JP2014006360A - Optical member, optical device, exposure device, and method for manufacturing device - Google Patents

Optical member, optical device, exposure device, and method for manufacturing device Download PDF

Info

Publication number
JP2014006360A
JP2014006360A JP2012141312A JP2012141312A JP2014006360A JP 2014006360 A JP2014006360 A JP 2014006360A JP 2012141312 A JP2012141312 A JP 2012141312A JP 2012141312 A JP2012141312 A JP 2012141312A JP 2014006360 A JP2014006360 A JP 2014006360A
Authority
JP
Japan
Prior art keywords
optical member
optical
exposure apparatus
receiving
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012141312A
Other languages
Japanese (ja)
Other versions
JP2014006360A5 (en
Inventor
Masato Hagiri
正人 羽切
Kura Yasunobu
蔵 安延
Ryosuke Fukuoka
亮介 福岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2012141312A priority Critical patent/JP2014006360A/en
Publication of JP2014006360A publication Critical patent/JP2014006360A/en
Publication of JP2014006360A5 publication Critical patent/JP2014006360A5/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Lens Barrels (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an optical member that is advantageous to be supported in a stable planar shape.SOLUTION: An optical member 2 is supported via at least three portions. In particular, at least a first portion 2b nearest to the gravity center 2a of the optical member 2, in the three portions, is disposed outside the effective area of the optical member 2 and on a plane 2d continuing a neutral plane between an upper surface and a lower surface of the effective area.

Description

本発明は、光学部材と、この光学部材を支持する光学装置、およびそれを用いた露光装置、ならびにデバイスの製造方法に関する。   The present invention relates to an optical member, an optical apparatus that supports the optical member, an exposure apparatus that uses the optical apparatus, and a device manufacturing method.

露光装置は、液晶表示装置や半導体デバイスなどの製造工程に含まれるリソグラフィー工程において、原版(マスクなど)のパターンを、投影光学系を介して感光性の基板(表面にレジスト層が形成されたガラスプレートやウエハなど)に転写する装置である。特に液晶表示装置の製造用である露光装置には、一定時間内により多くの基板に対して露光処理可能であることが要求される。したがって、露光装置内の投影光学系は、一度に露光できる範囲を広げるために大型化され得る。さらに、この露光装置には、解像力や重ね合わせ精度の改善も要求される。そのために、投影光学系に含まれる個別の光学部材の大型化や高精度化が必要となる。しかしながら、光学部材の大型化は、光学部材の重量増や相対的な剛性の低下により、投影光学系内での支持を介して面形状の誤差を増大させ得る。このことは、光学部材を製造する場合も同様であり、特に大型の光学部材を製造する場合には、繰り返し実施される加工や計測において、加工装置や計測器上で光学部材の面形状が変化し得る。そこで、光学部材の支持による光学部材の変形を抑えるために、特許文献1は、光学部材の外周部を、等間隔に配置された少なくとも3点で支持する支持装置を開示している。   An exposure apparatus is a lithography process included in a manufacturing process of a liquid crystal display device, a semiconductor device, etc., in which a pattern of an original (such as a mask) is transferred to a photosensitive substrate (glass having a resist layer formed on the surface) via a projection optical system. A device for transferring to a plate or wafer). In particular, an exposure apparatus for manufacturing a liquid crystal display device is required to be able to perform exposure processing on more substrates within a predetermined time. Therefore, the projection optical system in the exposure apparatus can be enlarged in order to widen the range that can be exposed at one time. Furthermore, this exposure apparatus is also required to improve resolution and overlay accuracy. Therefore, it is necessary to increase the size and accuracy of individual optical members included in the projection optical system. However, an increase in the size of the optical member may increase the surface shape error through support in the projection optical system due to an increase in the weight of the optical member and a decrease in relative rigidity. The same applies to the case of manufacturing an optical member. In particular, when a large optical member is manufactured, the surface shape of the optical member changes on a processing apparatus or a measuring instrument in repeated processing and measurement. Can do. Therefore, in order to suppress the deformation of the optical member due to the support of the optical member, Patent Document 1 discloses a support device that supports the outer peripheral portion of the optical member at at least three points arranged at equal intervals.

特開2001−208945号公報JP 2001-208945 A

ここで、例えば、液晶表示装置製造用の露光装置に備わる反射光学系は、光軸外を有効光路とするものが多いことから、非軸対称な有効径(外形)を持つ光学部材を採用することが一般的である。このような非軸対称の形状を有する大型の光学部材を単純に等間隔に配分された複数の支持点で支持すると、各支持点に作用する荷重に差が生じ、光学性能上好ましくない。例えば、光学部材の製造に際し、支持装置にてそのような荷重の差が生じると、光学部材の面形状に好ましくいない変化が現れる場合がある。また、露光装置の製造の過程で、光学部材の着脱や、面形状補正・成膜などの各種加工が繰り返されるが、支持部への光学部材の着脱の前後で面形状が変化すると、露光装置に必要な性能を達成するのに不利となる。特許文献1の支持装置は、光学部材の外周部を等間隔の3点で支持するものであり、非軸対称の外形を有する光学部材の支持には適さない。   Here, for example, many reflection optical systems provided in an exposure apparatus for manufacturing a liquid crystal display device have an effective optical path outside the optical axis, so an optical member having a non-axisymmetric effective diameter (outer shape) is employed. It is common. If such a large optical member having a non-axisymmetric shape is supported by a plurality of support points that are simply distributed at equal intervals, a difference occurs in the load acting on each support point, which is not preferable in terms of optical performance. For example, when manufacturing such an optical member, if such a load difference occurs in the support device, an undesirable change may appear in the surface shape of the optical member. Also, in the process of manufacturing the exposure apparatus, various processes such as attachment / detachment of the optical member and surface shape correction / film formation are repeated. However, if the surface shape changes before and after the attachment / detachment of the optical member to / from the support portion, the exposure apparatus It is disadvantageous to achieve the necessary performance. The support device of Patent Document 1 supports the outer peripheral portion of the optical member at three equally spaced points, and is not suitable for supporting an optical member having a non-axisymmetric outer shape.

本発明は、このような状況に鑑みてなされたものであり、例えば、安定した面形状での支持に有利な光学部材を提供することを目的とする。   The present invention has been made in view of such a situation, and an object thereof is to provide an optical member that is advantageous for supporting a stable surface shape, for example.

上記課題を解決するために、本発明は、少なくとも3つの箇所を介して支持される光学部材であって、少なくとも3つの箇所のうちの少なくとも光学部材の重心から最も近い第1箇所は、光学部材の有効領域の外側において、有効領域の上面および下面の間の中立面に連なる面に配置されている、ことを特徴とする。   In order to solve the above-mentioned problem, the present invention is an optical member supported via at least three locations, and at least a first location closest to the center of gravity of the optical member among the at least three locations is an optical member. It is characterized in that it is arranged on a surface continuous with a neutral plane between the upper surface and the lower surface of the effective region outside the effective region.

本発明によれば、例えば、安定した面形状での支持に有利な光学部材を提供することができる。   According to the present invention, for example, an optical member that is advantageous for supporting a stable surface shape can be provided.

本発明の一実施形態に係る光学装置の構成を示す図である。It is a figure which shows the structure of the optical apparatus which concerns on one Embodiment of this invention. 本発明の一実施形態に係る光学部材の形状を示す図である。It is a figure which shows the shape of the optical member which concerns on one Embodiment of this invention. 弾性ヒンジを含む受け部材の構成を示す図である。It is a figure which shows the structure of the receiving member containing an elastic hinge. 本発明の一実施形態に係る露光装置の構成を示す図である。It is a figure which shows the structure of the exposure apparatus which concerns on one Embodiment of this invention.

以下、本発明を実施するための形態について図面などを参照して説明する。   Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings.

(光学部材、および光学装置)
まず、本発明の一実施形態に係る光学部材と、この光学部材を支持する光学装置(支持装置)の構成について説明する。図1は、本実施形態に係る光学装置1の構成を示す図である。特に、図1(a)は、光学装置1の全体の斜視図であり、図1(b)は、X軸方向から見た側面図である。この光学装置1は、例えば、液晶表示装置の製造工程に用いられる露光装置の投影光学系に採用されるような、大型の光学部材2を支持対象物とする。特に本実施形態では、光学部材2は、非軸対称の形状(有効径)を有するレンズやミラーであり、その材質は、例えば、合成石英などのガラスである。なお、この光学部材2の形状については、以下で詳説する。さらに、図1を含む以下の各図では、光学部材2が支持された状態での平面内に互いに直交するX軸およびY軸を取り、またこのXY平面に垂直(本実施形態では重力方向)にZ軸を取っている。まず、光学装置1は、フレーム3と、このフレーム3に複数設置され、光学部材2の特定位置(面)を受ける受け部材4と、特定の受け部材4に対向して設置される複数の押さえ板5とを備える。
(Optical member and optical device)
First, the structure of the optical member which concerns on one Embodiment of this invention, and the optical apparatus (support apparatus) which supports this optical member is demonstrated. FIG. 1 is a diagram illustrating a configuration of an optical device 1 according to the present embodiment. In particular, FIG. 1A is a perspective view of the entire optical device 1, and FIG. 1B is a side view seen from the X-axis direction. The optical device 1 uses, for example, a large optical member 2 that can be used in a projection optical system of an exposure apparatus used in a manufacturing process of a liquid crystal display device. In particular, in this embodiment, the optical member 2 is a lens or a mirror having a non-axisymmetric shape (effective diameter), and the material thereof is, for example, glass such as synthetic quartz. The shape of the optical member 2 will be described in detail below. Further, in each of the following drawings including FIG. 1, an X axis and a Y axis perpendicular to each other are taken in a plane in a state where the optical member 2 is supported, and perpendicular to the XY plane (in this embodiment, the direction of gravity). The Z axis is taken. First, the optical device 1 includes a frame 3, a plurality of members installed on the frame 3, a receiving member 4 that receives a specific position (surface) of the optical member 2, and a plurality of pressers that are installed to face the specific receiving member 4. And a plate 5.

フレーム3は、光学装置1の本体構造体であり、例えば、図1に示すような、支持対象物である光学部材2の表面積(平面外形)よりも大きく、かつ光学部材2の重量に耐え得る一定の厚さを有する板材で構成される。また、フレーム3の材質は、外部からの熱により光学部材2への熱変形などの影響を低減させるために、低熱膨張材料が望ましく、例えばインバー合金などを採用し得る。ただし、外部からの熱の影響が小さい場合には、フレーム3の材質を一般鋼材としてもよい。さらに、フレーム3の内側には、光学部材2の表面積よりも小さい開口面積を有する開口3aが形成されている。この開口面積は、特に光学装置1が露光装置の投影光学系に設置される場合には、露光光が照射される際の光学部材2における有効面積を大きくするために、光学部材2の表面積に近いことが望ましい。   The frame 3 is a main body structure of the optical device 1. For example, as shown in FIG. 1, the frame 3 is larger than the surface area (planar outer shape) of the optical member 2 that is a support target and can withstand the weight of the optical member 2. It is comprised with the board | plate material which has fixed thickness. The material of the frame 3 is preferably a low thermal expansion material in order to reduce the influence of heat deformation on the optical member 2 due to heat from the outside, and for example, an Invar alloy can be adopted. However, when the influence of heat from the outside is small, the material of the frame 3 may be a general steel material. Furthermore, an opening 3 a having an opening area smaller than the surface area of the optical member 2 is formed inside the frame 3. This opening area is the surface area of the optical member 2 in order to increase the effective area of the optical member 2 when irradiated with exposure light, particularly when the optical device 1 is installed in the projection optical system of the exposure apparatus. It is desirable to be close.

受け部材4は、フレーム3の少なくとも3つの箇所に設置され、光学部材2の重力方向に対して水平なXY平面と接触して、光学部材2を載置する。特に本実施形態では、光学部材2の外形は、図1に示すように、Y軸方向よりもX軸方向の方が長く、かつ、Y軸方向の一方の側辺(第1辺)は、大部分が直線部で構成され、他方の側辺(第2辺)は、大部分が曲線部で構成されるような非軸対称の形状を有する。そこで、本実施形態では、光学部材2の形状を考慮して、受け部材4の設置個数を3つとし、そのうち、第1受け部材4aを第2辺の中間部に、一方、第2受け部材4bおよび第3受け部材4cを第1辺のそれぞれ先端付近に配置するものとする。また、受け部材4の材質は、例えば、PTFEなどの低摩擦係数材料であり、摩擦低減のために、さらに潤滑材を塗布してもよい。また、光学部材2と接触する各受け部材4a、4b、4cの先端部は、球形であり、この球形の半径は、光学部材2との関係において材質および物性値から求まる接触面積で決定する。具体的には固有値を基準とし、固有値が例えば100Hz以上になるような接触面積とし得る。さらに、フレーム3に対する受け部材4の取り付けは、本実施形態ではネジなどを用いた機械的な締結を想定しているが、例えば接着剤などを用いてもよい。ただし、特に光学装置1が露光装置で使用される場合には、光学装置1は、閉空間となる投影光学系の鏡筒(図4の鏡筒16)内に設置されることになる。このとき、接着剤を用いると、鏡筒内で揮発して各種光学素子にくもりを発生させる可能性があるため、接着剤としては、低発ガスタイプを採用することが望ましい。   The receiving member 4 is installed in at least three locations of the frame 3 and places the optical member 2 in contact with the XY plane that is horizontal with respect to the direction of gravity of the optical member 2. In particular, in the present embodiment, as shown in FIG. 1, the outer shape of the optical member 2 is longer in the X-axis direction than in the Y-axis direction, and one side (first side) in the Y-axis direction is Most of the sides are composed of straight portions, and the other side (second side) has a non-axisymmetric shape that is mostly composed of curved portions. Therefore, in the present embodiment, in consideration of the shape of the optical member 2, the number of receiving members 4 is set to three, of which the first receiving member 4a is in the middle of the second side, while the second receiving member. 4b and the 3rd receiving member 4c shall be arrange | positioned in the front-end | tip vicinity of each 1st edge | side. The material of the receiving member 4 is, for example, a low friction coefficient material such as PTFE, and a lubricant may be further applied to reduce friction. The tip of each receiving member 4a, 4b, 4c that contacts the optical member 2 has a spherical shape, and the radius of this spherical shape is determined by the contact area determined from the material and physical properties in relation to the optical member 2. Specifically, the contact area may be set such that the eigenvalue is, for example, 100 Hz or more with reference to the eigenvalue. Furthermore, although attachment of the receiving member 4 to the frame 3 is assumed to be mechanical fastening using screws or the like in the present embodiment, for example, an adhesive or the like may be used. However, especially when the optical apparatus 1 is used in an exposure apparatus, the optical apparatus 1 is installed in the lens barrel (the lens barrel 16 in FIG. 4) of the projection optical system that becomes a closed space. At this time, if an adhesive is used, it may volatilize in the lens barrel and cause clouding in various optical elements. Therefore, it is desirable to adopt a low gas generation type as the adhesive.

押さえ板5は、弾性を有する板材であり、第2受け部材4bおよび第3受け部材4cとの2つの受け部材4の直上に設置される。これにより、光学部材2は、各受け部材4b、4cの位置で押し付け固定されることになる。すなわち、これらの受け部材以外(第2受け部材4bおよび第3受け部材4c以外)の第1受け部材4aでは、光学部材2は、固定されずに自重を受けるのみである。さらに、押さえ板5の光学部材2との接触部には、受け部材4と同様に、低摩擦係数材料からなる当たり球を設置することが望ましい。   The pressing plate 5 is a plate material having elasticity, and is installed immediately above the two receiving members 4 including the second receiving member 4b and the third receiving member 4c. Thereby, the optical member 2 is pressed and fixed at the positions of the receiving members 4b and 4c. That is, in the first receiving member 4a other than these receiving members (other than the second receiving member 4b and the third receiving member 4c), the optical member 2 is not fixed and only receives its own weight. Furthermore, it is desirable to install a contact ball made of a low friction coefficient material at the contact portion of the pressing plate 5 with the optical member 2, similarly to the receiving member 4.

次に、光学部材2の形状について説明する。図2は、図1に示す光学装置1に搭載されている光学部材2の形状を示す概略図であり、特に、図2(a)は、XY平面を示す図であり、図2(b)は、図2(a)のA−A´断面を示す図である。光学部材2の平面は、非軸対称(光軸に対して非対称)であるため、図2(a)に示すように、重心2aから3点の各受け部材4a、4b、4cまでのXY平面上での各距離は、それぞれ異なる。これは、重心2aからの距離が最も近い第1受け部材4aの位置では、自重によるZ軸方向の力が最大となり、すなわち光学部材2と受け部材4とが接触する部分で発生し得るXY平面方向の摩擦力が最大となることを意味する。ここで、特に高精度な大型の光学部材を製造する際には、光学面の研磨や補正非球面加工などの加工工程と、面計測を主とした計測工程とが繰り返し実施される。したがって、加工装置や計測器に含まれる支持装置(光学装置)では、光学部材の着脱の前後で光学部材の面形状が変化しないことが要求される。さらに、露光装置においても、結像性能の向上のために光学部材の着脱、再製膜、または補正非球面加工を繰り返し実施する場合がある。この露光装置内での光学装置への光学部材の着脱の前後でも、同様に面形状が変化することは好ましくない。したがって、光学部材の面形状の再現性を向上させる点で考えると、第1受け部材4aの位置にて応力をかわすことが最も効果的である。   Next, the shape of the optical member 2 will be described. FIG. 2 is a schematic diagram showing the shape of the optical member 2 mounted on the optical device 1 shown in FIG. 1. In particular, FIG. 2 (a) is a diagram showing the XY plane, and FIG. These are figures which show the AA 'cross section of Fig.2 (a). Since the plane of the optical member 2 is non-axisymmetric (asymmetric with respect to the optical axis), as shown in FIG. 2A, the XY plane from the center of gravity 2a to the three receiving members 4a, 4b, and 4c. Each distance above is different. This is because, in the position of the first receiving member 4a closest to the center of gravity 2a, the force in the Z-axis direction due to its own weight becomes the maximum, that is, the XY plane that can be generated at the portion where the optical member 2 and the receiving member 4 are in contact with each other. It means that the frictional force in the direction is maximized. Here, when manufacturing a large optical member with particularly high accuracy, a processing step such as polishing of an optical surface or correction aspherical processing and a measurement step mainly including surface measurement are repeatedly performed. Therefore, in the support device (optical device) included in the processing device or the measuring instrument, it is required that the surface shape of the optical member does not change before and after the optical member is attached or detached. Further, in the exposure apparatus, the optical member may be repeatedly attached / removed, re-formed, or corrected aspherical processing is performed in order to improve the imaging performance. Similarly, it is not preferable that the surface shape changes before and after the optical member is attached to and detached from the optical device in the exposure apparatus. Therefore, considering the point of improving the reproducibility of the surface shape of the optical member, it is most effective to dodge the stress at the position of the first receiving member 4a.

そこで、本実施形態の光学部材2は、有効領域の外側で受け部材4と接触する特定の部位に、複数の彫り込み部(第1彫り込み部2b、第2彫り込み部2c)を有する。なお、彫り込み部(被支持箇所または単に箇所ともいう)は、結果的に同様の構造をなしていれば、その形成方法は、いわゆる「彫り込み」には限定されない。このうち、第1彫り込み部(第1箇所)2bは、第1受け部材4aとの接触面を有する部位であり、一方、第2彫り込み部2cは、第2受け部材4bおよび第3受け部材4cとの接触面を有する部位である。ここで、光学部材2の厚み方向内部には、XY平面方向の摩擦力が各受け部材4で発生した場合に、光学部材2の有効領域の上面(光入射面)と下面(光出射面)との間で伸び縮み変形が最小(理想的にはゼロ)となる位置(中立面2d)が存在する。そして、第1彫り込み部2bおよび第2彫り込み部2cの受け部材4との接触面は、中立面2dに連なる面に設定する。また、この中立面は、それには限定されないが、例えば、有限要素法を用いて光学部材2の有効領域の構造を解析することにより求めることができる。これにより、各彫り込み部2b、2cにおける受け部材4との接触面で発生する摩擦力は、光学部材2の着脱前後で異なったとしても、この摩擦力自体が光学部材2の有効径に及ぼす影響を、各彫り込み部2b、2cがない場合と比較して小さくすることができる。なお、彫り込み部は、上記のように全ての受け部材4に対応して設置することが望ましいものの、応力をかわす点では、光学部材2は、第1彫り込み部2bのみを有するものであってもよい。さらに、上記のとおり、光学部材2の着脱前後で変化する可能性のある力は、3点の受け位置における摩擦力であるので、各彫り込み部2b、2cにおける各受け部材4との接触面は、例えば、磨き仕上げが施されることが望ましい。このとき、中心線表面粗さ(中心線平均粗さ)Raは、0.1μm以下であることが望ましい。   Therefore, the optical member 2 of the present embodiment has a plurality of engraved portions (first engraved portion 2b and second engraved portion 2c) at a specific portion that contacts the receiving member 4 outside the effective region. As long as the engraved portion (also referred to as a supported location or simply a location) has a similar structure as a result, the formation method is not limited to so-called “engraving”. Among these, the 1st engraving part (1st location) 2b is a site | part which has a contact surface with the 1st receiving member 4a, On the other hand, the 2nd engraving part 2c is the 2nd receiving member 4b and the 3rd receiving member 4c. It is a site | part which has a contact surface with. Here, inside the thickness direction of the optical member 2, when frictional forces in the XY plane direction are generated in each receiving member 4, the upper surface (light incident surface) and the lower surface (light emitting surface) of the effective region of the optical member 2. There is a position (neutral surface 2d) where the expansion and contraction deformation is minimum (ideally zero). And the contact surface with the receiving member 4 of the 1st engraving part 2b and the 2nd engraving part 2c is set to the surface connected to the neutral surface 2d. Further, the neutral plane can be obtained by analyzing the structure of the effective region of the optical member 2 using, for example, a finite element method, although not limited thereto. Thereby, even if the frictional force generated on the contact surface with the receiving member 4 at each of the engraved portions 2b and 2c is different before and after the optical member 2 is attached and detached, the frictional force itself has an effect on the effective diameter of the optical member 2. Can be made smaller compared to the case where there are no engraved portions 2b and 2c. In addition, although it is desirable to install the engraved part corresponding to all the receiving members 4 as described above, the optical member 2 may have only the first engraved part 2b in terms of avoiding stress. Good. Furthermore, as described above, the force that may change before and after the optical member 2 is attached / detached is a frictional force at the three receiving positions, so the contact surfaces of the engraved portions 2b and 2c with the receiving members 4 are For example, it is desirable to have a polished finish. At this time, the centerline surface roughness (centerline average roughness) Ra is preferably 0.1 μm or less.

このように、光学部材2、およびそれを支持する光学装置1は、光学部材2が大型で非軸対称な形状を有する場合であっても、光学部材2の面形状の変化を低減させることができる。特に、光学装置1に対して光学部材2の着脱を繰り返す場合に、光学部材2の面形状の再現性を向上させる点で有利となり得る。なお、光学部材2の着脱時に発生し得る摩擦力をより低減させるために、受け部材4に重力の方向より重力に直交する方向において柔軟な弾性ヒンジ(ヒンジ部材)を構成してもよい。図3は、弾性ヒンジ6を含む受け部材4の構成を示す断面図である。この弾性ヒンジ6は、例えばXY平面方向にかかる力を特定の状態に変形することで吸収する。   As described above, the optical member 2 and the optical device 1 that supports the optical member 2 can reduce changes in the surface shape of the optical member 2 even when the optical member 2 has a large and non-axisymmetric shape. it can. In particular, when the optical member 2 is repeatedly attached to and detached from the optical device 1, it can be advantageous in improving the reproducibility of the surface shape of the optical member 2. In order to further reduce the frictional force that can be generated when the optical member 2 is attached or detached, a flexible elastic hinge (hinge member) may be formed on the receiving member 4 in a direction perpendicular to the direction of gravity rather than the direction of gravity. FIG. 3 is a cross-sectional view showing the configuration of the receiving member 4 including the elastic hinge 6. The elastic hinge 6 absorbs, for example, a force applied in the XY plane direction by deforming it into a specific state.

以上のように、本実施形態によれば、安定した面形状での支持に有利な光学部材を提供することができる。さらに、その光学部材を安定した面形状で支持するのに有利な光学装置を提供することができる。   As described above, according to the present embodiment, it is possible to provide an optical member that is advantageous for supporting a stable surface shape. Further, it is possible to provide an optical device that is advantageous for supporting the optical member with a stable surface shape.

(露光装置)
次に、本発明の一実施形態に係る露光装置の構成について説明する。図4は、本実施形態に係る露光装置10の構成を示す概略図である。この露光装置10は、一例として、液晶表示装置の製造に用いられ、ステップ・アンド・スキャン方式にてマスク(原版)11に形成されているパターンをガラスプレート(基板)12に露光する走査型露光装置とする。露光装置10は、まず、照明系13と、アライメントスコープ14と、マスク11を保持する不図示のマスクステージと、投影光学系15と、感光剤が塗布されたガラスプレート12を保持する不図示の基板ステージとを備える。照明系13は、例えばHgランプなどの光源を有し、マスク11に対してスリット状に成形された照明光を照射して、パターン像を、投影光学系15を介してガラスプレート12へ投影させる。アライメントスコープ14は、マスクとガラスプレートとに形成された位置決め用のアライメントマークを観察する。ここで、アライメントスコープ14は、照明系13がマスク11に対して照明光を照射する際、照明光を遮ることがないように、その一部または全体を駆動可能な構成を有し、適宜、照明光束外に退避駆動を行うことが可能である。投影光学系15は、鏡筒16内に設置され、基板ステージに保持されたガラスプレート12に対してパターン像を投影する。この投影光学系15は、2つの平板型透過素子20と、2つの平面鏡21と、凹面鏡22と、凸面鏡23とを含む。平板型透過素子20は、投影光学系15の入射側および出射側に配置され、平行平板ガラスや、投影光学系15の結像性能を補助的に改善するための光学素子(光学部材)である。平面鏡21、凹面鏡22、および凸面鏡23は、共にパターン像を反射する光学部材であり、その材質は、線膨張係数の小さいガラスである。露光装置10は、投影光学系15の投影倍率を等倍とすると、マスク11とガラスプレート12とを同期させて走査露光を行うことで、マスク11からのパターンの像をガラスプレート12上(基板上)に転写させることができる。特に、露光装置10では、平板型透過素子20として、上記実施形態に係る光学部材2を採用し、そして、不図示であるが、鏡筒16内に含まれる平板型透過素子20の支持部として、上記実施形態に係る光学装置1を採用し得る。これによれば、例えば、平板型透過素子20を投影光学系15に組み込む際に、平板型透過素子20の着脱を繰り返すことがあっても、平板型透過素子20の面形状を好適に再現することができるため、従来よりも高精度な露光装置を製造することができる。
(Exposure equipment)
Next, the configuration of an exposure apparatus according to an embodiment of the present invention will be described. FIG. 4 is a schematic view showing a configuration of the exposure apparatus 10 according to the present embodiment. As an example, this exposure apparatus 10 is used in the manufacture of a liquid crystal display device, and scan-type exposure that exposes a pattern formed on a mask (original plate) 11 on a glass plate (substrate) 12 by a step-and-scan method. A device. First, the exposure apparatus 10 includes an illumination system 13, an alignment scope 14, a mask stage (not shown) that holds the mask 11, a projection optical system 15, and a glass plate 12 that is coated with a photosensitive agent (not shown). A substrate stage. The illumination system 13 has a light source such as an Hg lamp, for example, and irradiates the mask 11 with illumination light shaped like a slit to project a pattern image onto the glass plate 12 via the projection optical system 15. . The alignment scope 14 observes positioning alignment marks formed on the mask and the glass plate. Here, when the illumination system 13 irradiates the mask 11 with illumination light, the alignment scope 14 has a configuration capable of driving part or all of the illumination scope 13 so as not to block the illumination light. Retraction driving can be performed outside the illumination light beam. The projection optical system 15 is installed in the lens barrel 16 and projects a pattern image onto the glass plate 12 held on the substrate stage. The projection optical system 15 includes two flat transmission elements 20, two plane mirrors 21, a concave mirror 22, and a convex mirror 23. The flat plate transmissive element 20 is disposed on the incident side and the outgoing side of the projection optical system 15 and is an optical element (optical member) for assisting in improving the imaging performance of the parallel flat glass or the projection optical system 15. . The plane mirror 21, the concave mirror 22, and the convex mirror 23 are optical members that reflect the pattern image, and the material thereof is glass having a small linear expansion coefficient. When the projection magnification of the projection optical system 15 is the same magnification, the exposure apparatus 10 performs scanning exposure by synchronizing the mask 11 and the glass plate 12 so that the pattern image from the mask 11 is formed on the glass plate 12 (substrate). The above can be transferred. In particular, in the exposure apparatus 10, the optical member 2 according to the above-described embodiment is adopted as the flat plate transmissive element 20, and although not shown, as a support portion for the flat plate transmissive element 20 included in the lens barrel 16. The optical device 1 according to the above embodiment can be employed. According to this, for example, when the flat transmissive element 20 is incorporated in the projection optical system 15, the surface shape of the flat transmissive element 20 is suitably reproduced even if the flat transmissive element 20 is repeatedly attached and detached. Therefore, it is possible to manufacture an exposure apparatus with higher accuracy than before.

(デバイスの製造方法)
次に、本発明の一実施形態のデバイス(半導体デバイス、液晶表示デバイス等)の製造方法について説明する。半導体デバイスは、ウエハに集積回路を作る前工程と、前工程で作られたウエハ上の集積回路チップを製品として完成させる後工程を経ることにより製造される。前工程は、前述の露光装置を使用して感光剤が塗布されたウエハを露光する工程と、ウエハを現像する工程を含む。後工程は、アッセンブリ工程(ダイシング、ボンディング)と、パッケージング工程(封入)を含む。液晶表示デバイスは、透明電極を形成する工程を経ることにより製造される。透明電極を形成する工程は、透明導電膜が蒸着されたガラス基板に感光剤を塗布する工程と、前述の露光装置を使用して感光剤が塗布されたガラス基板を露光する工程と、ガラス基板を現像する工程を含む。本実施形態のデバイス製造方法によれば、従来よりも高品位のデバイスを製造することができる。
(Device manufacturing method)
Next, a method for manufacturing a device (semiconductor device, liquid crystal display device, etc.) according to an embodiment of the present invention will be described. A semiconductor device is manufactured through a pre-process for producing an integrated circuit on a wafer and a post-process for completing an integrated circuit chip on the wafer produced in the pre-process as a product. The pre-process includes a step of exposing a wafer coated with a photosensitive agent using the above-described exposure apparatus, and a step of developing the wafer. The post-process includes an assembly process (dicing and bonding) and a packaging process (encapsulation). A liquid crystal display device is manufactured through a process of forming a transparent electrode. The step of forming the transparent electrode includes a step of applying a photosensitive agent to a glass substrate on which a transparent conductive film is deposited, a step of exposing the glass substrate on which the photosensitive agent is applied using the above-described exposure apparatus, and a glass substrate. The process of developing is included. According to the device manufacturing method of the present embodiment, it is possible to manufacture a higher quality device than before.

以上、本発明の好ましい実施形態について説明したが、本発明は、これらの実施形態に限定されず、その要旨の範囲内で種々の変形および変更が可能である。   As mentioned above, although preferable embodiment of this invention was described, this invention is not limited to these embodiment, A various deformation | transformation and change are possible within the range of the summary.

2 光学部材
2a 重心
2b 第1彫り込み部
2d 内部面
4a 第1受け部材
2 Optical member 2a Center of gravity 2b First engraving portion 2d Internal surface 4a First receiving member

Claims (8)

少なくとも3つの箇所を介して支持される光学部材であって、
前記少なくとも3つの箇所のうちの少なくとも前記光学部材の重心から最も近い第1箇所は、前記光学部材の有効領域の外側において、該有効領域の上面および下面の間の中立面に連なる面に配置されている、
ことを特徴とする光学部材。
An optical member supported through at least three locations,
A first location closest to the center of gravity of the optical member among the at least three locations is arranged outside the effective region of the optical member on a surface continuous with a neutral surface between the upper surface and the lower surface of the effective region. Being
An optical member.
前記有効領域は、光軸に関して非対称である、ことを特徴とする請求項1に記載の光学部材。   The optical member according to claim 1, wherein the effective region is asymmetric with respect to an optical axis. 前記少なくとも3つの箇所のうちの少なくとも1つは、0.1μm以下の中心線表面粗さを有する、
ことを特徴とする請求項1または請求項2に記載の光学部材。
At least one of the at least three locations has a centerline surface roughness of 0.1 μm or less,
The optical member according to claim 1, wherein the optical member is an optical member.
請求項1ないし請求項3のいずれか1項に記載の光学部材と、
フレームと、
前記フレームに設けられ、前記光学部材を受ける少なくとも3つの受け部材と、
前記少なくとも3つの受け部材のうちの前記光学部材の前記第1箇所を受ける受け部材を除く複数の受け部材にそれぞれ対向して設けられ、前記光学部材を押さえる複数の押さえ部材と、
を有することを特徴とする光学装置。
The optical member according to any one of claims 1 to 3,
Frame,
At least three receiving members provided on the frame and receiving the optical member;
A plurality of pressing members that are provided facing each of a plurality of receiving members excluding the receiving member that receives the first portion of the optical member among the at least three receiving members, and that hold the optical member;
An optical device comprising:
前記受け部材は、重力の方向より重力に直交する方向において柔軟なヒンジ部材を含む、ことを特徴とする請求項4に記載の光学装置。   The optical apparatus according to claim 4, wherein the receiving member includes a hinge member that is more flexible in a direction perpendicular to gravity than in a direction of gravity. 基板を露光する露光装置であって、
請求項1ないし請求項3のいずれか1項に記載の光学部材を有し、
前記光学部材を介して前記基板を露光する、
ことを特徴とする露光装置。
An exposure apparatus for exposing a substrate,
It has an optical member given in any 1 paragraph of Claims 1 thru / or 3,
Exposing the substrate through the optical member;
An exposure apparatus characterized by that.
基板を露光する露光装置であって、
請求項4または請求項5に記載の光学装置を有し、
前記光学装置を介して前記基板を露光する、
ことを特徴とする露光装置。
An exposure apparatus for exposing a substrate,
An optical device according to claim 4 or 5,
Exposing the substrate through the optical device;
An exposure apparatus characterized by that.
請求項6または請求項7に記載の露光装置を用いて基板を露光する工程と、
前記工程で露光された前記基板を現像する工程と、
を含むことを特徴とするデバイス製造方法。
Exposing the substrate using the exposure apparatus according to claim 6 or 7,
Developing the substrate exposed in the step;
A device manufacturing method comprising:
JP2012141312A 2012-06-22 2012-06-22 Optical member, optical device, exposure device, and method for manufacturing device Pending JP2014006360A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012141312A JP2014006360A (en) 2012-06-22 2012-06-22 Optical member, optical device, exposure device, and method for manufacturing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012141312A JP2014006360A (en) 2012-06-22 2012-06-22 Optical member, optical device, exposure device, and method for manufacturing device

Publications (2)

Publication Number Publication Date
JP2014006360A true JP2014006360A (en) 2014-01-16
JP2014006360A5 JP2014006360A5 (en) 2015-08-06

Family

ID=50104139

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012141312A Pending JP2014006360A (en) 2012-06-22 2012-06-22 Optical member, optical device, exposure device, and method for manufacturing device

Country Status (1)

Country Link
JP (1) JP2014006360A (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04103039A (en) * 1990-12-21 1992-04-06 Toshiba Corp Objective lens driving device
JPH06214142A (en) * 1993-01-19 1994-08-05 Nikon Corp Lens holder
JPH1114876A (en) * 1997-06-19 1999-01-22 Nikon Corp Optical structural body, projection exposing optical system incorporating the same and projection aligner
JP2001208945A (en) * 1999-12-10 2001-08-03 Carl Zeiss Stiftung Trading As Carl Zeiss Device and method for supporting optical member with little deformation
WO2001075501A1 (en) * 2000-03-31 2001-10-11 Nikon Corporation Method and device for holding optical member, optical device, exposure apparatus, and device manufacturing method
JP2003172857A (en) * 2001-12-05 2003-06-20 Canon Inc Supporting means for optical element, optical system using the same, exposure device, device manufacturing method, and device
JP2006222473A (en) * 2004-01-30 2006-08-24 Fuji Photo Film Co Ltd Lens unit and compact imaging module
JP2008292801A (en) * 2007-05-25 2008-12-04 Canon Inc Exposure apparatus and method
JP2011059475A (en) * 2009-09-11 2011-03-24 Canon Inc Support device, optical device, exposure device and method of manufacturing device
JP2011090250A (en) * 2009-10-26 2011-05-06 Canon Inc Optical device, exposure apparatus using same, and device manufacturing method

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04103039A (en) * 1990-12-21 1992-04-06 Toshiba Corp Objective lens driving device
JPH06214142A (en) * 1993-01-19 1994-08-05 Nikon Corp Lens holder
JPH1114876A (en) * 1997-06-19 1999-01-22 Nikon Corp Optical structural body, projection exposing optical system incorporating the same and projection aligner
JP2001208945A (en) * 1999-12-10 2001-08-03 Carl Zeiss Stiftung Trading As Carl Zeiss Device and method for supporting optical member with little deformation
WO2001075501A1 (en) * 2000-03-31 2001-10-11 Nikon Corporation Method and device for holding optical member, optical device, exposure apparatus, and device manufacturing method
JP2003172857A (en) * 2001-12-05 2003-06-20 Canon Inc Supporting means for optical element, optical system using the same, exposure device, device manufacturing method, and device
JP2006222473A (en) * 2004-01-30 2006-08-24 Fuji Photo Film Co Ltd Lens unit and compact imaging module
JP2008292801A (en) * 2007-05-25 2008-12-04 Canon Inc Exposure apparatus and method
JP2011059475A (en) * 2009-09-11 2011-03-24 Canon Inc Support device, optical device, exposure device and method of manufacturing device
JP2011090250A (en) * 2009-10-26 2011-05-06 Canon Inc Optical device, exposure apparatus using same, and device manufacturing method

Similar Documents

Publication Publication Date Title
US6867848B2 (en) Supporting structure of optical element, exposure apparatus having the same, and manufacturing method of semiconductor device
US7253975B2 (en) Retainer, exposure apparatus, and device fabrication method
US7352520B2 (en) Holding device and exposure apparatus using the same
JP2010262284A (en) Protective apparatus, mask, mask forming apparatus, mask forming method, exposure apparatus, device fabricating method, and foreign matter detection apparatus
KR101121029B1 (en) Projection optical system, exposure apparatus and method of manufacturing a device
KR20110015397A (en) Exposure apparatus and device manufacturing method
JP2014225639A (en) Mirror unit and exposure apparatus
JP2004258273A (en) Holding device
JP2012531027A (en) MOBILE DEVICE, EXPOSURE APPARATUS, AND DEVICE MANUFACTURING METHOD
JP2004247484A (en) Mirror holding device, aligner, and method of manufacturing device
US8064152B2 (en) Supporting device, optical apparatus, exposure apparatus, and device manufacturing method
JP5127515B2 (en) Optical element holding device
JP6410406B2 (en) Projection optical system, exposure apparatus, and article manufacturing method
CN109416515A (en) Holding meanss, projection optical system, exposure device and article manufacturing method
KR101080144B1 (en) Exposure apparatus and device fabrication method
JPH11231192A (en) Optical element supporting device, lens barrel and projection aligner
JP2014006360A (en) Optical member, optical device, exposure device, and method for manufacturing device
US7583453B2 (en) Optical element holding structure, exposure apparatus, and device manufacturing method
JPWO2017038788A1 (en) Object holding device, exposure apparatus, flat panel display manufacturing method, device manufacturing method, object holding method, and exposure method
US20130250271A1 (en) Stage assembly with secure device holder
US20110065051A1 (en) Supporting device, optical apparatus, exposure apparatus, and device manufacturing method
KR101248360B1 (en) Exposure apparatus and method of manufacturing device
JP2013106007A (en) Stage device, exposure equipment and device manufacturing method
JP2007266511A (en) Optical system, exposure apparatus, and adjustment method of optical characteristic
JP2004070192A (en) Optical element supporting means, optical system using the optical element supporting means, method for regulating optical system, exposing device, exposing method and device manufacturing method

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150622

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150622

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160405

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20161025