晶生成工程において溶液の温度がなだらかに下降するように冷媒の温度を調節する温度調節工程を備えることを特徴とする。   The interfacial forward freeze concentration method of the present invention includes a seed crystal placement step of placing a seed crystal in a solution, a stirring step of stirring the solution in the container, a cooling step of cooling the solution in the container with a refrigerant, In the interfacial forward freeze concentration method comprising at least an ice crystal generation step for generating ice crystals on the inner surface and an ice crystal removal step for removing the ice crystals in the solution to obtain a concentrate, the temperature of the solution in the ice crystal generation step A temperature adjusting step of adjusting the temperature of the refrigerant so as to gently fall.

また、前記氷結晶生成工程中に、容器の内面に生成した氷結晶を連続的に掻き取っていく氷結晶掻き取り工程を備えることを特徴とする。
また、前記冷却工程の前に、凍結しない温度範囲内で溶液を冷却しておく予備冷却工程を備えることを特徴とする。
また、前記氷結晶除去工程において、濾過により溶液中の氷結晶を除去することを特徴とする。
The ice crystal generation step further includes an ice crystal scraping step of continuously scraping the ice crystals generated on the inner surface of the container.
In addition, a pre-cooling step of cooling the solution within a temperature range that does not freeze is provided before the cooling step.
In the ice crystal removing step, ice crystals in the solution are removed by filtration.

本発明の界面前進凍結濃縮装置及び界面前進凍結濃縮法によれば、種結晶を使用すると共に氷結晶生成中に溶液の温度がなだらかに下降するように冷媒の温度を調節することで、過冷却を防止し、また、濃縮時間を短縮できる。したがって、濃縮液の歩留まりを高めると共に品質劣化を抑えることができる。   According to the interfacial forward freeze concentration apparatus and the interfacial forward freeze concentration method of the present invention, supercooling is achieved by using a seed crystal and adjusting the temperature of the refrigerant so that the temperature of the solution gradually decreases during ice crystal formation. In addition, the concentration time can be shortened. Therefore, it is possible to increase the yield of the concentrated liquid and to suppress quality deterioration.

なお、本明細書において「溶液の温度がなだらかに下降するように冷媒の温度を調節する」とは、溶液の温度を測定しながら、過冷却が発生しないように冷媒の温度を調節することで溶液の温度をゆるやかに下げていくことを意味する。
過冷却が発生する温度は溶液の種類や濃度等の種々の条件によって刻一刻変化する。
氷結晶の生成中は氷相に取り込まれなかった溶質が溶液側に移動し、溶液の濃度が時間経過につれて次第に高まっていくため、過冷却が発生する温度も時間経過につれて変化している。また、溶液の凝固温度は濃度が高くなるほど低下する。
In this specification, “adjusting the temperature of the refrigerant so that the temperature of the solution gently decreases” means adjusting the temperature of the refrigerant so that overcooling does not occur while measuring the temperature of the solution. It means that the temperature of the solution is gradually lowered.
The temperature at which supercooling occurs changes every moment depending on various conditions such as the type and concentration of the solution.
During the formation of ice crystals, the solute that has not been taken into the ice phase moves to the solution side, and the concentration of the solution gradually increases with time, so the temperature at which supercooling occurs also changes with time. Also, the solidification temperature of the solution decreases as the concentration increases.

本発明では、氷結晶の生成中に溶液の温度を測定し、単位時間当たりの溶液温度の低下割合が急激に高くなる等の過冷却の兆候を検知あるいは予測した場合には冷媒の温度を僅かに上昇させるなど、冷媒温度の時間当たりの低下割合を動的に変化させることで、結果的に溶液の温度がなだらかに下降するように調節する。これにより過冷却を防止しながら氷結晶の生成時間を早めて濃縮時間を短縮できる。
このように、過冷却が発生しないように冷媒の温度を調節しながら溶液の温度をゆるやかに下げていくと、溶液温度と冷媒温度はその差がほぼ一定のまま下降していくことになるが、本発明は両者の温度差を一定にするべく冷媒の温度を調節しているのではなく、あくまで過冷却が発生しないように冷媒温度を動的に変化させていく点に特徴を有する。
In the present invention, the temperature of the solution is measured during the formation of ice crystals, and if the sign of supercooling such as a rapid increase in the rate of decrease in the solution temperature per unit time is detected or predicted, the temperature of the refrigerant is decreased slightly. As a result, the temperature of the solution is adjusted so that it gradually decreases by dynamically changing the rate of decrease of the refrigerant temperature per hour. As a result, it is possible to shorten the concentration time by shortening the generation time of ice crystals while preventing supercooling.
As described above, when the temperature of the solution is slowly lowered while adjusting the temperature of the refrigerant so that the supercooling does not occur, the difference between the solution temperature and the refrigerant temperature is lowered while being almost constant. The present invention is characterized in that the temperature of the refrigerant is not adjusted so as to make the temperature difference between them constant, but the temperature of the refrigerant is dynamically changed so as not to cause overcooling.

また、氷結晶の生成に関しては、容器の下部にただ一個の氷結晶を生成することにしてもよいし、あるいは容器の内面に生成した氷結晶を連続的に掻き取ることにしてもよい。
氷結晶を連続的に掻き取る場合には、掻き取られた粒状の氷結晶は溶液中に浮遊した状態で成長していくので、ただ一個の氷結晶を生成する場合と比較して、氷結晶の溶液との接触面積が大きくなるので、氷結晶の生成速度が速くなり、濃縮工程に要する時間を更に短縮できる。
Regarding the generation of ice crystals, only one ice crystal may be generated in the lower part of the container, or the ice crystals generated on the inner surface of the container may be scraped continuously.
When scraping ice crystals continuously, the scraped granular ice crystals grow in a floating state in the solution, so that compared with the case where only one ice crystal is formed, ice crystals Since the contact area with the solution increases, the generation rate of ice crystals increases, and the time required for the concentration step can be further shortened.

また、溶液を撹拌することにより、氷結晶の周囲に存在している濃度が高い溶液を氷結晶の周囲から排除する、すなわち氷結晶の周囲の溶液濃度を下げて浸透圧が低い状態になるので、溶質が氷結晶内に取り込まれることを抑制できる。
また、溶液を容器に入れる前に、溶液を凍結しない温度範囲内で予備冷却しておくことで、予備冷却を行わない場合と比較して濃縮工程を効率化できる。
In addition, by stirring the solution, the solution having a high concentration existing around the ice crystal is excluded from the periphery of the ice crystal, that is, the osmotic pressure is lowered by lowering the solution concentration around the ice crystal. It is possible to suppress the solute from being taken into the ice crystal.
Further, by pre-cooling the solution within a temperature range in which the solution is not frozen before putting the solution into the container, the concentration step can be made more efficient than when no pre-cooling is performed.

界面前進凍結濃縮装置の構成を示す概略図Schematic diagram showing the configuration of the interfacial forward freeze concentration apparatus 界面前進凍結濃縮装置の構成を示す概略図Schematic diagram showing the configuration of the interfacial forward freeze concentration apparatus

[第1の実施の形態]
本発明の界面前進凍結濃縮装置10の第1の実施の形態について説明する。
図1及び図2に示すように、界面前進凍結濃縮装置10は、容器20、撹拌機構30、冷却機構40、予備冷却機構50、氷結晶掻き取り機構60、温度調節機構70、氷結晶除去機構80から概略構成される。
容器20は上部が開口した有底形状であり、内部に溶液1が入れられている。溶液1の種類は限定されるものではないが、例えば酒や果汁等の水溶液を使用できる。本実施の形態では日本酒を用いるものとする。
[First Embodiment]
A first embodiment of the interfacial forward freeze concentration apparatus 10 of the present invention will be described.
As shown in FIGS. 1 and 2, the interface forward freeze concentration apparatus 10 includes a container 20, a stirring mechanism 30, a cooling mechanism 40, a preliminary cooling mechanism 50, an ice crystal scraping mechanism 60, a temperature adjusting mechanism 70, and an ice crystal removing mechanism. 80.
The container 20 has a bottomed shape with an open top, and the solution 1 is placed inside. Although the kind of solution 1 is not limited, For example, aqueous solutions, such as liquor and fruit juice, can be used. In this embodiment, sake is used.

酒としては、醸造酒(例えば日本酒(原酒及び加水調整したものを含む)、ビール、ワイン、シードル等)、蒸留酒(米焼酎、ウィスキー、ブランデー、芋焼酎、ラム)、混成酒(合成清酒、みりん、甘味果実酒、リキュール類、雑酒、発泡酒、フルーツビール等)が挙げられる。
水溶液としては、果汁、コーヒー(焙煎コーヒー豆の水抽出液)、茶(各種茶葉の水抽出液)、牛乳、だし汁等が挙げられる。茶葉は単独で用いてもよく、複数種類の茶葉を組合せてもよい。牛乳は殺菌乳や加工乳等が挙げられる。だし汁は昆布だし、かつおだし、ブイヨン、うまみ抽出エキス、和風だし、洋風だし、中華だし等が挙げられる。なお、これら水溶液中には水に不溶な成分が懸濁又は分散されていてもよい。また、水溶液はそのまま凍結濃縮してもよく、あるいは水に不溶な成分を濾過した後に凍結濃縮してもよい。
果汁としては、レモン果汁、オレンジ果汁、りんご果汁等の一般的な果実果汁が挙げられる。
Sake includes brewed liquor (for example, Japanese sake (including raw sake and water adjusted), beer, wine, cider, etc.), distilled liquor (rice shochu, whiskey, brandy, koji shochu, rum), mixed liquor (synthetic sake, synthetic sake, Mirin, sweet fruit liquor, liqueurs, miscellaneous liquor, sparkling liquor, fruit beer, etc.).
Examples of the aqueous solution include fruit juice, coffee (water extract of roasted coffee beans), tea (water extract of various tea leaves), milk, and soup stock. Tea leaves may be used alone, or a plurality of types of tea leaves may be combined. Examples of the milk include pasteurized milk and processed milk. Dashi soup includes kombu dashi, bonito dashi, bouillon, umami extract, Japanese dashi, Western dashi, Chinese dashi, and so on. In these aqueous solutions, water-insoluble components may be suspended or dispersed. The aqueous solution may be frozen and concentrated as it is, or may be freeze-concentrated after filtering water-insoluble components.
Examples of the fruit juice include common fruit juices such as lemon juice, orange juice, and apple juice.

容器20の材質は特に限定されるものではないが、熱伝導性が高い材料を用いるのが好ましく、例えばステンレスやガラスを用いることができる。
容器20の形状も特に限定されるものではないが、外部の冷媒42の熱を溶液1に効率よく伝えることができる形状が好ましく、例えば全長に対して径が小さい筒型形状が挙げられる。また、後述する氷結晶掻き取り機構60で容器20内面に生成した氷結晶3(図2参照)を掻き取ることを考慮すると円筒形状が好ましい。
Although the material of the container 20 is not specifically limited, It is preferable to use a material with high heat conductivity, for example, stainless steel and glass can be used.
The shape of the container 20 is not particularly limited, but a shape that can efficiently transfer the heat of the external refrigerant 42 to the solution 1 is preferable. For example, a cylindrical shape having a small diameter with respect to the entire length can be given. Further, in consideration of scraping off the ice crystals 3 (see FIG. 2) generated on the inner surface of the container 20 by an ice crystal scraping mechanism 60 described later, a cylindrical shape is preferable.

容器20内の下部には種結晶2を配置する。
種結晶2は溶液1の過冷却を防止して結晶化を促進するためのものであり、本実施の形態では種氷を用いるものとするが、氷核タンパクなどを用いてもよい。
種結晶2を配置することで過冷却の発生を防止でき、氷結晶3への溶質の付着量(取り込み量)を抑制できる。溶液1が日本酒の場合には溶質としてのアルコールが氷結晶3へ付着する量を抑制できるので、溶液1中のアルコール濃度を高めることができる。
A seed crystal 2 is disposed in the lower part of the container 20.
The seed crystal 2 is for preventing overcooling of the solution 1 and promoting crystallization. In this embodiment, seed ice is used, but ice nucleoprotein or the like may be used.
By arranging the seed crystal 2, the occurrence of supercooling can be prevented, and the amount of solute adhering to the ice crystal 3 (the amount of incorporation) can be suppressed. When the solution 1 is sake, the amount of alcohol as a solute adhering to the ice crystals 3 can be suppressed, so that the alcohol concentration in the solution 1 can be increased.

撹拌機構30は容器20内の溶液1を撹拌するためのものであり、本実施の形態では回転軸31の周囲に螺旋状の羽根を有するリボンスクリュー32(スクリューコンベア)を、回転型モータ(図示略)で回転軸31回りに回転させる構成になっている。回転型モータの回転速度や回転時間はコントローラ(図示略)で調節できるようになっている。   The stirring mechanism 30 is for stirring the solution 1 in the container 20, and in the present embodiment, a ribbon screw 32 (screw conveyor) having spiral blades around the rotating shaft 31 is used as a rotary motor (illustrated). It is configured to rotate around the rotation shaft 31. The rotation speed and rotation time of the rotary motor can be adjusted by a controller (not shown).

一般的に、冷却中は溶液の濃度が氷結晶の周囲で高くなる。これは、氷結晶の周囲の水が氷結晶に相変化する際に、氷結晶に取り込まれなかった溶質が氷結晶の周囲に残るためである。
したがって、溶液1を撹拌し、氷結晶3の周囲に残る溶質を溶液1中に分散させることで、氷結晶3の周囲の溶液1の濃度を下げて氷結晶3の表面の浸透圧を低くすることができるので、氷結晶3に取り込まれる溶質の量を抑制できる。また、氷結晶3の周囲の溶液の温度が低くなっているため、撹拌して氷結晶3の周囲の溶液を溶液全体と混合することで、溶液全体の温度を効率的に低下させることができ、結果として過冷却を防止しながら濃縮時間を短縮できる。
攪拌の条件については羽根の配置間隔、羽根の形状、容器20の形状等にもよるが100rpm以上が望ましく、より好ましくは500rpm以上である。
なお、本実施の形態においては撹拌機構30が後述する氷結晶掻き取り機構60も兼ねる。
In general, during cooling, the concentration of the solution increases around the ice crystals. This is because, when the water around the ice crystals changes into ice crystals, the solute that has not been incorporated into the ice crystals remains around the ice crystals.
Therefore, the solution 1 is stirred and the solute remaining around the ice crystal 3 is dispersed in the solution 1, thereby reducing the concentration of the solution 1 around the ice crystal 3 and lowering the osmotic pressure on the surface of the ice crystal 3. Therefore, the amount of solute taken into the ice crystal 3 can be suppressed. In addition, since the temperature of the solution around the ice crystal 3 is low, the temperature of the entire solution can be efficiently lowered by stirring and mixing the solution around the ice crystal 3 with the entire solution. As a result, the concentration time can be shortened while preventing overcooling.
The stirring condition is preferably 100 rpm or more, more preferably 500 rpm or more, although it depends on the arrangement interval of the blades, the shape of the blades, the shape of the container 20, and the like.
In the present embodiment, the stirring mechanism 30 also serves as an ice crystal scraping mechanism 60 described later.

冷却機構40は、容器20内の溶液1を冷却するためのものであり、冷媒タンク41、冷媒42、冷却パイプ43、冷却装置本体44等から概略構成される。
冷媒タンク41は上部が開口した有底の箱状であり、その内部は冷媒42で満たされている。冷媒42としてはメタノール、エタノール、イソプロピルアルコール、ナイブラインなど周知のものを使用できる。
The cooling mechanism 40 is for cooling the solution 1 in the container 20, and generally includes a refrigerant tank 41, a refrigerant 42, a cooling pipe 43, a cooling device main body 44, and the like.
The refrigerant tank 41 has a bottomed box shape with an open top, and the inside is filled with the refrigerant 42. As the refrigerant 42, known ones such as methanol, ethanol, isopropyl alcohol, and naybrine can be used.

冷却パイプ43は冷媒タンク41の内面に張り巡らされており、その両端は冷却装置本体44に連結されている。
冷却装置本体44としては、例えばブラストチラー等の冷風による急冷装置等、周知のものを用いることができる。
冷却装置本体44から送られる冷風が冷却パイプ43内を通過することにより、冷媒42及び容器20が冷却され、容器20の内面に氷結晶3を生成する仕組みになっている。
なお、氷結晶3の生成速度に関して、速度が速すぎると溶質成分の氷結晶側への取り込み量が増加するため好ましくなく、遅すぎると回収率の点から好ましくない。
The cooling pipe 43 is stretched around the inner surface of the refrigerant tank 41, and both ends thereof are connected to the cooling device main body 44.
As the cooling device main body 44, for example, a well-known device such as a rapid cooling device using cold air such as a blast chiller can be used.
The cooling air sent from the cooling device main body 44 passes through the cooling pipe 43, whereby the refrigerant 42 and the container 20 are cooled, and the ice crystals 3 are generated on the inner surface of the container 20.
Regarding the rate of formation of ice crystals 3, an excessively high rate is not preferable because the amount of solute components taken into the ice crystals increases, and an excessively low rate is not preferable from the viewpoint of recovery.

予備冷却機構50は、溶液1を容器20に入れる前に、予備冷却用容器51内で溶液1を凍結しない温度範囲内で冷却しておくためのものであり、予備冷却用容器51、予備冷却用冷媒タンク52、予備冷却用冷媒53、予備冷却用冷却パイプ54、冷却装置本体55(冷却装置本体44と兼用する)等から概略構成される。
冷却方法は上記冷却機構40と同様であり、冷却装置本体55から送られる冷風が予備冷却用冷却パイプ54内を通過することにより、予備冷却用冷媒53及び予備冷却用容器51が冷却される。予備冷却用冷媒53の温度は溶液1が凍結しない温度に設定されており、例えば溶液1が日本酒の場合には−5℃〜−8℃程度に保たれている。
The pre-cooling mechanism 50 is for cooling the solution 1 within a temperature range in which the solution 1 is not frozen in the pre-cooling container 51 before putting the solution 1 into the container 20. The refrigerant tank 52, the precooling refrigerant 53, the precooling cooling pipe 54, the cooling device main body 55 (also used as the cooling device main body 44), and the like are roughly configured.
The cooling method is the same as that of the cooling mechanism 40, and the cooling air sent from the cooling device main body 55 passes through the cooling pipe 54 for preliminary cooling, whereby the preliminary cooling refrigerant 53 and the preliminary cooling container 51 are cooled. The temperature of the pre-cooling refrigerant 53 is set to a temperature at which the solution 1 does not freeze. For example, when the solution 1 is sake, it is maintained at about −5 ° C. to −8 ° C.

氷結晶掻き取り機構60は、氷結晶生成中に容器20の内面に生成する氷結晶3を連続的に掻き取っていくためのものであり、本実施の形態では上述の通り撹拌機構30も兼ねている。
すなわち、氷結晶掻き取り機構60はリボンスクリュー61を備えており、回転軸を回転型モータ(図示略)で回転させることにより、螺旋状の羽根で容器20の内面に生成された氷結晶3を掻き取る仕組みになっている。
氷結晶3はリボンスクリュー61で掻き取られることで溶液1中に浮遊しながら粒状に成長していく。
The ice crystal scraping mechanism 60 is for continuously scraping the ice crystals 3 generated on the inner surface of the container 20 during the ice crystal generation. In the present embodiment, the ice crystal scraping mechanism 60 also functions as the stirring mechanism 30 as described above. ing.
That is, the ice crystal scraping mechanism 60 includes a ribbon screw 61, and the ice crystal 3 generated on the inner surface of the container 20 by a spiral blade is rotated by rotating a rotating shaft with a rotary motor (not shown). It has a scraping mechanism.
The ice crystal 3 is scraped off by the ribbon screw 61 and grows in a granular form while floating in the solution 1.

温度調節機構70は、氷結晶生成中に溶液1の温度がなだらかに下降するように冷媒42の温度を調節するためのものであり、溶液用温度センサー71、冷媒用温度センサー72及び制御装置73から概略構成される。
溶液用温度センサー71は溶液1の温度を測定するべく容器20内に配置されており、冷媒用温度センサー72は冷媒42の温度を測定するべく冷媒タンク41内に配置されている。
制御装置73は溶液用温度センサー71及び冷媒用温度センサー72から出力される溶液1及び冷媒42の温度情報を受信し、氷結晶生成中に溶液1の温度がなだらかに下降するように冷却装置本体44の駆動を制御し、冷媒42の温度低下速度を調節する。
溶液1は濃縮されて濃度が高くなるほど凝固温度が下がるため、氷結晶3を効率よく生成するには冷媒42の温度を下げていく必要があるが、この際に、溶液1の温度がなだらかに下降するように冷媒42の温度を動的に調節することで、過冷却を防止でき、溶液1を所望の濃度に調節することができ、更に氷結晶3への溶質の吸着量を抑えることができる。
The temperature adjustment mechanism 70 is for adjusting the temperature of the refrigerant 42 so that the temperature of the solution 1 gradually falls during the formation of ice crystals, and includes a solution temperature sensor 71, a refrigerant temperature sensor 72, and a control device 73. It is roughly composed of
The solution temperature sensor 71 is disposed in the container 20 to measure the temperature of the solution 1, and the refrigerant temperature sensor 72 is disposed in the refrigerant tank 41 to measure the temperature of the refrigerant 42.
The control device 73 receives the temperature information of the solution 1 and the refrigerant 42 output from the solution temperature sensor 71 and the refrigerant temperature sensor 72, and cools the main body of the cooling device so that the temperature of the solution 1 gradually falls during the generation of ice crystals. 44 is controlled to adjust the temperature drop rate of the refrigerant 42.
Since the solidification temperature decreases as the concentration of the solution 1 increases and the concentration increases, it is necessary to lower the temperature of the refrigerant 42 in order to efficiently generate the ice crystals 3. At this time, the temperature of the solution 1 gently By dynamically adjusting the temperature of the refrigerant 42 so as to descend, overcooling can be prevented, the solution 1 can be adjusted to a desired concentration, and the amount of solute adsorbed on the ice crystals 3 can be suppressed. it can.

氷結晶除去機構80は、生成した氷結晶3を除去して濃縮液4(図2参照)を得るためのものであり、本実施の形態では図2に示すように濾材81及び濾過容器82による濾過器83で構成されている。濾過以外にも遠心分離法、圧搾分離法などを用いることができる。
容器20内での凍結濃縮作業が終了したあと、容器20内の溶液1を濾過器83に投入することで、氷結晶3は濾材81によって除去され、濾材81を通過した濃縮液4のみを得る仕組みになっている。
The ice crystal removal mechanism 80 is for removing the generated ice crystals 3 to obtain the concentrated liquid 4 (see FIG. 2). In this embodiment, the ice crystal removal mechanism 80 uses a filter medium 81 and a filter container 82 as shown in FIG. It comprises a filter 83. In addition to filtration, a centrifugal separation method, a pressure separation method, or the like can be used.
After completion of the freeze concentration operation in the container 20, the solution 1 in the container 20 is put into the filter 83, whereby the ice crystals 3 are removed by the filter medium 81 and only the concentrated liquid 4 that has passed through the filter medium 81 is obtained. It is structured.

濃縮液4は溶液1中の水分の一部を氷結晶3として取り除いたものであり、溶液1の種類によって、果実ジュース、コーヒー、茶、牛乳、だし汁等の飲食品を製造する目的で利用できる。濃縮液4は、多量の水分を含む溶液1をそのまま輸送したり保管したりする場合と比較して輸送コストや保管コストの低減を図れるという利点があり、主にその目的のために調製されるが、そのまま他の飲食品等に添加して用いることもできる。
また、溶液1が日本酒の場合には、濃縮により溶質としての糖分が濃縮液4中に残るため、日本酒度を小さくする(甘口にする)ことができる。
The concentrated liquid 4 is obtained by removing a part of the water in the solution 1 as ice crystals 3, and can be used for the purpose of producing food and drink such as fruit juice, coffee, tea, milk, and soup depending on the type of the solution 1. . The concentrated solution 4 has an advantage that it can reduce the transportation cost and the storage cost as compared with the case where the solution 1 containing a large amount of water is transported or stored as it is, and is mainly prepared for that purpose. However, it can also be used as it is added to other foods and drinks.
Moreover, when the solution 1 is sake, the sugar content as a solute remains in the concentrate 4 due to concentration, so that the degree of sake can be reduced (sweetened).

なお、上記実施の形態においては、界面前進凍結濃縮装置10が予備冷却機構50を備えるものとしたが、予備冷却機構50を備えずに、冷却機構40及び容器20を用いて溶液1を予備冷却することにしてもよい。
また、冷却機構40を複数用意しておけば、冷却工程を複数の冷却機構40で同時並行で行うことができるので、濃縮作業を効率化できる。
また、撹拌機構30が氷結晶掻き取り機構60も兼ねるものとしたが、撹拌機構30と氷結晶掻き取り機構60を別体に設けてもよい。
In the above embodiment, the interfacial forward freeze concentration apparatus 10 is provided with the preliminary cooling mechanism 50. However, the preliminary cooling of the solution 1 is performed using the cooling mechanism 40 and the container 20 without including the preliminary cooling mechanism 50. You may decide to do it.
Further, if a plurality of cooling mechanisms 40 are prepared, the cooling process can be performed in parallel by the plurality of cooling mechanisms 40, so that the concentration work can be made efficient.
Further, although the stirring mechanism 30 also serves as the ice crystal scraping mechanism 60, the stirring mechanism 30 and the ice crystal scraping mechanism 60 may be provided separately.

次に、本発明の界面前進凍結濃縮法について説明する。
まず、冷媒タンク41には冷媒42を満たしておき、容器20には溶液1を入れると共に種結晶2を配置しておく(種結晶配置工程)。
そして、溶液1及び冷媒42の温度測定を開始すると共に溶液1の撹拌を開始する(撹拌工程及び冷却工程)。
また、可能であれば溶液1の濃度測定も行っておくのが好ましい。
なお、開始時の溶液1の温度が−5℃程度、冷媒42の温度が−10℃程度になるように予備冷却しておくのが好ましい。
Next, the interface forward freeze concentration method of the present invention will be described.
First, the refrigerant tank 41 is filled with the refrigerant 42, the solution 1 is placed in the container 20, and the seed crystal 2 is arranged (seed crystal arrangement step).
And while starting the temperature measurement of the solution 1 and the refrigerant | coolant 42, stirring of the solution 1 is started (stirring process and cooling process).
Further, it is preferable to measure the concentration of the solution 1 if possible.
In addition, it is preferable to perform preliminary cooling so that the temperature of the solution 1 at the start is about −5 ° C. and the temperature of the refrigerant 42 is about −10 ° C.

冷却中の溶液1の温度は凝固点以下であればよいが、0〜−40℃の範囲が望ましく、より好ましくは−10〜−30℃である。冷却温度が上記の範囲未満の場合は必要以上に冷却することとなり、電力消費量が大きくなってしまう。一方、上記の範囲を超える場合は上述した溶液1の凝固点降下の影響で水分の凍結が不十分になる可能性がある。
冷却中は溶液1の温度がなだらかに下降するように冷媒42の温度を調節する必要がある(温度調節工程)。
Although the temperature of the solution 1 during cooling should just be below a freezing point, the range of 0--40 degreeC is desirable, More preferably, it is -10-30 degreeC. When the cooling temperature is lower than the above range, cooling is performed more than necessary, resulting in an increase in power consumption. On the other hand, when the above range is exceeded, there is a possibility that the moisture will be insufficiently frozen due to the influence of the freezing point depression of the solution 1 described above.
During the cooling, it is necessary to adjust the temperature of the refrigerant 42 so that the temperature of the solution 1 gradually decreases (temperature adjustment step).

所定時間が経過すると、容器20の内面に溶液1中の水分の層状晶析が行われ、氷結晶3が生成される(氷結晶生成工程)。
氷結晶生成中は、溶液1を撹拌しているため、固液界面において氷結晶3の周囲の溶液1に含まれる溶質が氷結晶3に取り込まれることなく、十分な物質移動が行われる。
また、容器20の内面に生成した氷結晶3は連続的に掻き取ることで(氷結晶掻き取り工程)、氷結晶3を溶液1中に浮遊させながら成長させていく。
そして、所定時間が経過した時点で冷却を終了し、溶液1中の氷結晶3を濾過等により除去することで濃縮液4を得る(氷結晶除去工程)。
なお、溶液1の濃度測定を行っている場合には、所定の濃度に達した時点で冷却を終了することにすればよい。
When a predetermined time elapses, layered crystallization of water in the solution 1 is performed on the inner surface of the container 20 to generate ice crystals 3 (ice crystal generation step).
Since the solution 1 is agitated during the formation of the ice crystals, the solute contained in the solution 1 around the ice crystals 3 is not taken into the ice crystals 3 at the solid-liquid interface, and sufficient mass transfer is performed.
In addition, the ice crystals 3 generated on the inner surface of the container 20 are continuously scraped (ice crystal scraping step) to grow the ice crystals 3 while floating in the solution 1.
Then, when a predetermined time has elapsed, the cooling is terminated, and the concentrated liquid 4 is obtained by removing the ice crystals 3 in the solution 1 by filtration or the like (ice crystal removal step).
When the concentration of the solution 1 is being measured, the cooling may be terminated when the predetermined concentration is reached.

次に、本発明の界面前進凍結濃縮装置及び界面前進凍結濃縮法の実施例について説明する。
装置構成を表1に示す。

Figure 2014008492
各実施例(実施例1〜5)及び比較例(比較例1〜3)におけるサンプル量、たね氷の有無、冷却開始時の冷媒温度(冷媒開始温度)、冷媒降下温度の設定条件(降下設定温度)、リボンスクリューの回転数を表2及び表3に示す。
Figure 2014008492
Figure 2014008492
Next, examples of the interface forward freeze concentration apparatus and the interface advance freeze concentration method of the present invention will be described.
Table 1 shows the apparatus configuration.
Figure 2014008492
Sample amount in each Example (Examples 1 to 5) and Comparative Example (Comparative Examples 1 to 3), presence / absence of ice cubes, refrigerant temperature at the start of cooling (refrigerant start temperature), setting conditions for refrigerant fall temperature (fall setting) Table 2 and Table 3 show the temperature) and the rotation speed of the ribbon screw.
Figure 2014008492
Figure 2014008492

溶液として日本酒の清酒と原酒を使用した。両者のアルコール濃度、日本酒度及び比重を表4に示す。

Figure 2014008492
各実施例及び比較例における経過時間と温度変化を示すグラフを表5及び表6に示す。
Figure 2014008492
Figure 2014008492
なお、表5の実施例1のグラフに表しているように、グラフの上の線がサンプル(溶液)温度を示し、下の線が冷媒温度を示している。表6も同様である。 The sake used was sake and sake. Table 4 shows the alcohol concentration, sake degree and specific gravity of both.
Figure 2014008492
Tables 5 and 6 show graphs showing elapsed time and temperature change in each Example and Comparative Example.
Figure 2014008492
Figure 2014008492
As shown in the graph of Example 1 in Table 5, the upper line of the graph indicates the sample (solution) temperature, and the lower line indicates the refrigerant temperature. The same applies to Table 6.

結果を表7及び表8に示す。

Figure 2014008492
Figure 2014008492
The results are shown in Table 7 and Table 8.
Figure 2014008492
Figure 2014008492

[実施例1]
溶液として清酒を使用し、撹拌機構として撹拌装置2(表1参照)を使用した。
冷媒と溶液の温度差を管理し、徐々に冷媒の温度を下げていき、目標アルコール濃度に達した時点で試験終了とした。
温度差−3℃で開始したものの、温度が一向に低下しなかったため温度差を−4℃に変更した。
比較例1よりも回転数を上げたことで氷結晶へのアルコール吸着が低下した。これは撹拌によって氷相面の浸透圧が下げられ、氷の吸着が抑制されたためと考えられる。また、アルコール濃縮率も非常に大きくなった。しかし、温度差−3〜−4℃では濃縮時間が6時間半以上かかってしまい、作業効率はあまり良くないと言える。
[Example 1]
Sake was used as the solution, and the stirring device 2 (see Table 1) was used as the stirring mechanism.
The temperature difference between the refrigerant and the solution was controlled, the temperature of the refrigerant was gradually lowered, and the test was terminated when the target alcohol concentration was reached.
Although the temperature difference started at −3 ° C., the temperature did not decrease at all, so the temperature difference was changed to −4 ° C.
Alcohol adsorption to ice crystals was reduced by increasing the rotational speed compared to Comparative Example 1. This is thought to be because the osmotic pressure on the ice phase was lowered by stirring and the adsorption of ice was suppressed. Moreover, the alcohol concentration rate also became very large. However, if the temperature difference is −3 to −4 ° C., the concentration time takes 6 and a half hours or more, so it can be said that the working efficiency is not so good.

[実施例2]
溶液として清酒を使用し、撹拌機構として撹拌装置2を使用した。
温度差を−5℃に設定したところ、濃縮時間が2時間弱と大幅に短縮できた。
濃縮液の回収量は200mlで、歩留り50%を到達できた。
これにより撹拌方法と温度差管理が重要であることがわかる。
[Example 2]
Sake was used as the solution, and the stirring device 2 was used as the stirring mechanism.
When the temperature difference was set to −5 ° C., the concentration time was significantly shortened to less than 2 hours.
The amount of concentrated liquid recovered was 200 ml, and the yield was 50%.
This shows that the stirring method and temperature difference management are important.

[実施例3]
溶液として清酒を使用し、撹拌機構として撹拌装置2を使用した。
温度差を−4.5℃に設定した。実施例2の温度差−5℃と比較すると、試験時間は2時間30分から2時間45分と長くなったが、氷結晶に吸収されるアルコール濃度が低い。しかし、歩留りを比較するとどちらも大差はないことから、−5℃の場合でも試験終了後の吸引方法により吸着したアルコールを回収できる可能性がある。
[Example 3]
Sake was used as the solution, and the stirring device 2 was used as the stirring mechanism.
The temperature difference was set to -4.5 ° C. Compared with the temperature difference of Example 5 of −5 ° C., the test time was increased from 2 hours 30 minutes to 2 hours 45 minutes, but the alcohol concentration absorbed in the ice crystals was low. However, since there is no big difference between the yields, it is possible that the adsorbed alcohol can be recovered by the suction method after the end of the test even at -5 ° C.

[実施例4]
溶液として、加水率の大きい清酒から原酒に変更した。
アルコール濃度の高い原酒にすると、目標までの濃度差が小さくなるため濃縮時間は大幅に短縮可能となった。歩留まりも約50%で清酒の結果とほぼ変わらない。
しかし、急速に氷を形成させるため、氷結晶へのアルコール吸着は多くなるようである。
[Example 4]
The solution was changed from sake with a high water content to raw sake.
In the case of raw alcohol with a high alcohol concentration, the concentration time can be greatly shortened because the concentration difference to the target is reduced. The yield is about 50%, which is almost the same as the sake result.
However, it seems that alcohol adsorption to ice crystals increases due to rapid ice formation.

[実施例5]
溶液として原酒を使用した。
実施例4の結果を経て、温度差を4.5℃に設定したところ、測定時間や歩留まりはほぼかわらなかった。
温度差を4.5℃にしたことで氷へのアルコール吸着は少し抑えられた。氷へのアルコール吸着はまだ高いようであるが、実施例1の結果からもわかるように、温度差3〜4℃では溶液温度が下がりにくいため、4.5〜5.0℃の間の方が好ましい。
[Example 5]
Raw liquor was used as the solution.
When the temperature difference was set to 4.5 ° C. through the results of Example 4, the measurement time and the yield were not substantially affected.
Alcohol adsorption on ice was slightly suppressed by setting the temperature difference to 4.5 ° C. Alcohol adsorption on ice seems to be still high, but as can be seen from the results of Example 1, the solution temperature hardly falls at a temperature difference of 3 to 4 ° C.

[比較例1]
撹拌機構として撹拌装置1を使用した。
日本酒のアルコール濃度が高くなるほど凝固温度が低くなり、冷媒の温度を−8℃の一定にした場合には溶液の温度がほとんど下がらなくなるため、回転数を約160rpmに設定し、時間ごとに冷媒の温度を下げていき、濃縮していった。
また、底面に作った種氷を成長させ、単一氷結晶を作り、固液分離した。
数値的にはほとんど濃縮されていないことがわかる。また、氷へのアルコール吸着も12%と非常に高く、この方法では濃縮効率が非常に悪いことがわかる。
[Comparative Example 1]
The stirring device 1 was used as a stirring mechanism.
The higher the alcohol concentration of sake, the lower the coagulation temperature. When the temperature of the refrigerant is kept at -8 ° C, the temperature of the solution will hardly decrease. The temperature was lowered and concentrated.
In addition, seed ice made on the bottom surface was grown to form single ice crystals, which were separated into solid and liquid.
It turns out that it is hardly concentrated numerically. Also, alcohol adsorption on ice is very high at 12%, indicating that this method has very poor concentration efficiency.

[比較例2]
撹拌機構として撹拌装置1を使用した。
冷媒の温度を−15℃一定とした。
底面に作った種氷を成長させ、単一氷結晶を作り固液分離させる目的だったが、10分と経たないうちにシャーベット状の氷が形成された。アルコール濃度は上がったものの氷結晶への吸着が非常に高いことが分かる。これは、急速凍結が生じ、短時間で一気に冷やされたためと考えられる。
この方法では、より短時間でアルコールを濃縮することが可能であるが、一方でロスも多く非効率的である。
[Comparative Example 2]
The stirring device 1 was used as a stirring mechanism.
The temperature of the refrigerant was kept at -15 ° C.
The purpose was to grow seed ice on the bottom surface to form a single ice crystal and separate it into solid and liquid, but sherbet-like ice was formed within 10 minutes. It can be seen that although the alcohol concentration is increased, the adsorption to ice crystals is very high. This is thought to be because quick freezing occurred and it was quickly cooled in a short time.
In this method, it is possible to concentrate alcohol in a shorter time, but on the other hand, there is much loss and inefficiency.

[比較例3]
撹拌機構として撹拌装置2を使用した。
容器内に種氷を配置しなかったため、溶液の温度が急激に低下し冷媒との温度差5℃を保持するのが困難となった。
溶液温度が−10℃付近ではほぼシャーベット状となってしまい、濃縮液が回収できない状態になった。おそらく過冷却により急速凍結が生じたためと考えられる。グラフを見てみると、溶液温度−10℃付近で温度が急激に上昇しており、急速凍結によって凝固熱が発生したことが分かる。
氷結晶部分へのアルコール吸着も11.7%と非常に多く、収率も悪い。氷の核となる種氷は必要であることが再確認された。
[Comparative Example 3]
The stirring device 2 was used as a stirring mechanism.
Since no seed ice was placed in the container, the temperature of the solution dropped rapidly, making it difficult to maintain a temperature difference of 5 ° C. from the refrigerant.
When the solution temperature was around −10 ° C., it became almost a sherbet, and the concentrated solution could not be recovered. Probably because of rapid freezing caused by supercooling. Looking at the graph, it can be seen that the temperature rapidly increased around −10 ° C., and heat of solidification was generated by rapid freezing.
Alcohol adsorption to the ice crystal part is very high at 11.7%, and the yield is poor. It was reconfirmed that seed ice as the core of ice was necessary.

[考察]
[固液分離方法の改良]
比較例1及び2は底面に作った種氷を成長させ、単一氷結晶を作り固液分離させる方法であった。しかし、各実施例のように種氷に付着した氷結晶をリボンスクリューであえてかき取り、溶液中に粒状の氷結晶を成長させる手法によって短時間かつ歩留まり良く濃縮できることが分かった。また、短時間での実施により日本酒の品質劣化も防ぐことが可能となる。
[Discussion]
[Improvement of solid-liquid separation method]
Comparative Examples 1 and 2 were methods in which seed ice made on the bottom surface was grown to form a single ice crystal and solid-liquid separation. However, it was found that the ice crystals adhering to the seed ice were scraped off with a ribbon screw as in each of the examples, and the granular ice crystals were grown in the solution in a short time and with good yield. In addition, it is possible to prevent the quality of sake from deteriorating by implementing it in a short time.

[種氷の必要性]
比較例3からわかるように、凍結濃縮法には固体の核となる種氷が必要不可欠である。種氷がない場合、溶液内が一気に冷却され急速凍結を生じ溶液全体がシャーベット状に固まってしまう。これによって液体の収率がほとんどなくなり、急速に冷却されたことで氷へのアルコール吸着率も増加する。
[Necessity of seed ice]
As can be seen from Comparative Example 3, seed ice serving as a solid core is indispensable for the freeze concentration method. When there is no seed ice, the inside of the solution is cooled at once, causing rapid freezing, and the entire solution is hardened in a sherbet shape. As a result, the yield of the liquid is almost lost, and the rate of alcohol adsorption on ice increases due to rapid cooling.

[攪拌による浸透圧の低下]
界面前進凍結濃縮では、氷へのアルコール吸着によって歩留まりの低下が懸念される。そのため、高速回転のリボンスクリューで溶液内を攪拌し、浮遊する氷表面の浸透圧を下げることで氷結晶へのアルコール吸着を抑制できることが分かった。
また、高速回転によって溶液内全体が均等に混ざり、より短時間で濃縮できることも分かった。
[Reduction of osmotic pressure by stirring]
In the interfacial forward freezing concentration, there is a concern that the yield may decrease due to the adsorption of alcohol on ice. Therefore, it was found that the adsorption of alcohol to ice crystals can be suppressed by stirring the solution with a ribbon screw rotating at high speed and lowering the osmotic pressure of the floating ice surface.
It was also found that the entire solution was evenly mixed by high-speed rotation and could be concentrated in a shorter time.

[溶液と冷媒の温度管理]
溶液は濃縮され濃度が高くなるほど凝固温度が下がるため、冷却温度を下げていく必要がある。各実施例では溶液と冷媒の温度をそれぞれ管理し、溶液の温度がなだらかに下降するように冷却していくことで、ある程度狙ったアルコール濃度に濃縮できることが分かった。
また、溶液と冷媒の温度差を狭めることで、氷結晶へのアルコール吸着がより抑えられることもわかった。今回の試験ではガラス製の容器を使用したため温度幅は4.5〜5.0℃の間が理想となった。
[Temperature control of solution and refrigerant]
As the concentration of the solution increases and the concentration increases, the solidification temperature decreases, so the cooling temperature must be lowered. In each of the examples, it was found that the temperature of the solution and the refrigerant were respectively controlled, and the solution was cooled so that the temperature of the solution gradually decreased, so that it could be concentrated to a target alcohol concentration to some extent.
It was also found that alcohol adsorption on ice crystals can be further suppressed by narrowing the temperature difference between the solution and the refrigerant. In this test, a glass container was used, so the ideal temperature range was 4.5 to 5.0 ° C.

[原酒を濃縮することで効率化を図る]
清酒(水で薄めたもの)を再度濃縮するよりも、原酒を濃縮する方が短時間で濃縮することが可能となり、効率が良いことが分かった。また、歩留まりもほとんど変わらず、原酒を濃縮する方がより所望のアルコール濃度に濃縮できることが分かった。
なお、濃縮によって日本酒度は小さくなる(甘口になる)ことが分かる。
また、今回は溶液として日本酒を用いたが、果汁等の水溶液でもほぼ同様の効果を得られることが推測できる。
[Improve efficiency by concentrating raw sake]
It was found that the concentration of the original sake can be concentrated in a shorter time and the efficiency is higher than the concentration of the sake (thinned with water) again. Moreover, the yield was hardly changed, and it was found that the concentration of the raw liquor can be concentrated to a desired alcohol concentration.
In addition, it turns out that sake degree becomes small (it becomes sweet) by concentration.
In addition, sake was used as a solution this time, but it can be assumed that almost the same effect can be obtained with an aqueous solution such as fruit juice.

本発明は、過冷却を防止し、濃縮時間を短縮することで濃縮液の歩留まりを高めると共に品質劣化を抑えることができる界面前進凍結濃縮装置及び界面前進凍結濃縮方法に関するものであり、産業上の利用可能性を有する。   The present invention relates to an interface forward freeze concentration apparatus and an interface advance freeze concentration method that can prevent overcooling and shorten the concentration time to increase the yield of the concentrate and suppress quality degradation. Has availability.

1 溶液
3 氷結晶
4 濃縮液
10 界面前進凍結濃縮装置
20 容器
30 撹拌機構
40 冷却機構
50 予備冷却機構
60 氷結晶掻き取り機構
70 温度調節機構
80 氷結晶除去機構
DESCRIPTION OF SYMBOLS 1 Solution 3 Ice crystal 4 Concentrated liquid 10 Interface forward freezing concentration apparatus 20 Container 30 Stirring mechanism 40 Cooling mechanism 50 Precooling mechanism 60 Ice crystal scraping mechanism 70 Temperature control mechanism 80 Ice crystal removal mechanism

Claims (8)

種結晶を配置した容器内の溶液を撹拌する撹拌機構と、
容器内の溶液を冷媒で冷却する冷却機構と、
生成した氷結晶を除去して濃縮液を得る氷結晶除去機構とを少なくとも備える界面前進凍結濃縮装置において、
氷結晶生成中に溶液の温度がなだらかに下降するように冷媒の温度を調節する温度調節機構を備えることを特徴とする界面前進凍結濃縮装置。
A stirring mechanism for stirring the solution in the container in which the seed crystals are arranged;
A cooling mechanism for cooling the solution in the container with a refrigerant;
In an interface forward freezing and concentrating device comprising at least an ice crystal removing mechanism that removes the generated ice crystals to obtain a concentrated liquid,
An interface forward freezing and concentrating apparatus comprising a temperature adjusting mechanism for adjusting a temperature of a refrigerant so that a temperature of a solution is gently lowered during ice crystal formation.
前記氷結晶生成中に、容器の内面に生成した氷結晶を連続的に掻き取っていく氷結晶掻き取り機構を備えることを特徴とする請求項1に記載の界面前進凍結濃縮装置。   The interface forward freezing and concentrating apparatus according to claim 1, further comprising an ice crystal scraping mechanism that continuously scrapes the ice crystals generated on the inner surface of the container during the ice crystal generation. 溶液を容器に入れる前に、凍結しない温度範囲内で溶液を冷却しておく予備冷却機構を備えることを特徴とする請求項1又は2に記載の界面前進凍結濃縮装置。   3. The interface forward freezing and concentrating apparatus according to claim 1, further comprising a pre-cooling mechanism that cools the solution within a temperature range that does not freeze before the solution is put into the container. 前記氷結晶除去機構が、濾過により溶液中の氷結晶を除去することを特徴とする請求項1〜3のいずれか一項に記載の界面前進凍結濃縮装置。   The interface forward freeze concentration apparatus according to any one of claims 1 to 3, wherein the ice crystal removal mechanism removes ice crystals in the solution by filtration. 溶液内に種結晶を配置する種結晶配置工程と、
容器内の溶液を撹拌する撹拌工程と、
容器内の溶液を冷媒で冷却する冷却工程と、
容器の内面に氷結晶を生成させる氷結晶生成工程と、
溶液中の氷結晶を除去して濃縮液を得る氷結晶除去工程とを少なくとも備える界面前進凍結濃縮法において、
前記氷結晶生成工程において溶液の温度がなだらかに下降するように冷媒の温度を調節する温度調節工程を備えることを特徴とする界面前進凍結濃縮法。
A seed crystal placement step of placing a seed crystal in the solution;
A stirring step of stirring the solution in the container;
A cooling step of cooling the solution in the container with a refrigerant;
An ice crystal generation process for generating ice crystals on the inner surface of the container;
In the interface forward freeze concentration method comprising at least an ice crystal removal step of removing ice crystals in the solution to obtain a concentrated solution,
An interfacial forward freeze concentration method comprising a temperature adjustment step of adjusting the temperature of the refrigerant so that the temperature of the solution gradually falls in the ice crystal generation step.
前記氷結晶生成工程中に、容器の内面に生成した氷結晶を連続的に掻き取っていく氷結晶掻き取り工程を備えることを特徴とする請求項5に記載の界面前進凍結濃縮法。   6. The interface forward freezing and concentrating method according to claim 5, further comprising an ice crystal scraping step of continuously scraping ice crystals generated on the inner surface of the container during the ice crystal generation step. 前記冷却工程の前に、凍結しない温度範囲内で溶液を冷却しておく予備冷却工程を備えることを特徴とする請求項5又は6に記載の界面前進凍結濃縮法。   The interface forward freeze concentration method according to claim 5 or 6, further comprising a preliminary cooling step of cooling the solution within a temperature range in which the solution is not frozen before the cooling step. 前記氷結晶除去工程において、濾過により溶液中の氷結晶を除去することを特徴とする請求項5〜7のいずれか一項に記載の界面前進凍結濃縮法。   In the said ice crystal removal process, the ice crystal in a solution is removed by filtration, The interface advance freeze concentration method as described in any one of Claims 5-7 characterized by the above-mentioned.
JP2012148988A 2012-07-03 2012-07-03 Interface forward freeze concentration apparatus and interface forward freeze concentration method Active JP6121661B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012148988A JP6121661B2 (en) 2012-07-03 2012-07-03 Interface forward freeze concentration apparatus and interface forward freeze concentration method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012148988A JP6121661B2 (en) 2012-07-03 2012-07-03 Interface forward freeze concentration apparatus and interface forward freeze concentration method

Publications (2)

Publication Number Publication Date
JP2014008492A true JP2014008492A (en) 2014-01-20
JP6121661B2 JP6121661B2 (en) 2017-04-26

Family

ID=50105642

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012148988A Active JP6121661B2 (en) 2012-07-03 2012-07-03 Interface forward freeze concentration apparatus and interface forward freeze concentration method

Country Status (1)

Country Link
JP (1) JP6121661B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114669075A (en) * 2022-03-02 2022-06-28 汪家炜 Concentrated crystallization kettle of material

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5114585B1 (en) * 1969-08-01 1976-05-11
JPH09271602A (en) * 1996-04-04 1997-10-21 Daiwa Seibutsu Kenkyusho:Kk Batch type freezing and concentrating apparatus
JPH1128455A (en) * 1997-07-10 1999-02-02 Mayekawa Mfg Co Ltd Freezing concentration method and device thereof
JP2000334203A (en) * 1999-03-19 2000-12-05 Kagome Co Ltd Freezing and concentrating apparatus
JP2003265150A (en) * 2002-03-19 2003-09-24 Kagome Co Ltd Method of freeze concentration for vegetable/fruit juice and freeze concentrated product and equipment for the same
JP2005081215A (en) * 2003-09-08 2005-03-31 Kagome Co Ltd Method for controlling progressive freeze concentration

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5114585B1 (en) * 1969-08-01 1976-05-11
JPH09271602A (en) * 1996-04-04 1997-10-21 Daiwa Seibutsu Kenkyusho:Kk Batch type freezing and concentrating apparatus
JPH1128455A (en) * 1997-07-10 1999-02-02 Mayekawa Mfg Co Ltd Freezing concentration method and device thereof
JP2000334203A (en) * 1999-03-19 2000-12-05 Kagome Co Ltd Freezing and concentrating apparatus
JP2003265150A (en) * 2002-03-19 2003-09-24 Kagome Co Ltd Method of freeze concentration for vegetable/fruit juice and freeze concentrated product and equipment for the same
JP2005081215A (en) * 2003-09-08 2005-03-31 Kagome Co Ltd Method for controlling progressive freeze concentration

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6016028463; 下山田真 ほか: '"凍結濃縮系における溶液と冷媒の温度差制御による大粒径氷晶の調整"' 日本食品化学工学会誌 Vol.44, No.1, 1997, pp.59-61 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114669075A (en) * 2022-03-02 2022-06-28 汪家炜 Concentrated crystallization kettle of material

Also Published As

Publication number Publication date
JP6121661B2 (en) 2017-04-26

Similar Documents

Publication Publication Date Title
Miyawaki et al. Yield improvement in progressive freeze-concentration by partial melting of ice
US20190297921A1 (en) Beverage supplement and method for making the same
JP6797952B2 (en) Manufacturing method of concentrated products by membrane concentration method and freeze concentration method
US6305178B1 (en) Continuous system of freeze concentration for aqueous solutions
JP6712336B2 (en) Method for producing concentrated product by freeze concentration method
CN204601675U (en) A kind of freeze concentration equipment
CN110973321A (en) Low-temperature instant coffee and process for freezing and concentrating solution thereof
WO2015001943A2 (en) Process for preparing natural flavors
Azman et al. Effect of freezing time and shaking speed on the performance of progressive freeze concentration via vertical finned crystallizer
JP6121661B2 (en) Interface forward freeze concentration apparatus and interface forward freeze concentration method
US2685783A (en) Method of and apparatus for dehydrating by freezing
JP3775737B2 (en) Method and apparatus for freezing and concentrating vegetable and fruit juices
JP2015204777A (en) Production method and system for fruit wine using surface progress freeze concentration method
Jusoh et al. Progressive freeze concentration of coconut water
CN106262383A (en) The method producing ir-crystallized honey
Stahl Concentration of citrus juices by freezing
JP5656037B1 (en) Interfacial forward freeze concentration system
JP2005296006A (en) Method and apparatus for alcohol beverages of a plurality of concentrations
JP2005304311A (en) Method for producing and selling liquors
JP2002172301A (en) Method for freeze-concentrating aqueous solution
Jusoh et al. Enhancement of sugar content through progressive freeze concentration: effect of initial concentration
FR2460999A1 (en) Continuously cold-stabilising wine - by stirring ice crystal-contg. wine in tank to maintain homogeneous ice and tartrate crystal suspension
JPS62111633A (en) Production of coffee concentrate which can be spooned during refrigeration
Miyawaki Progressive freeze-concentration: Improvement and applications
JPH02150261A (en) Production of cryohydrate-containing beverage suitable in separately pouring into vessel for beverage and apparatus therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150629

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20150629

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160707

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160726

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160923

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170306

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170330

R150 Certificate of patent or registration of utility model

Ref document number: 6121661

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250