JP2000334203A - Freezing and concentrating apparatus - Google Patents

Freezing and concentrating apparatus

Info

Publication number
JP2000334203A
JP2000334203A JP11142926A JP14292699A JP2000334203A JP 2000334203 A JP2000334203 A JP 2000334203A JP 11142926 A JP11142926 A JP 11142926A JP 14292699 A JP14292699 A JP 14292699A JP 2000334203 A JP2000334203 A JP 2000334203A
Authority
JP
Japan
Prior art keywords
concentrated liquid
concentrated solution
ice
heat exchanger
concentrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11142926A
Other languages
Japanese (ja)
Other versions
JP4306018B2 (en
Inventor
Nagahito Miyawaki
長人 宮脇
Yoshio Hayakawa
喜郎 早川
Shigeru Sakashita
茂 坂下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kagome Co Ltd
Mayekawa Manufacturing Co
Original Assignee
Kagome Co Ltd
Mayekawa Manufacturing Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kagome Co Ltd, Mayekawa Manufacturing Co filed Critical Kagome Co Ltd
Priority to JP14292699A priority Critical patent/JP4306018B2/en
Publication of JP2000334203A publication Critical patent/JP2000334203A/en
Application granted granted Critical
Publication of JP4306018B2 publication Critical patent/JP4306018B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To improve the degree of concentration of a concentrated solution by providing a second heat exchanger at the downstream side of a first heat exchanger and returning the concentrated solution which is passed through the second heat exchanger to a concentrated solution tank, in the production process which is comprised of cooling the concentrated solution by the first heat exchanger to form flake ice and scratching off the formed ice. SOLUTION: When a freezing and concentrating apparatus is operated, a concentrated solution in a concentrated solution tank 7 is introduced into a concentrated solution inlet 1a of a vertical tube 1 by a circulating pump 8 and the concentrated solution is cooled by a cooling device 12 in a vertical path 24, thereby the concentrated solution is made flake ice and fixed on the inner wall surface of the vertical tube 1. Thereafter, the flake ice is scratched off by a spiral blade 3b of an ice scratching mechanism 3 and the scratched ice is heated to a prescribed temp. by the electric heat of a heating coil 11, thereby the concentrated solution fixed on the surface of the ice is separated. The separated concentrated solution flows down along the inner wall surface of the vertical tube 1 and flows out into a concentrated solution receiver 17 through a plurality of small holes 18. Furthermore, solid parts such as ice chips are captured by a metal net 19, and the concentrated solution is returned from a concentrated solution outlet 17a to the concentrated solution tank 7 through a concentrated solution return pipe 15.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、果物や野菜の濃縮
ジュースその他の各種溶液を冷却・凍結して水分を除去
し濃縮度を高めるようにした凍結濃縮装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a freeze-concentrator for cooling and freezing concentrated juices of fruits and vegetables and other various solutions to remove water and increase the concentration.

【0002】[0002]

【従来の技術】従来、果物や野菜の濃縮ジュース等の濃
縮液を生成するのに、栄養成分やフレーバ成分の保存性
に優れている凍結濃縮法が用いられている。この凍結濃
縮法には、懸濁結晶濃縮法と界面前進凍結濃縮法とがあ
る。このうち、界面前進凍結濃縮法は、濃縮液内に1個
の氷結晶を生成させて液相の濃縮を行なうもので、低濃
度溶液の濃縮に好適であり、また製品コストの大幅な削
減が可能である。
2. Description of the Related Art Conventionally, a freeze-concentration method which is excellent in preservation of nutrient components and flavor components has been used for producing a concentrate such as a concentrated juice of fruits and vegetables. The freeze concentration method includes a suspension crystal concentration method and an interfacial advance freeze concentration method. Among them, the interfacial advancing freeze concentration method generates one ice crystal in the concentrated solution and concentrates the liquid phase, which is suitable for the concentration of a low concentration solution, and can greatly reduce the product cost. It is possible.

【0003】かかる界面前進凍結濃縮法においては、高
濃度溶液の濃縮が課題となっているが、これを解決可能
とした方法に、掻き取り式熱交換器を用いた掻き取り伝
熱凍結濃縮法がある。
[0003] In the interfacial advancing freezing and concentrating method, there is a problem of concentrating a high-concentration solution, but a method that can solve this problem is a scraping heat transfer freezing and concentrating method using a scraping type heat exchanger. There is.

【0004】かかる掻き取り伝熱凍結濃縮法による凍結
濃縮装置の1例を比較技術として図3に示す。図3にお
いて、1は垂直に立設された中空の縦筒、2は該縦筒1
の上端に連結され水平方向に連結された中空の横筒であ
り、該縦筒1の内部には濃縮液の縦通路24が形成さ
れ、また該横筒2の内部には濃縮液から分離されたフレ
ーク状の氷を搬送するための横通路25が形成されてい
る。
FIG. 3 shows an example of a freeze-concentrator using the scraping heat transfer freeze-concentration method as a comparative technique. In FIG. 3, reference numeral 1 denotes a vertical hollow cylinder that stands vertically, and 2 denotes the vertical cylinder.
Is a hollow horizontal cylinder connected to the upper end of the horizontal cylinder and connected in the horizontal direction. A vertical passage 24 for the concentrated liquid is formed inside the vertical cylinder 1 and separated from the concentrated liquid inside the horizontal cylinder 2. A horizontal passage 25 for conveying the flaked ice is formed.

【0005】3は前記縦通路24内に挿設された掻き取
り機構で、中心軸3aの外周に螺旋羽根3bを長手方向
に沿って巻装してなる。また4は前記横通路25内に挿
設された搬送機構で、中心軸4aの外周に螺旋羽根4b
を巻装してなる。5は前記縦筒1内の掻き取り機構3の
下端に連結されてこれを駆動するモータ、6は前記横筒
2内の搬送機構4の端部に連結されてこれを駆動するモ
ータである。
[0005] Reference numeral 3 denotes a scraping mechanism inserted into the vertical passage 24, which is formed by winding a spiral blade 3b around the center shaft 3a along the longitudinal direction. Reference numeral 4 denotes a transport mechanism inserted in the horizontal passage 25, and a spiral blade 4b is provided around the center shaft 4a.
Wrapped around. A motor 5 is connected to the lower end of the scraping mechanism 3 in the vertical cylinder 1 and drives the same. A motor 6 is connected to an end of the transport mechanism 4 in the horizontal cylinder 2 and drives the same.

【0006】12は前記縦筒1の下部外周に設けられた
冷却装置である。該冷却装置12は冷凍サイクルの蒸発
器の機能を有しており、冷媒を圧縮する圧縮機9に冷媒
管13,13を介して接続され、該圧縮機9にて圧縮さ
れたガス冷媒を凝縮させた後、膨張機構を経て該冷却装
置12に導き、該冷却装置12にて蒸発させて、縦筒1
の内部の縦通路24に導入された濃縮液を冷却するよう
になっている。
Reference numeral 12 denotes a cooling device provided on the outer periphery of the lower part of the vertical cylinder 1. The cooling device 12 has a function of an evaporator of a refrigeration cycle, and is connected to a compressor 9 for compressing the refrigerant via refrigerant pipes 13, 13 to condense the gas refrigerant compressed by the compressor 9. After that, it is led to the cooling device 12 via an expansion mechanism, and evaporated by the cooling device 12 to
The concentrated liquid introduced into the vertical passage 24 in the inside is cooled.

【0007】7は濃縮液が収容される濃縮液タンクで、
該タンク7の底部開口部には循環ポンプ8を備えた濃縮
液管14が接続されている。そして該濃縮液管14の他
端は前縦筒1の下部に開口された濃縮液入口1aに接続
されている。
Reference numeral 7 denotes a concentrate tank for storing the concentrate.
A concentrated liquid pipe 14 having a circulation pump 8 is connected to the bottom opening of the tank 7. The other end of the concentrated liquid pipe 14 is connected to a concentrated liquid inlet 1a opened at the lower part of the front vertical cylinder 1.

【0008】17は前記縦筒1の外周に設けられた濃縮
液受けである。該濃縮液受け17は前記冷却装置12の
下流側つまり上方部位に設けられ、その内部は前記縦筒
1の周壁に穿孔された通路孔23によって前記縦筒1内
の縦通路24と連通されている。そして該濃縮液受け1
7の下部に設けられた濃縮液出口17aは濃縮液戻り管
15を介して該濃縮液受け17よりも下方に在る前記濃
縮液タンク7に接続されている。21は該濃縮液戻り管
15を開閉する開閉弁である。
Reference numeral 17 denotes a concentrate receiver provided on the outer periphery of the vertical cylinder 1. The concentrate receiver 17 is provided on the downstream side of the cooling device 12, that is, at an upper portion thereof, and the inside thereof is communicated with a vertical passage 24 in the vertical cylinder 1 by a passage hole 23 formed in a peripheral wall of the vertical cylinder 1. I have. And the concentrate receiver 1
A concentrated liquid outlet 17a provided at the lower part of 7 is connected to the concentrated liquid tank 7 located below the concentrated liquid receiver 17 via a concentrated liquid return pipe 15. Reference numeral 21 denotes an on-off valve for opening and closing the concentrate return pipe 15.

【0009】16は前記横筒2の端部の下部に開口され
た氷抽出口で、該氷抽出口16の下方には生成したフレ
ーク状の氷を受け入れる氷受けタンクが設けられてい
る。
Reference numeral 16 denotes an ice extraction port which is opened at a lower portion of the end of the horizontal cylinder 2. Below the ice extraction port 16, an ice receiving tank for receiving generated flake ice is provided.

【0010】かかる凍結濃縮装置の稼動時において、濃
縮液タンク7内の濃縮液は循環ポンプ8によって、濃縮
液管14を通り前記縦筒1の濃縮液入口1aから縦通路
24に導入される。そして、該濃縮液は前記循環ポンプ
8によって縦通路24内を上方に押し上げられつつ冷却
装置12にて冷媒の蒸発によって奪熱され冷却される。
かかる冷却により濃縮液中の水分が凍結されてフレーク
状の氷となり、縦筒1の内壁面に付着する。
During operation of the freeze-concentrator, the concentrate in the concentrate tank 7 is introduced into the vertical passage 24 from the concentrate inlet 1a of the vertical cylinder 1 through the concentrate pipe 14 by the circulation pump 8. Then, the concentrated liquid is pushed up in the vertical passage 24 by the circulation pump 8 and is taken away by the evaporation of the refrigerant in the cooling device 12 to be cooled.
By this cooling, the water in the concentrated liquid is frozen to form flake-like ice, which adheres to the inner wall surface of the vertical cylinder 1.

【0011】一方、前記縦通路24内の前記冷却装置1
2の内側部位に設けられた掻き取り機構3はモータ5に
よって回転せしめられており、かかる回転により螺旋羽
根3bの外周面にて前記縦筒1の内壁面に付着下氷を掻
き取る。掻き取られたフレーク状の氷は縦通路24内に
充満されつつ上方に押し上げられて横通路25に入る。
さらに該横通路25内の氷はモータ6によって駆動され
る搬送機構4によって水平方向に搬送され、氷抽出口1
6から氷受けタンク22に送出される。
On the other hand, the cooling device 1 in the vertical passage 24
The scraping mechanism 3 provided at the inner portion of the rotary cylinder 2 is rotated by the motor 5, and the rotation causes the lower surface of the spiral blade 3b to scrape off the ice attached to the inner wall surface of the vertical cylinder 1 on the outer peripheral surface. The scraped flake-like ice fills the vertical passage 24 and is pushed upward while entering the horizontal passage 25.
Further, the ice in the lateral passage 25 is transported in the horizontal direction by the transport mechanism 4 driven by the motor 6, and
6 to the ice receiving tank 22.

【0012】このようにして水分が凍結分離されて濃縮
度が増した濃縮液は縦筒1の内壁面を流れ落ちて通路孔
23から濃縮液受け17に貯められる。この濃縮液は濃
縮液戻り管15を通って濃縮液タンク7内へ戻される。
以上のサイクルを繰り返すことにより、濃縮液タンク7
内の濃縮液は水分量が減じてその濃縮度が増大される。
The concentrated liquid whose concentration has been increased by the freezing and separation of water as described above flows down the inner wall surface of the vertical cylinder 1 and is stored in the concentrated liquid receiver 17 through the passage hole 23. This concentrate is returned to the concentrate tank 7 through the concentrate return pipe 15.
By repeating the above cycle, the concentrate tank 7
The concentration of water in the concentrate is reduced and the degree of concentration is increased.

【0013】[0013]

【発明が解決しようとする課題】図3に示されるような
凍結濃縮装置にあっては、縦通路24内に導入された濃
縮液は該縦通路24内を上方に搬送されながら冷却装置
12によって冷却されるが、かかる冷却過程を経て、横
通路25に搬送されるフレーク状の氷には、上方冷却過
程において、その表層に濃縮液のエキス(果物の果汁
等)が付着したものが多く含まれる傾向にある。そし
て、かかる凍結濃縮装置にあっては、このような濃縮液
エキスが付着した氷が氷抽出口16から氷受けタンク2
2に排出されることにより、濃縮液が失われてしまうと
いう問題点の発生をみる。
In the freeze-concentrating apparatus as shown in FIG. 3, the concentrated liquid introduced into the vertical passage 24 is conveyed upward through the vertical passage 24 by the cooling device 12. Although cooled, the flake-like ice conveyed to the lateral passage 25 after such a cooling process contains a large amount of concentrated liquid extract (fruit juice, etc.) attached to the surface layer in the upper cooling process. Tend to be. In such a freeze-concentrating apparatus, the ice to which the concentrated liquid extract adheres is supplied from the ice extraction port 16 to the ice receiving tank 2.
The occurrence of the problem that the concentrated liquid is lost by being discharged to 2 will be seen.

【0014】本発明はかかる従来技術の課題に鑑み、濃
縮液の冷却・凍結過程において生成される濃縮液中の水
分が凍結された氷に濃縮液のエキスが付着するのを回避
し、濃縮液が氷とともに失われるのを防止して濃縮液の
濃縮度を高め得る凍結濃縮装置を提供することを目的と
する。
In view of the above-mentioned problems of the prior art, the present invention avoids adhesion of the extract of the concentrate to the frozen ice, in which the moisture in the concentrate generated during the cooling and freezing process of the concentrate is prevented. It is an object of the present invention to provide a freeze-concentrator capable of preventing the loss of water with ice and increasing the concentration of the concentrate.

【0015】[0015]

【課題を解決するための手段】本発明はかかる課題を解
決するため、請求項1記載の発明として、濃縮液タンク
内に収容された濃縮液を中空の縦筒の下部から該縦筒内
に注入し、該縦筒の外部から第1の熱交換器によって冷
却して、該濃縮液中の水分をフレーク状の氷とし、この
氷を前記縦筒内に設けられた掻き取り機構で掻き取り搬
送することによって濃縮液を分離し、前記濃縮液の濃縮
度を上げるようにした凍結濃縮装置であって、前記縦筒
の、前記第1の熱交換器の下流側に、該第1の熱交換器
にて冷却後の濃縮液を所定温度に加熱する第2の熱交換
器を設けるとともに、該第2の熱交換器を経た後の濃縮
液を前記濃縮液タンクに戻す濃縮液戻りラインを設けた
ことを特徴とする凍結濃縮装置を提供する。
In order to solve the above-mentioned problems, the present invention is directed to a first aspect of the present invention, wherein a concentrated liquid contained in a concentrated liquid tank is transferred from a lower portion of a hollow vertical cylinder into the vertical cylinder. The concentrate is cooled from the outside of the vertical tube by a first heat exchanger, and the water in the concentrated solution is turned into flake-like ice. The ice is scraped by a scraping mechanism provided in the vertical tube. A freeze-concentrator for separating a concentrated liquid by transporting the concentrated liquid to increase the concentration of the concentrated liquid, wherein the first heat exchanger is provided downstream of the first heat exchanger in the vertical cylinder. A second heat exchanger for heating the cooled concentrated solution to a predetermined temperature in the exchanger is provided, and a concentrated solution return line for returning the concentrated solution after passing through the second heat exchanger to the concentrated solution tank is provided. Provided is a freeze concentration device characterized by being provided.

【0016】かかる発明において、第2の熱交換器は、
好ましくは、縦筒の外周に巻装したコイルと該コイルに
加熱電力を付与するヒータとにより構成する。
In the present invention, the second heat exchanger comprises:
Preferably, it is constituted by a coil wound around the outer periphery of the vertical cylinder and a heater for applying heating power to the coil.

【0017】請求項2記載の発明は請求項1において、
前記縦筒は、前記第2の熱交換器の下方部位の壁部に該
縦筒内を流下した濃縮液が通過可能な複数の小孔が穿孔
されてなり、該小孔を通過した濃縮液を前記濃縮液戻り
ラインに導くように構成されてなる。
According to a second aspect of the present invention, in the first aspect,
The vertical tube has a plurality of small holes through which a concentrated liquid flowing down the vertical tube can pass through a wall of a lower portion of the second heat exchanger, and the concentrated liquid passing through the small holes. To the concentrate return line.

【0018】また、請求項3記載の発明は、請求項2に
おいて、前記小孔の周囲に金網等の網体を巻装し、該網
体の外側を囲んで、該網体を経た濃縮液を収容する濃縮
液受けを設け、該濃縮液受けに前記濃縮液戻りラインの
入口端を接続してなる。
According to a third aspect of the present invention, in the second aspect, a mesh such as a wire mesh is wound around the small hole, the outer periphery of the mesh is surrounded by the concentrated liquid passing through the mesh. Is provided, and an inlet end of the concentrate return line is connected to the concentrate receiver.

【0019】かかる発明によれば、縦筒内に導入された
濃縮液は、第1の熱交換器において冷媒の蒸発等によっ
て冷却されてフレーク状の氷が生成される。この氷は掻
き取り機構によって掻き取られ、搬送される。このフレ
ーク状の氷には表層に濃縮液が付着したものが多数含ま
れており、この氷は上方に搬送されて第2の熱交換器に
至り、該第2の熱交換器において、所定温度まで加熱、
昇温される。かかる加熱により、フレーク状の氷の表層
に付着していた濃縮液が分離され、縦筒の内壁面に沿っ
て降下し、縦筒の壁部に穿孔された小孔を通って濃縮液
戻りラインに入り、濃縮液タンクに戻される。
According to this invention, the concentrated liquid introduced into the vertical cylinder is cooled by evaporation of the refrigerant in the first heat exchanger, and flake-like ice is generated. This ice is scraped off by the scraping mechanism and transported. The flake-shaped ice contains a large amount of concentrated liquid adhering to the surface layer, and this ice is transported upward to reach the second heat exchanger, where the ice has a predetermined temperature. Heating up,
The temperature is raised. By such heating, the concentrated liquid adhering to the surface layer of the flake-shaped ice is separated, descends along the inner wall surface of the vertical cylinder, and passes through a small hole formed in the wall of the vertical cylinder, and the concentrated liquid return line. And returned to the concentrate tank.

【0020】従って、かかる発明によれば、第1の熱交
換器において生成された濃縮液が付着したフレーク状の
氷は第2の熱交換器を通る際に加熱されて、氷に付着し
ていた濃縮液が分離され、該濃縮液は濃縮液戻りライン
から濃縮液タンクに回収されるので、濃縮液が氷ととも
に失われることがなく、濃縮液の濃縮度を効率良く高め
ることができる。
Therefore, according to this invention, the flake-like ice to which the concentrated liquid generated in the first heat exchanger adheres is heated when passing through the second heat exchanger, and adheres to the ice. The concentrated liquid is separated and the concentrated liquid is recovered from the concentrated liquid return line to the concentrated liquid tank, so that the concentrated liquid is not lost together with the ice, and the concentration of the concentrated liquid can be efficiently increased.

【0021】尚、請求項3の発明のように、網体を設け
れば、小孔から溢れ出た氷粒を網体によって捕獲でき、
この氷が濃縮液戻りラインに浸入して濃縮液を希釈する
のを防止できる。
If the net is provided as in the third aspect of the present invention, ice particles overflowing from the small holes can be captured by the net.
This ice can be prevented from entering the concentrate return line and diluting the concentrate.

【0022】さらに請求項4記載の発明は、請求項1〜
3の何れかにおいて、前記第1の熱交換器の冷却度及び
第2の熱交換器の加熱度を制御するコントローラを設け
る。
Further, the invention described in claim 4 is the first invention.
In any one of the first to third aspects, a controller is provided for controlling the degree of cooling of the first heat exchanger and the degree of heating of the second heat exchanger.

【0023】この場合、コントローラは、前記縦筒内部
の温度等の温度検出信号に基づき、第1の熱交換器にお
ける濃縮液の冷却度及び第2の熱交換器における加熱度
を制御して、縦筒の第2の熱交換器の下流側の縦筒内温
度を所定温度に温度制御するように構成するのがよい。
In this case, the controller controls the degree of cooling of the concentrated liquid in the first heat exchanger and the degree of heating in the second heat exchanger based on a temperature detection signal such as the temperature inside the vertical cylinder. It is preferable that the temperature inside the vertical cylinder on the downstream side of the second heat exchanger of the vertical cylinder is controlled to a predetermined temperature.

【0024】かかる発明によればコントローラによって
第1の熱交換器の冷却度及び第2の熱交換器の加熱度を
制御することにより、縦筒内部の温度を、該縦筒内を搬
送される氷に付着した濃縮液が完全に分離される温度に
制御することができ、濃縮効率が向上する。
According to this invention, by controlling the degree of cooling of the first heat exchanger and the degree of heating of the second heat exchanger by the controller, the temperature inside the vertical cylinder is conveyed through the vertical cylinder. The temperature at which the concentrated liquid adhering to the ice is completely separated can be controlled, and the concentration efficiency is improved.

【0025】また、前記第1の熱交換器を蒸発器、第2
の熱交換器を凝縮器として機能させて冷媒回路で接続し
てヒートポンプサイクルを構成し、コントローラによっ
て温度制御を行なって前記縦筒内を適正温度に制御する
ことも可能である。
Further, the first heat exchanger is an evaporator, and the second heat exchanger is a second heat exchanger.
It is also possible to configure a heat pump cycle by making the heat exchanger function as a condenser and connect it with a refrigerant circuit, and control the temperature inside the vertical cylinder to an appropriate temperature by controlling the temperature with a controller.

【0026】[0026]

【発明の実施の形態】以下、図面を参照して本発明の好
適な実施形態を例示的に詳しく説明する。但しこの実施
形態に記載されている構成部品の寸法、材質、形状、そ
の相対的配置等は特に特定的な記載がないかぎりは、こ
の発明の範囲をそれに限定する趣旨ではなく、単なる説
明例にすぎない。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will now be described in detail with reference to the drawings. However, the dimensions, materials, shapes, relative arrangements, and the like of the components described in this embodiment are not intended to limit the scope of the present invention unless otherwise specified, and are merely illustrative examples. Only.

【0027】図1は本発明の実施形態にかかる凍結濃縮
装置の構成図である。図1において、1は垂直に立設さ
れた中空の縦筒、2は該縦筒1の上端に連結され水平方
向に延設された中空の横筒であり、該縦筒1の内部には
濃縮液の縦通路24が形成され、また該横筒2の内部に
は濃縮液から分離されたフレーク状の氷を搬送するため
の横通路25が形成されている。
FIG. 1 is a configuration diagram of a freeze concentration device according to an embodiment of the present invention. In FIG. 1, reference numeral 1 denotes a vertically extending hollow vertical cylinder, 2 denotes a hollow horizontal cylinder connected to the upper end of the vertical cylinder 1 and extending in the horizontal direction. A vertical passage 24 for the concentrate is formed, and a horizontal passage 25 for transporting flake ice separated from the concentrate is formed inside the horizontal cylinder 2.

【0028】3は前記縦通路24内に挿設された掻き取
り機構で、中心軸3aの外周に螺旋羽根3bを長手方向
に沿って巻装してなる。また4は前記横通路25内に挿
設された搬送機構で、中心軸4aの外周に螺旋羽根4b
を巻装してなる。5は前記縦筒1内の掻き取り機構3の
下端に連結されてこれを駆動するモータ、6は前記横筒
2内の搬送機構4の端部に連結されてこれを駆動するモ
ータである。
Reference numeral 3 denotes a scraping mechanism inserted into the vertical passage 24, and is formed by winding a spiral blade 3b around the center shaft 3a along the longitudinal direction. Reference numeral 4 denotes a transport mechanism inserted in the horizontal passage 25, and a spiral blade 4b is provided around the center shaft 4a.
Wrapped around. A motor 5 is connected to the lower end of the scraping mechanism 3 in the vertical cylinder 1 and drives the same. A motor 6 is connected to an end of the transport mechanism 4 in the horizontal cylinder 2 and drives the same.

【0029】12は前記縦筒1の下部外周に設けられた
冷却装置である。該冷却装置12は冷凍サイクルの蒸発
器の機能を有しており、冷媒を圧縮する圧縮機9に冷媒
管13、13を介して接続され、該圧縮機9にて圧縮さ
れたガス冷媒を凝縮させた後、膨張機構を経て該冷却装
置12に導き、該冷却装置12にて蒸発させて、縦筒1
の内部の縦通路24内に導入された濃縮液を冷却するよ
うになっている。
Reference numeral 12 denotes a cooling device provided on the outer periphery of the lower part of the vertical cylinder 1. The cooling device 12 has a function of an evaporator of a refrigeration cycle, and is connected to a compressor 9 for compressing the refrigerant via refrigerant pipes 13 and 13 to condense the gas refrigerant compressed by the compressor 9. After that, it is led to the cooling device 12 via an expansion mechanism, and evaporated by the cooling device 12 to
The concentrated liquid introduced into the vertical passage 24 in the inside is cooled.

【0030】7は濃縮液が収容される濃縮液タンクで、
該タンク7の底部開口部には循環ポンプ8を備えた濃縮
液管14が接続されている。そして該濃縮液管14の他
端は前縦筒1の下部に開口された濃縮液入口1aに接続
されている。
Reference numeral 7 denotes a concentrate tank for storing the concentrate.
A concentrated liquid pipe 14 having a circulation pump 8 is connected to the bottom opening of the tank 7. The other end of the concentrated liquid pipe 14 is connected to a concentrated liquid inlet 1a opened at the lower part of the front vertical cylinder 1.

【0031】16は前記横筒2の端部の下部に開口され
た氷抽出口で、該氷抽出口16の下方には生成したフレ
ーク状の氷を受け入れる氷受けタンク22が設けられて
いる。
Reference numeral 16 denotes an ice extraction port opened at the lower part of the end of the horizontal cylinder 2. Below the ice extraction port 16, an ice receiving tank 22 for receiving the generated flake ice is provided.

【0032】以上の構成は図3に示す従来技術と同様で
ある。本発明においては、縦筒1に前記冷却装置12を
経た後の濃縮液を含むフレーク状氷を昇温させる加熱装
置を設けて、縦通路24内の温度制御を行うように構成
している。
The above configuration is the same as the prior art shown in FIG. In the present invention, the vertical cylinder 1 is provided with a heating device for raising the temperature of the flake ice containing the concentrated liquid after passing through the cooling device 12 so as to control the temperature in the vertical passage 24.

【0033】即ち、図1において、11は前記縦筒1の
外周に巻装された加熱コイル、10は該加熱コイル11
に電熱を与えるヒータである。該加熱コイル11は上記
縦筒1の上部に設けられて、前記冷却装置12にて冷却
後の濃縮液及びフレーク状の氷を所定温度まで加熱する
ものである。17は前記縦筒1の外周に設けられた濃縮
液受けであり、該濃縮液受け17は前記冷却装置12の
下流つまり上方でかつ前記加熱コイル11の下方に設け
られている。
That is, in FIG. 1, reference numeral 11 denotes a heating coil wound around the outer periphery of the vertical cylinder 1;
Is a heater for applying electric heat to the heater. The heating coil 11 is provided on the upper part of the vertical cylinder 1 and heats the concentrated liquid and flake ice cooled by the cooling device 12 to a predetermined temperature. Reference numeral 17 denotes a concentrate receiver provided on the outer periphery of the vertical cylinder 1. The concentrate receiver 17 is provided downstream, that is, above, the cooling device 12 and below the heating coil 11.

【0034】17aは前記濃縮液受け17の下部に設け
られた濃縮液出口で、濃縮液戻り管15を介して濃縮液
受け17よりも下方に配置された前記濃縮液タンク7に
接続されている。21は該濃縮液戻り管15を開閉する
開閉弁である。
Reference numeral 17a denotes a concentrate outlet provided at the lower part of the concentrate receiver 17, which is connected to the concentrate tank 7 disposed below the concentrate receiver 17 via a concentrate return pipe 15. . Reference numeral 21 denotes an on-off valve for opening and closing the concentrate return pipe 15.

【0035】前記縦筒1の前記濃縮液受け17内に臨む
部位には多数の小孔18が穿孔され、さらに濃縮液受け
17内には該小孔18を囲んで金網19が設けられてい
る。
A number of small holes 18 are formed in a portion of the vertical cylinder 1 facing the concentrated liquid receiver 17, and a wire net 19 is provided in the concentrated liquid receiver 17 so as to surround the small holes 18. .

【0036】30はコントローラ、33は前記縦筒1
の、ヒータ10の下流側における内壁面の温度を検出す
る温度センサ、34は該温度センサ33からの温度検出
信号を前記コントローラ30に伝送する検出回線であ
る。該コントローラ30からの制御出力は、制御回線3
2により前記圧縮機9に出力されるとともに、制御回線
31により前記ヒータ10に出力され、かかる制御出力
によって、圧縮機9の容量制御及びヒータ10の加熱度
の制御を行っている。
Reference numeral 30 denotes a controller, and 33 denotes the vertical cylinder 1
A temperature sensor 34 for detecting the temperature of the inner wall surface on the downstream side of the heater 10 is a detection line for transmitting a temperature detection signal from the temperature sensor 33 to the controller 30. The control output from the controller 30 is
2 and output to the heater 10 via a control line 31. The control output controls the capacity of the compressor 9 and the degree of heating of the heater 10.

【0037】かかる構成からなる凍結濃縮装置の稼動時
において、濃縮液タンク7内の濃縮液は循環ポンプ8に
よって濃縮液管14を通り前記縦筒1の濃縮液入口1a
から縦通路24に導入される。
During operation of the freeze-concentrator having such a configuration, the concentrated liquid in the concentrated liquid tank 7 passes through the concentrated liquid pipe 14 by the circulating pump 8, and the concentrated liquid inlet 1a of the vertical cylinder 1 is formed.
From the vertical passage 24.

【0038】そして、該濃縮液は前記循環ポンプ8によ
って縦通路24内を上方に押し上げられつつ冷却装置1
2にて冷媒の蒸発によって奪熱され冷却される。かかる
冷却により濃縮液中の水分が凍結される。かかる冷却に
より濃縮液中の水分が凍結されてフレーク状の氷となり
縦筒1の内壁面に付着する。
The condensed liquid is pushed upward in the vertical passage 24 by the circulation pump 8 while being cooled.
At 2, the heat is removed by evaporation of the refrigerant and cooled. Such cooling freezes the water in the concentrate. By this cooling, the water in the concentrated liquid is frozen and becomes flake-like ice, which adheres to the inner wall surface of the vertical cylinder 1.

【0039】一方、前記縦通路24内の前記冷却装置1
2の内側部位に設けられた掻き取り機構3はモータ5に
よって回転せしめられており、かかる回転により螺旋羽
根3bの外周面にて前記縦筒1の内壁面に付着した氷を
掻き取る。
On the other hand, the cooling device 1 in the vertical passage 24
The scraping mechanism 3 provided at the inner part of the cylinder 2 is rotated by a motor 5, and the rotation scrapes off the ice adhered to the inner wall surface of the vertical cylinder 1 on the outer peripheral surface of the spiral blade 3b.

【0040】このようにして生成されたフレーク状の氷
には前記のようにその表面に濃縮液が付着したものが多
く含まれている。この氷は縦通路24内に充満されつ
つ、循環ポンプ8による押込力等によって上方に押し上
げられ、加熱コイル11の内側に達すると、該加熱コイ
ルの電熱によって、後述するコントローラ30にて制御
された所定温度まで加熱、昇温される。かかる加熱によ
って、フレーク状の氷の表層に付着している濃縮液(濃
縮液のエキス)が分離される。
[0040] The flake ice thus produced contains a large amount of ice having a concentrated solution adhered to its surface as described above. The ice is filled up in the vertical passage 24 and is pushed upward by a pushing force of the circulation pump 8 or the like. When the ice reaches the inside of the heating coil 11, the ice is controlled by a controller 30 described later by electric heating of the heating coil. It is heated and heated to a predetermined temperature. By such heating, the concentrated liquid (the extract of the concentrated liquid) adhering to the surface layer of the flake ice is separated.

【0041】そしてこの分離された濃縮液は、縦筒1の
内壁面に沿って流下し、多数の小孔18を通って濃縮液
受け17内に流出し、さらに金網19を通過することに
よって氷片当の固形分が捕捉され、濃縮液出口17aか
ら濃縮液戻り管15に流入し、該濃縮液戻り管15を通
って濃縮液タンク7に戻される。
The separated concentrated liquid flows down along the inner wall surface of the vertical cylinder 1, flows out of the concentrated liquid receiver 17 through a number of small holes 18, and further passes through a wire mesh 19, thereby forming ice. One solid is captured, flows into the concentrated liquid return pipe 15 from the concentrated liquid outlet 17a, and is returned to the concentrated liquid tank 7 through the concentrated liquid return pipe 15.

【0042】ここで前記コントローラ30においては、
温度センサ33にて検出された縦通路24内の加熱コイ
ル11下流側における濃縮液の温度(縦筒1の内壁温度
でも可)の検出信号、圧縮機の吐出圧力の検出信号、ヒ
ータ10の電力の検出信号等の検出信号が入力されてい
る。そして該コントローラ30においてはこれらの信号
に基づき、圧縮機9の容量およびヒータ10の加熱電力
を制御することにより、縦通路24壁面の温度を適正温
度に制御する。
Here, in the controller 30,
A detection signal of the temperature of the concentrated liquid downstream of the heating coil 11 in the vertical passage 24 detected by the temperature sensor 33 (the temperature of the inner wall of the vertical cylinder 1 is also possible), a detection signal of a discharge pressure of the compressor, and a power of the heater 10 , And the like. The controller 30 controls the capacity of the compressor 9 and the heating power of the heater 10 based on these signals to control the temperature of the wall surface of the vertical passage 24 to an appropriate temperature.

【0043】また前記冷却装置12を蒸発器、加熱コイ
ル11を凝縮器として機能させ、双方を冷媒回路で接続
してヒートポンプサイクルを形成し、該ヒートポンプサ
イクルの温度制御を前記コントローラ30によって行
い、縦筒1内の温度を適正温度に制御することもでき
る。
The cooling device 12 functions as an evaporator and the heating coil 11 functions as a condenser, and both are connected by a refrigerant circuit to form a heat pump cycle. The temperature control of the heat pump cycle is performed by the controller 30. The temperature in the cylinder 1 can be controlled to an appropriate temperature.

【0044】一方、前記加熱コイル11によって加熱さ
れて濃縮液が分離された氷、つまり濃縮液の付着のない
フレーク状の氷は、縦通路24内を上方に搬送されて横
筒2内の横通路25に入る。さらに該横通路24内の氷
はモータ6によって駆動される搬送機構4によって水平
方向に搬送され、氷抽出口16から氷受けタンク22に
送出される。以上のサイクルを繰り返すことにより、濃
縮液タンク7内の濃縮液は水分量が減じてその濃縮度が
増大される。
On the other hand, ice heated by the heating coil 11 to separate the concentrated liquid, that is, flake-shaped ice having no concentrated liquid adhered thereto, is transported upward in the vertical passage 24 and is moved horizontally in the horizontal cylinder 2. Enter the passage 25. Further, the ice in the lateral passage 24 is transported in the horizontal direction by the transport mechanism 4 driven by the motor 6, and sent out from the ice extraction port 16 to the ice receiving tank 22. By repeating the above cycle, the concentration of the concentrated liquid in the concentrated liquid tank 7 is reduced, and the concentration of the concentrated liquid is increased.

【0045】(実験例)図2は、本発明にかかる凍結濃縮
装置における運転時間毎の濃縮液及び氷の状態の変化状
況の実験結果を示し、同図(A)は図3に示される比較
技術の場合、同図(B)は図1に示される実施形態の場
合を示す。
(Experimental Example) FIG. 2 shows the experimental results of the state of changes in the state of the concentrated liquid and ice for each operation time in the freeze-concentrating apparatus according to the present invention, and FIG. 2A shows the comparison result shown in FIG. In the case of technology, FIG. 2B shows the case of the embodiment shown in FIG.

【0046】図2に明らかなように、氷相濃度、つまり
氷抽出口16から抽出される氷に濃縮液が含まれている
程度は、比較技術(図2(A))では運転時間150分
で6.9%であったのに対し、本発明の実施形態では運
転時間140分で0.54%と、従来技術の従来技術の
1/12程度に減少している。即ち、図1に示す本発明
の実施形態の装置にあっては、凍結濃縮工程後に抽出さ
れる氷中に含まれる濃縮液の量つまり、水とともに失わ
れる濃縮液の量は従来技術の1/12程度に減少してい
る。
As is clear from FIG. 2, the ice phase concentration, that is, the degree to which the ice extracted from the ice extraction port 16 contains the concentrated liquid is 150 minutes in the comparative technique (FIG. 2A). 6.9%, whereas in the embodiment of the present invention, the operation time was 140 minutes and 0.54%, which is about 1/12 of the prior art. That is, in the apparatus of the embodiment of the present invention shown in FIG. 1, the amount of the concentrate contained in the ice extracted after the freeze-concentration step, that is, the amount of the concentrate lost together with water is 1 / the amount of the prior art. It has decreased to about 12.

【0047】[0047]

【発明の効果】以上記載のごとく、本発明によれば、第
1の熱交換器において生成された、濃縮液が付着したフ
レーク状の氷は第2の熱交換器にて加熱することによ
り、該氷の表層に付着している濃縮液を確実に分離させ
て濃縮液タンクに回収することができ、濃縮液が氷とと
もに失われるのを防止することができる。これにより濃
縮液の濃縮度を効率よく高めることができる。
As described above, according to the present invention, the flake-like ice to which the concentrated liquid is generated, which is generated in the first heat exchanger, is heated in the second heat exchanger. The concentrated liquid adhering to the surface layer of the ice can be reliably separated and collected in the concentrated liquid tank, so that the concentrated liquid can be prevented from being lost together with the ice. Thereby, the concentration of the concentrated liquid can be efficiently increased.

【0048】特に請求項4のように構成すれば、コント
ローラによって第1の熱交換器の冷却度及び第2の熱交
換器の加熱度を制御することにより、縦筒内部の温度を
氷から濃縮液を分離させる適正温度に制御することがで
き、濃縮効率が向上する。
In particular, according to the present invention, the controller controls the degree of cooling of the first heat exchanger and the degree of heating of the second heat exchanger, thereby concentrating the temperature inside the vertical cylinder from ice. The temperature can be controlled to an appropriate temperature at which the liquid is separated, and the concentration efficiency is improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施形態にかかる凍結濃縮装置の全体
構成図である。
FIG. 1 is an overall configuration diagram of a freeze concentration device according to an embodiment of the present invention.

【図2】上記実施形態の装置と従来技術との凍結性能の
比較表である。
FIG. 2 is a comparison table of the freezing performance of the device of the embodiment and the conventional technology.

【図3】本発明との比較技術を示す図1対応図である。FIG. 3 is a diagram corresponding to FIG. 1 showing a comparative technique with the present invention.

【符号の説明】[Explanation of symbols]

1 縦筒 2 横筒 3 掻き取り機構 4 搬送機構 5、6 モータ 7 濃縮液タンク 8 循環ポンプ 9 圧縮機 10 ヒータ 11 加熱コイル 12 冷却装置 13 冷媒管 14 濃縮液管 15 濃縮液戻り管 16 氷抽出口 17 濃縮液受け 18 小孔 19 金網 21 開閉弁 22 氷受けタンク 24 縦通路 25 横通路 30 コントローラ 33 温度センサ REFERENCE SIGNS LIST 1 vertical cylinder 2 horizontal cylinder 3 scraping mechanism 4 transport mechanism 5, 6 motor 7 concentrated liquid tank 8 circulation pump 9 compressor 10 heater 11 heating coil 12 cooling device 13 refrigerant pipe 14 concentrated liquid pipe 15 concentrated liquid return pipe 16 ice extraction Mouth 17 Concentrate receiver 18 Small hole 19 Wire mesh 21 On-off valve 22 Ice receiver tank 24 Vertical passage 25 Horizontal passage 30 Controller 33 Temperature sensor

フロントページの続き (72)発明者 坂下 茂 東京都江東区牡丹2丁目13番1号 株式会 社前川製作所内Continued on the front page (72) Inventor Shigeru Sakashita 2-13-1, Botan, Koto-ku, Tokyo Inside Maekawa Manufacturing Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 濃縮液タンク内に収容された濃縮液を中
空の縦筒の下部から該縦筒内に注入し、該縦筒の外部か
ら第1の熱交換器によって冷却して該濃縮液中の水分を
フレーク状の氷とし、この氷を前記縦筒内に設けられた
掻き取り機構で掻き取り搬送することによって濃縮液を
分離し、前記濃縮液の濃縮度を上げるようにした凍結濃
縮装置において、 前記縦筒の、前記第1の熱交換器の下流側に、該第1の
熱交換器にて冷却後の濃縮液を所定温度に加熱する第2
の熱交換器を設けるとともに、該第2の熱交換器を経た
後の濃縮液を前記濃縮液タンクに戻す濃縮液戻りライン
を設けたことを特徴とする凍結濃縮装置。
1. A concentrated liquid contained in a concentrated liquid tank is injected into the vertical cylinder from the lower part of a hollow vertical cylinder, and cooled by a first heat exchanger from outside the vertical cylinder to form the concentrated liquid. The concentrated water is flaked ice, and the concentrated liquid is separated by scraping and transporting the ice by a scraping mechanism provided in the vertical cylinder, and freeze concentration is performed so as to increase the concentration of the concentrated liquid. In the apparatus, on the downstream side of the first heat exchanger of the vertical cylinder, a second liquid for heating the concentrated liquid cooled by the first heat exchanger to a predetermined temperature.
And a concentrated liquid return line for returning the concentrated liquid having passed through the second heat exchanger to the concentrated liquid tank.
【請求項2】 前記縦筒は、前記第二の熱交換器の下方
部位の壁部に、該縦筒内を流下した濃縮液が通過可能な
複数の小孔が穿孔されてなり、該小孔を通過した濃縮液
を前記濃縮液戻りラインに導くように構成されてなる請
求項1記載の凍結濃縮装置。
2. The vertical cylinder has a plurality of small holes, through which a concentrated liquid flowing down the vertical cylinder can pass, formed in a wall of a lower portion of the second heat exchanger. 2. The freeze concentration device according to claim 1, wherein the concentrate is passed through the hole to guide the concentrate to the concentrate return line.
【請求項3】 前記小孔の周囲に金網等の網体を巻装
し、該網体の外側を囲んで、該網体を経た濃縮液を収容
する濃縮液受けを設け、該濃縮液受けに前記濃縮液戻り
ラインの入口端を接続してなる請求項2記載の凍結濃縮
装置。
3. A net, such as a wire net, is wound around the small hole, and a concentrate receiver for containing a concentrate passed through the net is provided around the outside of the net, and the concentrate receiver is provided. 3. The freeze-concentrator according to claim 2, wherein an inlet end of the concentrated liquid return line is connected to the concentrated liquid return line.
【請求項4】 前記第1の熱交換器の冷却及び第2の熱
交換器の加熱度を制御するコントローラを備えてなる請
求項1記載ないし3の何れか1つに記載の凍結濃縮装
置。
4. The freeze concentration apparatus according to claim 1, further comprising a controller that controls cooling of the first heat exchanger and heating of the second heat exchanger.
JP14292699A 1999-03-19 1999-05-24 Freeze concentrator Expired - Fee Related JP4306018B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14292699A JP4306018B2 (en) 1999-03-19 1999-05-24 Freeze concentrator

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP7661799 1999-03-19
JP11-76617 1999-03-19
JP14292699A JP4306018B2 (en) 1999-03-19 1999-05-24 Freeze concentrator

Publications (2)

Publication Number Publication Date
JP2000334203A true JP2000334203A (en) 2000-12-05
JP4306018B2 JP4306018B2 (en) 2009-07-29

Family

ID=26417754

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14292699A Expired - Fee Related JP4306018B2 (en) 1999-03-19 1999-05-24 Freeze concentrator

Country Status (1)

Country Link
JP (1) JP4306018B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010530303A (en) * 2007-06-20 2010-09-09 ナーガールジュナ エネジー プライベート リミテッド Method and apparatus for concentrating dilute solutions
JP2013044492A (en) * 2011-08-25 2013-03-04 Izui Tekkosho:Kk Freeze concentrating device and freeze concentrating method
JP2013236615A (en) * 2012-11-26 2013-11-28 Shima System:Kk Processing method for beverage or seasoning
JP2014008492A (en) * 2012-07-03 2014-01-20 Ishikawa Prefecture Interface advancing freeze concentration apparatus and interface advancing freeze concentration method
WO2015030162A1 (en) 2013-08-29 2015-03-05 株式会社明治 Production method for concentrated product using membrane-concentration method and freeze-concentration method
WO2015030161A1 (en) 2013-08-29 2015-03-05 株式会社明治 Production method for concentrated product using freeze-concentration method
CN107837560A (en) * 2017-12-12 2018-03-27 东莞理工学院 A kind of aqueous solution continuously freezes concentration systems and method
CN111013183A (en) * 2019-12-27 2020-04-17 昆明弘承商贸有限公司 Solution freezing concentration device and efficient concentration process thereof

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010530303A (en) * 2007-06-20 2010-09-09 ナーガールジュナ エネジー プライベート リミテッド Method and apparatus for concentrating dilute solutions
JP2013044492A (en) * 2011-08-25 2013-03-04 Izui Tekkosho:Kk Freeze concentrating device and freeze concentrating method
JP2014008492A (en) * 2012-07-03 2014-01-20 Ishikawa Prefecture Interface advancing freeze concentration apparatus and interface advancing freeze concentration method
JP2013236615A (en) * 2012-11-26 2013-11-28 Shima System:Kk Processing method for beverage or seasoning
WO2015030162A1 (en) 2013-08-29 2015-03-05 株式会社明治 Production method for concentrated product using membrane-concentration method and freeze-concentration method
WO2015030161A1 (en) 2013-08-29 2015-03-05 株式会社明治 Production method for concentrated product using freeze-concentration method
US9913484B2 (en) 2013-08-29 2018-03-13 Meiji Co., Ltd. Production method for concentrated product using membrane-concentration method and freeze-concentration method
CN107837560A (en) * 2017-12-12 2018-03-27 东莞理工学院 A kind of aqueous solution continuously freezes concentration systems and method
CN111013183A (en) * 2019-12-27 2020-04-17 昆明弘承商贸有限公司 Solution freezing concentration device and efficient concentration process thereof
CN111013183B (en) * 2019-12-27 2023-07-28 昆明弘承食品科技有限公司 Solution freezing and concentrating device and efficient concentration process thereof

Also Published As

Publication number Publication date
JP4306018B2 (en) 2009-07-29

Similar Documents

Publication Publication Date Title
US4033048A (en) Freeze drying apparatus
AU605366B2 (en) Dual freezing chamber system and method for water purification
US2133521A (en) Ice making apparatus
US2221212A (en) Refrigerating apparatus
CN109477691A (en) Cylindrical heat exchanger
JPH02126071A (en) Refrigerating mechanism
JP2000334203A (en) Freezing and concentrating apparatus
US6935123B2 (en) Method of using an ice cream machine
US4112702A (en) Freeze desalination and concentration apparatus
JP2007198657A (en) Water ice making device
US6367285B1 (en) Freeze-concentrating apparatus for aqueous solutions, ice pillar producing apparatus, and freeze-concentrating method for aqueous solutions
US3768272A (en) Direct contact food freezer
JP3112063U7 (en)
JP3112063U (en) Ice confectionery production equipment by rapid ice making and rapid ice melting
CN2453355Y (en) Continuous ice making machine
JPH0233587A (en) Ice machine and manufacture of ice piece
KR20040052964A (en) Device for manufacturing frozen sweet by a quick freezing and melting
CN207247658U (en) A kind of ice-making system that can produce block ice on demand in refrigerator
US2988895A (en) Process for low temperature dehydration
JP2001525671A (en) Apparatus and method for passage refrigeration of non-solid materials
CN106616210A (en) Vacuum pre-cooling system and pre-cooling method thereof
WO2004045738A2 (en) Freeze concentration system
CN1105210A (en) Refrigerating concentrating method for juice and special equipment
US20070130984A1 (en) Ice making and unfreezing control device for an ice-making machine
CN211060482U (en) Immersion type refrigerator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090331

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090424

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090427

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120515

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130515

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140515

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees