JP2014007029A - Metal-air battery - Google Patents

Metal-air battery Download PDF

Info

Publication number
JP2014007029A
JP2014007029A JP2012141002A JP2012141002A JP2014007029A JP 2014007029 A JP2014007029 A JP 2014007029A JP 2012141002 A JP2012141002 A JP 2012141002A JP 2012141002 A JP2012141002 A JP 2012141002A JP 2014007029 A JP2014007029 A JP 2014007029A
Authority
JP
Japan
Prior art keywords
air
negative electrode
metal
positive electrode
lath
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012141002A
Other languages
Japanese (ja)
Inventor
Yoshiaki Nagaura
善昭 長浦
Kazunori Seike
一徳 清家
Kazutake Imani
和武 今仁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2012141002A priority Critical patent/JP2014007029A/en
Publication of JP2014007029A publication Critical patent/JP2014007029A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a secondary battery having an improved energy density, in which there is no resource problem nor risk of fire disaster and corrosion.SOLUTION: A metal-air battery includes a positive electrode 2 containing carbon graphite which oxidizes and reduces oxygen, a negative electrode 1 consisting of a metal electrode, an electrolyte layer 6 and a separator 7 interposed therebetween. Interior of the positive electrode 2 is composed of a positive electrode catalyst 13, and the outer surface is composed of a film 10 permeating oxygen in the air and a metal mesh 11. Inner surface of the negative electrode 1 composed of an aluminum or magnesium alloy, or the like, consists of a surface treatment film 12, and the electrolyte 6 contains an electrolyte additive 14 principally comprising a chloride of aluminum, magnesium, or the like.

Description

本発明は、正電極及び負電極の電極間に電解質を採用した二次電池において、正極、負極及び電解質の構造と材料に関するものである。   The present invention relates to a structure and materials of a positive electrode, a negative electrode, and an electrolyte in a secondary battery that employs an electrolyte between positive and negative electrodes.

最近、パーソナルコンピューター及び携帯電話等のポータブル機器、及び自動車やスマートグリッドの普及に伴い、当該機器の電源である二次電池の需要が急速に増大していて、このような二次電池の典型例はリチウム(Li)を負極として、フッ化炭素等を正極とするリチウム電池であり、正極と負極との間に非水電解質を介在させることによって、金属リチウムの摘出を防止することが可能となったことを原因として、リチウム電池は広範に普及しているが、リチウムは希少高価であり、廃棄した場合にはリチウムが流出し環境上好ましくない。   Recently, with the widespread use of portable devices such as personal computers and mobile phones, and automobiles and smart grids, the demand for secondary batteries as power sources for such devices has increased rapidly, and typical examples of such secondary batteries. Is a lithium battery using lithium (Li) as a negative electrode and carbon fluoride as a positive electrode. By interposing a nonaqueous electrolyte between the positive electrode and the negative electrode, it becomes possible to prevent extraction of metallic lithium. For this reason, lithium batteries are widely used. However, lithium is rare and expensive, and when it is discarded, lithium flows out, which is not preferable in the environment.

電気自動車をはじめ、スマートハウス、ロボットや種々の携帯機器の進展により、蓄電デバイスの高容量化が強く望まれ、革新的な電源への要求が極めて高まっている。エネルギーの大量消費に伴う地球温暖化問題や自然エネルギーの平準化などからも高容量な蓄電デバイスへの要求が高く、金属空気電池開発への期待が高まっている。金属空気電池は、すでに亜鉛空気電池は実用化されている。しかし、これらの空気電池はいずれも1 次電池であり、繰り返し充放電に課題がある。空気電池は正極活物質が空気なので、原理的に半電池で機能できることに加え、金属というエネルギー密度が極めて大きな活物質を用いることから、軽くて高容量で、安価な電池となる可能性があり、二次電池化が実現できると、ポストLiイオン二次電池として極めて有望である。金属・空気電池は二次電池として開発も行われてきたが、デンドライト(金属樹)生成の抑制や空気中の水蒸気や炭酸ガスとの反応といった課題があり、まだ実現していない。近年、メソポーラス材料や負極金属の形状制御、電解質の固体化などにナノテク技術に立脚した大きな進展があり、二次電池化にとっての要素技術が整いつつある。   With the progress of electric vehicles, smart houses, robots, and various portable devices, it is strongly desired to increase the capacity of power storage devices, and the demand for innovative power sources is extremely increasing. The demand for high-capacity electricity storage devices is also high due to global warming problems associated with mass energy consumption and the leveling of natural energy, and expectations for the development of metal-air batteries are increasing. As for the metal-air battery, the zinc-air battery has already been put into practical use. However, these air batteries are all primary batteries, and have problems with repeated charge and discharge. Since air batteries use air as the positive electrode active material, in principle, they can function as a half-cell, and use an active material with a very high energy density, which is a metal. If a secondary battery can be realized, it is extremely promising as a post Li ion secondary battery. Metal / air batteries have also been developed as secondary batteries, but have not yet been realized due to problems such as suppression of dendrite (metal tree) formation and reaction with water vapor and carbon dioxide in the air. In recent years, great progress has been made based on nanotechnology in the shape control of mesoporous materials and negative electrode metals, solidification of electrolytes, etc., and elemental technologies for making secondary batteries are being prepared.

特許文献1の特許公開 2012−89266は、金属空気電池において放電電圧を高めるために、負極と、酸素の酸化還元触媒を有する正極と、フラーレン誘導体塩を含む非水電解液とを備えている非水電解液空気電池に関するものである。本発明の非水電解液空気電池は、酸素の酸化還元触媒を有する正極と、負極活物質を有する負極と、正極と負極との間に介在し、非金属多価カチオン塩を含む非水電解液と、を備えたものである。非水電解液空気電池において、非水電解液は、非金属多価カチオン塩を含むものである。このような非水電解液空気電池では、放電電圧をより高めることができる。空気電池において、放電時には、正極上に酸素ラジカルが生成する。例えば、カチオンとしてリチウムイオンだけが含まれている場合には、生成した酸素ラジカルとリチウムイオンとの反応は1電子反応であると考えられる。これに対して、カチオンとして多価カチオンが含まれている場合には、酸素ラジカルとリチウムイオンとの反応が、1電子反応だけでなく2電子反応や4電子反応を含むものとなると考えられる。   Patent Publication No. 2012-89266 of Patent Document 1 includes a negative electrode, a positive electrode having an oxygen redox catalyst, and a nonaqueous electrolytic solution containing a fullerene derivative salt in order to increase the discharge voltage in a metal-air battery. The present invention relates to a water electrolyte air battery. Non-aqueous electrolyte air battery of the present invention includes a positive electrode having an oxygen redox catalyst, a negative electrode having a negative electrode active material, and a non-aqueous electrolysis comprising a non-metal polyvalent cation salt interposed between the positive electrode and the negative electrode. And a liquid. In the nonaqueous electrolyte air battery, the nonaqueous electrolyte contains a nonmetallic polyvalent cation salt. In such a nonaqueous electrolyte air battery, the discharge voltage can be further increased. In an air battery, oxygen radicals are generated on the positive electrode during discharge. For example, when only a lithium ion is contained as a cation, the reaction between the generated oxygen radical and the lithium ion is considered to be a one-electron reaction. On the other hand, when a polyvalent cation is included as a cation, it is considered that the reaction between oxygen radicals and lithium ions includes not only a one-electron reaction but also a two-electron reaction or a four-electron reaction.

特許文献2の特許公開2012−89328は、金属空気電池において負電極において析出したデンドライトを負極に回収するために、少なくとも空気極と、負極と、当該空気極と当該負極との間に介在する電解液層を備える金属空気電池を備える密閉型の金属空気電池システムであって、前記空気極と前記電解液層との間に、前記電解液層中の電解液が透過する性質を有するセパレータがさらに介在し、少なくとも充電開始後に、前記電解液層中において、前記空気極側から前記負極側の方向に向かって前記セパレータを移動させ、前記セパレータを前記負極に押し付ける押圧手段を備えることを特徴とする、金属空気電池システムである。デンドライトは金属工学の分野、特に金属組織、結晶成長などと関連した用語で、金属融液を凝固させた際に典型的に観察される組織で、樹枝状結晶とも呼ばれる。    Patent Publication No. 2012-89328 of Patent Literature 2 discloses an electrolysis that is interposed between at least an air electrode, a negative electrode, and the air electrode and the negative electrode in order to collect dendrites deposited on the negative electrode in the metal-air battery. A sealed metal-air battery system including a metal-air battery including a liquid layer, wherein the separator further has a property of allowing the electrolyte solution in the electrolyte layer to pass between the air electrode and the electrolyte layer. And a pressing means for moving the separator from the air electrode side toward the negative electrode side and pressing the separator against the negative electrode in the electrolyte layer at least after the start of charging. A metal-air battery system. Dendrite is a term related to the field of metal engineering, particularly metal structure, crystal growth, and the like, and is a structure typically observed when a metal melt is solidified, and is also called a dendritic crystal.

特許文献3の特許公開2012−64314 は、金属空気電池において活性酸素種が電解質間を移動することで充電および放電が行われるので、活性酸素種を輸送するキャリアとして、非水系の有機分子を用いることを主要な特徴としている。負極活物質を含有する負極活物質層を有する負極層、および前記負極層の集電を行う負極集電体を有する負極と、空気極触媒を含有する空気極層、および前記空気極層の集電を行う空気極集電体を有する空気極と、前記負極、および前記空気極の間で、O2−、O22−、O−、HO2−のいずれかの活性酸素種の輸送を行うキャリアを含有する電解質キャリア層を有する電解質とを有する空気電池であって前記電解質キャリア層の数は1層以上であり、前記キャリアは、非水系の有機分子であることを特徴とする空気電池を提供する。従来の空気電池で用いられる水系電解質と異なり、キャリアとして用いられる非水系の有機分子は、金属を含む負極活物質に対して不活性であるために、寄生反応が起こらない。また、高い蒸気圧を有する非水系の有機分子をキャリアとして選べば、系からの分子の蒸発を無視できる程度に小さくすることができ、従って湿度を含む周囲環境に影響を受けにくい電池の設計が可能である。さらに、キャリアとして用いられる非水系の有機分子は金属酸化物の溶出を引き起こさないため、充電過程における金属化合物の不均一な析出を防ぐことができ、繰り返し充電が可能となる。また、稼働領域温度が水に依存しないために、水の融点以上沸点以下よりも広い温度領域で稼働する。、キャリアは、アルコール類、スルホキシド類、スルホン類、アミン類、ウレアーゼ類、アリルアゾ化合物類、複素環化合物類、大環状化合物類、大環状化合物の金属錯体、および、これら化合物の水素原子がハロゲノ基群、ニトロ基群、スルホニル基群に置換された化合物のいずれかであってもよい。   Patent Publication 2012-64314 of Patent Document 3 uses a non-aqueous organic molecule as a carrier for transporting active oxygen species because the active oxygen species are charged and discharged by moving between electrolytes in a metal-air battery. This is the main feature. A negative electrode layer having a negative electrode active material layer containing a negative electrode active material, a negative electrode having a negative electrode current collector for collecting the negative electrode layer, an air electrode layer containing an air electrode catalyst, and a collection of the air electrode layers An air electrode having an air electrode current collector that conducts electricity, and a carrier that transports any of active oxygen species of O 2−, O 22−, O−, and HO 2− between the negative electrode and the air electrode. And an electrolyte having an electrolyte carrier layer, wherein the number of the electrolyte carrier layers is one or more, and the carrier is a non-aqueous organic molecule. Unlike a water-based electrolyte used in a conventional air battery, a non-aqueous organic molecule used as a carrier is inactive with respect to a negative electrode active material containing a metal, so that a parasitic reaction does not occur. In addition, if non-aqueous organic molecules with high vapor pressure are selected as carriers, the evaporation of molecules from the system can be reduced to a negligible level, and therefore the battery design is less susceptible to the surrounding environment including humidity. Is possible. Furthermore, since non-aqueous organic molecules used as carriers do not cause elution of metal oxides, non-uniform precipitation of metal compounds during the charging process can be prevented, and repeated charging is possible. In addition, since the operating region temperature does not depend on water, it operates in a temperature region wider than the melting point of water and below the boiling point. , Carriers are alcohols, sulfoxides, sulfones, amines, ureases, allylazo compounds, heterocyclic compounds, macrocycles, metal complexes of macrocycles, and hydrogen atoms of these compounds are halogeno groups Any one of the compounds substituted with a group, a nitro group, and a sulfonyl group may be used.

特許文献4の特許公開2011−249175は、金属空気電池において、マグネシウム電池用の負極として有用な電極材料を提供するために、マグネシウム初晶と共晶物を含む鋳造材等の初晶の選択的腐食反応を利用し、表面から所定の深さまで粒界に残存したネットワーク状の共晶物からなる多孔質状マグネシウム合金表面を有する電極材料とその製造方法である。前記マグネシウム合金は、マグネシウムと少なくともアルミニウム、亜鉛、マンガン、ケイ素、希土類元素、カルシウム、ストロンチウム、スズ、ゲルマニウム、リチウム、ジルコニウム、ベリリウムから成る群から選ばれる少なくとも1種の金属からなる。   Patent Publication No. 2011-249175 of Patent Document 4 is a selective method of primary crystals such as a casting material containing a magnesium primary crystal and a eutectic in order to provide an electrode material useful as a negative electrode for a magnesium battery in a metal-air battery. An electrode material having a porous magnesium alloy surface made of a network-like eutectic remaining at a grain boundary from the surface to a predetermined depth using a corrosion reaction, and a method for producing the same. The magnesium alloy is made of magnesium and at least one metal selected from the group consisting of aluminum, zinc, manganese, silicon, rare earth elements, calcium, strontium, tin, germanium, lithium, zirconium, and beryllium.

特許文献5の特許公表2005−538512では、金属空気電池において、少なくとも1つの空気アクセス通路は非液体のバルブにより閉じられ、このバルブは差圧により駆動可能となっており少なくとも1つの開口を生じさせて空気を電池内に送ることを特徴とする電池である。空気電池のある種類のものにおいて、負極として亜鉛粉末を用いるとともに正極として二酸化マンガン(MnO2)を用い、電解液として水酸化カリウムの水溶液を用いている。負極において亜鉛は酸化されて亜鉛酸塩になり、正極においてMnO2はマンガンのオキシ水酸化物に還元する。電池が使用されないときや、放電量が非常に低いときには、大気の酸素が電池に入り、正極と反応を起こす。マンガンのオキシ水酸化物は酸化されてMnO2を形成する。放電量が大きいときには、空気回収電池は従来のアルカリ電池のように、「新しい(還元されていない)」MnO2を還元することにより作動する。放電量が低く電流フローがないような期間の間、「消費された(還元された)」MnO2は大気の酸素により再復元または再充電されて新しい状態のものとされる。空気回収電池において、正極は標準的にはコンテナ(例えば容器)により収容されており、少なくとも1つの空気アクセス通路がコンテナに設けられ、空気が流入して正極に接触するようになっている。しかしながら、空気回収電池に空気アクセス通路を設ける方法においては、亜鉛/空気電池における場合と同様に、上述と同一または似たような問題が発生してしまう。このような電池における空気アクセスを制御する方法においては、単純かつ経済的であるとともに信頼性が高く非常に効果的な改善が求められている。空気電極を備えた電池において、少なくとも1つの空気アクセス通路は非液体のバルブにより閉じられ、このバルブは差圧により駆動可能となっており少なくとも1つの開口を生じさせて空気を電池内に送るような電池を提供する。本発明の非常に好ましい特徴においては、バルブは少なくとも1つの薄い弾力性のある膜を有し、この膜は通常時は前記通路を閉じ、差圧により変形して前記の少なくとも1つの開口を生じさせるようになっている。このような一の形態において、1または複数の膜は切れ目を有し、この切れ目は通常時は閉じているが差圧により開くようになっている。切れ目は、膜の材料を取り除くことなく前記膜を切断することにより形成されることが好ましい。切れ目は直線形状であり3〜7mmの長さであることがより好ましい。切れ目は6mmの長さであることが更に好ましい。また、1または複数の前記膜は、ヤング率が28MPa以下である材料からなることが良い。膜の材料のヤング率は2kPa以下であり、1.6kPa以下となっていてもよい。更に、膜は、弾性が50MPa以下である材料からなることが好ましい。膜の材料の弾性は2MPa以下であることが好ましく、約1.1MPaであることが良い。複数の前記膜は、天然ゴム、ネオプレンゴム、ニトリルゴム、ポリブタジエン、ブタジエンの共重合体、ポリイソプレン、ブチルゴムまたはシリコーン・エラストマーであり、前記膜は天然ゴムまたは添加物により硬化されたビニルシロキサンであることが更に好ましい。シロキサンは、ケイ素(Si)酸素(O)水素(H)の化合物で且つSi-0-Siを含むポリマーを指し、撥水性、潤滑性、電気絶縁性を持つ成分であり、化粧品やシャンプーなどにも含まれている。   In Patent Publication No. 2005-538512 of Patent Document 5, in a metal-air battery, at least one air access passage is closed by a non-liquid valve, and this valve can be driven by a differential pressure to generate at least one opening. The battery is characterized by sending air into the battery. In a certain type of air battery, zinc powder is used as the negative electrode, manganese dioxide (MnO2) is used as the positive electrode, and an aqueous solution of potassium hydroxide is used as the electrolyte. Zinc is oxidized into zincate at the negative electrode, and MnO 2 is reduced to manganese oxyhydroxide at the positive electrode. When the battery is not used or when the discharge is very low, atmospheric oxygen enters the battery and reacts with the positive electrode. Manganese oxyhydroxide is oxidized to form MnO2. When the discharge is high, the air recovery battery operates by reducing “new (not reduced)” MnO 2 like a conventional alkaline battery. During periods of low discharge and no current flow, “consumed (reduced)” MnO 2 is re-restored or recharged by atmospheric oxygen to a new state. In the air recovery battery, the positive electrode is typically accommodated in a container (for example, a container), and at least one air access passage is provided in the container so that air flows in and comes into contact with the positive electrode. However, in the method of providing the air access passage in the air recovery battery, the same or similar problem as described above occurs as in the case of the zinc / air battery. In such a method for controlling air access in a battery, there is a need for an improvement that is simple and economical, reliable and very effective. In a battery with an air electrode, at least one air access passage is closed by a non-liquid valve, which can be driven by a differential pressure to create at least one opening to send air into the battery. A safe battery. In a highly preferred aspect of the invention, the valve has at least one thin resilient membrane that normally closes the passage and deforms due to differential pressure to produce the at least one opening. It is supposed to let you. In one such form, one or more membranes have a cut, which is normally closed but opened by differential pressure. The cut is preferably formed by cutting the film without removing the film material. It is more preferable that the cut is linear and has a length of 3 to 7 mm. More preferably, the cut is 6 mm long. The one or more films may be made of a material having a Young's modulus of 28 MPa or less. The Young's modulus of the material of the film is 2 kPa or less, and may be 1.6 kPa or less. Furthermore, the membrane is preferably made of a material having an elasticity of 50 MPa or less. The elasticity of the membrane material is preferably 2 MPa or less, and preferably about 1.1 MPa. The plurality of membranes are natural rubber, neoprene rubber, nitrile rubber, polybutadiene, butadiene copolymer, polyisoprene, butyl rubber, or silicone elastomer, and the membrane is natural rubber or vinyl siloxane cured with additives. More preferably. Siloxane is a compound of silicon (Si), oxygen (O), hydrogen (H), and contains Si-0-Si. It is a component that has water repellency, lubricity, and electrical insulation, and is used in cosmetics and shampoos. Is also included.

従来のリチウムイオン2次電池に使用しているLiは、資源は偏在していて、火災及び腐蝕をしたり、エネルギー密度を倍増する必要があり、これらを解決をすることを課題とする二次電池モジュール、及び製造方法を提供する。   Li used in the conventional lithium ion secondary battery is unevenly distributed and needs to be fired and corroded, or to double the energy density. A battery module and a manufacturing method are provided.

課題を解決しようとする手段Means to solve the problem

炭素グラファイトを含む正電極と、金属電極からなる負電極と、電解質層とこれらの間に介在されたセパレータ7を有する空気電池に於いて、正電極内部は二酸化マンガン及びシリコン(ケイ素Si)微粒子からなる正電極触媒、当該外面は空気中の二酸化炭素及び水分を透過しないイソプレン薄膜等の酸素透過膜及びチタン等の金属メッシュで構成すると共に、アルミニウムやマグネシウム等からなる負電極の内面は凹凸の多い負電極表面処理膜からなり、電解質にはアルミニウムやマグネシウム等の塩化物を主成分としシロキサン等の電解質添加物を含める。 二次電池を組み立てるために、正極及び負極を製造した後、各電極に電解質を塗布して、張り合わせることにより、当該の単位電池を迅速に組み立て製造できる。単位電池を直列に積層してから、加圧可能なボルトで締めて接合して気密を維持でき、強い振動や衝撃にも耐えうる。標準電極電位は、そのイオンが1mol/Lで存在する溶液につけたとき,単体と溶液の間に生じる起電力である。標準単極電位の例としては、
リチウム Li -3.04、 アルミニウム Al -1.662、
カルシウム Ca -2.76、 亜鉛 Zn -0.76、
銅 Cu +0.342、 白金 Pt +1.118、
マグネシウム Mg -2.37、 金 Au +1.498。
マグネシウム空気電池において、最大出力電位は−2.76ボルトである。
In an air battery having a positive electrode containing carbon graphite, a negative electrode made of a metal electrode, an electrolyte layer and a separator 7 interposed therebetween, the inside of the positive electrode is made of manganese dioxide and silicon (silicon Si) fine particles. The positive electrode catalyst is composed of an oxygen permeable film such as an isoprene thin film that does not transmit carbon dioxide and moisture in the air and a metal mesh such as titanium, and the inner surface of the negative electrode made of aluminum, magnesium, or the like is uneven. It consists of a negative electrode surface treatment film, and the electrolyte contains an electrolyte additive such as siloxane, mainly composed of chlorides such as aluminum and magnesium. In order to assemble the secondary battery, after manufacturing the positive electrode and the negative electrode, the unit battery can be quickly assembled and manufactured by applying an electrolyte to each electrode and bonding them together. After unit cells are stacked in series, they can be tightened and joined with a pressurizable bolt to maintain airtightness and can withstand strong vibrations and shocks. The standard electrode potential is an electromotive force generated between a simple substance and a solution when the ion is applied to a solution in which ions are present at 1 mol / L. Examples of standard unipolar potentials are:
Lithium Li -3.04, Aluminum Al -1.662,
Calcium Ca -2.76, Zinc Zn -0.76,
Copper Cu +0.342, Platinum Pt +1.118,
Magnesium Mg -2.37, gold Au +1.498.
In a magnesium air battery, the maximum output potential is -2.76 volts.

リチウムイオン2次電池に使用しているLiは、火災及び腐蝕をしたり、エネルギー密度を倍増する必要があり、これらを解決をすることを課題とする二次電池モジュール、及び製造方法を提供する。グラファイトを含む正電極と、金属電極からなる負電極と、電解質層とこれらの間に介在されたセパレータ7を有する空気電池に於いて、正電極内部は二酸化マンガン及びシリコン微粒子からなる正電極触媒、当該外面は空気中の二酸化炭素及び水分を透過しないイソプレン薄膜等の酸素透過膜及びチタン等の金属メッシュで構成すると共に、アルミニウムやマグネシウム等からなる負電極の内面は凹凸の多い負電極表面処理膜からなり、電解質には金属塩化物を主成分としシロキサン等の電解質添加物を含める。二次電池を組み立てるために、正極及び負極を製造した後、各電極に電解質を塗布して、張り合わせることにより、当該の単位電池を迅速に組み立て製造できる。単位電池を直列に積層してから、加圧可能なボルトで締めて接合して気密を維持でき、エネルギー密度を倍増(1 Wh/g 以上)すると 共に、強い振動や衝撃にも耐えうる。   Li used in a lithium ion secondary battery needs to be fired and corroded, or needs to double energy density, and provides a secondary battery module and a manufacturing method for solving these problems . In an air battery having a positive electrode containing graphite, a negative electrode made of a metal electrode, an electrolyte layer, and a separator 7 interposed therebetween, the inside of the positive electrode is a positive electrode catalyst made of manganese dioxide and silicon fine particles, The outer surface is composed of an oxygen permeable film such as an isoprene thin film that does not transmit carbon dioxide and moisture in the air and a metal mesh such as titanium, and the inner surface of the negative electrode made of aluminum, magnesium, or the like is a negative electrode surface treatment film with many irregularities The electrolyte includes metal chloride as a main component and an electrolyte additive such as siloxane. In order to assemble the secondary battery, after manufacturing the positive electrode and the negative electrode, the unit battery can be quickly assembled and manufactured by applying an electrolyte to each electrode and bonding them together. After unit cells are stacked in series, they can be joined by tightening with pressureable bolts to maintain airtightness, doubling the energy density (1 Wh / g or more) and withstanding strong vibrations and shocks.

正電極1の重量を極く薄くて軽くする目的と、正電極1の内部を空気中の酸素を自由に通過をさせて透過させる目的にて図4に示している、例えば、日本金属工業株式会社(以下、略して、日金工株式会社とする)が製造販売をしている、商品名がNTK U−1、及びNTK U−2の化学成分(%)、特性、及び耐食性を、下記の表1、及び表2に示している。 4 for the purpose of making the weight of the positive electrode 1 extremely thin and light and for the purpose of allowing oxygen in the air to freely pass through the inside of the positive electrode 1. The company (hereinafter abbreviated as Nikkin Kogyo Co., Ltd.) manufactures and sells the chemical components (%), characteristics, and corrosion resistance of the product names NTK U-1 and NTK U-2. These are shown in Table 1 and Table 2.


特 性
NTK U−1およびNTK U−2は超低炭素の18%クロム・2%モリブデンのフェライト系ステンレス鋼である。SUS304よりすぐれた一般耐食性を有し、特に塩化物による応力腐食割れに対して極めて強い抵抗性を持っている。溶接材の粒界腐蝕を防止する目的で、NTK U−1はチタンを、NTK U−2はニオブを少量添加している。
NTK U−1は研磨用途には不向きである。
Characteristics NTK U-1 and NTK U-2 are ferritic stainless steels of 18% chromium and 2% molybdenum with ultra-low carbon. It has general corrosion resistance superior to that of SUS304, and in particular has extremely strong resistance to stress corrosion cracking due to chloride. For the purpose of preventing intergranular corrosion of the welding material, NTK U-1 is added with titanium and NTK U-2 is added with a small amount of niobium.
NTK U-1 is not suitable for polishing applications.

耐食性
耐食性:硫酸濃度約0.5%以下ではSUS316と同等以上の耐食性を示す。また、有機酸に対しては抵抗性がすぐれており、SUS316と同程度の耐食性を示す。
粒界腐食感受性:溶接の熱影響によっても、ほとんど粒界腐食を生じない。
Corrosion resistance
Corrosion resistance: Corrosion resistance equal to or higher than SUS316 is exhibited at a sulfuric acid concentration of about 0.5% or less. In addition, it has excellent resistance to organic acids and exhibits corrosion resistance comparable to that of SUS316.
Intergranular corrosion susceptibility: Almost no intergranular corrosion due to the thermal effect of welding.




図4に示しているように、上記にて説明をした、日金工株式会社が製造販売をしている、商品名がNTK U−1、及びNTK U−2(以下、略して、U−1ラス、及びU−2ラストスとする)で出来ている、板厚が48μm以下の板厚で出来ている、例えば、エキスパンドメタルNTK U−2(以下、略して、U−2ラスとする)を使用して、本考案の正電極1、及び負電極2を形成すると、極く軽くて、空気中の酸素分子だけを自由に通過をさせることが出来る透過膜として、凹−凸形状をしたメッシュ構造をした、U−2ラスの表面上に、例えば、会社の所在地が福岡市に本社があるフジケミカル株式会社が製造販売をしているドータイトXC−12、又はドータイトXC−32、又はドータイトSH−3Aなどの、炭素グラファイト15が主たる主成分の塗料をU−2ラスの表面上に塗布をして、正電極1を形成することにより、正電極1の重量が極く軽くて、正電極1の内部を空気中の酸素が自由に通過をして透過をするメッシュ構造をしたU−2ラス11の表面上に、炭素グラファイト15が主たる主成分の塗料をU−2ラスの表面上に塗布をして、正電極1を形成しているので、酸素を酸化させる効果が高い空気電池の正電極1とすることが出来る効果がある。 As shown in FIG. 4, the product names NTK U-1 and NTK U-2 (hereinafter abbreviated as U-1) manufactured and sold by Nikinko Co., Ltd., described above. For example, an expanded metal NTK U-2 (hereinafter abbreviated as U-2 lath) is made of a plate thickness of 48 μm or less. When the positive electrode 1 and the negative electrode 2 of the present invention are formed and used, a mesh having a concave-convex shape is formed as a permeable membrane that is extremely light and can freely pass only oxygen molecules in the air. On the surface of the structured U-2 lath, for example, Dotite XC-12, Dotite XC-32, or Dotite SH manufactured and sold by Fuji Chemical Co., Ltd., headquartered in Fukuoka City Carbon graphie, such as -3A The main electrode 15 is applied on the surface of the U-2 lath to form the positive electrode 1, so that the weight of the positive electrode 1 is extremely light, and the inside of the positive electrode 1 is in the air. On the surface of the U-2 lath 11 having a mesh structure in which oxygen freely passes and permeates, a paint mainly composed of carbon graphite 15 is applied on the surface of the U-2 lath to form a positive electrode. 1 is formed, there is an effect that the positive electrode 1 of the air battery having a high effect of oxidizing oxygen can be obtained.

また、図4、及び図5に示しているように、上記にて説明をした、日金工株式会社が製造販売をしている、商品名がNTK U−1、及びNTK U−2(以下、略して、U−1ラス、及びU−2ラストスとする)で出来ている、板厚が48μm以下の板厚で出来ている、例えば、エキスパンドメタルNTK U−2(以下、略して、U−2ラスとする)を使用して、本考案の正電極1、及び負電極2を形成すると、極く軽くて、空気中の酸素分子だけを自由に通過をさせることが出来る透過膜として、凹−凸形状をしたメッシュ構造の内部に炭素グラファイト15、又は鍍金層16を形成することが出来るので、極く薄くて、軽くて、表面積が広い、上記の表1に記載をしている合金板部分17である鍍金層16を含有している、U−2ラスの表面上に合金板部分17を形成した負電極2、又は炭素グラファイト15をU−2ラスの表面上に塗布をした正電極1を形成することが出来る効果がある。 Moreover, as shown in FIG.4 and FIG.5, the product name which NTK U-1 and NTK U-2 (henceforth, the Nikkanko Co., Ltd. manufactures and sells) demonstrated above is carried out. For example, expanded metal NTK U-2 (hereinafter abbreviated as U-), which is made of U-1 lath and U-2 lasts, and has a thickness of 48 μm or less. 2), the positive electrode 1 and the negative electrode 2 of the present invention are formed. As a permeable membrane that is extremely light and allows only oxygen molecules in the air to pass freely, -Since the carbon graphite 15 or the plating layer 16 can be formed inside the convex mesh structure, the alloy plate described in Table 1 above is extremely thin, light, and has a large surface area. U-2 lath containing plating layer 16 which is part 17 There is an effect that it is possible to form the positive electrode 1 negative electrode 2 was formed alloy plate portion 17, or a carbon graphite 15 was coated on the surface of the U-2 Las on the surface.

さらに、図5に示しているように、負電極2の重量を極く薄くて軽くする目的と、負電極2の表面上に凹−凸を形成して、負電極2の表面積を極力広くする目的にて、エキスパンドメタル11(以下、略して、U−2ラスとする)の表面上に、亜鉛、アルミニウム、マグネシウム、及びシリコンを溶融した合金を使用して表面処理をした鍍金層16を形成して、負電極2を形成することにより、負電極2の重量が極く軽くて、負電極2を構成しているメッシュ構造をした網の目の内部を鍍金層16を使用して、メッシュ構造をした網の目の内部を、鍍金層16を使用して詰めて、合金板部分17を形成することにより、負電極2の表面上はもともとがメッシュ構造をしたU−2ラス構造をした凹−凸形状をした構造にて出来ているので、この凹−凸形状をしたU−2ラス構造の表面上に、合金板部分17を形成をした鍍金層16を形成することになり、負電極2の重量が極く軽くて、負電極2の表面積が極力広い効率が高い負電極2を形成することが出来る効果がある。 Furthermore, as shown in FIG. 5, the negative electrode 2 is made extremely thin and light, and the negative electrode 2 is formed with a concave-convex surface to increase the surface area of the negative electrode 2 as much as possible. For the purpose, on the surface of the expanded metal 11 (hereinafter referred to as U-2 lath for short), a plating layer 16 that is surface-treated using an alloy in which zinc, aluminum, magnesium, and silicon are melted is formed. Then, by forming the negative electrode 2, the weight of the negative electrode 2 is extremely light, and the mesh layer constituting the negative electrode 2 is meshed with the mesh layer 16 using the plating layer 16. The inside of the mesh of the structured mesh is packed using the plating layer 16 to form the alloy plate portion 17, so that the surface of the negative electrode 2 originally has a U-2 lath structure having a mesh structure. Because it is made of a concave-convex structure, this -The plating layer 16 having the alloy plate portion 17 formed is formed on the surface of the convex U-2 lath structure, the negative electrode 2 is extremely light, and the negative electrode 2 has a surface area. There is an effect that it is possible to form the negative electrode 2 having as high efficiency as possible.

また、図6に示しているように、空気中の酸素だけを効率よく、取り込んで空気中の酸素を効率よく酸化をさせて、極力効率が高い空気電池を形成する目的にて、エキスパンドメタル(以下、略して、U−2ラスとする)に形成をしている穴径が、例えば、穴径が6μm以下、又は穴径が10μm以下、又は穴径が20μm以下、又は穴径が30μm以下で、空気中の二酸化炭素、窒素、及び水分を透過させないで、酸素だけを自由に通過をさせて透過させることが出来る、極くメッシュが小さいU−2ラスを使用して酸素透過膜10を形成することにより、効率よく空気中の酸素だけを自由に通過をさせて透過をさせることが出来ることになる効果がある。 Further, as shown in FIG. 6, for the purpose of forming an air battery having the highest possible efficiency by efficiently taking in only oxygen in the air and efficiently oxidizing the oxygen in the air, Hereinafter, the diameter of the hole formed in the abbreviated U-2 lath), for example, the hole diameter is 6 μm or less, or the hole diameter is 10 μm or less, or the hole diameter is 20 μm or less, or the hole diameter is 30 μm or less. Thus, the oxygen permeable membrane 10 can be formed using a U-2 lath with a very small mesh that can pass through only oxygen without allowing carbon dioxide, nitrogen, and moisture in the air to pass therethrough. By forming it, there is an effect that it is possible to allow only oxygen in the air to pass freely and to permeate efficiently.

さらに、U−2ラスは腐蝕、及び酸化に強力に耐えることが出来る合金で出来ているので、耐用年数が長い空気電池の酸素透過膜10としては最適で、耐用年数が長い空気電池を形成することが出来る効果がある。
Furthermore, since U-2 lath is made of an alloy that can withstand corrosion and oxidation, it is ideal for the oxygen permeable membrane 10 of an air battery having a long service life and forms an air battery having a long service life. There is an effect that can be.

酸化還元するグラファイトを含む正電極2と、金属電極からなる負電極1と、電解質層6とこれらの間に介在されたセパレータ7を有する空気電池に於いて、正電極2内部は二酸化マンガン及びシリコン(ケイ素Si)微粒子からなる正電極触媒13、当該外面は空気中の二酸化炭素及び水分を透過しないイソプレン薄膜やシロキサン等の酸素透過膜10及びチタン等の金属メッシュ11で構成すると共に、アルミニウムやマグネシウム等からなる負電極1の内面は凹凸の多い負電極表面処理膜12からなり、電解質6にはアルミニウムやマグネシウム等の塩化物を主成分としクエン酸(HOOC-CH2-C(OH)(COOH)-CH2-COOH)、酒石酸(HOOC-CH(OH)-CH(OH)-COOH)、又は、リンゴ酸(HOOC-CH(OH)-CH2-COOH) 等の電解質添加物14を含むことを特徴とする金属空気単電池を作成した。In an air battery having a positive electrode 2 containing graphite to be oxidized / reduced, a negative electrode 1 made of a metal electrode, an electrolyte layer 6 and a separator 7 interposed therebetween, the inside of the positive electrode 2 contains manganese dioxide and silicon. (Silicon Si) Positive electrode catalyst 13 made of fine particles, the outer surface is composed of an oxygen-permeable membrane 10 such as isoprene thin film or siloxane that does not transmit carbon dioxide and moisture in the air, and a metal mesh 11 such as titanium, and aluminum or magnesium The inner surface of the negative electrode 1 is made of a negative electrode surface treatment film 12 with many irregularities, and the electrolyte 6 is mainly composed of chlorides such as aluminum and magnesium, and citric acid (HOOC-CH2-C (OH) (COOH) -CH2-COOH), tartaric acid (HOOC-CH (OH) -CH (OH) -COOH), or malic acid (HOOC-CH (OH) -CH2-COOH), etc. A metal-air unit cell was created. 正電極2と、金属電極からなる負電極1と、電解質層6とこれらの間に介在されたセパレータ7を有する空気電池に於いて、正電極2内部は二酸化マンガン及びシリコン(ケイ素Si)微粒子からなる正電極触媒13、当該外面は空気中の二酸化炭素及び水分を透過しないイソプレン薄膜等の酸素透過膜10及びチタン等の金属メッシュ11で構成すると共に、マグネシウム等からなる負電極1の内面は凹凸の多い負電極表面処理膜12からなり、電解質6にはマグネシウム等の塩化物を主成分とし、電解質添加物14を含むことを特徴とする金属空気単電池を二対製作した。これらの四個の単電池を並列にして空気供給の正電極2を共用してから、さらに一対の単電池を直列にして金属空気組電池とした。空気入口3と空気出口4にまとめて空気を自然循環させ、電極のリード8及び9を決戦してから、ケース5に格納する。In an air battery having a positive electrode 2, a negative electrode 1 made of a metal electrode, an electrolyte layer 6, and a separator 7 interposed therebetween, the inside of the positive electrode 2 is made of manganese dioxide and silicon (silicon Si) fine particles. The positive electrode catalyst 13 is composed of an oxygen permeable film 10 such as an isoprene thin film that does not transmit carbon dioxide and moisture in the air, and a metal mesh 11 such as titanium, and the inner surface of the negative electrode 1 made of magnesium or the like is uneven. Two pairs of metal-air single cells, each of which is composed of a negative electrode surface treatment film 12 with a large amount of electrolyte and is mainly composed of a chloride such as magnesium and containing an electrolyte additive 14 in the electrolyte 6. These four unit cells were arranged in parallel to share the positive electrode 2 for air supply, and a pair of unit cells were further connected in series to form a metal-air battery pack. The air is naturally circulated together in the air inlet 3 and the air outlet 4, and after the battle between the electrode leads 8 and 9, the air is stored in the case 5. 前記図1のマグネシウムからなる負電極1の内面は凹凸の多い負電極表面処理膜12からなり、電解質6にはマグネシウム等の塩化物を主成分とし、クエン酸等の電解質添加物14を含む金属空気単電池を作成した。 両電極を接合して単位セルを作成して、充電電圧を2.1Vから2.7Vの範囲にて約1時間で充電し、放電電圧を2.1Vから1.6Vの範囲にて約1時間放電することができた。The inner surface of the negative electrode 1 made of magnesium in FIG. 1 is made of a negative electrode surface treatment film 12 with many irregularities, and the electrolyte 6 is a metal containing a chloride such as magnesium as a main component and an electrolyte additive 14 such as citric acid. An air cell was created. A unit cell is formed by joining both electrodes, and the charging voltage is charged in the range of 2.1V to 2.7V for about 1 hour, and the discharging voltage is set to about 1 in the range of 2.1V to 1.6V. It was possible to discharge for hours. 図4に示しているのは、エキスパンドメタル11(以下、略して、U−2ラスとする)の表面上に、例えば、会社の所有地が福岡市に本社があるフジケミカル株式会社が製造販売をしているド−タイトXC−12、又はド−タイトXC−32、又はド−タイトSH−3Aなどの、炭素グラファイト15が主たる主成分の塗料をU−2ラスの表面上に塗布をして、正電極1を形成している平面図を、図4に示している。FIG. 4 shows the manufacturing and sales of, for example, Fuji Chemical Co., Ltd., whose headquarters is in Fukuoka City, on the surface of expanded metal 11 (hereinafter referred to as U-2 lath for short). A coating mainly composed of carbon graphite 15 such as Dotite XC-12, Dotite XC-32 or Dotite SH-3A is applied on the surface of U-2 lath. A plan view of the positive electrode 1 is shown in FIG. 図5に示しているのは、エキスパンドメタル11(以下、略して、U−2ラスとする)の表面上に、亜鉛、アルミニウム、マグネシュウム、及びシリコンを溶融した合金を使用して表面処理をして合金板である合金板部分17を形成した鍍金層16を、U−2ラスを構成しているメッシュの空間の内部に合金板部分17を形成して、負電極2を形成している平面図を、図5に示している。FIG. 5 shows a surface treatment using an alloy in which zinc, aluminum, magnesium and silicon are melted on the surface of expanded metal 11 (hereinafter referred to as U-2 lath for short). A plane on which the negative electrode 2 is formed by forming the plating layer 16 on which the alloy plate portion 17 that is an alloy plate is formed, and forming the alloy plate portion 17 inside the mesh space constituting the U-2 lath. The diagram is shown in FIG. 図6に示しているのは、エキスパンドメタル11(以下、略して、U−2ラスとする)に形成している穴径が、例えば、穴径が6μm以下、又は穴径が10μm以下、又は穴径が20μm以下、又は穴径が30μm以下で、空気中の二酸化炭素、窒素、及び水分を透過させないで、酸素だけを自由に通過をさせて透過させることが出来る酸素透過膜10の平面図を、図6に示している。FIG. 6 shows that the hole diameter formed in the expanded metal 11 (hereinafter referred to as U-2 lath for short) is, for example, a hole diameter of 6 μm or less, or a hole diameter of 10 μm or less, or A plan view of an oxygen permeable membrane 10 having a hole diameter of 20 μm or less or a hole diameter of 30 μm or less and allowing only oxygen to pass through without allowing carbon dioxide, nitrogen and moisture in the air to pass therethrough. Is shown in FIG.

グラファイト正電極2と、金属電極からなる負電極1と、電解質層6とこれらの間に介在されたセパレータ7を有する空気電池に於いて、正電極2内部は二酸化マンガン及びシリコン(ケイ素Si)微粒子からなる正電極触媒13、当該外面は空気中の二酸化炭素及び水分を透過しないイソプレン薄膜等の酸素透過膜10及びチタンメッシュ11で構成すると共に、マグネシウム合金からなる負電極1の内面は凹凸の多い負電極表面処理膜12からなり、電解質6にはマグネシウム塩化物を主成分としシロキサン等の電解質添加物14を含むことを特徴とする金属空気単電池を製作した。トタンは鉄に亜鉛を鍍金したもので、鋼板には、亜鉛系、アルミニウム系、亜鉛・アルミニウム系の鍍金が主に用いられている。亜鉛(91%)-アルミニウム(6%)-マグネシウム(3%)の鍍金層を持つ新しいZAM鋼板(日新製鋼)は、耐食性が従来の溶融亜鉛めっき鋼板に比べ10〜20倍、溶融亜鉛-5%アルミニウム合金めっき鋼板に比べ5〜8倍優れている。厳しい腐食環境下でも優れた耐食性を示すことから、溶かした亜鉛に鋼材を漬けてめっきを施す溶融亜鉛めっきや、電気亜鉛めっきを施した後に、クロムを含む溶液に漬けて、耐食性向上や外観(装飾性)向上を図るクロメート処理を代替することが可能である。さらに、めっき層が硬いため優れた耐傷付き性を有するとともに様々な加工にも対応できる。この二次電池に対し、0.2アンペアの電流密度となるような定電流源で充電を行ったところ、充電電圧を2.1Vから2.7Vの範囲にて約30分で充電することができた。   In an air battery having a graphite positive electrode 2, a negative electrode 1 made of a metal electrode, an electrolyte layer 6 and a separator 7 interposed therebetween, the inside of the positive electrode 2 is manganese dioxide and silicon (silicon Si) fine particles. The positive electrode catalyst 13 is made of an oxygen permeable film 10 such as an isoprene thin film that does not transmit carbon dioxide and moisture in the air and a titanium mesh 11, and the inner surface of the negative electrode 1 made of a magnesium alloy has many irregularities. A metal-air unit cell comprising a negative electrode surface treatment film 12 and characterized in that the electrolyte 6 contains magnesium chloride as a main component and an electrolyte additive 14 such as siloxane. Tin is made of iron plated with zinc, and zinc, aluminum, and zinc / aluminum plating are mainly used for steel plates. The new ZAM steel sheet (Nisshin Steel) with a plating layer of zinc (91%)-aluminum (6%)-magnesium (3%) has a corrosion resistance 10-20 times that of the conventional hot-dip galvanized steel sheet. 5-8 times better than 5% aluminum alloy plated steel sheet. Because it shows excellent corrosion resistance even in harsh corrosive environments, hot dip galvanization in which steel is immersed in molten zinc and plated, or after electrogalvanization, it is immersed in a solution containing chromium to improve corrosion resistance and appearance ( It is possible to replace the chromate treatment for improving the decorativeness. Furthermore, since the plating layer is hard, it has excellent scratch resistance and can be applied to various processes. When this secondary battery is charged with a constant current source that provides a current density of 0.2 amperes, the charging voltage can be charged within a range of 2.1 V to 2.7 V in about 30 minutes. did it.

正電極2と、金属電極からなる負電極1と、電解質層6とこれらの間に介在されたセパレータ7を有する空気電池に於いて、正電極2内部は二酸化マンガン及びシリコン微粒子からなる正電極触媒13、当該外面は空気中の二酸化炭素及び水分を透過しないイソプレン薄膜等の酸素透過膜10及びチタンメッシュ11で構成すると共に、アルミニウム合金からなる負電極1の内面は凹凸の多い負電極表面処理膜12からなり、電解質6にはアルミニウム塩化物を主成分としクエン酸(HOOC-CH2-C(OH)(COOH)-CH2-COOH)又はリンゴ酸(HOOC-CH(OH)-CH2-COOH) を含む金属空気電池を製作した。この二次電池に0.1アンペアの電流密度となるような定電流源で充電を行い、充電電圧を2.1Vから2.7Vにて約1時間で充電することができた。   In an air battery having a positive electrode 2, a negative electrode 1 made of a metal electrode, an electrolyte layer 6 and a separator 7 interposed therebetween, the inside of the positive electrode 2 is a positive electrode catalyst made of manganese dioxide and silicon fine particles. 13. The outer surface is composed of an oxygen permeable film 10 such as an isoprene thin film that does not transmit carbon dioxide and moisture in the air and a titanium mesh 11, and the inner surface of the negative electrode 1 made of an aluminum alloy is a negative electrode surface treatment film with many irregularities. The electrolyte 6 is composed mainly of aluminum chloride and contains citric acid (HOOC-CH2-C (OH) (COOH) -CH2-COOH) or malic acid (HOOC-CH (OH) -CH2-COOH). A metal-air battery was produced. This secondary battery was charged with a constant current source so that the current density was 0.1 ampere, and the charging voltage could be charged from 2.1 V to 2.7 V in about 1 hour.

正電極2と、金属電極からなる負電極1と、電解質層6とこれらの間に介在されたセパレータ7を有する空気電池に於いて、正電極2内部は二酸化マンガン及びシリコン微粒子からなる正電極触媒13、当該外面は酸素透過膜10及びチタンメッシュ11で構成すると共に、マグネシウムからなる負電極1の内面は凹凸の多い負電極表面処理膜12からなり、電解質6にはマグネシウム塩化物を主成分とし、電解質添加物14を含むことを特徴とする金属空気単電池を二対製作した。これらの四個の単電池を並列にして空気供給の正電極2を共用してから、さらに一対の単電池を直列にしてマグネシウム空気組電池として、放電電流0.3Aの1モーターを約1時間運転して、エネルギー密度を倍増(1 Wh/g 以上)できた。   In an air battery having a positive electrode 2, a negative electrode 1 made of a metal electrode, an electrolyte layer 6 and a separator 7 interposed therebetween, the inside of the positive electrode 2 is a positive electrode catalyst made of manganese dioxide and silicon fine particles. 13. The outer surface is composed of an oxygen permeable membrane 10 and a titanium mesh 11, and the inner surface of the negative electrode 1 made of magnesium is made of a negative electrode surface treatment film 12 with many irregularities. The electrolyte 6 contains magnesium chloride as a main component. Two pairs of metal-air unit cells characterized by containing the electrolyte additive 14 were manufactured. These four cells are used in parallel to share the positive electrode 2 for supplying air, and then a pair of cells are connected in series to form a magnesium-air assembled battery. One motor with a discharge current of 0.3 A is about 1 hour. It was able to double the energy density (over 1 Wh / g) by driving.

図4に示しているように、上記にて説明をした、日金工株式会社が製造販売をしている、商品名がNTK U−1、及びNTK U−2(以下、略して、U−1ラス、及びU−2ラストスとする)で出来ている、板厚が48μm以下の板厚で出来ている、例えば、エキスパンドメタルNTK U−2(以下、略して、U−2ラスとする)を使用して、本考案の正電極1、及び負電極2を形成すると、極く軽くて、空気中の酸素分子だけを自由に通過をさせることが出来る透過膜として、凹−凸形状をしたメッシュ構造をした、U−2ラスの表面上に、例えば、会社の所在地が福岡市に本社があるフジケミカル株式会社が製造販売をしているドータイトXC−12、又はドータイトXC−32、又はドータイトSH−3Aなどの、炭素グラファイト15が主たる主成分の塗料をU−2ラスの表面上に塗布をして、正電極1を形成することにより、正電極1の重量が極く軽くて、正電極1の内部を空気中の酸素が自由に通過をして透過をするメッシュ構造をしたU−2ラス11の表面上に、炭素グラファイト15が主たる主成分の塗料をU−2ラスの表面上に塗布をして、正電極1を形成しているので、酸素を酸化させる効果が高い空気電池の正電極1とすることが出来た。 As shown in FIG. 4, the product names NTK U-1 and NTK U-2 (hereinafter abbreviated as U-1) manufactured and sold by Nikinko Co., Ltd., described above. For example, an expanded metal NTK U-2 (hereinafter abbreviated as U-2 lath) is made of a plate thickness of 48 μm or less. When the positive electrode 1 and the negative electrode 2 of the present invention are formed and used, a mesh having a concave-convex shape is formed as a permeable membrane that is extremely light and can freely pass only oxygen molecules in the air. On the surface of the structured U-2 lath, for example, Dotite XC-12, Dotite XC-32, or Dotite SH manufactured and sold by Fuji Chemical Co., Ltd., headquartered in Fukuoka City Carbon graphie, such as -3A The main electrode 15 is applied on the surface of the U-2 lath to form the positive electrode 1, so that the weight of the positive electrode 1 is extremely light, and the inside of the positive electrode 1 is in the air. On the surface of the U-2 lath 11 having a mesh structure in which oxygen freely passes and permeates, a paint mainly composed of carbon graphite 15 is applied on the surface of the U-2 lath to form a positive electrode. 1 was formed, so that the positive electrode 1 of the air battery having a high effect of oxidizing oxygen could be obtained.

図4、及び図5に示しているように、上記にて説明をした、日金工株式会社が製造販売をしている、商品名がNTK U−1、及びNTK U−2(以下、略して、U−1ラス、及びU−2ラストスとする)で出来ている、板厚が48μm以下の板厚で出来ている、例えば、エキスパンドメタルNTK U−2(以下、略して、U−2ラスとする)を使用して、本考案の正電極1、及び負電極2を形成すると、極く軽くて、空気中の酸素分子だけを自由に通過をさせることが出来る透過膜として、凹−凸形状をしたメッシュ構造の内部に炭素グラファイト15、又は鍍金層16を形成することが出来るので、極く薄くて、軽くて、表面積が広い、上記の表1に記載をしている合金板部分17である鍍金層16を含有している、U−2ラスの表面上に合金板部分17を形成した負電極2、又は炭素グラファイト15をU−2ラスの表面上に塗布をした正電極1を形成することが出来た。 As shown in FIG. 4 and FIG. 5, the product names NTK U-1 and NTK U-2 (hereinafter abbreviated), manufactured and sold by Nikinko Co., Ltd., described above. , U-1 lath, and U-2 lasts), and a thickness of 48 μm or less, for example, expanded metal NTK U-2 (hereinafter abbreviated as U-2 lath) When the positive electrode 1 and the negative electrode 2 of the present invention are formed, the concave-convex film is formed as a permeable membrane that is extremely light and can freely pass only oxygen molecules in the air. Since the carbon graphite 15 or the plating layer 16 can be formed inside the shaped mesh structure, the alloy plate portion 17 described in Table 1 above is extremely thin, light, and has a large surface area. The surface of the U-2 lath containing the plating layer 16 which is Negative electrode 2 was formed alloy plate portion 17, or a carbon graphite 15 could be formed a positive electrode 1 was applied on the surface of the U-2 class in.

図5に示しているように、負電極2の重量を極く薄くて軽くする目的と、負電極2の表面上に凹−凸を形成して、負電極2の表面積を極力広くする目的にて、エキスパンドメタル11(以下、略して、U−2ラスとする)の表面上に、亜鉛、アルミニウム、マグネシウム、及びシリコンを溶融した合金を使用して表面処理をした鍍金層16を形成して、負電極2を形成することにより、負電極2の重量が極く軽くて、負電極2を構成しているメッシュ構造をした網の目の内部を鍍金層16を使用して、メッシュ構造をした網の目の内部を、鍍金層16を使用して詰めて、合金板部分17を形成することにより、負電極2の表面上はもともとがメッシュ構造をしたU−2ラス構造をした凹−凸形状をした構造にて出来ているので、この凹−凸形状をしたU−2ラス構造の表面上に、合金板部分17を形成をした鍍金層16を形成することになり、負電極2の重量が極く軽くて、負電極2の表面積が極力広い効率が高い負電極2を形成することが出来た。 As shown in FIG. 5, for the purpose of making the weight of the negative electrode 2 extremely thin and light, and for the purpose of forming a concave-convex on the surface of the negative electrode 2 to increase the surface area of the negative electrode 2 as much as possible. Then, on the surface of the expanded metal 11 (hereinafter abbreviated as U-2 lath), a plating layer 16 subjected to surface treatment using an alloy in which zinc, aluminum, magnesium and silicon are melted is formed. By forming the negative electrode 2, the weight of the negative electrode 2 is extremely light, and the mesh structure is formed by using the plating layer 16 inside the mesh structure of the mesh structure constituting the negative electrode 2. By forming the alloy plate portion 17 by filling the inside of the mesh of the mesh using the plating layer 16, the surface of the negative electrode 2 has a U-2 lath structure that originally has a mesh structure. This concave-convex shape is made of a convex structure. The plating layer 16 having the alloy plate portion 17 formed is formed on the surface of the U-2 lath structure that has been processed, and the negative electrode 2 is extremely light in weight and the surface area of the negative electrode 2 is as wide as possible. Can be formed.

図6に示しているように、空気中の酸素だけを効率よく、取り込んで空気中の酸素を効率よく酸化をさせて、極力効率が高い空気電池を形成する目的にて、エキスパンドメタル(以下、略して、U−2ラスとする)に形成をしている穴径が、例えば、穴径が6μm以下、又は穴径が10μm以下、又は穴径が20μm以下、又は穴径が30μm以下で、空気中の二酸化炭素、窒素、及び水分を透過させないで、酸素だけを自由に通過をさせて透過させることが出来る、極くメッシュが小さいU−2ラスを使用して酸素透過膜10を形成することにより、効率よく空気中の酸素だけを自由に通過をさせて透過をさせることが出来た。

As shown in FIG. 6, an expanded metal (hereinafter referred to as “the expanded metal”) is used for the purpose of forming only an oxygen in the air efficiently, efficiently oxidizing the oxygen in the air, and efficiently oxidizing the oxygen in the air. For example, the hole diameter formed in the U-2 lath) is 6 μm or less, or 10 μm or less, or 20 μm or less, or 30 μm or less. The oxygen permeable membrane 10 is formed using a U-2 lath having a very small mesh that allows only oxygen to pass through without allowing carbon dioxide, nitrogen, and moisture in the air to pass therethrough. As a result, only oxygen in the air was allowed to pass through freely and efficiently.

1 負電極
2 正電極
3 空気入口
4 空気出口
5 ケース
6 電解質
7 セパレータ
8 正電極リード
9 負電極リード
10 酸素透過膜、又はエキスパンドメタル(以下、略して、U−2ラスとする)、又は(以下、略して、酸素透過膜とする)
11 金属メッシュ、又はエキスパンドメタル(以下、略して、金属メッシュ、又はエキスパンドメタルとする)
12 負電極表面処理
13 正電極触媒
14 電解質添加物
15 炭素グラファイト、又は炭素グラファイト層(以下、略して、 炭素グラファイトとする)
16 亜鉛、アルミニウム、マグネシウム、及びシリコンを溶融した合金を使用して表面処理をして合金板部分17を形成した鍍金層(以下、略して、鍍金層とする)
17 合金板部分
DESCRIPTION OF SYMBOLS 1 Negative electrode 2 Positive electrode 3 Air inlet 4 Air outlet 5 Case 6 Electrolyte 7 Separator 8 Positive electrode lead 9 Negative electrode lead 10 Oxygen permeable film or expanded metal (henceforth abbreviated as U-2 lath), or ( (Hereafter, abbreviated as oxygen permeable membrane)
11 Metal mesh or expanded metal (hereinafter abbreviated as metal mesh or expanded metal)
12 Negative electrode surface treatment 13 Positive electrode catalyst 14 Electrolyte additive 15 Carbon graphite or carbon graphite layer (hereinafter abbreviated as carbon graphite)
16 A plating layer (hereinafter, abbreviated as a plating layer) in which an alloy plate portion 17 is formed by surface treatment using an alloy in which zinc, aluminum, magnesium, and silicon are melted.
17 Alloy plate part

Claims (9)

酸素を酸化還元する炭素グラファイトを含む正電極2と、金属電極からなる負電極1と、電解質層6とこれらの間に介在されたセパレータ7を有する空気電池に於いて、正電極2内部は正電極触媒13、当該外面は空気中の酸素透過膜10及び金属メッシュ11で構成すると共に、アルミニウムやマグネシウム合金等からなる負電極1の内面は表面処理膜12からなり、電解質6にはアルミニウムやマグネシウム等の塩化物を主成分として電解質添加物14を含むことを特徴とする金属空気電池、及び当該製造方法。   In an air battery having a positive electrode 2 containing carbon graphite that oxidizes and reduces oxygen, a negative electrode 1 made of a metal electrode, an electrolyte layer 6 and a separator 7 interposed therebetween, the inside of the positive electrode 2 is positive. The electrode catalyst 13, the outer surface is composed of an oxygen permeable film 10 and a metal mesh 11 in the air, and the inner surface of the negative electrode 1 made of aluminum, magnesium alloy or the like is made of a surface treatment film 12, and the electrolyte 6 is made of aluminum or magnesium. A metal-air battery comprising a chloride such as a main component and an electrolyte additive 14, and the manufacturing method. 請求項1において、正電極2の内部は二酸化マンガン及びシリコン(ケイ素Siシロキサン、)微粒子等からなる正電極触媒13、当該外面は空気中の二酸化炭素及び水分を透過しないポリイソプレンゴム等の酸素透過膜10含むことを特徴とする金属空気電池。   In claim 1, the inside of the positive electrode 2 is a positive electrode catalyst 13 made of manganese dioxide and silicon (silicon Si siloxane) fine particles, and the outer surface is oxygen permeable such as polyisoprene rubber which does not transmit carbon dioxide and moisture in the air. A metal-air battery comprising a membrane 10. 請求項1において、アルミニウムやマグネシウム等からなる負電極1の内面は、機械的又は酸化等による凹凸の多い負電極表面処理膜12からなる金属空気電池。   2. The metal-air battery according to claim 1, wherein the inner surface of the negative electrode 1 made of aluminum, magnesium, or the like is made of a negative electrode surface treatment film 12 having many irregularities due to mechanical or oxidation. 請求項1において、電解質6にはアルミニウムやマグネシウム等の塩化物を主成分とすると共に、クエン酸(HOOC-CH2-C(OH)(COOH)-CH2-COOH)、酒石酸(HOOC-CH(OH)-CH(OH)-COOH)、又はリンゴ酸(HOOC-CH(OH)-CH2-COOH)等の電解質添加物14を含み、アセトニトリル等からなる中性溶媒に溶かしていることを特徴とする金属空気電池。   In claim 1, the electrolyte 6 contains chlorides such as aluminum and magnesium as main components, citric acid (HOOC-CH2-C (OH) (COOH) -CH2-COOH), tartaric acid (HOOC-CH (OH ) -CH (OH) -COOH) or an electrolyte additive 14 such as malic acid (HOOC-CH (OH) -CH2-COOH), and is dissolved in a neutral solvent such as acetonitrile. Metal-air battery. 請求項1において、正電極2外部はチタン等の金属メッシュ11で構成すると共に、マグネシウム等からなる負電極1、電解質6に電解質添加物14を含3む金属空気単電池を一対(二個)の単電池を並列にして空気供給3に繋がる正電極2を共用してから、さらに一対以上の単電池を直列にすることを特徴とする金属空気組電池。   In Claim 1, the outside of the positive electrode 2 is composed of a metal mesh 11 made of titanium or the like, and a pair of (two) metal-air unit cells each including a negative electrode 1 made of magnesium or the like and an electrolyte 6 containing an electrolyte additive 14 A metal-air assembled battery characterized in that a pair of single cells are further connected in series after sharing the positive electrode 2 connected to the air supply 3 in parallel. 図4に示しているように、上記にて説明をした、日金工株式会社が製造販売をしている、商品名がNTK U−1、及びNTK U−2(以下、略して、U−1ラス、及びU−2ラストスとする)で出来ている、板厚が48μm以下の板厚で出来ている、例えば、エキスパンドメタルNTK U−2(以下、略して、U−2ラスとする)を使用して、本考案の正電極1、及び負電極2を形成すると、極く軽くて、空気中の酸素分子だけを自由に通過をさせることが出来る透過膜として、凹−凸形状をしたメッシュ構造をした、U−2ラスの表面上に、例えば、会社の所在地が福岡市に本社があるフジケミカル株式会社が製造販売をしているドータイトXC−12、又はドータイトXC−32、又はドータイトSH−3Aなどの、炭素グラファイト15が主たる主成分の塗料をU−2ラスの表面上に塗布をして、正電極1を形成することにより、正電極1の重量が極く軽くて、正電極1の内部を空気中の酸素が自由に通過をして透過をするメッシュ構造をしたU−2ラス11の表面上に、炭素グラファイト15が主たる主成分の塗料をU−2ラスの表面上に塗布をして、正電極1を形成しているので、酸素を酸化させる効果が高い空気電池の正電極1とすることが出来ることを特徴とする金属空気組電池。 As shown in FIG. 4, the product names NTK U-1 and NTK U-2 (hereinafter abbreviated as U-1) manufactured and sold by Nikinko Co., Ltd., described above. For example, an expanded metal NTK U-2 (hereinafter abbreviated as U-2 lath) is made of a plate thickness of 48 μm or less. When the positive electrode 1 and the negative electrode 2 of the present invention are formed and used, a mesh having a concave-convex shape is formed as a permeable membrane that is extremely light and can freely pass only oxygen molecules in the air. On the surface of the structured U-2 lath, for example, Dotite XC-12, Dotite XC-32, or Dotite SH manufactured and sold by Fuji Chemical Co., Ltd., headquartered in Fukuoka City Carbon graphie, such as -3A The main electrode 15 is applied on the surface of the U-2 lath to form the positive electrode 1, so that the weight of the positive electrode 1 is extremely light, and the inside of the positive electrode 1 is in the air. On the surface of the U-2 lath 11 having a mesh structure in which oxygen freely passes and permeates, a paint mainly composed of carbon graphite 15 is applied on the surface of the U-2 lath to form a positive electrode. 1 is a metal-air assembled battery characterized in that the positive electrode 1 of an air battery having a high effect of oxidizing oxygen can be obtained. 図4、及び図5に示しているように、上記にて説明をした、日金工株式会社が製造販売をしている、商品名がNTK U−1、及びNTK U−2(以下、略して、U−1ラス、及びU−2ラストスとする)で出来ている、板厚が48μm以下の板厚で出来ている、例えば、エキスパンドメタルNTK U−2(以下、略して、U−2ラスとする)を使用して、本考案の正電極1、及び負電極2を形成すると、極く軽くて、空気中の酸素分子だけを自由に通過をさせることが出来る透過膜として、凹−凸形状をしたメッシュ構造の内部に炭素グラファイト15、又は鍍金層16を形成することが出来るので、極く薄くて、軽くて、表面積が広い、上記の表1に記載をしている合金板部分17である鍍金層16を含有している、U−2ラスの表面上に合金板部分17を形成した負電極2、又は炭素グラファイト15をU−2ラスの表面上に塗布をした正電極1を形成することが出来ることを特徴とする金属空気組電池。 As shown in FIG. 4 and FIG. 5, the product names NTK U-1 and NTK U-2 (hereinafter abbreviated), manufactured and sold by Nikinko Co., Ltd., described above. , U-1 lath, and U-2 lasts), and a thickness of 48 μm or less, for example, expanded metal NTK U-2 (hereinafter abbreviated as U-2 lath) When the positive electrode 1 and the negative electrode 2 of the present invention are formed, the concave-convex film is formed as a permeable membrane that is extremely light and can freely pass only oxygen molecules in the air. Since the carbon graphite 15 or the plating layer 16 can be formed inside the shaped mesh structure, the alloy plate portion 17 described in Table 1 above is extremely thin, light, and has a large surface area. The surface of the U-2 lath containing the plating layer 16 which is Metal-air battery pack, characterized in that the negative electrode 2 was formed alloy plate portion 17, or a carbon graphite 15 can form a positive electrode 1 was applied on the surface of the U-2 class in. 図5に示しているように、負電極2の重量を極く薄くて軽くする目的と、負電極2の表面上に凹−凸を形成して、負電極2の表面積を極力広くする目的にて、エキスパンドメタル11(以下、略して、U−2ラスとする)の表面上に、亜鉛、アルミニウム、マグネシウム、及びシリコンを溶融した合金を使用して表面処理をした鍍金層16を形成して、負電極2を形成することにより、負電極2の重量が極く軽くて、負電極2を構成しているメッシュ構造をした網の目の内部を鍍金層16を使用して、メッシュ構造をした網の目の内部を、鍍金層16を使用して詰めて、合金板部分17を形成することにより、負電極2の表面上はもともとがメッシュ構造をしたU−2ラス構造をした凹−凸形状をした構造にて出来ているので、この凹−凸形状をしたU−2ラス構造の表面上に、合金板部分17を形成をした鍍金層16を形成することになり、負電極2の重量が極く軽くて、負電極2の表面積が極力広い効率が高い負電極2を形成することが出来ることを特徴とする金属空気組電池。 As shown in FIG. 5, for the purpose of making the weight of the negative electrode 2 extremely thin and light, and for the purpose of forming a concave-convex on the surface of the negative electrode 2 to increase the surface area of the negative electrode 2 as much as possible. Then, on the surface of the expanded metal 11 (hereinafter abbreviated as U-2 lath), a plating layer 16 subjected to surface treatment using an alloy in which zinc, aluminum, magnesium and silicon are melted is formed. By forming the negative electrode 2, the weight of the negative electrode 2 is extremely light, and the mesh structure is formed by using the plating layer 16 inside the mesh structure of the mesh structure constituting the negative electrode 2. By forming the alloy plate portion 17 by filling the inside of the mesh of the mesh using the plating layer 16, the surface of the negative electrode 2 has a U-2 lath structure that originally has a mesh structure. This concave-convex shape is made of a convex structure. The plating layer 16 having the alloy plate portion 17 formed is formed on the surface of the U-2 lath structure that has been processed, and the negative electrode 2 is extremely light in weight and the surface area of the negative electrode 2 is as wide as possible. A metal-air assembled battery characterized by being capable of forming a negative electrode 2 having a high value. 図6に示しているように、空気中の酸素だけを効率よく、取り込んで空気中の酸素を効率よく酸化をさせて、極力効率が高い空気電池を形成する目的にて、エキスパンドメタル(以下、略して、U−2ラスとする)に形成をしている穴径が、例えば、穴径が6μm以下、又は穴径が10μm以下、又は穴径が20μm以下、又は穴径が30μm以下で、空気中の二酸化炭素、窒素、及び水分を透過させないで、酸素だけを自由に通過をさせて透過させることが出来る、極くメッシュが小さいU−2ラスを使用して酸素透過膜10を形成することにより、効率よく空気中の酸素だけを自由に通過をさせて透過をさせることが出来ることを特徴とする金属空気組電池。
As shown in FIG. 6, an expanded metal (hereinafter referred to as “the expanded metal”) is used for the purpose of forming only an oxygen in the air efficiently, efficiently oxidizing the oxygen in the air, and efficiently oxidizing the oxygen in the air. For example, the hole diameter formed in the U-2 lath) is 6 μm or less, or 10 μm or less, or 20 μm or less, or 30 μm or less. The oxygen permeable membrane 10 is formed using a U-2 lath having a very small mesh that allows only oxygen to pass through without allowing carbon dioxide, nitrogen, and moisture in the air to pass therethrough. Thus, a metal-air assembled battery characterized in that only oxygen in the air can be allowed to pass freely and permeate efficiently.
JP2012141002A 2012-06-22 2012-06-22 Metal-air battery Pending JP2014007029A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012141002A JP2014007029A (en) 2012-06-22 2012-06-22 Metal-air battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012141002A JP2014007029A (en) 2012-06-22 2012-06-22 Metal-air battery

Publications (1)

Publication Number Publication Date
JP2014007029A true JP2014007029A (en) 2014-01-16

Family

ID=50104579

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012141002A Pending JP2014007029A (en) 2012-06-22 2012-06-22 Metal-air battery

Country Status (1)

Country Link
JP (1) JP2014007029A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107851866A (en) * 2016-04-18 2018-03-27 株式会社Lg化学 The method of thermal conductivity basic components and assembling heat conductivity basic components
CN109037858A (en) * 2017-06-12 2018-12-18 松下知识产权经营株式会社 air cell

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107851866A (en) * 2016-04-18 2018-03-27 株式会社Lg化学 The method of thermal conductivity basic components and assembling heat conductivity basic components
CN107851866B (en) * 2016-04-18 2020-05-01 株式会社Lg化学 Thermally conductive base component and method of assembling thermally conductive base component
CN109037858A (en) * 2017-06-12 2018-12-18 松下知识产权经营株式会社 air cell

Similar Documents

Publication Publication Date Title
Wang et al. Parametric study and optimization of a low-cost paper-based Al-air battery with corrosion inhibition ability
Li et al. Metal–air batteries: will they be the future electrochemical energy storage device of choice?
Buckingham et al. Aluminum-air batteries: A review of alloys, electrolytes and design
Xie et al. Issues and solutions toward zinc anode in aqueous zinc‐ion batteries: a mini review
Christensen et al. A critical review of Li/air batteries
US9692078B2 (en) High-performance rechargeable batteries with fast solid-state ion conductors
Li et al. Aluminum as anode for energy storage and conversion: a review
Edström et al. Electrodeposition as a tool for 3D microbattery fabrication
CN105576325B (en) Two-phase electrolysis matter for air-metal batteries
EP3229309B1 (en) Rechargeable aluminum-air electrochemical cell
Neburchilov et al. Metal-air and metal-sulfur batteries: fundamentals and applications
JP2014063711A (en) Metal air battery
US8927143B2 (en) Aluminum storage battery
JP2013239245A (en) Metal-air battery
JP2014007029A (en) Metal-air battery
WO2017087907A1 (en) Transition metal depositi0n and oxidation on symmetric metal oxide electrodes for storage application
JP5851624B2 (en) Aqueous electrolyte for lithium-air batteries
KR102024716B1 (en) Alkali metal ion battery using alkali metal conductive ceramic separator
US20170012293A1 (en) Cathode for metal-air current sources and metal-air current source with such cathode
US10211464B2 (en) Electrochemical cell aluminum-manganese
Bi et al. Rechargeable zinc–air versus lithium–air battery: from fundamental promises toward technological potentials
WO2014131954A1 (en) Method for charging a zinc/lead flow battery and electrochemical device comprising a zinc/lead flow battery
JP2014182870A (en) Silicon catalyst battery and manufacturing method thereof
US10749168B1 (en) Electrochemical cell or battery
Mandai et al. Oxygen–a fatal impurity for reversible magnesium deposition/dissolution