JP2014007947A - Power generator - Google Patents

Power generator Download PDF

Info

Publication number
JP2014007947A
JP2014007947A JP2013108987A JP2013108987A JP2014007947A JP 2014007947 A JP2014007947 A JP 2014007947A JP 2013108987 A JP2013108987 A JP 2013108987A JP 2013108987 A JP2013108987 A JP 2013108987A JP 2014007947 A JP2014007947 A JP 2014007947A
Authority
JP
Japan
Prior art keywords
coil
power generation
coil arrangement
generator
permanent magnets
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013108987A
Other languages
Japanese (ja)
Other versions
JP6148068B2 (en
Inventor
Hiroshi Ide
洋 井出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PAL DATA CORP
PAL-DATA CORP
Original Assignee
PAL DATA CORP
PAL-DATA CORP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PAL DATA CORP, PAL-DATA CORP filed Critical PAL DATA CORP
Priority to JP2013108987A priority Critical patent/JP6148068B2/en
Publication of JP2014007947A publication Critical patent/JP2014007947A/en
Application granted granted Critical
Publication of JP6148068B2 publication Critical patent/JP6148068B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Permanent Magnet Type Synchronous Machine (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve power generation efficiency by reducing rotational torque caused by current which flows when a load is connected to a power generator.SOLUTION: A power generator 1 comprises a pair of rotors fixed to a rotary shaft 8, and a stator disposed between the pair of rotors. In the stator of the power generator 1, a plurality of power generation basic constitutions 3 are fixed in the same direction towards the rotary shaft 8, and in each of the power generation basic constitutions 3, three coil arrangement plates 4 including power generation coils are stacked while being deviated at 120°, respectively. The coil arrangement plate 4 includes a power generation coil 15 including a side portion T in which a conductor is disposed along a virtual line K. In the rotor, permanent magnets disposed in the positional relationship confronted with the side portion T in the coil arrangement plate 4 are disposed side by side in such a manner that polarities of the permanent magnets are different alternately. The pair of rotors are fixed to the rotary shaft 8 while confronting the permanent magnets thereof with each other and making the polarities of the permanent magnets confronted with each other become different polarities.

Description

本発明は、低速回転及び低トルクで発電機を回転させても充分な発電能力を発揮する発電機に関する。   The present invention relates to a generator that exhibits sufficient power generation capability even when the generator is rotated at low speed and with low torque.

発電機の回転トルクの軽減、及び発電効率の向上に関して各種提案されている。(例えば特許文献1〜2参照)。   Various proposals have been made for reducing the rotational torque of the generator and improving the power generation efficiency. (For example, see Patent Documents 1 and 2).

特許文献1には、コア無しコイルを用いることで、コア有りコイルを用いた場合に生じていた起動時のコギングトルクと呼ばれる抵抗を殆ど受けず、低流速の流体を動力源としても十分な発電能力を発揮するようにした発電機が記載されている。特許文献2には、磁界の掛かる1つの中空状のコイルの2辺に、異なる向きの磁束を均等にかけることにより、コア有りコイルを用いた場合に生じていたコアと永久磁石との間の磁気トルクを発生させず、発電効率を向上させた発電機が記載されている。   In Patent Document 1, by using a coil without a core, almost no resistance called a cogging torque at the time of starting that occurs when a coil with a core is used, and sufficient power generation is possible even with a low flow rate fluid as a power source. A generator that is designed to perform is described. In Patent Document 2, magnetic fluxes in different directions are evenly applied to two sides of one hollow coil to which a magnetic field is applied, so that the gap between the core and the permanent magnet that occurs when using a coil with a core is disclosed. A generator has been described that does not generate magnetic torque and has improved power generation efficiency.

特開2002−320364号公報JP 2002-320364 A 特開2011−50130号公報JP 2011-50130 A

特許文献1及び2の発電機では、いずれもコイルをコアレス化して回転トルクを低減させ、発電効率を向上させている。しかしながら、回転トルクの発生原因は他にもあり、回転トルクをさらに低減させることが望まれている。   In the generators of Patent Documents 1 and 2, the coil is made coreless to reduce rotational torque and improve power generation efficiency. However, there are other causes for the generation of rotational torque, and it is desired to further reduce the rotational torque.

n巻のコイルに電流iが流れると磁束φが生じて、このときの磁束φと電流iは比例して下記式(1)となる。
φ ∝ n・i ・・・ (1)
When the current i flows through the n-turn coil, a magnetic flux φ is generated. At this time, the magnetic flux φ and the current i are proportional to the following formula (1).
φ ∝ n · i (1)

発電機が回転すると、発電機に繋がれた負荷に発電した電流iが流れる。このとき、発電機のコイルの導線から、上記式(1)で算出される磁束φが発電機の永久磁石に掛かる。これにより、永久磁石とコイルの導線との間に磁気トルクが発生して回転トルクが生じる。   When the generator rotates, the generated current i flows through a load connected to the generator. At this time, the magnetic flux φ calculated by the above formula (1) is applied to the permanent magnet of the generator from the conductor wire of the generator coil. Thereby, a magnetic torque is generated between the permanent magnet and the conductive wire of the coil, and a rotational torque is generated.

本発明は、前記の課題を解決するためになされたもので、発電機に負荷が繋がれたときに流れる電流によって生じる回転トルクを低減すると共に、発電効率を向上させることを目的とする。   The present invention has been made to solve the above-described problems, and an object of the present invention is to reduce rotational torque generated by a current flowing when a load is connected to a generator, and to improve power generation efficiency.

前記の目的を達成するためになされた、特許請求の範囲の請求項1に記載された発電機は、回転可能に軸支された回転軸に、間隔を開けて固定された少なくとも一対の回転子と、前記一対の回転子の間に配置されていて前記回転軸が挿通されている固定子とを備える発電機であって、前記固定子は、複数の発電基本構成を前記回転軸方向に同じ向きで並べて配置されたものであり、前記発電基本構成は、発電用コイルが設けられたコイル配置板をP枚有し、このP枚のコイル配置板を互いに360/P°の角度ずつずらして前記回転軸方向に積層されたものであり、前記コイル配置板は、前記回転軸に対する直交面を略放射状に等分割する複数の仮想線に導体を沿わせた複数の辺部分を有する発電用コイルを備えていて、前記回転子は、1枚の前記コイル配置板における前記複数の辺部分と対向する位置関係に配置された複数の永久磁石を有し、この複数の永久磁石の極性が交互に異なるように並べて配置されたものであり、前記一対の回転子は、互いの前記複数の永久磁石を丁度対面させると共に、対面し合う前記永久磁石の極性が互いに異なる極性となるように前記回転軸に固定されていることを特徴とする。   The generator according to claim 1, which has been made to achieve the above object, includes at least a pair of rotors fixed at intervals to a rotation shaft that is rotatably supported. And a stator that is disposed between the pair of rotors and through which the rotating shaft is inserted, wherein the stator has a plurality of basic power generation configurations in the direction of the rotating shaft. The power generation basic configuration has P coil arrangement plates provided with power generation coils, and the P coil arrangement plates are shifted from each other by an angle of 360 / P °. The power generation coil, which is laminated in the direction of the rotation axis, has a plurality of side portions along which a conductor is disposed along a plurality of virtual lines that equally divide the plane orthogonal to the rotation axis in a substantially radial manner. And the rotor is one piece The coil arrangement plate has a plurality of permanent magnets arranged in a positional relationship facing the plurality of side portions, and the plurality of permanent magnets are arranged side by side so as to be alternately different, and the pair The rotor is fixed to the rotating shaft so that the permanent magnets just face each other and the facing permanent magnets have different polarities.

請求項2に記載された発電機は、請求項1に記載のものであり、前記発電用コイルは、隣接し合う一対の前記辺部分を環状に繋げるように導体を巻いたコイル要素を、リング状に接続して形成されたものであることを特徴とする。   The generator described in claim 2 is the generator described in claim 1, wherein the power generating coil includes a coil element in which a conductor is wound so as to connect a pair of adjacent side portions in a ring shape. It is formed by connecting in a shape.

請求項3に記載された発電機は、請求項1に記載のものであり、前記発電用コイルは、前記複数の辺部分をジグザグ状に繋げるように導体を巻いて形成されたものであることを特徴とする。   The generator described in claim 3 is the one described in claim 1, wherein the power generating coil is formed by winding a conductor so as to connect the plurality of side portions in a zigzag shape. It is characterized by.

請求項4に記載された発電機は、請求項1から3のいずれかに記載のものであり、前記発電用コイルは、前記コイル配置板にプリントパターンで形成されたものであることを特徴とする。   A generator described in claim 4 is the generator according to any one of claims 1 to 3, wherein the power generating coil is formed by a printed pattern on the coil arrangement plate. To do.

請求項5に記載された発電機は、請求項1から3のいずれかに記載のものであり、前記発電用コイルは、線状の導体、又は板状の導体で形成されたものであることを特徴とする。   The generator according to claim 5 is the one according to any one of claims 1 to 3, and the power generating coil is formed of a linear conductor or a plate-like conductor. It is characterized by.

本発明の発電機は、P枚のコイル配置板を互いに360/P°の角度ずつずらして積層した発電基本構成を固定子に設けているので、負過電流が流れることで各コイル配置板(発電用コイル)から発生する磁束もP相の位相差を有し、回転子の永久磁石にはP相の磁束の合成ベクトルが掛かる。P相の磁束の合成ベクトルは互いに打ち消し合って僅かな大きさになるため、回転トルクを低減することができる。又、発電した電圧が多相の交流電圧からなっているため、発電用コイルに流れるピーク電流が低く抑えられることから、各発電用コイルから発生する磁束のピークが小さく抑えられて平均化されるため、回転トルクへの負荷電流による影響を抑えることができる。さらに、複数の発電基本構成を設けているので、発電用コイルの導線の密度が下がり、永久磁石と各発電用コイルとの距離が分散する。負荷電流が流れて発電用コイルが発生する磁力(磁場)は距離の2乗に反比例するため、発電用コイルと永久磁石との距離が分散すると、分散せずに集中している場合と比して大幅に低減するので、発電機の回転トルクを大幅に低減することができる。又、複数の発電基本構成を配置することにより、発電基本構成を一つだけ配置する場合よりも、発電機が消費する総電力を低減できると共に発熱を抑えることができるため、発電効率を向上することができる。又、対面する永久磁石の極性が互いに異なるように一対の回転子が回転軸に固定されているため、各発電用コイルには両面に異なる向きの磁束がバランスよく掛かるため、高い電圧を発電でき、発電効率を向上することができる。発電機に設ける固定子及び回転子の数を増加させれば、発電電力を上げることができる。   In the generator of the present invention, the stator is provided with a basic power generation configuration in which P coil arrangement plates are laminated with an angle of 360 / P ° shifted from each other, so that each coil arrangement plate ( The magnetic flux generated from the power generation coil) also has a P-phase phase difference, and a composite vector of the P-phase magnetic flux is applied to the permanent magnet of the rotor. Since the combined vector of the P-phase magnetic flux cancels each other and becomes a slight magnitude, the rotational torque can be reduced. In addition, since the generated voltage is a multi-phase AC voltage, the peak current flowing through the power generating coil can be kept low, so the peak of the magnetic flux generated from each power generating coil is kept small and averaged. Therefore, the influence of the load current on the rotational torque can be suppressed. Furthermore, since a plurality of power generation basic configurations are provided, the density of the conductive wire of the power generation coil is reduced, and the distance between the permanent magnet and each power generation coil is dispersed. The magnetic force (magnetic field) generated by the power generating coil when the load current flows is inversely proportional to the square of the distance. Therefore, if the distance between the power generating coil and the permanent magnet is dispersed, it is not concentrated but concentrated. Therefore, the rotational torque of the generator can be greatly reduced. In addition, by arranging a plurality of power generation basic configurations, the total power consumed by the generator can be reduced and heat generation can be suppressed as compared with the case where only one power generation basic configuration is arranged, so that power generation efficiency is improved. be able to. In addition, since a pair of rotors are fixed to the rotating shaft so that the polarities of the facing permanent magnets are different from each other, magnetic fluxes in different directions are applied to each generating coil in a balanced manner, so that a high voltage can be generated. , Power generation efficiency can be improved. If the number of stators and rotors provided in the generator is increased, the generated power can be increased.

発電用コイルが隣接し合う一対の辺部分を環状に繋げるように導体を巻いたコイル要素をリング状に接続したものである場合、発電用コイルの巻き数が各コイル要素の巻き数の総和になるので、巻き数を増大でき、発電効率を一層向上することができる。   When a coil element wound with a conductor is connected in a ring shape so that a pair of side portions adjacent to each other for a power generating coil are connected in a ring shape, the number of turns of the power generating coil is the sum of the number of turns of each coil element. Therefore, the number of turns can be increased, and the power generation efficiency can be further improved.

発電用コイルが複数の辺部分をジグザグ状に繋げるように導体を巻いて形成されたものである場合、コイル要素をリング状に繋げる電気接続配線を無くすことができ、簡便な構造にすることができる。   When the power generating coil is formed by winding a conductor so as to connect a plurality of side portions in a zigzag shape, the electrical connection wiring for connecting the coil elements in a ring shape can be eliminated, and a simple structure can be obtained. it can.

発電用コイルをコイル配置板にプリントパターンで形成する場合、線材を巻く作業が不要になり、同一品質のものを簡便かつ大量に製造することができる。特にコイル配置板を多層プリント基板で形成し、複数の層に亘って発電用コイルを形成すると、コイルの巻き数が増大するので、発電効率を一層向上することができる。   When the power generating coil is formed on the coil arrangement plate with a printed pattern, the work of winding the wire is not required, and the same quality can be manufactured easily and in large quantities. In particular, when the coil arrangement plate is formed of a multilayer printed board and the power generation coil is formed across a plurality of layers, the number of turns of the coil increases, so that the power generation efficiency can be further improved.

発電用コイルが線状の導体、又は板状の導体で形成されたものである場合、平巻きや多層巻きなど任意の形状にコイルを形成し易く、発電効率を向上し易い。   When the power generation coil is formed of a linear conductor or a plate-shaped conductor, it is easy to form the coil in an arbitrary shape such as flat winding or multilayer winding, and it is easy to improve power generation efficiency.

本発明を適用する発電機を示す正面図である。It is a front view which shows the generator to which this invention is applied. 発電機の発電基本構成を示す側面図である。It is a side view which shows the electric power generation basic composition of a generator. 発電用コイルの一つのコイル要素を模式的に示す側面図である。It is a side view which shows typically one coil element of the coil for electric power generation. 回転子を示す側面図である。It is a side view which shows a rotor. 本発明を適用する発電機の電気的構成図である。It is an electrical block diagram of the generator to which this invention is applied. 固定子及び回転子を増設した発電機を示す正面図である。It is a front view which shows the generator which expanded the stator and the rotor. プリント基板で形成した別のコイル配置板の例を示す側面図及び一部拡大図である。It is the side view and partial enlarged view which show the example of another coil arrangement | positioning board formed with the printed circuit board. 多層プリント基板で形成した別のコイル配置板の層構造を示す分解図である。It is an exploded view which shows the layer structure of another coil arrangement | positioning board formed with the multilayer printed circuit board. 本発明における固定子が発生する磁場のシミュレーション結果である。It is a simulation result of the magnetic field which the stator in the present invention generates. 本発明適用外の固定子が発生する磁場のシミュレーション結果である。It is a simulation result of the magnetic field which the stator of this invention application does not generate | occur | produce.

以下、本発明の実施形態を詳細に説明するが、本発明の範囲はこれらの実施形態に限定されるものではない。   Hereinafter, although embodiment of this invention is described in detail, the scope of the present invention is not limited to these embodiment.

本発明を適用する発電機1を図1に示す。発電機1は、回転可能に軸支された回転軸8に、間隔を開けて固定具7、7で固定された少なくとも一対の回転子6、6と、一対の回転子6、6の間に配置されていて回転軸8が挿通されている固定子2とを備えている。固定具7と回転子6とは固定されている。   A generator 1 to which the present invention is applied is shown in FIG. The generator 1 is provided between a pair of rotors 6, 6 and at least a pair of rotors 6, 6 fixed to a rotating shaft 8 rotatably supported by fixing tools 7, 7 at intervals. And a stator 2 through which the rotating shaft 8 is inserted. The fixture 7 and the rotor 6 are fixed.

固定子2は、回転子6、6と接触しないように、回転子6、6との間に、均等のギャップ(隙間)を保つように、不図示の筐体ケースに固定されている。ギャップは、発電効率の観点から狭い方が好ましく、一例として1mm程度に設定する。固定子2は、複数の発電基本構成3(3、3、3・・・3)を回転軸8の軸方向に同じ向きで積層して(並べて)配置されたものである。各発電基本構成3はいずれも同様に形成されており、各発電基本構成3同士は接着剤や螺子等で貼り合わせて固定されている。 The stator 2 is fixed to a housing case (not shown) so as to maintain an equal gap (gap) between the rotors 6 and 6 so as not to contact the rotors 6 and 6. The gap is preferably narrow from the viewpoint of power generation efficiency, and is set to about 1 mm as an example. The stator 2 is configured by stacking (arranging) a plurality of basic power generation configurations 3 (3 1 , 3 2 , 3 3 ... 3 6 ) in the same direction in the axial direction of the rotary shaft 8. Each power generation basic configuration 3 is formed in the same manner, and each power generation basic configuration 3 is bonded and fixed with an adhesive, a screw, or the like.

発電基本構成3は、発電用コイル15(図2参照)が設けられたコイル配置板4をP枚有し、このP枚のコイル配置板4を互いに360/P°の角度ずつずらして(回転させて)回転軸8の軸方向に積層したものである。このような角度に各コイル配置板4をずらすことで、発電基本構成3がP相の交流電圧を発電する。本例はP=3の場合を示しており、各発電基本構成3は、3枚のコイル配置板4(4a,4b,4c)を120°の角度ずつずらして積層されていて、3相の交流電圧を発電する。   The power generation basic configuration 3 has P coil arrangement plates 4 provided with power generation coils 15 (see FIG. 2), and the P coil arrangement plates 4 are shifted from each other by an angle of 360 / P ° (rotation). And stacked in the axial direction of the rotary shaft 8. By shifting each coil arrangement plate 4 to such an angle, the power generation basic configuration 3 generates a P-phase AC voltage. This example shows a case where P = 3, and each power generation basic configuration 3 is formed by stacking three coil arrangement plates 4 (4a, 4b, 4c) with an angle of 120 ° being laminated. Generate AC voltage.

図2(a)、(b)、(c)にコイル配置板4a、4b、4cの具体例を示す。コイル配置板4a、4b、4cは、いずれも同様に形成されていて、この例では円板形状に形成された樹脂などの非磁性体製の基材に、発電用コイル15が設けられている。図2(a)に示すように、コイル配置板4aの例えば発電用コイル15の巻き始めの位置を基準線Kaの位置とする。この基準線Kaに相当する位置を、図2(b)に示すようにコイル配置板4bでは120°回転させて基準線Kbの位置にずらし、図2(c)に示すようにコイル配置板4cでは、コイル配置板4bよりも120°回転させて基準線Kcの位置にずらす。このように120°の角度ずつ位置をずらしたコイル配置板4a、4b、4cを順に積層して、図2(d)に示すように発電基本構成3が形成される。コイル配置板4同士は、接着剤や螺子等で貼り合わせて固定する。この例のように、コイル配置板4を円板形状に形成すると、同様に形成した複数のコイル配置板4をずらして積層しても、円筒状になって突出する角が生じないため好ましい。コイル配置板4を方形などの多角形状に形成してもよい。多角形状に形成する場合、コイル配置板4a、4b、4cをそれぞれずらして重ねたときに一つの多角柱となるように、コイル配置板4a、4b、4cに発電用コイル15の角度をずらして形成することが好ましい。   2A, 2B, and 2C show specific examples of the coil arrangement plates 4a, 4b, and 4c. The coil arrangement plates 4a, 4b, and 4c are all formed in the same manner. In this example, the power generation coil 15 is provided on a non-magnetic base material such as a resin formed in a disk shape. . As shown in FIG. 2A, the winding start position of, for example, the power generating coil 15 of the coil arrangement plate 4a is set as the position of the reference line Ka. The position corresponding to the reference line Ka is rotated by 120 ° in the coil arrangement plate 4b as shown in FIG. 2 (b) and shifted to the position of the reference line Kb, and the coil arrangement plate 4c as shown in FIG. 2 (c). Then, the coil arrangement plate 4b is rotated by 120 ° and shifted to the position of the reference line Kc. Thus, the coil arrangement | positioning board 4a, 4b, 4c which shifted the position by an angle of 120 degrees is laminated | stacked in order, and the electric power generation basic composition 3 is formed as shown in FIG.2 (d). The coil arrangement plates 4 are bonded and fixed together with an adhesive or a screw. As in this example, it is preferable to form the coil arrangement plate 4 in a disk shape, because even if a plurality of similarly formed coil arrangement plates 4 are shifted and stacked, a cylindrical shape and no protruding corners are generated. The coil arrangement plate 4 may be formed in a polygonal shape such as a square. When forming in a polygonal shape, the angle of the coil 15 for power generation is shifted to the coil arrangement plates 4a, 4b, 4c so that when the coil arrangement plates 4a, 4b, 4c are shifted and stacked, they become one polygonal column. It is preferable to form.

図2(d)に示すように、円板状の各コイル配置板4(4a、4b、4c)と回転軸8とは同軸(同心)となるように配置される。コイル配置板4には、中央部に回転軸8が非接触で挿通される円形の挿通孔13が形成されている。図2(a)に示すように、コイル配置板4の板面は、回転軸8に対する直交面になる。同図に示す複数の仮想線K(基準線Kaを含む)は、コイル配置板4の板面を、回転軸8の軸心を中心として略放射状に等分割したものである。なお、同図では一部の仮想線Kだけを図示して、残りの仮想線Kの図示は省略している。   As shown in FIG.2 (d), each disk-shaped coil arrangement | positioning board 4 (4a, 4b, 4c) and the rotating shaft 8 are arrange | positioned so that it may become coaxial (concentric). A circular insertion hole 13 through which the rotation shaft 8 is inserted in a non-contact manner is formed in the coil arrangement plate 4 at the center. As shown in FIG. 2A, the plate surface of the coil arrangement plate 4 is an orthogonal surface to the rotation shaft 8. A plurality of virtual lines K (including the reference line Ka) shown in the figure are obtained by equally dividing the plate surface of the coil arrangement plate 4 substantially radially about the axis of the rotation shaft 8. In the figure, only some virtual lines K are shown, and the remaining virtual lines K are not shown.

発電用コイル15は、これら複数の仮想線Kに、コイルの巻線になる導体を沿わせた複数の辺部分Tを有している。発電用コイル15の辺部分Tの数(仮想線Kの数)は、2の倍数の数(偶数)とする。また、発電基本構成3が異なるP相の交流電圧を発電するように、各コイル配置板4を360/P°の角度ずつずらして積層したときに、発電用コイル15が板面方向に重ならず、互いにずれる位置関係となるように、辺部分Tの数(仮想線Kの数)を設定する。   The power generating coil 15 has a plurality of side portions T in which the conductors that become the windings of the coils are along the plurality of virtual lines K. The number of side portions T of the power generation coil 15 (the number of virtual lines K) is a multiple of 2 (even number). In addition, when the coil arrangement plates 4 are stacked while being shifted by an angle of 360 / P ° so that different P-phase AC voltages are generated in the power generation basic configuration 3, the power generation coils 15 overlap in the plate surface direction. First, the number of side portions T (the number of virtual lines K) is set so that the positional relationship is shifted from each other.

図2では、発電用コイル15は、複数のコイル要素14、14・・・を、コイル配置板4の円周方向に沿うように、リング状に配置して形成されている例を示している。コイル要素14、14・・・は、導体で電気的に直列接続されている。発電用コイル15はコア無しのコイルである。図3に模式的に示すように、各コイル要素14は、コア無しの巻線コイルになっていて、隣接し合う一対の辺部分T、Tを環状に繋げるような台形、扇型、又は三角形のような形状に、導体を巻いて形成されている。一例として、コイル配置板4に収容孔11(図2(a)参照)を形成し、線状の導体(導線)又は板状の導体を巻いて形成したコイル要素14を、収容孔11内に接着剤等の固定部材で固定して、コイル配置板4にコイル要素14を設ける。又は、コイル配置板4をプリント基板で形成し、プリントパターン(導体パターン)でコイル要素14となる平巻コイルを形成するようにしてもよい。又は、コイル配置板4の表面に、導線を巻いて平巻コイルを形成し、固定して、コイル要素14としてもよい。銅板などの板状の導体を平巻コイル状に切出したものをコイル要素14としてもよい。   2 shows an example in which the power generating coil 15 is formed by arranging a plurality of coil elements 14, 14... In a ring shape along the circumferential direction of the coil arrangement plate 4. . The coil elements 14, 14... Are electrically connected in series with a conductor. The power generation coil 15 is a coil without a core. As schematically shown in FIG. 3, each coil element 14 is a winding coil without a core, and has a trapezoidal shape, a sector shape, or a triangle that connects a pair of adjacent side portions T and T in an annular shape. It is formed by winding a conductor in such a shape. As an example, a coil hole 14 (see FIG. 2A) is formed in the coil placement plate 4 and a coil element 14 formed by winding a linear conductor (conductive wire) or a plate-shaped conductor is placed in the storage hole 11. The coil element 14 is provided on the coil arrangement plate 4 by being fixed by a fixing member such as an adhesive. Or the coil arrangement | positioning board 4 may be formed with a printed circuit board, and you may make it form the flat wound coil used as the coil element 14 with a printed pattern (conductor pattern). Or it is good also as the coil element 14 by winding a conducting wire on the surface of the coil arrangement | positioning board 4, forming a flat wound coil, and fixing. The coil element 14 may be formed by cutting a plate-like conductor such as a copper plate into a flat coil shape.

図2の例では、α=22.5°のピッチでコイル配置板4を16に等分割して仮想線Kを引き、仮想線K上に辺部分Tが位置するように8個のコイル要素14を配置している。例えば各コイル要素14を平巻で30ターン巻いた場合、8個のコイル要素14が直列接続されて1つの発電用コイル15になるので、発電用コイル15は240ターンの巻数になる。   In the example of FIG. 2, the coil arrangement plate 4 is equally divided into 16 at a pitch of α = 22.5 °, the virtual line K is drawn, and eight coil elements are arranged so that the side portion T is positioned on the virtual line K. 14 is arranged. For example, when each coil element 14 is wound 30 turns in a flat winding, the eight coil elements 14 are connected in series to form one power generating coil 15, so that the power generating coil 15 has 240 turns.

図4(a)に回転子6を示し、図4(b)に回転子6とコイル配置板4aとを重ね合わせた状態を示す。図4(a)に示すように、樹脂などの非磁性体で円板状に形成された回転子6には、前述した仮想線Kに沿う位置関係で、複数の永久磁石21が設けられている。図4(b)に示すように、複数の永久磁石21は、相対的に、1枚のコイル配置板4(4a)における発電用コイル15の複数の辺部分Tと丁度対向する位置関係で、回転子6に配置されている。永久磁石21の数は、1枚当たりのコイル配置板4の辺部分Tの数と同数になる。複数の永久磁石21は、S極、N極、S極・・・のように隣り合う極性が交互に異なるように、回転子6の円周に沿って並べて配置されている。   FIG. 4A shows the rotor 6, and FIG. 4B shows a state where the rotor 6 and the coil arrangement plate 4a are overlapped. As shown in FIG. 4A, the rotor 6 formed in a disk shape with a non-magnetic material such as resin is provided with a plurality of permanent magnets 21 in a positional relationship along the imaginary line K described above. Yes. As shown in FIG. 4 (b), the plurality of permanent magnets 21 are relatively positioned so as to be opposed to the plurality of side portions T of the power generating coil 15 in one coil arrangement plate 4 (4a). Arranged on the rotor 6. The number of permanent magnets 21 is the same as the number of side portions T of the coil arrangement plate 4 per sheet. The plurality of permanent magnets 21 are arranged along the circumference of the rotor 6 so that adjacent polarities are alternately different, such as S pole, N pole, S pole,.

図1に、一対の回転子6、6に配置した一部の永久磁石21を破線で示している。同図に示すように、一対の回転子6、6は、互いの複数の永久磁石21を丁度対面させると共に、対面し合う永久磁石21の極性が互いに異なる極性となるように回転軸8に固定されている。一対の回転子6、6に配置する永久磁石21はいずれも同様のものである。   In FIG. 1, some permanent magnets 21 arranged on the pair of rotors 6 and 6 are indicated by broken lines. As shown in the figure, the pair of rotors 6 and 6 are fixed to the rotary shaft 8 so that the permanent magnets 21 face each other and the facing permanent magnets 21 have different polarities. Has been. The permanent magnets 21 arranged on the pair of rotors 6 and 6 are the same.

図5に、発電機1の電気的構成図を示す。発電機1では、各発電基本構成3の同じ角度(同相)のコイル配置板4の発電用コイル15同士が並列接続されている。つまり、発電基本構成3、3・・・3の各コイル配置板4aの発電用コイル15同士が並列接続され、各コイル配置板4bの発電用コイル15同士が並列接続され、各コイル配置板4cの発電用コイル15同士が並列接続されている。並列接続された各コイル配置板4aの発電用コイル15は交流電圧Va(位相0°)を発電し、各コイル配置板4bの発電用コイル15は交流電圧Vb(位相120°)を発電し、各コイル配置板4cの発電用コイル15は交流電圧Vc(位相240°)を発電する。交流電圧Va、Vb、Vcは多相交流であるので、同図に示すように交流電圧Va、Vb、Vc(全ての発電用コイル15)の一端側を接続すれば、三相三線式の交流電圧になる。 FIG. 5 shows an electrical configuration diagram of the generator 1. In the generator 1, the power generation coils 15 of the coil arrangement plate 4 having the same angle (in phase) of each power generation basic configuration 3 are connected in parallel. In other words, the power generating coil 15 of the respective coil arrangement plate 4a of the generator the basic configuration 3 1, 3 2 ... 3 6 are connected in parallel, the power generating coil 15 of the respective coil arrangement plate 4b are connected in parallel, each coil The power generation coils 15 of the arrangement plate 4c are connected in parallel. The power generation coil 15 of each coil arrangement plate 4a connected in parallel generates AC voltage Va (phase 0 °), the power generation coil 15 of each coil arrangement plate 4b generates AC voltage Vb (phase 120 °), The power generation coil 15 of each coil arrangement plate 4c generates an AC voltage Vc (phase 240 °). Since the AC voltages Va, Vb, and Vc are multiphase AC, as shown in the figure, if one end side of the AC voltages Va, Vb, and Vc (all power generation coils 15) are connected, a three-phase three-wire AC Become a voltage.

発電機1を直流発電機とする場合、発電機1は、交流を直流に変換(整流)する変換回路5を、筐体ケース内に備えている。例えば同図に示すように、変換回路5は、交流電圧Vaを全波整流するダイオードD1a、D2a、交流電圧Vbを全波整流するダイオードD1b、D2b、及び、交流電圧Vcを全波整流するダイオードD1c、D2cを備えている。変換回路5は、交流電圧Va、Vb、Vcを相ごとに直流電圧に整流したのち並列接続して、1つの直流電圧としている。変換回路5の出力は発電機1の正電圧出力端子DC+、及び、負電圧出力端子DC−に接続されており、そこに装置外の負荷Rが接続されて使用される。図示しないが、発電機1は、コンデンサやフィルターなどの公知の平滑回路を、変換回路5と共に備えていてもよい。   When the generator 1 is a DC generator, the generator 1 includes a conversion circuit 5 that converts (rectifies) alternating current into direct current in a housing case. For example, as shown in the figure, the conversion circuit 5 includes diodes D1a and D2a for full-wave rectification of the AC voltage Va, diodes D1b and D2b for full-wave rectification of the AC voltage Vb, and a diode for full-wave rectification of the AC voltage Vc. D1c and D2c are provided. The conversion circuit 5 rectifies the AC voltages Va, Vb, and Vc into DC voltages for each phase and then connects them in parallel to form one DC voltage. The output of the conversion circuit 5 is connected to a positive voltage output terminal DC + and a negative voltage output terminal DC− of the generator 1, and a load R outside the apparatus is connected to the output and used. Although not shown, the generator 1 may include a known smoothing circuit such as a capacitor and a filter together with the conversion circuit 5.

変換回路5としては、公知の回路を用いればよい。例えば、交流電圧Va、Vb、Vcを三相三線式とせず、交流電圧Vaを生じる発電用コイル15の両端にダイオードブリッジを接続して直流電圧に整流し、同様に交流電圧Vbをダイオードブリッジで直流電圧に整流し、交流電圧Vcをダイオードブリッジで直流電圧に整流して、各直流電圧を並列接続する変換回路を用いてもよい。しかしながら、図5に示す回路で整流する形式の方が、ダイオードブリッジで整流する形式よりも高い直流電圧を得ることができるため、同じ電力を得る場合、電圧が高い分だけ電流を小さく抑えることができるので、回転トルクをより小さくできるので好ましい。なお、変換回路5を設けずに、発電機1を多相の交流を出力する多相交流発電機としてもよい。   A known circuit may be used as the conversion circuit 5. For example, the AC voltage Va, Vb, Vc is not a three-phase three-wire system, but a diode bridge is connected to both ends of the power generation coil 15 that generates the AC voltage Va to rectify the DC voltage. Similarly, the AC voltage Vb is converted to a diode bridge. A conversion circuit that rectifies the DC voltage, rectifies the AC voltage Vc to a DC voltage with a diode bridge, and connects the DC voltages in parallel may be used. However, the rectifying method using the circuit shown in FIG. 5 can obtain a higher DC voltage than the rectifying method using the diode bridge. Therefore, when the same power is obtained, the current can be kept small by the higher voltage. This is preferable because the rotational torque can be further reduced. Note that the generator 1 may be a multi-phase AC generator that outputs multi-phase AC without providing the conversion circuit 5.

本実施形態の作用を説明する。
外部からの回転力で回転軸8を回転させると、一緒に回転子6が回転する。回転子6には永久磁石21、21・・・の磁極が交互に逆極性になるように環状に配置されているので、固定子2の各発電用コイル15には周期的に向きが変わる磁束が通過する。これにより各発電用コイル15の両端に交流電圧が発生する。コイル配置板4a、4b、4cのそれぞれの発電用コイル15、15、15からは、0°、120°、240°のように、120°の角度ずつ位相差を有する交流電圧が発生する。
The operation of this embodiment will be described.
When the rotating shaft 8 is rotated by a rotational force from the outside, the rotor 6 rotates together. Since the rotor 6 is arranged in an annular shape so that the magnetic poles of the permanent magnets 21, 21... Are alternately reversed in polarity, the magnetic flux that periodically changes the direction of each power generation coil 15 of the stator 2. Pass through. As a result, an AC voltage is generated at both ends of each power generating coil 15. An AC voltage having a phase difference of 120 °, such as 0 °, 120 °, and 240 °, is generated from each of the power generating coils 15, 15, and 15 of the coil arrangement plates 4a, 4b, and 4c.

一対の回転子6、6には、異なる磁極が対面し合うように永久磁石21が配置されているので、各発電用コイル15には両側面から異なる向きの磁束がバランスよく掛かるため、高い電圧の起電力を発生させることができ、発電効率が向上する。   Since the permanent magnets 21 are arranged on the pair of rotors 6 and 6 so that different magnetic poles face each other, magnetic fluxes in different directions are applied to each of the power generating coils 15 from both sides in a balanced manner. The electromotive force can be generated, and the power generation efficiency is improved.

永久磁石21の仮想線Kに沿う方向の長さL(図4(a)参照)、及び発電用コイル15(コイル要素14)の辺部分Tの仮想線Kに沿う方向の長さL(図3参照)は、適宜設定すればよいが、永久磁石21の磁界が発電用コイル15の辺部分T全体に均一に掛かるように、永久磁石21の長さLが、発電用コイル15の辺部分Tの長さLとほぼ同じ長さに形成されていることが好ましい。又、発電用コイル15の辺部分Tの幅(コイルの巻幅)W(図3参照)に対向する永久磁石21の幅W(図4(a)参照)は、幅Wよりも幅を広くしても狭くしてもよく、適宜設定すればよい。本例では、永久磁石21の幅Wを、コイルの幅Wよりも狭く形成した例を示しており、辺部分Tの幅Wの2/3程度の幅に形成している。これは、永久磁石21の磁界は環状に放射されるため樽型に発電用コイル15に掛かるので、永久磁石21から遠い位置の発電用コイル15にも均一な磁界が掛かるようにと考え、幅Wを幅Wより狭くしたものである。永久磁石21の形状により発電した交流波形が歪む場合があり、出力波形に対する影響、及び発電効率を考慮して、永久磁石21の形状、幅を適宜決定すればよい。交流波形の歪を抑えるために、永久磁石21の形状を長方形から台形(扇型)等に形状変更してもよい。永久磁石21の形状を台形(扇形)にする場合、回転子6の中心側から外周側に広がる向きで永久磁石21を配置することが好ましい。永久磁石21の形状、長さ、幅、及び高さを調整することで、歪が補正でき、一層の効率アップが図れる。発電機1を直流発電機とする場合、発電する交流波形を正弦波よりも台形波にしたほうが、発電効率を良くできるため好ましい。 The length L M of the permanent magnet 21 in the direction along the imaginary line K (see FIG. 4A) and the length L T of the side portion T of the power generation coil 15 (coil element 14) in the direction along the imaginary line K. (See FIG. 3) may be set as appropriate, but the length L M of the permanent magnet 21 is set so that the magnetic field of the permanent magnet 21 is uniformly applied to the entire side portion T of the power generating coil 15. it is preferable that the length L T of the side portions T are formed on substantially the same length. Further, the width W M (see FIG. 4A) of the permanent magnet 21 facing the width (coil winding width) W T (see FIG. 3) of the side portion T of the power generating coil 15 is larger than the width W T. The width may be widened or narrowed, and may be set as appropriate. In this example, the width W M of the permanent magnet 21 shows an example in which narrower than the width W T of the coil, is formed in about 2/3 of the width of the width W T of the side portions T. This is because the magnetic field of the permanent magnet 21 is radiated in an annular shape and is applied to the power generation coil 15 in a barrel shape, so that the uniform magnetic field is also applied to the power generation coil 15 at a position far from the permanent magnet 21. W M is narrower than the width W T. The AC waveform generated by the shape of the permanent magnet 21 may be distorted, and the shape and width of the permanent magnet 21 may be appropriately determined in consideration of the influence on the output waveform and the power generation efficiency. In order to suppress distortion of the AC waveform, the shape of the permanent magnet 21 may be changed from a rectangle to a trapezoid (fan shape) or the like. When the shape of the permanent magnet 21 is trapezoidal (fan-shaped), it is preferable to dispose the permanent magnet 21 in a direction extending from the center side of the rotor 6 to the outer peripheral side. By adjusting the shape, length, width, and height of the permanent magnet 21, the distortion can be corrected and the efficiency can be further improved. When the generator 1 is a DC generator, it is preferable that the AC waveform to be generated is a trapezoidal wave rather than a sine wave because power generation efficiency can be improved.

直線導線に生じる誘導起電力eの大きさは、長さLの導線が磁界Bを垂直に横切って速度vで進むときに、下記式(2)となる。
e = v・B・L ・・・ (2)
出力電圧は回転軸8の回転速度で調整するが、上記式(2)から磁束の影響を受ける辺部分Tの長さLや、リング状に配置するコイル要素14及び回転子6に固定する永久磁石21の数で調整することができる。出力電圧を高くするためには、辺部分Tの長さLが長いほど好ましく、又、コイル要素14及び永久磁石21の数が多いほど好ましい。
The magnitude of the induced electromotive force e generated in the straight conducting wire is expressed by the following formula (2) when the conducting wire having a length L traverses the magnetic field B vertically and travels at a speed v.
e = v · B · L (2)
The output voltage is adjusted by the rotation speed of the rotation shaft 8 is fixed length and L T side portions T that are affected by the magnetic flux from the above equation (2), the coil elements 14 and the rotor 6 is arranged in a ring The number of permanent magnets 21 can be adjusted. To increase the output voltage, the longer the length L T of the side portions T Preferably, also, preferably as the number of coil elements 14 and the permanent magnet 21.

発電機1に負荷を接続すると、負荷抵抗と出力電圧に応じて各発電用コイル15に負荷電流が流れる。この負荷電流により、従来の発電機では上記式(1)で算出される磁束φが発生して、回転子6の永久磁石21に対し、回転子6の回転を停止する方向に力が発生し、これが回転トルクの発生の一要因となっていた。本発明に係る発電機1では、発電基本構成3のコイル配置板4a、4b、4cの各発電用コイル15に流れる交流電流はP相(3相)の位相差を有している。このため、発電基本構成3の各発電用コイル15の発生する磁束の位相も同相ではなく、互いに位相差を有している。発電基本構成3から永久磁石21に掛かる磁束は、この位相差を有するP相の磁束をベクトル合成したものになる。P相の磁束は、位相が均等にずれているため、互いに打ち消し合い、合成した磁束のベクトルは僅かな大きさになる。   When a load is connected to the generator 1, a load current flows through each power generating coil 15 according to the load resistance and the output voltage. With this load current, the conventional generator generates the magnetic flux φ calculated by the above formula (1), and a force is generated in the direction in which the rotation of the rotor 6 is stopped with respect to the permanent magnet 21 of the rotor 6. This has been a factor in the generation of rotational torque. In the generator 1 according to the present invention, the alternating current flowing through each of the power generating coils 15 of the coil arrangement plates 4a, 4b, and 4c of the power generation basic configuration 3 has a phase difference of P phase (three phases). For this reason, the phase of the magnetic flux generated by each power generation coil 15 of the power generation basic configuration 3 is not the same phase, but has a phase difference. The magnetic flux applied to the permanent magnet 21 from the power generation basic configuration 3 is a vector composition of the P-phase magnetic flux having this phase difference. Since the P-phase magnetic fluxes are evenly out of phase, they cancel each other, and the resultant magnetic flux vector has a slight magnitude.

又、発電機1(発電基本構成3)が発電する電圧は、多相の交流電圧からなっているので、出力電圧を一定とした場合、多相にするほど各発電用コイル15に流れるピーク電流を低く抑えられる。ピーク電流が抑えられると、上記式(1)により各発電用コイル15から発生する磁束のピークは小さく抑えられ平均化されるため、回転トルクへの負荷電流による影響を抑えることができる。このため、発電基本構成3が有するコイル配置板4の数P、すなわち発電基本構成3が発電する交流電圧の相の数Pは大きいほうが好ましい。例えばP=3〜9のように適宜設定する。   Further, since the voltage generated by the generator 1 (power generation basic configuration 3) is composed of a multiphase AC voltage, when the output voltage is constant, the peak current that flows in each power generation coil 15 as the number of phases is increased. Can be kept low. When the peak current is suppressed, the peak of the magnetic flux generated from each power generating coil 15 is reduced and averaged according to the above equation (1), so that the influence of the load current on the rotational torque can be suppressed. For this reason, it is preferable that the number P of the coil arrangement plates 4 included in the power generation basic configuration 3, that is, the number P of AC voltage phases generated by the power generation basic configuration 3 is larger. For example, it sets suitably like P = 3-9.

さらに、コイル配置板4a、4b、4cを積層して発電基本構成3が構成されており、この発電基本構成3を複数積層して固定子2が構成されているので、回転子6の永久磁石21に対し、多数の発電用コイル15が等しい距離に配置されているのではなく、順に遠くなるように分散されて配置されている。
電流iが流れている導線の長さΔSの部分から距離r離れた場所の磁場Hは下記式(3)となる。
H = i・ΔS・sinθ/4πr ・・・ (3)
Further, the basic configuration 3 of power generation is configured by laminating the coil arrangement plates 4a, 4b, and 4c, and the stator 2 is configured by stacking a plurality of basic configurations 3 of power generation. A number of power generating coils 15 are not arranged at the same distance from 21, but are arranged so as to become farther in order.
The magnetic field H at a location r away from the length ΔS of the conducting wire through which the current i flows is expressed by the following equation (3).
H = i · ΔS · sin θ / 4πr 2 (3)

各発電用コイル15に流れる負荷電流により発生する磁力は、上記式(3)に示されたように距離の2乗に反比例する。永久磁石21に掛かる磁力は、各発電用コイル15に対してそれぞれ上記式(3)から算出される磁場Hをベクトル合成(積分)した値になる。本発明の固定子2のように、発電用コイル15が永久磁石21から順に遠くなるように分散されて配置されていると、導線の密度が極度に下がるため、永久磁石21に掛かる磁場Hを積分した大きさも小さくなって、回転トルクが一層小さくなる。   The magnetic force generated by the load current flowing through each power generating coil 15 is inversely proportional to the square of the distance as shown in the above equation (3). The magnetic force applied to the permanent magnet 21 is a value obtained by vector synthesis (integration) of the magnetic field H calculated from the above equation (3) for each power generation coil 15. When the power generating coil 15 is dispersed and arranged so as to be sequentially away from the permanent magnet 21 as in the stator 2 of the present invention, the density of the conducting wire is extremely reduced, so that the magnetic field H applied to the permanent magnet 21 is reduced. The integrated size is also reduced, and the rotational torque is further reduced.

なお、発電用コイル15は、巻線同士の隙間が空かないように密巻きされている場合、インダクタンスが高くなり、電圧と電流の位相差が出るため、交流の力率が悪化する。力率の観点から、発電用コイル15は、インダクタンスを下げるように、巻線同士の間隔を多少開けるように疎巻きして形成されていることが好ましい。   When the power generating coil 15 is closely wound so that there is no gap between the windings, the inductance becomes high and a phase difference between voltage and current is generated, so that the AC power factor is deteriorated. From the viewpoint of power factor, the power generating coil 15 is preferably formed so as to be loosely wound so that the spacing between the windings is slightly increased so as to reduce the inductance.

消費電力については、抵抗Rに電流iが流れたとき、抵抗で消費される電力Wは下記式(4)となる。
W = R・i ・・・ (4)
m個の抵抗を並列に接続したものに電流iを流した時、全ての抵抗で消費される電力Wmは下記式(5)となる。
Wm = R・(i/m)・m = (R・i)/m ・・・ (5)
つまり、発電機1の出力する電流iが同じ場合、発電基本構成3の総数mを増やすことで、上記式(4)・(5)から、発電機1で消費する総電力が低減でき、発熱を抑えることができるため、発電効率が向上する。
Regarding power consumption, when current i flows through the resistor R, the power W consumed by the resistor is expressed by the following equation (4).
W = R · i 2 (4)
When the current i is passed through m resistors connected in parallel, the power Wm consumed by all the resistors is expressed by the following equation (5).
Wm = R · (i / m) 2 · m = (R · i 2 ) / m (5)
That is, when the current i output from the generator 1 is the same, the total power m consumed by the generator 1 can be reduced from the above formulas (4) and (5) by increasing the total number m of the power generation basic configuration 3 to generate heat. Therefore, the power generation efficiency is improved.

固定子2として発電基本構成3を積層する数は任意であり、コイル配置板4の板厚や相数にもよるが、一例として2〜20組程度にする。発電基本構成3(発電用コイル15)の積層数が多くなり固定子2の厚みが厚くなりすぎると、永久磁石21から離れすぎる部位が生じてしまうため好ましくない。そのため、固定子2の厚さが厚くなりすぎる場合、図6に示す発電機1aのように、固定子2及び回転子6を発電機1に増設すればよい。同図の中央部(固定子2、2の間)に位置する回転子6は、1つで左端側の回転子6と一対の組をなすと共に、右端側の回転子6とも一対の組をなしている。固定子2や回転子6の増設数は任意である。発電機1aのように増設することで発電電力を上げることができる。   The number of the power generation basic configurations 3 stacked as the stator 2 is arbitrary, and depending on the plate thickness and the number of phases of the coil arrangement plate 4, for example, about 2 to 20 sets. If the number of layers of the power generation basic configuration 3 (power generation coil 15) is increased and the thickness of the stator 2 becomes too thick, a portion that is too far from the permanent magnet 21 is generated, which is not preferable. Therefore, when the thickness of the stator 2 becomes too thick, the stator 2 and the rotor 6 may be added to the generator 1 as in the generator 1a shown in FIG. One rotor 6 located in the center (between the stators 2 and 2) in the figure forms a pair with the left end rotor 6 and also forms a pair with the right end rotor 6. There is no. The number of additional stators 2 and rotors 6 is arbitrary. The generated power can be increased by adding the generator 1a.

図7に、本発明におけるコイル配置板の別の例として、コイル配置板40を示す。コイル配置板40はプリント基板で構成されており、基材41の表面に発電用コイル51がプリントパターンで形成されているものである。   FIG. 7 shows a coil arrangement plate 40 as another example of the coil arrangement plate in the present invention. The coil arrangement plate 40 is formed of a printed board, and a power generation coil 51 is formed on the surface of a base material 41 in a printed pattern.

発電用コイル51は、コイル配置板4と同様のピッチαでコイル配置板4を16に等分割して仮想線Kを引き、仮想線Kに導体を沿わせた複数の辺部分Tを有するコイルであり、辺部分Tをジグザグ状に繋げるような形状(蛇行形状)で周回するように導体を巻いて形成されている。この例では、発電用コイル51として、基材41の一面側(図の観察面側)に、プリントパターンで平巻コイルが形成されている。発電用コイル51の一端は、基材41の一面側で電極53aにプリントパターンで接続され、発電用コイル51の他端は、基材41の他面側(紙面の反対面側)のプリントパターン52の一端にスルーホールで接続されて、プリントパターン52の他端が電極53bにスルーホールで接続されている。電極53a,53bは、同相に配置した他のコイル配置板40の発電用コイル51と電気配線で並列接続するため端子である。   The power generation coil 51 is a coil having a plurality of side portions T in which the coil placement plate 4 is equally divided into 16 at the same pitch α as the coil placement plate 4 and a virtual line K is drawn and a conductor is placed along the virtual line K It is formed by winding a conductor so as to circulate in a shape (meandering shape) that connects the side portions T in a zigzag shape. In this example, a flat coil is formed as a power generating coil 51 with a printed pattern on one surface side (the observation surface side in the figure) of the base material 41. One end of the power generation coil 51 is connected to the electrode 53a on one surface side of the base material 41 by a print pattern, and the other end of the power generation coil 51 is a print pattern on the other surface side (opposite surface of the paper surface) of the base material 41. The other end of the print pattern 52 is connected to the electrode 53b through a through hole. The electrodes 53a and 53b are terminals for connecting in parallel with the power generation coil 51 of the other coil arrangement plate 40 arranged in the same phase by electric wiring.

基材41は、公知のプリント基板用材料によって、一例として円板状に形成されている。基材41には、中央部に回転軸8が非接触で挿通する挿通孔42、発電用コイル51以外の部分に孔開けした複数の抜き孔43、接続用の端子部44、及びP個の位置決め目印45が形成されている。抜き孔43は形成されていなくてもよいが、有った方が放熱性を良くでき、軽量化できるため好ましい。端子部44は、他のコイル配置板40と接続し易いように基材41の外周方向に突出させて形成されている。端子部44には、前述した電極53a,53bがパターンで形成されている。   The base material 41 is formed in a disk shape as an example by a known printed board material. The base material 41 has an insertion hole 42 through which the rotary shaft 8 is inserted in a non-contact manner in the center, a plurality of holes 43 formed in a portion other than the power generating coil 51, connection terminal portions 44, and P pieces of holes. A positioning mark 45 is formed. The hole 43 does not need to be formed, but it is preferable to have the hole 43 because heat dissipation can be improved and the weight can be reduced. The terminal portion 44 is formed so as to protrude in the outer peripheral direction of the base material 41 so as to be easily connected to another coil arrangement plate 40. In the terminal portion 44, the electrodes 53a and 53b described above are formed in a pattern.

P個の位置決め目印45は、複数のコイル配置板40を360/P°で回転させて積層するための目印であり、一例として基材41の外周縁に、等間隔でP個、円弧状に切り欠いた切り欠き部が形成されている。位置決め目印45は、シルク印刷等で形成したマークであってもよい。コイル配置板40を360/P°で回転させて積層すると、位置決め目印45の位置が丁度合う。このため、コイル配置板40を積層していくときに、1枚ずつコイル配置板40を回転させて、位置決め目印45の位置を合わせていくことで、発電基本構成3や固定子2を簡便に製造することができる。本例では、発電基本構成3が、P=5、つまり5枚のコイル配置板40を360/5°=72°の角度ずつずらして積層して形成される場合の例を示している。コイル配置板40が5層積層されることで、発電基本構成3が5相の交流電圧を発電する。5枚のコイル配置板40で形成される発電基本構成3を同じ向きで複数積層して、固定子2が形成される。コイル配置板4のようにP=3の場合には、コイル配置板4の外周縁に等間隔に3個の位置決め目印45を形成すればよい。   The P positioning marks 45 are marks for laminating the plurality of coil arrangement plates 40 by rotating at 360 / P °. As an example, the P positioning marks 45 are P-shaped and arcuately formed on the outer periphery of the base material 41 at equal intervals. A notch is formed. The positioning mark 45 may be a mark formed by silk printing or the like. When the coil placement plate 40 is rotated and laminated at 360 / P °, the positioning marks 45 are exactly aligned. For this reason, when the coil arrangement | positioning board 40 is laminated | stacked, by rotating the coil arrangement | positioning board 40 piece by piece and aligning the position of the positioning mark 45, the electric power generation basic structure 3 and the stator 2 can be simplified. Can be manufactured. This example shows an example in which the power generation basic configuration 3 is formed by stacking P = 5, that is, five coil arrangement plates 40 while being shifted by an angle of 360/5 ° = 72 °. The five basic layers of power generation 3 generate a five-phase AC voltage by stacking five layers of the coil arrangement plate 40. The stator 2 is formed by stacking a plurality of power generation basic configurations 3 formed of five coil arrangement plates 40 in the same direction. When P = 3 as in the coil arrangement plate 4, three positioning marks 45 may be formed at equal intervals on the outer peripheral edge of the coil arrangement plate 4.

一例を示すと、基材41は直径240mm、板厚0.6mmである。発電用コイル51は銅箔厚0.2mmのプリントパターンによる17ターンの平巻コイルである。   As an example, the base material 41 has a diameter of 240 mm and a plate thickness of 0.6 mm. The power generating coil 51 is a 17-turn flat coil with a printed pattern having a copper foil thickness of 0.2 mm.

同図のコイル配置板40は、発電用コイル51を基材41の片面側だけに形成した例であるが、基材41の両面に発電用コイル51、51を形成し、スルーホールで直列接続して一つの発電用コイルとしてもよい。両面に発電用コイル51を形成すると、巻き数が2倍になるので、発電効率が向上するため、より好ましい。また、多層プリント基板の複数層に亘って発電用コイルを形成して、コイル配置板としてもよい。   The coil arrangement plate 40 in the figure is an example in which the power generation coil 51 is formed only on one side of the base material 41. However, the power generation coils 51 and 51 are formed on both surfaces of the base material 41 and connected in series with through holes. And it is good also as one coil for power generation. Forming the power generating coil 51 on both surfaces is more preferable because the number of windings is doubled and the power generation efficiency is improved. Moreover, it is good also as a coil arrangement | positioning board by forming the coil for an electric power generation over the multilayer of a multilayer printed circuit board.

図8に、6層プリント基板で形成したコイル配置板60の各層の構成を示す。図8(1)は1層目、図8(2)は2層目、図8(3)は3層目、図8(4)は4層目、図8(5)は5層目、図8(6)は6層目を示す。コイル配置板60は、これら各層を積層して、1枚に形成されている。2〜5層目の基材62〜65に、プリントパターンでコイル要素71〜74が形成されている。2層目のコイル要素71と3層目のコイル要素72とがスルーホール81で環状に繋がり、その最終端がスルーホール82で4層目のコイル要素73に繋がって、4層目のコイル要素73と5層目のコイル要素74とがスルーホール83で環状に繋がり、その最終端がスルーホール84で2層目の電極用パターン85に繋がることで、これらコイル要素71〜74の全てが直列に繋がれて、1つの発電用コイル70になっている。スルーホール81〜84は、互いに接触しないように位置をずらして形成されている。同図では仮想線Kの記載を省略しているが、いずれのコイル要素71〜74も、前述した発電用コイル15と同様の辺部分Tを有している。表面層となる1層目の基材61と6層目の基材66とには、保護のために発電用コイル70(コイル要素)を形成していない。   FIG. 8 shows a configuration of each layer of the coil arrangement board 60 formed of a six-layer printed board. 8 (1) is the first layer, FIG. 8 (2) is the second layer, FIG. 8 (3) is the third layer, FIG. 8 (4) is the fourth layer, FIG. 8 (5) is the fifth layer, FIG. 8 (6) shows the sixth layer. The coil arrangement plate 60 is formed by laminating these layers. Coil elements 71 to 74 are formed in a printed pattern on the second to fifth base materials 62 to 65. The second layer coil element 71 and the third layer coil element 72 are connected in a ring shape through a through hole 81, and the final end of the second layer coil element 71 is connected to a fourth layer coil element 73 through a through hole 82. 73 and the fifth-layer coil element 74 are connected in a ring shape through a through-hole 83, and the final end is connected to the second-layer electrode pattern 85 through a through-hole 84, so that all of these coil elements 71 to 74 are connected in series. To one power generating coil 70. The through holes 81 to 84 are formed by shifting the positions so as not to contact each other. Although the illustration of the imaginary line K is omitted in the drawing, any of the coil elements 71 to 74 has the same side portion T as that of the power generating coil 15 described above. A power generation coil 70 (coil element) is not formed on the first base material 61 and the sixth base material 66 as the surface layer for protection.

各基材61〜66には、外周方向に突出させた端子部68が形成されている。又、本例では、3枚のコイル配置板60を積層して発電基本構成3を構成する場合の例として、各基材61〜66に各々3個の位置決め目印69が形成されている。位置決め目印69の位置が合うように3枚のコイル配置板60を120°の角度ずつずらして積層して、発電基本構成3として、さらに複数の発電基本構成3を同じ向きで積層し、固定子2とする。このように複数層に形成したコイルで一つの発電用コイル70を形成すると、発電電力を増大させることができる。   Each base material 61 to 66 is formed with a terminal portion 68 that protrudes in the outer peripheral direction. Further, in this example, as an example of the case where the power generation basic configuration 3 is configured by laminating three coil arrangement plates 60, three positioning marks 69 are formed on each of the base materials 61 to 66. Three coil arrangement plates 60 are stacked while being shifted by an angle of 120 ° so that the positioning marks 69 are aligned, and a plurality of power generation basic configurations 3 are stacked in the same direction as the power generation basic configuration 3, and the stator 2. When one power generation coil 70 is formed of coils formed in a plurality of layers as described above, the generated power can be increased.

〔磁場Hのシミュレーション〕
固定子2の発生する磁場Hを、コンピュータによりシミュレーションして求めた。シミュレーションには、ansoft社製の「Maxwell SV」を使用した。シミュレーション条件として、図2(a)に示すような形状のコイル配置板4を想定した。図9に示すように、各コイル要素14を、5ターンの平巻コイルとした。同図に示すように、5枚のコイル配置板4a、4b、4c、4d、4eを360/5°の角度ずつずらして積層して発電基本構成3として、さらに5枚の発電基本構成3、3、3、3、3を同じ向きで積層して固定子2とした。同図では、円筒状の固定子2を帯状に展開し、その一部を、コイル要素14のX−X線の位置に相当する断面図で示している。コイル配置板4a、4b、4c、4d、4eの各々の発電用コイルには、360/5°の角度ずつ位相をずらした交流電流が流れるものとした。
[Simulation of magnetic field H]
The magnetic field H generated by the stator 2 was obtained by computer simulation. For the simulation, “Maxwell SV” manufactured by ansoft was used. As a simulation condition, a coil arrangement plate 4 having a shape as shown in FIG. As shown in FIG. 9, each coil element 14 was a 5-turn flat wound coil. As shown in the figure, five coil arrangement plates 4a, 4b, 4c, 4d, and 4e are stacked by shifting by an angle of 360/5 ° to form a power generation basic configuration 3, and further five power generation basic configurations 3 1. 3 2 , 3 3 , 3 4 , 3 5 were laminated in the same direction to obtain a stator 2. In the figure, the cylindrical stator 2 is developed in a band shape, and a part thereof is shown in a sectional view corresponding to the position of the coil element 14 along the line XX. An alternating current whose phase is shifted by an angle of 360/5 ° flows through each of the power generation coils of the coil arrangement plates 4a, 4b, 4c, 4d, and 4e.

シミュレーション結果として、図9(a)に、固定子2の発生する磁場Hの強さを図示し、図9(b)に、固定子2の発生する磁場Hの方向及び強度をベクトル(矢印)で図示する。図9(a)、(b)は共に、同図の固定子2の同じ位置を示している。   As a simulation result, FIG. 9A illustrates the strength of the magnetic field H generated by the stator 2, and FIG. 9B illustrates the direction and strength of the magnetic field H generated by the stator 2 as a vector (arrow). This is illustrated in FIG. FIGS. 9A and 9B both show the same position of the stator 2 shown in FIG.

比較対象として、コイル配置板4をずらさずに同じ向きで25枚積層した本発明適用外の固定子100の発生する磁場Hをシミュレーションで求めた。各発電用コイルに流れる電流等の他の条件は、実施例のシミュレーションと同じにした。図10(a)に、固定子100の発生する磁場Hの強さを図示し、図10(b)に、固定子100の発生する磁場Hの方向及び強度をベクトルで図示する。   As a comparison object, the magnetic field H generated by the stator 100 not applied to the present invention in which 25 coil arrangement plates 4 are stacked in the same direction without being shifted was obtained by simulation. Other conditions such as the current flowing through each power generation coil were the same as in the simulation of the example. FIG. 10A illustrates the strength of the magnetic field H generated by the stator 100, and FIG. 10B illustrates the direction and strength of the magnetic field H generated by the stator 100 as vectors.

図9(a)と図10(a)とを比較すると、本発明における固定子2付近の磁場Hが、本発明外の固定子100付近の磁場Hよりも、60%小さくなっている。図9(b)と図10(b)とを比較すると、本発明における固定子2の発生する磁場Hのベクトルの大きさが、本発明外の固定子100の発生する磁場Hのベクトルよりも小さくなることが一目瞭然に判る。このシミュレーション結果から、本発明に係る発電機は発生する磁場が小さいので回転トルクを小さくできることが確認できた。   Comparing FIG. 9 (a) and FIG. 10 (a), the magnetic field H near the stator 2 in the present invention is 60% smaller than the magnetic field H near the stator 100 outside the present invention. Comparing FIG. 9B and FIG. 10B, the magnitude of the magnetic field H generated by the stator 2 in the present invention is larger than the magnetic field H generated by the stator 100 outside the present invention. It can be seen at a glance that it will become smaller. From this simulation result, it was confirmed that the generator according to the present invention can reduce the rotational torque because the generated magnetic field is small.

[発電の検証実験]
実施例として、図1、2に示すような固定子2を備える本発明に係る発電機を製造した。固定子2の同相の交流出力ごとに並列接続して全波整流し、相ごとの直流電圧を並列接続して直流出力とした。発電用コイル15の各コイル要素14としては、φ0.8mmのエナメル線を37ターン平巻きした台形型コイルを用いた。コイル配置板4の基材としては厚紙を使用した。比較例として、コイル配置板4の位相をずらさずに、全て同じ向きで積層した以外は、実施例と同様に製造した固定子を備える本発明外の発電機を製造した。各コイル要素14などの条件は、実施例で同様である。
[Power generation verification experiment]
As an example, a generator according to the present invention including a stator 2 as shown in FIGS. Each of the in-phase AC outputs of the stator 2 is connected in parallel and full-wave rectified, and the DC voltage of each phase is connected in parallel to obtain a DC output. As each coil element 14 of the power generating coil 15, a trapezoidal coil in which a φ0.8 mm enameled wire is wound by 37 turns is used. Cardboard was used as the base material of the coil arrangement plate 4. As a comparative example, a generator outside the present invention including a stator manufactured in the same manner as in the example was manufactured except that all the layers were laminated in the same direction without shifting the phase of the coil arrangement plate 4. Conditions for each coil element 14 and the like are the same in the embodiment.

実施例の発電機の回転軸と比較例の発電機の回転軸とを順番に同一のモータで回転させ、各発電機の出力電圧が概ね同じになるように、モータの回転数を制御して、モータの消費電流を測定した。負荷条件は同表に示す。   The rotating shaft of the generator of the example and the rotating shaft of the generator of the comparative example are sequentially rotated by the same motor, and the number of rotations of the motor is controlled so that the output voltage of each generator is substantially the same. The current consumption of the motor was measured. The load conditions are shown in the table.

比較例の回転数を100%とした場合に、いずれの負荷条件でも、実施例では回転数が27%下がって73%の回転数となった。この結果から、実施例は低回転で効率よく発電できることを検証できた。   When the rotational speed of the comparative example was set to 100%, the rotational speed decreased by 27% in the example to 73% at any load condition. From this result, it was verified that the example can generate power efficiently at low rotation.

比較例のモータの消費電力(消費電流)を100%とした場合に、実施例では、無負荷時には53%下がって47%の消費電力、3Ω負荷時には62%下がって38%の消費電力となった。モータの消費電力が小さいということは発電機の回転トルクが小さいということを表すので、実施例は比較例よりも回転トルクが小さくなることを検証できた。   Assuming that the power consumption (current consumption) of the motor of the comparative example is 100%, in the embodiment, when no load is applied, the power consumption decreases by 53% to 47%, and when the load is 3Ω, the power consumption decreases by 62% to 38%. It was. Since the low power consumption of the motor indicates that the rotational torque of the generator is small, it was verified that the rotational torque was smaller in the example than in the comparative example.

1・1aは発電機、2は固定子、3・3・3・3・3・3は発電基本構成、4・4a・4b・4c・4d・4eはコイル配置板、5は変換回路、6は回転子、7は固定具、8は回転軸、11は収容孔、13は挿通孔、14はコイル要素、15は発電用コイル、21は永久磁石、40はコイル配置板、41は基材、42は挿通孔、43は抜き孔、44は接続用端子部、45は位置決め目印、46はスルーホール、51は発電用コイル、52はプリントパターン、53a・53bは電極、60はコイル配置板、基材61〜66は基材、68は端子部、69は位置決め目印、70は発電用コイル、71〜74はコイル要素、81〜84はスルーホール、85は電極用パターン、100は固定子、αは仮想線Kのピッチ、D1a・D1b・D1c・D2a・D2b・D2cはダイオード、DC+は正電圧出力端子、DC−は負電圧出力端子、Kは仮想線、Ka・Kb・Kcは基準線、Lは辺部分Tの仮想線Kに沿った長さ、Lは永久磁石21の仮想線Kに沿った長さ、Rは負荷、Tは辺部分、Va・Vb・Vcは交流電圧、Wは辺部分Tの幅、Wは永久磁石21の幅、Xは断面線である。 1 · 1a is a generator, 2 is a stator, 3 1 · 3 2 · 3 3 · 3 4 · 3 5 · 3 6 is a basic power generation configuration, 4 · 4a · 4b · 4c · 4d · 4e are coil arrangement plates, 5 is a conversion circuit, 6 is a rotor, 7 is a fixture, 8 is a rotating shaft, 11 is a receiving hole, 13 is an insertion hole, 14 is a coil element, 15 is a power generation coil, 21 is a permanent magnet, and 40 is a coil arrangement Plate 41, base material 42, insertion hole 42, hole 43, connection terminal 44, positioning mark 45, through hole 46, coil for power generation 51, print pattern 52, 53 a and 53 b electrodes , 60 is a coil arrangement plate, base materials 61 to 66 are base materials, 68 is a terminal portion, 69 is a positioning mark, 70 is a power generation coil, 71 to 74 are coil elements, 81 to 84 are through holes, and 85 is for electrodes. Pattern, 100 is the stator, α is the pitch of the imaginary line K, D1a · D b · D1c · D2a · D2b · D2c diode, DC + is a positive voltage output terminal, DC- negative voltage output terminal, K is the imaginary line, Ka · Kb · Kc is the reference line, the imaginary line of L T is side portions T length along the K, L M is the length along the imaginary line K of the permanent magnet 21, R load, T is side portions, Va · Vb · Vc is an AC voltage, W T is a width of the side portion T, W M is the width of the permanent magnet 21, and X is a cross-sectional line.

Claims (5)

回転可能に軸支された回転軸に、間隔を開けて固定された少なくとも一対の回転子と、前記一対の回転子の間に配置されていて前記回転軸が挿通されている固定子とを備える発電機であって、
前記固定子は、複数の発電基本構成を前記回転軸方向に同じ向きで並べて配置されたものであり、
前記発電基本構成は、発電用コイルが設けられたコイル配置板をP枚有し、このP枚のコイル配置板を互いに360/P°の角度ずつずらして前記回転軸方向に積層されたものであり、
前記コイル配置板は、前記回転軸に対する直交面を略放射状に等分割する複数の仮想線に導体を沿わせた複数の辺部分を有する発電用コイルを備えていて、
前記回転子は、1枚の前記コイル配置板における前記複数の辺部分と対向する位置関係に配置された複数の永久磁石を有し、この複数の永久磁石の極性が交互に異なるように並べて配置されたものであり、前記一対の回転子は、互いの前記複数の永久磁石を丁度対面させると共に、対面し合う前記永久磁石の極性が互いに異なる極性となるように前記回転軸に固定されていることを特徴とする発電機。
At least a pair of rotors fixed to a rotating shaft that is rotatably supported and spaced apart, and a stator that is disposed between the pair of rotors and through which the rotating shaft is inserted. A generator,
The stator is a plurality of power generation basic configurations arranged in the same direction in the rotation axis direction,
The power generation basic configuration has P coil arrangement plates on which power generation coils are provided, and the P coil arrangement plates are stacked in the direction of the rotation axis while being shifted from each other by an angle of 360 / P °. Yes,
The coil arrangement plate includes a power generation coil having a plurality of side portions along a plurality of imaginary lines that equally divide a plane orthogonal to the rotation axis substantially radially,
The rotor has a plurality of permanent magnets arranged in a positional relationship facing the plurality of side portions in one coil arrangement plate, and the plurality of permanent magnets are arranged side by side so that the polarities thereof are alternately different. The pair of rotors are fixed to the rotating shaft so that the permanent magnets just face each other and the facing permanent magnets have different polarities. A generator characterized by that.
前記発電用コイルは、隣接し合う一対の前記辺部分を環状に繋げるように導体を巻いたコイル要素を、リング状に接続して形成されたものであることを特徴とする請求項1に記載の発電機。   2. The power generation coil is formed by connecting coil elements each having a conductor wound in a ring shape so as to connect a pair of adjacent side portions in a ring shape. Generator. 前記発電用コイルは、前記複数の辺部分をジグザグ状に繋げるように導体を巻いて形成されたものであることを特徴とする請求項1に記載の発電機。   The generator according to claim 1, wherein the power generation coil is formed by winding a conductor so as to connect the plurality of side portions in a zigzag shape. 前記発電用コイルは、前記コイル配置板にプリントパターンで形成されたものであることを特徴とする請求項1から3のいずれかに記載の発電機。   The generator according to any one of claims 1 to 3, wherein the power generation coil is formed on the coil arrangement plate with a printed pattern. 前記発電用コイルは、線状の導体、又は板状の導体で形成されたものであることを特徴とする請求項1から3のいずれかに記載の発電機。   The generator according to any one of claims 1 to 3, wherein the power generating coil is formed of a linear conductor or a plate-like conductor.
JP2013108987A 2012-05-28 2013-05-23 Generator Active JP6148068B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013108987A JP6148068B2 (en) 2012-05-28 2013-05-23 Generator

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012134240 2012-05-28
JP2012134240 2012-05-28
JP2013108987A JP6148068B2 (en) 2012-05-28 2013-05-23 Generator

Publications (2)

Publication Number Publication Date
JP2014007947A true JP2014007947A (en) 2014-01-16
JP6148068B2 JP6148068B2 (en) 2017-06-14

Family

ID=50105213

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013108987A Active JP6148068B2 (en) 2012-05-28 2013-05-23 Generator

Country Status (1)

Country Link
JP (1) JP6148068B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109462318A (en) * 2018-11-06 2019-03-12 东南大学 A kind of magnet structure axial stator iron-core less motor

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5886850A (en) * 1981-11-13 1983-05-24 Nippon Denso Co Ltd Alternating current generator
JPS59155902A (en) * 1983-02-25 1984-09-05 Kangiyou Denki Kiki Kk Layer-buit wiring body and manufacture thereof
JPS61293146A (en) * 1984-11-02 1986-12-23 Hitachi Ltd Axial gap type motor
JPS6373854A (en) * 1986-09-12 1988-04-04 Sawafuji Electric Co Ltd Magnetogenerator
JPH0487544A (en) * 1990-07-24 1992-03-19 Mitsubishi Materials Corp Dc brushless motor
JPH08126277A (en) * 1994-10-25 1996-05-17 Sawafuji Electric Co Ltd Flat rotating machine
JP2007215305A (en) * 2006-02-08 2007-08-23 Denso Corp Motor and its control device
JP2007529988A (en) * 2004-03-14 2007-10-25 レボリューション・エレクトリック・モーター・カンパニー・インコーポレーテッド Commercially low cost, high efficiency motor / generator
JP2009273216A (en) * 2008-05-06 2009-11-19 Denso Corp Motor
CN102412664A (en) * 2011-11-21 2012-04-11 李明山 Conductor plate-type electrical generator

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5886850A (en) * 1981-11-13 1983-05-24 Nippon Denso Co Ltd Alternating current generator
JPS59155902A (en) * 1983-02-25 1984-09-05 Kangiyou Denki Kiki Kk Layer-buit wiring body and manufacture thereof
JPS61293146A (en) * 1984-11-02 1986-12-23 Hitachi Ltd Axial gap type motor
JPS6373854A (en) * 1986-09-12 1988-04-04 Sawafuji Electric Co Ltd Magnetogenerator
JPH0487544A (en) * 1990-07-24 1992-03-19 Mitsubishi Materials Corp Dc brushless motor
JPH08126277A (en) * 1994-10-25 1996-05-17 Sawafuji Electric Co Ltd Flat rotating machine
JP2007529988A (en) * 2004-03-14 2007-10-25 レボリューション・エレクトリック・モーター・カンパニー・インコーポレーテッド Commercially low cost, high efficiency motor / generator
JP2007215305A (en) * 2006-02-08 2007-08-23 Denso Corp Motor and its control device
JP2009273216A (en) * 2008-05-06 2009-11-19 Denso Corp Motor
CN102412664A (en) * 2011-11-21 2012-04-11 李明山 Conductor plate-type electrical generator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109462318A (en) * 2018-11-06 2019-03-12 东南大学 A kind of magnet structure axial stator iron-core less motor

Also Published As

Publication number Publication date
JP6148068B2 (en) 2017-06-14

Similar Documents

Publication Publication Date Title
JP5302527B2 (en) Rotating electric machine and drive control device thereof
JP5620759B2 (en) Electric machine
JP2019517771A (en) Stator assembly using a stack of coated conductors
WO2015051740A1 (en) Disc power generator
US20160049838A1 (en) Synchronous machine
US20140306565A1 (en) Coaxial Motor
JP2016149930A (en) Rotary electric machine, coil and coil device
JP2005522972A5 (en)
JP2005522972A (en) Axial field synchronous electric machine
WO2015005375A1 (en) Large output, high efficiency, single phase, multi-polar power generator
WO2018051938A1 (en) Rotating electrical machine
WO2019008848A1 (en) Rotating electric machine and direct-acting electric motor
JP2008211918A (en) Rotary electric machine
CN111835107B (en) Rotor of rotating electrical machine
JP6148068B2 (en) Generator
JP7001483B2 (en) Axial gap type transverse flux type rotary electric machine
JP2010057208A (en) Rotary electric machine
JP2009027849A (en) Permanent magnet type rotary electric machine
JP2014192951A (en) Dynamo-electric machine, electric motor unit and generator unit
JP2019030113A (en) Disk type coil and rotary electric machine using the same
JP2018093617A (en) Laminated motor, and laminated power generator
CN112368920A (en) Rotating electrical machine
JP5869322B2 (en) Generator
TWI741756B (en) Electromagnetic induction device for power generation
JP2017135975A (en) Direct-current generator and direct-current motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160413

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20160523

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170314

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170315

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170421

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170502

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170518

R150 Certificate of patent or registration of utility model

Ref document number: 6148068

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

Free format text: JAPANESE INTERMEDIATE CODE: R313115