JP2014182870A - Silicon catalyst battery and manufacturing method thereof - Google Patents

Silicon catalyst battery and manufacturing method thereof Download PDF

Info

Publication number
JP2014182870A
JP2014182870A JP2013054475A JP2013054475A JP2014182870A JP 2014182870 A JP2014182870 A JP 2014182870A JP 2013054475 A JP2013054475 A JP 2013054475A JP 2013054475 A JP2013054475 A JP 2013054475A JP 2014182870 A JP2014182870 A JP 2014182870A
Authority
JP
Japan
Prior art keywords
silicon
fine particles
positive electrode
electrode
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013054475A
Other languages
Japanese (ja)
Inventor
Kazutake Imani
和武 今仁
Kazunori Seike
一徳 清家
Atsushi Kuroda
篤 黒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2013054475A priority Critical patent/JP2014182870A/en
Publication of JP2014182870A publication Critical patent/JP2014182870A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a silicon catalyst battery and a manufacturing method thereof which can solve the following problems of lithium used in conventional lithium ion secondary batteries: the resource of lithium is unevenly distributed and lithium is in danger of causing a fire and corrosion; and it has been demanded to multiply an energy density.SOLUTION: A silicon catalyst battery is used as a secondary battery. The silicon catalyst battery comprises: a positive electrode including carbon capable of oxidizing and reducing oxygen in air; a negative electrode composed of a metal electrode; a layer of electrolyte; a separator interposed therebetween; and a current collecting electrode. The positive electrode has thereinside: carbon microparticles of graphite or the like; silicon microparticles; a positive electrode catalyst such as titanium or manganese dioxide; and an auxiliary material such as alginic acid or citric acid which serves as a stabilizer for the silicon microparticles. Outside the positive electrode, the silicon catalyst battery has the current collecting electrode having small holes for natural circulation of air, and a surface-processed film made of isoprene or the like through which water never permeates. The electrolyte includes: a metal chloride solution; and as an electrolytic solution, a metal ethoxide additive agent consisting of an ether-based solvent with a metal bromide added thereto.

Description

本発明は、正電極及び負電極の電極間に電解質を採用した電池において、正極、負極及び電解質の構造と材料に関するものである。   The present invention relates to the structure and materials of a positive electrode, a negative electrode, and an electrolyte in a battery that employs an electrolyte between positive and negative electrodes.

現行のリチウムイオン電池の3 倍程度のエネルギー密度を持つ二次電池を「次世代二次電池」と捉え、それをさらに凌駕する可能性をもつような電池を「次々世代二次電池・蓄電デバイス技術」と定義する。これは、金属空気二次電池、全固体型リチウム二次電池、sブロック金属二次電池、多価カチオン二次電池、その他の「新型・新概念」による二次電池・及びキャパシター等の蓄電デバイスも含むものと考えられる。最近、パーソナルコンピューター及び携帯電話等のポータブル機器、及び自動車やスマートグリッドの普及に伴い、当該機器の電源である二次電池の需要が急速に増大していて、このような二次電池の典型例はリチウム(Li)を負極として、フッ化炭素等を正極とするリチウム電池であり、正極と負極との間に非水電解質を介在させることによって、金属リチウムの析出を防止することが可能となったことから、リチウム電池は広範に普及しているが、リチウムは希少高価であり、廃棄した場合にはリチウムが流出し環境上好ましくない。   Recognizing a secondary battery with an energy density about three times that of current lithium-ion batteries as a “next-generation secondary battery”, a battery that has the potential to surpass it is called a “second-generation secondary battery / storage device” “Technology”. This includes metal-air secondary batteries, all-solid-state lithium secondary batteries, s-block metal secondary batteries, multivalent cation secondary batteries, and other “new-type / new-concept” secondary batteries and capacitors and other power storage devices. Is also considered to be included. Recently, with the widespread use of portable devices such as personal computers and mobile phones, and automobiles and smart grids, the demand for secondary batteries as power sources for such devices has increased rapidly, and typical examples of such secondary batteries. Is a lithium battery using lithium (Li) as a negative electrode and carbon fluoride or the like as a positive electrode. By interposing a non-aqueous electrolyte between the positive electrode and the negative electrode, it becomes possible to prevent the deposition of metallic lithium. For this reason, lithium batteries are widely used. However, lithium is rare and expensive, and when discarded, lithium flows out, which is not preferable in the environment.

電気自動車をはじめ、スマートハウス、ロボットや種々の携帯機器の進展により、蓄電デバイスの高容量化が強く望まれ、革新的な電源への要求が極めて高まっている。エネルギーの大量消費に伴う地球温暖化問題や自然エネルギーの平準化などからも高容量な蓄電デバイスへの要求が高く、金属空気電池開発への期待が高まっている。金属空気電池としては、すでに亜鉛空気電池が実用化されている。しかし、これらの空気電池はいずれも1 次電池であり、繰り返し充放電に関しては課題がある。   With the progress of electric vehicles, smart houses, robots, and various portable devices, it is strongly desired to increase the capacity of power storage devices, and the demand for innovative power sources is extremely increasing. The demand for high-capacity electricity storage devices is also high due to global warming problems associated with mass energy consumption and the leveling of natural energy, and expectations for the development of metal-air batteries are increasing. As a metal-air battery, a zinc-air battery has already been put into practical use. However, these air batteries are all primary batteries, and there are problems with repeated charge and discharge.

空気電池は正極活物質が空気なので、原理的に半電池で機能できることに加え、金属というエネルギー密度が極めて大きな活物質を用いることから、軽くて高容量で、安価な電池となる可能性があり、二次電池化が実現できると、ポストリチウムイオン二次電池として極めて有望である。金属・空気電池は二次電池として開発も行われてきたが、デンドライト(金属樹)生成の抑制や空気中の水蒸気や炭酸ガスとの反応といった課題があり、まだ実現していない。   Since air batteries use air as the positive electrode active material, in principle, they can function as a half-cell, and use an active material with a very high energy density, which is a metal, which may result in a light, high-capacity, and inexpensive battery. If a secondary battery can be realized, it is extremely promising as a post lithium ion secondary battery. Metal / air batteries have also been developed as secondary batteries, but have not yet been realized due to problems such as suppression of dendrite (metal tree) formation and reaction with water vapor and carbon dioxide in the air.

近年、メソポーラス材料や負極金属の形状制御、電解質の固体化などにナノテク技術に立脚した大きな進展があり、二次電池化にとっての要素技術が整いつつある。リチウム電池の場合現状では250Wh/Kgが限界だと言われるが、さらに負極をシリコン系にして300Wh/Kgを狙っているのが現状である。図2のように、マグネシウムは還元力が強く、標準水素電極基準に対する電位でいうと、リチウムがマイナス3V程度であるのに対して、マグネシウムはマイナス2.37V 程度の電圧が得られる。また、コストが安く、毒性が低い。注目すべきは、体積当たりのエネルギー密度がリチウムの2倍で、電池は閉ざされた空間の中にどれだけ酸化剤と還元剤を詰め込むかが勝負であるから、体積密度が非常に重要であり、この点で優れる。さらに、マグネシウムの金属の融点が摂氏600度以上であるから、これは非常に安全な電池になる。融点が摂氏160度程度のリチウムに比べて安全な電池設計が可能であるということがもう一つのメリットである。   In recent years, great progress has been made based on nanotechnology in the shape control of mesoporous materials and negative electrode metals, solidification of electrolytes, etc., and elemental technologies for making secondary batteries are being prepared. In the case of a lithium battery, 250 Wh / Kg is said to be the limit at present, but the current situation is that the negative electrode is made of silicon and 300 Wh / Kg is aimed. As shown in FIG. 2, magnesium has a strong reducing power, and in terms of the potential with respect to the standard hydrogen electrode reference, lithium has a voltage of about minus 3V, whereas magnesium has a voltage of about minus 2.37V. In addition, the cost is low and the toxicity is low. It should be noted that volume density is very important because the energy density per volume is twice that of lithium, and the battery has to decide how much oxidizer and reductant are packed in a closed space. Excellent in this respect. Furthermore, since the melting point of the magnesium metal is over 600 degrees Celsius, this is a very safe battery. Another advantage is that a safe battery design is possible compared to lithium having a melting point of about 160 degrees Celsius.

特開2012−89266号公報JP 2012-89266 A 特開2012−89328号公報JP 2012-89328 A 特開2012−64314号公報JP 2012-64314 A 特開2011−249175号公報JP 2011-249175 A 特開2013−12491号公報JP 2013-12491 A

特許文献1は、金属空気電池において放電電圧を高めるために、負極と、酸素の酸化還元触媒を有する正極と、フラーレン誘導体塩を含む非水電解液とを備えている非水電解液空気電池に関するものである。本発明の非水電解液空気電池は、酸素の酸化還元触媒を有する正極と、負極活物質を有する負極と、正極と負極との間に介在し、非金属多価カチオン塩を含む非水電解液と、を備えたものである。非水電解液空気電池において、非水電解液は、非金属多価カチオン塩を含むものである。このような非水電解液空気電池では、放電電圧をより高めることができる。空気電池において、放電時には、正極上に酸素ラジカルが生成する。例えば、カチオンとしてリチウムイオンだけが含まれている場合には、生成した酸素ラジカルとリチウムイオンとの反応は1電子反応であると考えられる。これに対して、カチオンとして多価カチオンが含まれている場合には、酸素ラジカルとリチウムイオンとの反応が、1電子反応だけでなく2電子反応や4電子反応を含むものとなると考えられる。   Patent Document 1 relates to a non-aqueous electrolyte air battery including a negative electrode, a positive electrode having an oxygen redox catalyst, and a non-aqueous electrolyte containing a fullerene derivative salt in order to increase a discharge voltage in the metal-air battery. Is. Non-aqueous electrolyte air battery of the present invention includes a positive electrode having an oxygen redox catalyst, a negative electrode having a negative electrode active material, and a non-aqueous electrolysis comprising a non-metal polyvalent cation salt interposed between the positive electrode and the negative electrode. And a liquid. In the nonaqueous electrolyte air battery, the nonaqueous electrolyte contains a nonmetallic polyvalent cation salt. In such a nonaqueous electrolyte air battery, the discharge voltage can be further increased. In an air battery, oxygen radicals are generated on the positive electrode during discharge. For example, when only a lithium ion is contained as a cation, the reaction between the generated oxygen radical and the lithium ion is considered to be a one-electron reaction. On the other hand, when a polyvalent cation is included as a cation, it is considered that the reaction between oxygen radicals and lithium ions includes not only a one-electron reaction but also a two-electron reaction or a four-electron reaction.

特許文献2は、金属空気電池において負電極において析出したデンドライトを負極に回収するために、少なくとも空気極と、負極と、当該空気極と当該負極との間に介在する電解液層を備える金属空気電池を備える密閉型の金属空気電池システムであって、前記空気極と前記電解液層との間に、前記電解液層中の電解液が透過する性質を有するセパレータがさらに介在し、少なくとも充電開始後に、前記電解液層中において、前記空気極側から前記負極側の方向に向かって前記セパレータを移動させ、前記セパレータを前記負極に押し付ける押圧手段を備えることを特徴とする、金属空気電池システムである。デンドライトは金属工学の分野、特に金属組織、結晶成長などと関連した用語で、金属融液を凝固させた際に典型的に観察される組織で、樹枝状結晶とも呼ばれる。    Patent Document 2 discloses metal air including at least an air electrode, a negative electrode, and an electrolyte layer interposed between the air electrode and the negative electrode in order to collect dendrites deposited on the negative electrode in the metal-air battery. A sealed metal-air battery system comprising a battery, wherein a separator having a property of allowing the electrolyte solution in the electrolyte layer to permeate is further interposed between the air electrode and the electrolyte layer, and at least charging is started A metal-air battery system comprising: a pressing unit that moves the separator toward the negative electrode side from the air electrode side in the electrolyte layer and presses the separator against the negative electrode. is there. Dendrite is a term related to the field of metal engineering, particularly metal structure, crystal growth, and the like, and is a structure typically observed when a metal melt is solidified, and is also called a dendritic crystal.

特許文献3は、金属空気電池において活性酸素種が電解質間を移動することで充電および放電が行われるので、活性酸素種を輸送するキャリアとして、非水系の有機分子を用いることを主要な特徴としている。負極活物質を含有する負極活物質層を有する負極層、および前記負極層の集電を行う負極集電体を有する負極と、空気極触媒を含有する空気極層、および前記空気極層の集電を行う空気極集電体を有する空気極と、前記負極、および前記空気極の間で、O2−、O22−、O−、HO−、のいずれかの活性酸素種の輸送を行うキャリアを含有する電解質キャリア層を有する電解質とを有する空気電池であって前記電解質キャリア層の数は1層以上であり、前記キャリアは、非水系の有機分子であることを特徴とする空気電池を提供する。 Patent Document 3 is characterized in that non-aqueous organic molecules are used as carriers for transporting active oxygen species because active oxygen species move and move between electrolytes in a metal-air battery. Yes. A negative electrode layer having a negative electrode active material layer containing a negative electrode active material, a negative electrode having a negative electrode current collector for collecting the negative electrode layer, an air electrode layer containing an air electrode catalyst, and a collection of the air electrode layers Transport of any of the active oxygen species O 2 −, O 2 2−, O−, and HO− between an air electrode having an air electrode current collector that conducts electricity, the negative electrode, and the air electrode. An air battery having an electrolyte carrier layer containing an electrolyte carrier, wherein the number of the electrolyte carrier layers is one or more, and the carrier is a non-aqueous organic molecule. I will provide a.

特許文献4は、金属空気電池において、マグネシウム電池用の負極として有用な電極材料を提供するために、マグネシウム初晶と共晶物を含む鋳造材等の初晶の選択的腐食反応を利用し、表面から所定の深さまで粒界に残存したネットワーク状の共晶物からなる多孔質状マグネシウム合金表面を有する電極材料とその製造方法である。前記マグネシウム合金は、マグネシウムと少なくともアルミニウム、亜鉛、マンガン、ケイ素、希土類元素、カルシウム、ストロンチウム、スズ、ゲルマニウム、リチウム、ジルコニウム、ベリリウムから成る群から選ばれる少なくとも1種の金属からなる。リチウム電池の場合現状では250Wh/kgが限界だと言われるが、さらに負極をシリコン系にして300Wh/kgを狙っているのが現状である。マグネシウムは還元力が強く、標準水素電極基準に対する電位でいうと、リチウムがマイナス3V 程度に対して、マグネシウムはマイナス3.37V 程度の電圧が出る。また、コストが安く、毒性が低い。注目すべきは、体積当たりのエネルギー密度がリチウムの2倍で、電池は閉ざされた空間の中にどれだけ酸化剤と還元剤を詰め込むかが勝負であるから、体積密度を重視するとマグネシウムは有利であるといえる。さらに、マグネシウムの金属の融点が摂氏600度以上であるから、これは非常に安全な電池になる。融点が摂氏160度程度のリチウムに比べて安全な電池設計が可能であるということがもう一つのメリットである。   Patent Document 4 uses a selective corrosion reaction of a primary crystal such as a cast material containing a magnesium primary crystal and a eutectic in order to provide an electrode material useful as a negative electrode for a magnesium battery in a metal-air battery, An electrode material having a porous magnesium alloy surface made of a network-like eutectic remaining at a grain boundary from the surface to a predetermined depth, and a method for producing the same. The magnesium alloy is made of magnesium and at least one metal selected from the group consisting of aluminum, zinc, manganese, silicon, rare earth elements, calcium, strontium, tin, germanium, lithium, zirconium, and beryllium. In the case of a lithium battery, 250 Wh / kg is said to be the limit at present, but the current situation is that the negative electrode is made of silicon and is aimed at 300 Wh / kg. Magnesium has a strong reducing power, and in terms of the potential with respect to the standard hydrogen electrode standard, lithium produces a voltage of about minus 3.37V, while magnesium produces a voltage of about minus 3.37V. In addition, the cost is low and the toxicity is low. It should be noted that the energy density per volume is twice that of lithium, and the battery has an advantage in how much the oxidizing agent and the reducing agent are packed in a closed space. You can say that. Furthermore, since the melting point of the magnesium metal is over 600 degrees Celsius, this is a very safe battery. Another advantage is that a safe battery design is possible compared to lithium having a melting point of about 160 degrees Celsius.

特許文献5は、結着性および粉落ち性に優れると共に、電気的特性に優れる蓄電デバイス用電極が作製可能な蓄電デバイス電極用スラリーを提供する。本発明に係る蓄電デバイス電極用スラリーは、重合体粒子と、活物質粒子と、水と、を含有し、前記重合体粒子の平均粒子径と前記活物質粒子の平均粒子径との比が20乃至100の範囲にあり、かつ曳糸性が30乃至80%の範囲にあり、前記活物質粒子としてシリコン系活物質を含有するることを特徴とする。   Patent Document 5 provides a slurry for an electricity storage device electrode capable of producing an electrode for an electricity storage device that is excellent in binding property and powder fall-off property and also excellent in electrical characteristics. The slurry for an electricity storage device electrode according to the present invention contains polymer particles, active material particles, and water, and a ratio of an average particle size of the polymer particles to an average particle size of the active material particles is 20. 1 to 100, and the spinnability is in the range of 30 to 80%, and the active material particles contain a silicon-based active material.

以下詳細に説明する通り、本発明は上記先行文献とはその構成に於いて異なっており、リチウムを用いることなく高性能を発揮し、且つ安全であって、さらにコスト的にも有利な電池モジュール、及び製造方法を提供するものである。   As will be described in detail below, the present invention differs from the above-mentioned prior art in its configuration, and exhibits a high performance without using lithium, is safe, and is advantageous in terms of cost. And a manufacturing method.

従来のリチウムイオン2次電池に使用しているリチウムは資源が偏在しており、また火災及び腐蝕をする危険性があった。さらにエネルギー密度を倍増するという産業上の要請がある。本発明は、これらの課題を解決をする電池モジュール、及び製造方法を提供する。   The lithium used in the conventional lithium ion secondary battery is unevenly distributed, and there is a risk of fire and corrosion. Furthermore, there is an industrial demand to double the energy density. The present invention provides a battery module and a manufacturing method for solving these problems.

空気中の酸素を酸化還元する炭素グラファイト6を含む正電極2と、金属電極からなる負電極10と、電解質層7とこれらの間に介在されたセパレータ8、及び集電極1、11を有する二次電池に於いて、グラファイト等の炭素微粒子6とシリコン(ケイ素)微粒子4からなる正電極内部をチタン又は二酸化マンガン等の正電極触媒5、及びシリコン微粒子の安定剤としてアルギン酸又はクエン酸等の補助剤3で構成するとともに、正電極外部は空気が自然循環するように小穴付きの集電極1と電極と水分を透過しないイソプレン等の表面処理膜12から構成される二次電池を提供する。   Two having a positive electrode 2 containing carbon graphite 6 that oxidizes and reduces oxygen in the air, a negative electrode 10 made of a metal electrode, an electrolyte layer 7, a separator 8 interposed therebetween, and collector electrodes 1 and 11. In the secondary battery, the inside of the positive electrode composed of carbon fine particles 6 such as graphite and silicon (silicon) fine particles 4 is used as a positive electrode catalyst 5 such as titanium or manganese dioxide, and as a stabilizer for silicon fine particles such as alginic acid or citric acid. The secondary battery is constituted by the agent 3 and the positive electrode outside includes a collecting electrode 1 with small holes so that air naturally circulates, and an electrode and a surface treatment film 12 such as isoprene that does not transmit moisture.

リチウムイオン2次電池に使用しているリチウムは資源が偏在しており、また火災及び腐蝕をする危険性があった。さらにエネルギー密度を倍増するという産業上の要請がある。本発明はこれらを解決をする電池モジュール、及びその製造方法を提供する。グラファイトを含む正電極と、金属電極からなる負電極と、電解質層とこれらの間に介在されたセパレータ7を有する空気電池に於いて、正電極内部は二酸化マンガン等の金属酸化物及びシリコン微粒子からなる正電極触媒、当該外面は空気中の二酸化炭素及び水分を透過しないイソプレン薄膜等の酸素透過膜及びチタン等の金属メッシュで構成すると共に、アルミニウムやマグネシウム等の金属からなる負電極の内面は凹凸の多い負電極表面処理膜からなり、電解質には金属塩化物を主成分としシロキサン等の電解質添加物を含める。二次電池を組み立てるために、正極及び負極を製造した後、各電極に電解質を塗布して、張り合わせることにより、当該の単位電池を迅速に組み立て製造できる。単位電池を直列に積層してから、加圧可能なボルトで締める等の方法によりこれらを接合して、気密を維持できるとともにエネルギー密度を1Wh/g程度以上に改善出来、さらに強い振動や衝撃にも耐えうる電池モジュールを構成することが出来る。   The lithium used in the lithium ion secondary battery is unevenly distributed, and there is a risk of fire and corrosion. Furthermore, there is an industrial demand to double the energy density. The present invention provides a battery module that solves these problems and a method of manufacturing the same. In an air battery having a positive electrode containing graphite, a negative electrode made of a metal electrode, an electrolyte layer, and a separator 7 interposed therebetween, the inside of the positive electrode is made of metal oxide such as manganese dioxide and silicon fine particles. The outer electrode is composed of an oxygen permeable film such as an isoprene thin film that does not transmit carbon dioxide and moisture in the air and a metal mesh such as titanium, and the inner surface of the negative electrode made of a metal such as aluminum or magnesium is uneven. It consists of a negative electrode surface treatment film with a large amount, and the electrolyte contains a metal chloride as a main component and an electrolyte additive such as siloxane. In order to assemble the secondary battery, after manufacturing the positive electrode and the negative electrode, the unit battery can be quickly assembled and manufactured by applying an electrolyte to each electrode and bonding them together. After unit cells are stacked in series, they can be joined by a method such as tightening with a pressurizable bolt to maintain airtightness and improve the energy density to about 1 Wh / g or more. The battery module that can withstand

図1は本発明に係るシリコン触媒電池の構成を示した概念図である。(実施例1)FIG. 1 is a conceptual diagram showing a configuration of a silicon catalyst battery according to the present invention. Example 1 図2は金属材料の標準酸化還元電位データ、金属空気電池の開放電圧と理論エネルギー密度を纏めた説明図である。FIG. 2 is an explanatory diagram summarizing standard oxidation-reduction potential data of metal materials, open-circuit voltage and theoretical energy density of metal-air batteries. 図3は本発明に係るシリコン触媒電池モジュールの構成を示した概念図である。FIG. 3 is a conceptual diagram showing the configuration of the silicon catalyst battery module according to the present invention. 図4は本発明に係るシリコン触媒電池の充放電特性を示すグラフである。(実施例1)FIG. 4 is a graph showing charge / discharge characteristics of the silicon catalyst battery according to the present invention. Example 1 図5は本発明に係るシリコン触媒電池の他の構成を示すグラフである。FIG. 5 is a graph showing another configuration of the silicon catalyst battery according to the present invention. 図6は本発明に係るシリコン触媒電池をアルカリ二次電池として応用した構成を示す概念図である。FIG. 6 is a conceptual diagram showing a configuration in which the silicon catalyst battery according to the present invention is applied as an alkaline secondary battery.

図1は本発明に係るシリコン触媒電池の構成の一例を示した概念図である。空気中の酸素を酸化還元するグラファイト等の炭素微粒子6を含む正電極2と、金属電極からなる負電極10と、電解質層7とこれらの間に介在されたセパレータ8、及び集電極1、11を有する二次電池に於いて、グラファイト等の炭素微粒子6とシリコン(ケイ素)微粒子4からなる正電極内部は、チタン又は二酸化マンガン等の正電極触媒5、及びシリコン微粒子の安定剤としてアルギン酸或いはクエン酸等の補助剤3で構成するとともに、正電極外部は空気が自然循環するように小穴付きの集電極1と電極と水分を透過しないイソプレン等の表面処理膜12からなり、電解質7には亜鉛、アルミニウムやマグネシウム等の塩化物を主成分とした水溶液又は有機溶媒(アセトニトリルやプロピレンカーボネート等)液、さらに電解液として2−MeTHF等のエーテル系溶媒に臭化金属を入れた金属エトキシド添加剤を添加することを特徴とするシリコン触媒電池を作成した。   FIG. 1 is a conceptual diagram showing an example of the configuration of a silicon catalyst battery according to the present invention. A positive electrode 2 containing carbon fine particles 6 such as graphite that oxidizes and reduces oxygen in the air, a negative electrode 10 made of a metal electrode, an electrolyte layer 7, a separator 8 interposed therebetween, and collector electrodes 1 and 11 In the secondary battery having the above structure, the inside of the positive electrode composed of carbon fine particles 6 such as graphite and silicon (silicon) fine particles 4 is composed of a positive electrode catalyst 5 such as titanium or manganese dioxide, and alginic acid or citric acid as a stabilizer for silicon fine particles. In addition to the auxiliary agent 3 such as acid, the outside of the positive electrode is composed of a collecting electrode 1 with a small hole so that air naturally circulates, and an electrode and a surface treatment film 12 such as isoprene that does not transmit moisture. An aqueous solution or organic solvent (such as acetonitrile or propylene carbonate) containing chlorides such as aluminum and magnesium as the main component, and 2 as an electrolyte. A silicon catalyst battery was prepared by adding a metal ethoxide additive containing metal bromide to an ether solvent such as MeTHF.

図2は、金属材料の標準酸化還元電位データ、金属空気電池の開放電圧と理論エネルギー密度を纏めた説明図である。
標準電極電位は、そのイオンが1mol/Lで存在する溶液につけたとき、単体と溶液の間に生じる起電力である。マグネシウム空気電池において、最大出力電位はー2.76ボルトである。
ここで、本発明に係る電池の一例の放電の反応式は下記で表される。
正極: O2+H2O+4e− → 4OH− (E0=0.4V)
負極: 2Mg+3OH− → 2Mg2O+4e− (E0=ー2.36V)
FIG. 2 is an explanatory diagram summarizing the standard oxidation-reduction potential data of the metal material, the open-circuit voltage of the metal-air battery, and the theoretical energy density.
The standard electrode potential is an electromotive force generated between a single substance and a solution when the ion is applied to a solution in which ions are present at 1 mol / L. In a magnesium air battery, the maximum output potential is -2.76 volts.
Here, the discharge reaction formula of an example of the battery according to the present invention is expressed as follows.
Positive electrode: O 2 + H 2 O + 4e− → 4OH− (E 0 = 0.4V)
Negative electrode: 2Mg + 3OH− → 2Mg 2 O + 4e− (E 0 = −2.36 V)

図3は本発明に係るシリコン触媒電池モジュールの構成を示した概念図である。本実施例においては、正電極と、金属電極からなる負電極と、電解質層とこれらの間に介在されたセパレータを有する空気電池に於いて、金属空気単電池を二対製作して、これらの四個の単電池を並列にして空気供給の正電極2メッシュを共用してから、さらに一対の単電池を直列にして金属空気組電池として、空気入口13と空気出口14にまとめて空気を自然循環させ、電極のリード15及び16を結線してから、ケース17に格納する。   FIG. 3 is a conceptual diagram showing the configuration of the silicon catalyst battery module according to the present invention. In this example, two pairs of metal-air single cells were produced in an air battery having a positive electrode, a negative electrode made of a metal electrode, an electrolyte layer, and a separator interposed between them, After four cells are connected in parallel and the positive electrode 2 mesh for air supply is shared, a pair of cells are connected in series to form a metal-air assembled battery, and the air is naturally collected by the air inlet 13 and the air outlet 14. After circulation, the electrode leads 15 and 16 are connected, and then stored in the case 17.

前記図1のマグネシウムからなる負電極10の内面は凹凸の多い負電極表面処理膜12からなり、電解質6にはマグネシウム等の塩化物を主成分とし、クエン酸等の電解質添加物を含む金属空気単電池を作成した。両電極を接合して単位セルを作成して、充電電圧を2.1Vから2.7Vの範囲にて約1時間で充電し、放電電圧を2.1Vから1.6Vの範囲にて約1時間放電することができた。本実施例に於いて得られたシリコン触媒電池の充放電特性を示すグラフを図4に示す。   The inner surface of the negative electrode 10 made of magnesium shown in FIG. 1 is made of a negative electrode surface treatment film 12 with many irregularities, and the electrolyte 6 has a metal air containing a chloride such as magnesium as a main component and an electrolyte additive such as citric acid. A cell was created. A unit cell is formed by joining both electrodes, and the charging voltage is charged in the range of 2.1V to 2.7V for about 1 hour, and the discharging voltage is set to about 1 in the range of 2.1V to 1.6V. It was possible to discharge for hours. FIG. 4 shows a graph showing the charge / discharge characteristics of the silicon catalyst battery obtained in this example.

本実施例に於いては、空気中の酸素を酸化還元する炭素グラファイト6を含む正電極2と、金属電極からなる負電極10と、電解質層7とこれらの間に介在されたセパレータ8、及び集電極1,11を有する二次電池に於いて、グラファイト等の炭素微粒子6とシリコン微粒子4からなる正電極内部は、チタン又は二酸化マンガン等の正電極触媒5、及びシリコン微粒子の安定剤としてアルギン酸又はクエン酸安定剤としてアルギン酸或いはクエン酸等の補助剤3で構成するとともに、正電極外部は空気が自然循環するように小穴付きの集電極1と電極と水分を透過しないイソプレン等の表面処理膜12からなり、電解質7には亜鉛、アルミニウムやマグネシウム等の塩化物を主成分とした水溶液又は有機溶媒(アセトニトリルやプロピレンカーボネート等)液、さらに電解液として2−MeTHF等のエーテル系溶媒に臭化金属を入れた金属エトキシド添加剤を添加することを特徴とするシリコン触媒電池を作成した。    In this embodiment, a positive electrode 2 containing carbon graphite 6 that oxidizes and reduces oxygen in the air, a negative electrode 10 made of a metal electrode, an electrolyte layer 7 and a separator 8 interposed therebetween, In the secondary battery having the collector electrodes 1 and 11, the inside of the positive electrode composed of carbon fine particles 6 such as graphite and silicon fine particles 4 is composed of a positive electrode catalyst 5 such as titanium or manganese dioxide, and alginic acid as a stabilizer for the silicon fine particles. Or, it is composed of an auxiliary agent 3 such as alginic acid or citric acid as a citric acid stabilizer, and a surface treatment film such as isoprene that does not transmit moisture to the collector electrode 1 with a small hole so that air naturally circulates outside the positive electrode The electrolyte 7 has an aqueous solution or organic solvent (acetonitrile or propylene carbonate) mainly composed of chlorides such as zinc, aluminum and magnesium. A silicon catalyst battery characterized by adding a metal ethoxide additive in which a metal bromide is added to an ether solvent such as 2-MeTHF as an electrolyte, and an electrolyte.

ここで、本発明に係る電極には、トタンを用いることも有効である。トタンは鉄に亜鉛を鍍金したもので、鋼板には、亜鉛系、アルミニウム系、亜鉛・アルミニウム系の鍍金が主に用いられている。亜鉛91%/アルミニウム6%/マグネシウム3%の鍍金層を持つ鋼板は耐食性が従来の溶融亜鉛めっき鋼板或いは溶融亜鉛ー5%アルミニウム合金めっき鋼板に比べて優れており、厳しい腐食環境下でも優れた耐食性を示すことから、溶かした亜鉛に鋼材を漬けてめっきを施す溶融亜鉛めっきや、電気亜鉛めっきを施した後に、クロムを含む溶液に漬けて、耐食性向上や外観(装飾性)向上を図るクロメート処理を代替することが可能である。さらに、めっき層が硬いため優れた耐傷付き性を有するとともに様々な加工にも対応できる。本実施例ではかかるトタン板を用い、0.2アンペアの電流密度となるような定電流源で充電を行ったところ、充電電圧を2.1Vから2.7Vの範囲にて約30分で充電することが可能であった。   Here, it is also effective to use tin for the electrode according to the present invention. Tin is made of iron plated with zinc, and zinc, aluminum, and zinc / aluminum plating are mainly used for steel plates. Steel sheets with a 91% zinc / 6% aluminum / 3% magnesium plating layer have better corrosion resistance than conventional hot dip galvanized steel sheets or hot dip galvanized 5% aluminum alloy plated steel sheets, and even in severe corrosive environments Chromate that improves corrosion resistance and appearance (decoration) by immersing steel in molten zinc and galvanizing by electroplating and then immersing it in a solution containing chromium. Processing can be substituted. Furthermore, since the plating layer is hard, it has excellent scratch resistance and can be applied to various processes. In this embodiment, when such a tin plate is used and charging is performed with a constant current source that provides a current density of 0.2 amperes, the charging voltage is charged within a range of 2.1 V to 2.7 V in about 30 minutes. It was possible to do.

図5は本発明に係るシリコン触媒電池の他の構成を示すグラフである。前記図1に示したマグネシウム等の金属からなる負電極10を、グラファイト微粒子6に交換して、非対称キャパシタとした。かかる構成にすることにより、本発明に係るシリコン触媒電池は所謂キャパシタ電池としても有効に機能することがわかった。   FIG. 5 is a graph showing another configuration of the silicon catalyst battery according to the present invention. The negative electrode 10 made of a metal such as magnesium shown in FIG. 1 was replaced with a graphite fine particle 6 to obtain an asymmetric capacitor. It has been found that with such a configuration, the silicon catalyst battery according to the present invention effectively functions as a so-called capacitor battery.

本実施例に於いては、正電極2と、金属電極からなる負電極10と、電解質層とこれらの間に介在されたセパレータを有する空気電池に於いて、正電極2内部は二酸化マンガン及びシリコン微粒子からなる正電極触媒、当該外面は酸素透過膜及びチタンメッシュで構成すると共に、マグネシウムからなる負電極1の内面は凹凸の多い負電極表面処理膜からなり、電解質にはマグネシウム塩化物を主成分とし、電解質添加物を含むことを特徴とする金属空気単電池を一対製作した。これらの2個の単電池を並列にして空気供給の正電極メッシュを共用してから、マグネシウム空気組電池として構成した。これにより放電電流0.3Aの1モーターを約1時間運転することが出来た。また、本実施例の構成に於いて、エネルギー密度を0.5Wh/g程度以上に改善出来ることがわかった。   In this embodiment, in an air battery having a positive electrode 2, a negative electrode 10 made of a metal electrode, an electrolyte layer, and a separator interposed between them, the inside of the positive electrode 2 is manganese dioxide and silicon. Positive electrode catalyst made of fine particles, the outer surface is composed of oxygen permeable membrane and titanium mesh, the inner surface of negative electrode 1 made of magnesium is made of negative electrode surface treatment film with many irregularities, and magnesium chloride is the main component in the electrolyte And a pair of metal-air cells characterized by containing an electrolyte additive. These two unit cells were juxtaposed in parallel to share the positive electrode mesh for air supply, and then configured as a magnesium-air assembled battery. As a result, one motor with a discharge current of 0.3 A could be operated for about 1 hour. It was also found that the energy density can be improved to about 0.5 Wh / g or more in the configuration of this example.

図6は本発明に係るシリコン触媒電池をアルカリ二次電池として応用した構成を示す概念図である。アルカリ一次電池の正電極内部にグラファイトを追加して、遷移金属酸化物チタン又は二酸化マンガン等の触媒5、及びシリコン微粒子4からなる正電極触媒、さらにSi微粒子の安定剤3を混入して、アルカリ二次電池とした。かかる構成にすることにより、本発明に係るシリコン触媒電池はアルカリ二次電池としてもその機能を飛躍的に向上させ得ることがわかった。   FIG. 6 is a conceptual diagram showing a configuration in which the silicon catalyst battery according to the present invention is applied as an alkaline secondary battery. Graphite is added to the inside of the positive electrode of the alkaline primary battery, a catalyst 5 such as transition metal oxide titanium or manganese dioxide, a positive electrode catalyst made of silicon fine particles 4, and a stabilizer 3 of Si fine particles are mixed into the alkaline electrode. A secondary battery was obtained. It has been found that with this configuration, the function of the silicon catalyst battery according to the present invention can be dramatically improved even as an alkaline secondary battery.

本実施例に於いては、図1に示したマグネシウム等の金属からなる負電極10を、グラファイト微粒子6に交換して、非対称キャパシタとした。この非対称キャパシタは二次電池とキャパシタの長所を持つ。本実施例の電池は0.0 1アンペアの電流密度となるような定電流源で充電を行い、充電電圧を1Vから2.7Vにて充放電することができ、静電容量は約0.0 1ファラッドであった。これにより3Aの1モーターを約1時間運転することが出来た。また、本実施例の構成に於いて、エネルギー密度を1Wh/g程度以上に倍増出来ることがわかった。   In this embodiment, the negative electrode 10 made of a metal such as magnesium shown in FIG. This asymmetric capacitor has the advantages of a secondary battery and a capacitor. The battery of this example can be charged with a constant current source that has a current density of 0.01 ampere, and can be charged / discharged at a charge voltage of 1V to 2.7V, with a capacitance of about 0. 0 1 Farad. As a result, one motor of 3A could be operated for about 1 hour. In addition, it was found that the energy density can be doubled to about 1 Wh / g or more in the configuration of this example.

リチウムイオン2次電池に使用しているリチウムは資源が偏在しており、また火災及び腐蝕をする危険性があった。さらにエネルギー密度を倍増するという産業上の要請がある。本発明はこれらを解決をする電池モジュール、及びその製造方法を提供する。本発明に係るシリコンを用いた触媒電池は、リチウムを用いることなくエネルギー密度を1Wh/g程度以上に改善出来、さらに強い振動や衝撃にも耐えうる電池モジュールを構成することが出来る。本発明のシリコン触媒電池は低廉なコストでもって安全性が高く、性能に優れた電池、特に二次電池であり、以て産業上の利用可能性は非常に大きいといえる。   The lithium used in the lithium ion secondary battery is unevenly distributed, and there is a risk of fire and corrosion. Furthermore, there is an industrial demand to double the energy density. The present invention provides a battery module that solves these problems and a method of manufacturing the same. The catalyst battery using silicon according to the present invention can improve the energy density to about 1 Wh / g or more without using lithium, and can constitute a battery module that can withstand strong vibration and impact. The silicon catalyst battery of the present invention is a low-cost, high-safety, excellent-performance battery, particularly a secondary battery, and thus can be said to have great industrial applicability.

1 正集電極金属メッシュ
2 正電極
3 シリコンへの添加物
4 シリコン微粒子
5 補助剤
6 グラファイト
7 電解質
8 セパレータ
9 負電極電解質
10 負電極
11 酸素透過膜
12 酸素透過膜
13 空気入口
14 空気出口
15 正リード線
16 負リード線
17 ケース
DESCRIPTION OF SYMBOLS 1 Positive electrode metal mesh 2 Positive electrode 3 Additive to silicon 4 Silicon fine particle 5 Adjunct 6 Graphite 7 Electrolyte 8 Separator 9 Negative electrode electrolyte 10 Negative electrode 11 Oxygen permeable membrane 12 Oxygen permeable membrane 13 Air inlet 14 Air outlet 15 Positive Lead wire 16 Negative lead wire 17 Case

Claims (14)

空気中の酸素を酸化還元するグラファイト等の炭素微粒子6を含む正電極2と、金属電極からなる負電極10と、電解質層7と、これらの間に介在されたセパレータ8、及び集電極1、11を有する二次電池に於いて、正電極はグラファイト等の炭素微粒子6、シリコン微粒子4、チタン又は二酸化マンガン等の正電極触媒5、及びシリコン微粒子の安定剤としてアルギン酸或いはクエン酸等の補助剤3で構成することを特徴とするシリコン触媒電池及びその製造方法。   A positive electrode 2 containing carbon fine particles 6 such as graphite that oxidizes and reduces oxygen in the air, a negative electrode 10 made of a metal electrode, an electrolyte layer 7, a separator 8 interposed therebetween, and a collector electrode 1, 11, the positive electrode is carbon fine particles 6 such as graphite, silicon fine particles 4, positive electrode catalyst 5 such as titanium or manganese dioxide, and an auxiliary agent such as alginic acid or citric acid as a stabilizer for the silicon fine particles. 3 is a silicon catalyst battery, and its manufacturing method. 空気中の酸素を酸化還元するグラファイト等の炭素微粒子6を含む正電極2と、金属電極からなる負電極10と、電解質層7と、これらの間に介在されたセパレータ8、及び集電極1、11を有する二次電池に於いて、正電極はグラファイト等の炭素微粒子6、シリコン微粒子4、チタン又は二酸化マンガン等の正電極触媒5、及びシリコン微粒子の安定剤としてアルギン酸或いはクエン酸等の補助剤3で構成するとともに、正電極外部は空気が自然循環するように小穴付きの集電極1と電極と水分を透過しない表面処理膜12から構成されることを特徴とする、請求項1記載のシリコン触媒電池及びその製造方法。   A positive electrode 2 containing carbon fine particles 6 such as graphite that oxidizes and reduces oxygen in the air, a negative electrode 10 made of a metal electrode, an electrolyte layer 7, a separator 8 interposed therebetween, and a collector electrode 1, 11, the positive electrode is carbon fine particles 6 such as graphite, silicon fine particles 4, positive electrode catalyst 5 such as titanium or manganese dioxide, and an auxiliary agent such as alginic acid or citric acid as a stabilizer for the silicon fine particles. 3. The silicon according to claim 1, wherein the outside of the positive electrode comprises a collector electrode 1 with a small hole so that air naturally circulates, and an electrode and a surface treatment film 12 that does not transmit moisture. Catalyst battery and method for producing the same. 空気中の酸素を酸化還元するグラファイト等の炭素微粒子6を含む正電極2と、金属電極からなる負電極10と、電解質層7と、これらの間に介在されたセパレータ8、及び集電極1、11を有する二次電池に於いて、正電極はグラファイト等の炭素微粒子6、シリコン微粒子4、チタン又は二酸化マンガン等の正電極触媒5、及びシリコン微粒子の安定剤としてアルギン酸或いはクエン酸等の補助剤3で構成するとともに、電解質7に金属塩化物を主成分とした水溶液又は有機溶媒液を用いることを特徴とする、請求項1又は請求項2記載のシリコン触媒電池及びその製造方法。   A positive electrode 2 containing carbon fine particles 6 such as graphite that oxidizes and reduces oxygen in the air, a negative electrode 10 made of a metal electrode, an electrolyte layer 7, a separator 8 interposed therebetween, and a collector electrode 1, 11, the positive electrode is carbon fine particles 6 such as graphite, silicon fine particles 4, positive electrode catalyst 5 such as titanium or manganese dioxide, and an auxiliary agent such as alginic acid or citric acid as a stabilizer for the silicon fine particles. 3. The silicon catalyst cell according to claim 1 or 2, wherein the electrolyte 7 is an aqueous solution or an organic solvent solution containing a metal chloride as a main component. 空気中の酸素を酸化還元するグラファイト等の炭素微粒子6を含む正電極2と、金属電極からなる負電極10と、電解質層7と、これらの間に介在されたセパレータ8、及び集電極1、11を有する二次電池に於いて、正電極はグラファイト等の炭素微粒子6、シリコン微粒子4、チタン又は二酸化マンガン等の正電極触媒5、及びシリコン微粒子の安定剤としてアルギン酸或いはクエン酸等の補助剤3で構成するとともに、電解質7に金属塩化物を主成分とした水溶液又は有機溶媒液を用い、さらに電解液として2−MeTHF等のエーテル系溶媒に臭化金属を入れた金属エトキシド添加剤を添加することを特徴とする、請求項3記載のシリコン触媒電池及びその製造方法。   A positive electrode 2 containing carbon fine particles 6 such as graphite that oxidizes and reduces oxygen in the air, a negative electrode 10 made of a metal electrode, an electrolyte layer 7, a separator 8 interposed therebetween, and a collector electrode 1, 11, the positive electrode is carbon fine particles 6 such as graphite, silicon fine particles 4, positive electrode catalyst 5 such as titanium or manganese dioxide, and an auxiliary agent such as alginic acid or citric acid as a stabilizer for the silicon fine particles. 3 and using an aqueous solution or an organic solvent solution containing metal chloride as a main component for the electrolyte 7, and further adding a metal ethoxide additive containing metal bromide in an ether solvent such as 2-MeTHF as an electrolyte solution The silicon catalyst battery according to claim 3 and a method for manufacturing the same. 該正電極内部のシリコン微粒子4の平均粒径は、0.5μm乃至50μmとすることを特徴とする請求項1乃至請求項4記載のシリコン触媒電池及びその製造方法。   5. The silicon catalyst cell according to claim 1, wherein the average particle size of the silicon fine particles within the positive electrode is 0.5 to 50 μm. 該シリコン微粒子の安定剤3はアルギン酸又はクエン酸等の補助剤3であることを特徴とする請求項1乃至請求項5記載のシリコン触媒電池及びその製造方法。   6. The silicon catalyst cell according to claim 1, wherein the silicon fine particle stabilizer 3 is an auxiliary agent 3 such as alginic acid or citric acid. 該正電極内部に、遷移金属酸化物を含有することを特徴とする請求項1乃至請求項6記載のシリコン触媒電池及びその製造方法。   7. The silicon catalyst cell according to claim 1, wherein the positive electrode contains a transition metal oxide, and a method for producing the same. 該正電極外部はチタン等の金属メッシュ11で構成することを特徴とすることを特徴とする請求項1乃至請求項7記載のシリコン触媒電池及びその製造方法。   8. The silicon catalyst battery according to claim 1, wherein the outside of the positive electrode is composed of a metal mesh made of titanium or the like. 該負電極10の内面は、機械的又は酸化等の化学的加工による凹凸の多い負電極表面処理膜からなることを特徴とする請求項1乃至請求項8記載のシリコン触媒電池及びその製造方法。   9. The silicon catalyst cell according to claim 1, wherein the inner surface of the negative electrode is made of a negative electrode surface treatment film having many irregularities by mechanical processing such as mechanical or chemical processing such as oxidation. 該電解質7は金属塩化物を主成分とすることを特徴とする請求項1乃至請求項9記載のシリコン触媒電池及びその製造方法。   10. The silicon catalyst cell according to claim 1, wherein the electrolyte comprises a metal chloride as a main component. 該電解質7は金属塩化物を主成分とする共に、クエン酸、酒石酸又はリンゴ酸等の電解質添加物14を含有することを特徴とする請求項10記載のシリコン触媒電池及びその製造方法。   11. The silicon catalyst cell according to claim 10, wherein the electrolyte comprises a metal chloride as a main component and an electrolyte additive such as citric acid, tartaric acid or malic acid. 該電解質7は金属塩化物を主成分とする共に、クエン酸、酒石酸又はリンゴ酸等の電解質添加物14を含有し、さらにアセトニトリル等からなる中性溶媒に溶解されてなることを特徴とする請求項11記載のシリコン触媒電池及びその製造方法。   The electrolyte 7 contains a metal chloride as a main component, contains an electrolyte additive 14 such as citric acid, tartaric acid or malic acid, and is further dissolved in a neutral solvent such as acetonitrile. Item 12. A silicon catalyst battery according to Item 11, and a method for producing the same. 空気中の酸素を酸化還元するグラファイト等の炭素微粒子6を含む正電極2と、金属電極からなる負電極10と、電解質層7と、これらの間に介在されたセパレータ8、及び集電極1、11を有する二次電池に於いて、正電極はグラファイト等の炭素微粒子6、シリコン微粒子4、チタン又は二酸化マンガン等の正電極触媒5、及びシリコン微粒子の安定剤としてアルギン酸或いはクエン酸等の補助剤3を含むとともに、負電極はグラファイト等の炭素微粒子を含むことを特徴とする、非対称キャパシタとして機能するシリコン触媒電池及びその製造方法。   A positive electrode 2 containing carbon fine particles 6 such as graphite that oxidizes and reduces oxygen in the air, a negative electrode 10 made of a metal electrode, an electrolyte layer 7, a separator 8 interposed therebetween, and a collector electrode 1, 11, the positive electrode is carbon fine particles 6 such as graphite, silicon fine particles 4, positive electrode catalyst 5 such as titanium or manganese dioxide, and an auxiliary agent such as alginic acid or citric acid as a stabilizer for the silicon fine particles. 3, and the negative electrode includes carbon fine particles such as graphite, and a silicon catalyst battery functioning as an asymmetric capacitor and a method for manufacturing the same. 空気中の酸素を酸化還元するグラファイト等の炭素微粒子6を含む正電極2と、金属電極からなる負電極10と、電解質層7と、これらの間に介在されたセパレータ8、及び集電極1、11を有する二次電池に於いて、正電極はグラファイト等の炭素微粒子6、シリコン微粒子4、チタン又は二酸化マンガン等の正電極触媒5、及びシリコン微粒子の安定剤としてアルギン酸或いはクエン酸等の補助剤3を含み、アルカリ性電解液を用いて構成することを特徴とする、シリコン触媒電池及びその製造方法。   A positive electrode 2 containing carbon fine particles 6 such as graphite that oxidizes and reduces oxygen in the air, a negative electrode 10 made of a metal electrode, an electrolyte layer 7, a separator 8 interposed therebetween, and a collector electrode 1, 11, the positive electrode is carbon fine particles 6 such as graphite, silicon fine particles 4, positive electrode catalyst 5 such as titanium or manganese dioxide, and an auxiliary agent such as alginic acid or citric acid as a stabilizer for the silicon fine particles. 3, a silicon catalyst battery and a method for manufacturing the same.
JP2013054475A 2013-03-18 2013-03-18 Silicon catalyst battery and manufacturing method thereof Pending JP2014182870A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013054475A JP2014182870A (en) 2013-03-18 2013-03-18 Silicon catalyst battery and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013054475A JP2014182870A (en) 2013-03-18 2013-03-18 Silicon catalyst battery and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JP2014182870A true JP2014182870A (en) 2014-09-29

Family

ID=51701400

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013054475A Pending JP2014182870A (en) 2013-03-18 2013-03-18 Silicon catalyst battery and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2014182870A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109037858A (en) * 2017-06-12 2018-12-18 松下知识产权经营株式会社 air cell
CN115472851A (en) * 2021-06-11 2022-12-13 合肥华凌股份有限公司 Air electrode and preparation method and application thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109037858A (en) * 2017-06-12 2018-12-18 松下知识产权经营株式会社 air cell
CN115472851A (en) * 2021-06-11 2022-12-13 合肥华凌股份有限公司 Air electrode and preparation method and application thereof
CN115472851B (en) * 2021-06-11 2023-12-01 合肥华凌股份有限公司 Air electrode and preparation method and application thereof

Similar Documents

Publication Publication Date Title
Selvakumaran et al. A review on recent developments and challenges of cathode materials for rechargeable aqueous Zn-ion batteries
Chao et al. Intercalation pseudocapacitive behavior powers aqueous batteries
Wang et al. Parametric study and optimization of a low-cost paper-based Al-air battery with corrosion inhibition ability
US9997802B2 (en) High energy density aluminum battery
Yoo et al. “Rocking-chair”-type metal hybrid supercapacitors
Eftekhari et al. Electrochemical energy storage by aluminum as a lightweight and cheap anode/charge carrier
JP5449522B2 (en) Air battery
Zhou et al. High-Energy Sn–Ni and Sn–Air Aqueous Batteries via Stannite-Ion Electrochemistry
US9531002B2 (en) Transition metal cyanometallate cathode battery with metal plating anode
WO2012044678A2 (en) A high energy density aluminum battery
KR20130013310A (en) A preparation method of mno2/carbon composite, mno2/carbon composite prepared by the same, and lithium/air secondary cell comprising the composite
US20150280227A1 (en) Predoping method for an electrode active material in an energy storage device, and energy storage devices
Wood et al. Fast lithium transport in PbTe for lithium-ion battery anodes
JP5763161B2 (en) Air battery
She et al. Rechargeable Aqueous Zinc–Halogen Batteries: Fundamental Mechanisms, Research Issues, and Future Perspectives
JP2014182870A (en) Silicon catalyst battery and manufacturing method thereof
JP2017059370A (en) Secondary battery
JP2013239245A (en) Metal-air battery
EP2707924A2 (en) Alkali metal ion battery using alkali metal conductive ceramic separator
JP2014222569A (en) Secondary battery of silicon catalyst positive electrode and manufacturing method thereof
JP2017004934A (en) Aluminum-manganese electrochemical cell
JP6875818B2 (en) Electrolyte and electrochemical device using it
JP2015050128A (en) Semiconductor secondary battery
Zhang et al. Sacrificial Co-solvent Electrolyte to Construct a Stable Solid Electrolyte Interphase in Lithium–Oxygen Batteries
JP2015050129A (en) Method of manufacturing positive electrode of semiconductor secondary battery