JP2014006280A - Diffraction optical element, optical system and optical equipment - Google Patents

Diffraction optical element, optical system and optical equipment Download PDF

Info

Publication number
JP2014006280A
JP2014006280A JP2012139689A JP2012139689A JP2014006280A JP 2014006280 A JP2014006280 A JP 2014006280A JP 2012139689 A JP2012139689 A JP 2012139689A JP 2012139689 A JP2012139689 A JP 2012139689A JP 2014006280 A JP2014006280 A JP 2014006280A
Authority
JP
Japan
Prior art keywords
diffraction
grating
wavelength
optical element
diffractive optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012139689A
Other languages
Japanese (ja)
Other versions
JP6071262B2 (en
JP2014006280A5 (en
Inventor
Reona Ushigome
礼生奈 牛込
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2012139689A priority Critical patent/JP6071262B2/en
Publication of JP2014006280A publication Critical patent/JP2014006280A/en
Publication of JP2014006280A5 publication Critical patent/JP2014006280A5/ja
Application granted granted Critical
Publication of JP6071262B2 publication Critical patent/JP6071262B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Lenses (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a diffraction optical element in which wavelength characteristics of diffraction efficiency of a grating including influences of a grating side face are controlled to be approximately uniform.SOLUTION: A diffraction optical element 10 comprises layers of a plurality of diffraction gratings 1, 2 formed of different materials. Each material for the plurality of gratings shows such a property that in a range 2/3 or more of the use wavelength band of the diffraction optical element, ΔΦ(λ) defined by the following formula increases with the shorter wavelength. In the formula, λ represents a wavelength included in the use wavelength band; ni represents a refractive index at the wavelength λ of the material for an i-th grating in the plurality of gratings; di represents a grating height of the i-th grating; and m represents a diffraction order used.

Description

本発明は、回折光学素子に関し、特に複数の回折格子を積層して構成された回折光学素子に関する。   The present invention relates to a diffractive optical element, and more particularly to a diffractive optical element configured by stacking a plurality of diffraction gratings.

レンズを含む光学系における色収差を減じる方法として、レンズの表面や光学系の一部に回折光学素子を設ける方法が知られている。このような回折光学素子を用いる方法は、光学系中の屈折面と回折面とで、ある基準波長の光線に対する偏向方向が逆になるという物理現象を利用したものである。また、回折光学素子は、その周期的構造の周期を適宜変化させることで非球面レンズのような光学作用を持つことができるので、色収差以外の諸収差の低減にも有効である。   As a method of reducing chromatic aberration in an optical system including a lens, a method of providing a diffractive optical element on the surface of the lens or a part of the optical system is known. Such a method using a diffractive optical element utilizes a physical phenomenon that the deflection direction with respect to a light beam having a certain reference wavelength is reversed between the refracting surface and the diffractive surface in the optical system. In addition, the diffractive optical element can have an optical action like an aspherical lens by appropriately changing the period of the periodic structure, and thus is effective in reducing various aberrations other than chromatic aberration.

一般に、回折光学素子は、光入射方向に対して斜めに面する格子面と互いに隣り合う格子面間をつなぐ格子側面(格子壁面)とにより形成されるブレーズ構造を有する。このようなブレーズ構造の回折光学素子は、特定の1つの次数(以下、「特定次数」または「使用回折次数」という)と特定の波長に対して、高い回折効率で光を回折することができる。一方、特定次数の回折効率を可視波長帯域の全域で十分高くするための回折光学素子の構成が特許文献1に開示されている。特許文献1にて開示された回折光学素子は、低屈折率高分散材料と高屈折率低分散材料を用いて形成された2つの回折格子を密着させることで構成され、各回折格子の格子高さが適切に設定されている。以下、このような回折光学素子を「密着2層DOE」という。密着2層DOEは、特定次数の回折光に対して、広い波長帯域で高い回折効率を持つ。なお、ここにいう回折効率は、全透過光の光量に対する各次数の回折光の光量の割合である。   In general, a diffractive optical element has a blaze structure formed by a grating surface that faces obliquely with respect to a light incident direction and a grating side surface (grating wall surface) that connects adjacent grating surfaces. Such a blazed diffractive optical element can diffract light with high diffraction efficiency for a specific one order (hereinafter referred to as “specific order” or “used diffraction order”) and a specific wavelength. . On the other hand, Patent Document 1 discloses a configuration of a diffractive optical element for sufficiently increasing the diffraction efficiency of a specific order over the entire visible wavelength band. The diffractive optical element disclosed in Patent Document 1 is configured by closely adhering two diffraction gratings formed using a low refractive index and high dispersion material and a high refractive index and low dispersion material. Is set appropriately. Hereinafter, such a diffractive optical element is referred to as “adherent two-layer DOE”. The close-contact two-layer DOE has high diffraction efficiency over a wide wavelength band with respect to diffracted light of a specific order. Here, the diffraction efficiency is the ratio of the amount of diffracted light of each order to the amount of all transmitted light.

また、特許文献2にて開示されているように、可視波長域全域で99%以上の高い回折効率を得るためには、部分分散比θgFが、通常の材料より小さな値を有する、つまりはリニア異常分散性を有する材料を用いることが知られている。   Further, as disclosed in Patent Document 2, in order to obtain a high diffraction efficiency of 99% or more in the entire visible wavelength range, the partial dispersion ratio θgF has a smaller value than that of a normal material, that is, linear. It is known to use a material having anomalous dispersion.

特開平9−127321号公報JP-A-9-127321 特開2008−241734号公報JP 2008-241734 A

しかしながら、従来の回折光学素子では、格子側面の回折に対する影響を含めた回折効率を考慮していないため、使用回折次数の回折光における回折効率の波長特性が長波長側の方が低くなってしまうという問題があった。これは、光学系に回折光学素子を使用した場合に、赤波長帯域の回折効率よりも青波長帯域の回折効率が高くなり、不要光において赤が目立つことになる。さらに、使用回折次数の回折光のカラーバランスをとるために、反射防止膜や画像処理等を用いて赤波長帯域の強度を上げると、不要光としての赤がさらに強調されてしまう。   However, in the conventional diffractive optical element, since the diffraction efficiency including the influence on the diffraction of the grating side surface is not taken into consideration, the wavelength characteristic of the diffraction efficiency in the diffracted light of the used diffraction order becomes lower on the long wavelength side. There was a problem. This is because when a diffractive optical element is used in the optical system, the diffraction efficiency in the blue wavelength band is higher than the diffraction efficiency in the red wavelength band, and red is noticeable in unnecessary light. Furthermore, if the intensity of the red wavelength band is increased using an antireflection film, image processing, or the like in order to balance the diffracted light of the used diffraction order, red as unnecessary light is further emphasized.

本発明は、回折格子の格子側面の影響を含めた回折効率の波長特性を均一に近付けることができるようにした回折光学素子およびこれを用いた光学系、光学機器を提供する。   The present invention provides a diffractive optical element that can uniformly approximate the wavelength characteristics of diffraction efficiency including the influence of the grating side surface of the diffraction grating, and an optical system and optical apparatus using the diffractive optical element.

本発明の一側面としての回折光学素子は、それぞれ異なる材料により形成された複数の回折格子が積層されて構成される。複数の回折格子の材料はそれぞれ、該回折光学素子の使用波長帯域のうち2/3以上の範囲において、以下に示すΔΦ(λ)が短波長側ほど大きくなる材料であることを特徴とする。
A diffractive optical element according to one aspect of the present invention is configured by stacking a plurality of diffraction gratings formed of different materials. Each of the materials of the plurality of diffraction gratings is a material in which ΔΦ (λ) shown below becomes larger toward the shorter wavelength side in a range of 2/3 or more of the wavelength band used for the diffractive optical element.

ただし、λは使用波長帯域に含まれる波長であり、niは複数の回折格子のうちi番目の回折格子の材料の波長λに対する屈折率であり、diはi番目の回折格子の格子高さであり、mは使用回折次数である。 Here, λ is a wavelength included in the used wavelength band, ni is a refractive index with respect to the wavelength λ of the material of the i-th diffraction grating among a plurality of diffraction gratings, and di is a grating height of the i-th diffraction grating. M is the diffraction order used.

なお、上記回折光学素子を含む光学系および該光学系を用いた光学機器も、本発明の他の一側面を構成する。   An optical system including the diffractive optical element and an optical apparatus using the optical system also constitute another aspect of the present invention.

本発明によれば、積層される複数の回折格子の材料を特定することにより、各回折格子の格子側面の影響を含めた回折光学素子の回折効率の波長特性を均一に近付けることができる。そして、これを光学系や光学機器に用いることで、色収差が良好に低減される等、高い光学性能を有する光学系や光学機器を実現することができる。   According to the present invention, the wavelength characteristics of the diffraction efficiency of the diffractive optical element including the influence of the grating side surface of each diffraction grating can be made close to each other by specifying the material of the plurality of diffraction gratings to be stacked. And by using this for an optical system or an optical apparatus, it is possible to realize an optical system or an optical apparatus having high optical performance such that chromatic aberration is satisfactorily reduced.

本発明の実施例1である回折光学素子を含むレンズ素子の正面図および側面断面図。1 is a front view and a side cross-sectional view of a lens element including a diffractive optical element that is Embodiment 1 of the present invention. FIG. 上記回折光学素子の構造を示す模式図。The schematic diagram which shows the structure of the said diffractive optical element. 本発明の数値例1である回折光学素子の回折効率を示すグラフ。The graph which shows the diffraction efficiency of the diffractive optical element which is the numerical example 1 of this invention. 本発明の数値例2である回折光学素子の回折効率を示すグラフ。The graph which shows the diffraction efficiency of the diffractive optical element which is the numerical example 2 of this invention. 本発明の数値例3である回折光学素子の回折効率を示すグラフ。The graph which shows the diffraction efficiency of the diffractive optical element which is the numerical example 3 of this invention. 本発明の数値例4である回折光学素子の回折効率を示すグラフ。The graph which shows the diffraction efficiency of the diffractive optical element which is the numerical example 4 of this invention. 本発明の実施例2である撮影光学系の構成を示す断面図。Sectional drawing which shows the structure of the imaging optical system which is Example 2 of this invention. 本発明に対する比較例1である回折光学素子の回折効率を示すグラフ。The graph which shows the diffraction efficiency of the diffractive optical element which is the comparative example 1 with respect to this invention. 本発明に対する比較例2である回折光学素子の回折効率を示すグラフ。The graph which shows the diffraction efficiency of the diffractive optical element which is the comparative example 2 with respect to this invention. 本発明に対する比較例3である回折光学素子の回折効率を示すグラフ。The graph which shows the diffraction efficiency of the diffractive optical element which is the comparative example 3 with respect to this invention.

以下、本発明の実施例について図面を参照しながら説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1には、本発明の実施例1である回折光学素子を含むレンズ素子を示している。20,30は基板レンズであり、これら基板レンズ20,30の間に回折光学素子10が配置されている。具体的には、基板レンズ20,30のそれぞれの内側の面に回折光学素子10が形成されている。回折光学素子10が形成された各基板レンズの面は曲面である。ただし、回折光学素子10の両側の基板を平板としてもよい。   FIG. 1 shows a lens element including a diffractive optical element that is Embodiment 1 of the present invention. Reference numerals 20 and 30 denote substrate lenses, and the diffractive optical element 10 is disposed between the substrate lenses 20 and 30. Specifically, the diffractive optical element 10 is formed on the inner surface of each of the substrate lenses 20 and 30. The surface of each substrate lens on which the diffractive optical element 10 is formed is a curved surface. However, the substrates on both sides of the diffractive optical element 10 may be flat plates.

回折光学素子10は、図2に示すように、それぞれ光軸Oを中心とする同心円形状の複数の格子が形成された第1の回折格子1と第2の回折格子2とが、光軸Oが延びる方向(以下、光軸方向という)に積層されて構成されており、レンズ作用を有する。図2は、図1に示した回折光学素子10のA−A′線での断面を、格子の形状を分かり易くするためにデフォルメして示した図である。複数の格子が形成された方向(図1の正面図でいう半径方向)を、以下の説明では格子配列方向ともいう。   As shown in FIG. 2, the diffractive optical element 10 includes a first diffraction grating 1 and a second diffraction grating 2 each having a plurality of concentric gratings each having an optical axis O as a center. Are laminated in the direction in which the lens extends (hereinafter referred to as the optical axis direction), and has a lens action. FIG. 2 is a diagram showing a cross section taken along the line AA ′ of the diffractive optical element 10 shown in FIG. 1 in order to make the shape of the grating easy to understand. A direction in which a plurality of gratings are formed (radial direction in the front view of FIG. 1) is also referred to as a grating arrangement direction in the following description.

図2に示すように、回折光学素子10は、第1の回折格子1と第2の回折格子2とが互いに密着するように積層されて構成されることで1つの回折光学素子(DOE)として機能する密着2層DOEである。第1および第2の回折格子1,2は、各格子が格子面Aと格子側面(格子壁面ともいう)Bとにより形成されたブレーズ構造を有する。格子面Aは、光軸方向または光入射方向に対して斜めに面する斜面であり、格子側面Bは互いに隣り合う格子面A間をつなぐように(光軸方向または光入射方向に延びるように)形成された面である。   As shown in FIG. 2, the diffractive optical element 10 includes a first diffractive grating 1 and a second diffractive grating 2 that are stacked so as to be in close contact with each other, thereby forming one diffractive optical element (DOE). It is a functioning two-layer DOE. The first and second diffraction gratings 1 and 2 have a blazed structure in which each grating is formed by a grating surface A and a grating side surface (also referred to as a grating wall surface) B. The lattice plane A is an inclined surface that is inclined with respect to the optical axis direction or the light incident direction, and the lattice side surface B is connected to the adjacent lattice planes A (so as to extend in the optical axis direction or the light incident direction). ) The formed surface.

また、第1および第2の回折格子1,2の格子ピッチは、光軸Oが通る中心から周辺に向かって徐々に変化(減少または増加)しており、これにより上述したレンズ作用としての収斂作用または発散作用を得ている。また、ブレーズ構造にすることで、回折光学素子10に入射した光は、使用回折次数(図2では、+1次)の回折光となって特定の方向に集中して回折する。使用回折次数とは、使用される回折光の回折次数であり、設計次数とも称される。   Further, the grating pitch of the first and second diffraction gratings 1 and 2 gradually changes (decreases or increases) from the center through which the optical axis O passes to the periphery, thereby converging as the lens action described above. Has an action or divergent action. In addition, with the blazed structure, the light incident on the diffractive optical element 10 is diffracted in a specific direction as diffracted light of the used diffraction order (+ 1st order in FIG. 2). The used diffraction order is the diffraction order of the diffracted light used, and is also referred to as the design order.

本実施例における回折光学素子10に入射する光の波長領域である使用波長領域は、可視波長領域(例えば、400〜700nm)である。このため、可視波長帯域の全域で使用回折次数の回折光の回折効率が高くなるように第1および第2の回折格子1,2を構成する材料と形状(特に格子高さ)を選択する。具体的には、第1および第2の回折格子1,2を通過する光の最大光路長差(すなわち、格子の山と谷における光学光路長差の最大値)が、使用波長帯域内で、その光の波長の整数倍となるように、各回折格子の材料と形状を定める。なお、ここにいう「整数倍」には、完全な整数倍だけでなく、光学的に整数倍とみなせる程度に完全な整数倍からずれている場合も含み、「整数倍またはその近傍」と同義である。   The working wavelength region, which is the wavelength region of light incident on the diffractive optical element 10 in this embodiment, is a visible wavelength region (for example, 400 to 700 nm). For this reason, the materials and shapes (particularly the grating height) constituting the first and second diffraction gratings 1 and 2 are selected so that the diffraction efficiency of the diffracted light of the used diffraction order is increased over the entire visible wavelength band. Specifically, the maximum optical path length difference of light passing through the first and second diffraction gratings 1 and 2 (that is, the maximum value of the optical optical path length difference between the crest and trough of the grating) is within the used wavelength band. The material and shape of each diffraction grating are determined so as to be an integral multiple of the wavelength of the light. The term “integer multiple” here includes not only a perfect integer multiple but also a case where it deviates from a perfect integer multiple to the extent that it can be optically regarded as an integer multiple, and is synonymous with “integer multiple or its vicinity”. It is.

上記のように回折格子の材料と格子高さを適切に設定することによって、使用波長帯域の全域で高い回折効率が得られる。なお、図2に示すように、格子高さdは、格子配列方向に直交する法線方向における格子の先端(頂点)と溝の底点との間の高さである。   By appropriately setting the diffraction grating material and the grating height as described above, a high diffraction efficiency can be obtained over the entire wavelength band used. As shown in FIG. 2, the lattice height d is the height between the tip (vertex) of the lattice and the bottom of the groove in the normal direction orthogonal to the lattice arrangement direction.

まず、従来のスカラー回折理論を用いた回折効率について説明する。複数の回折格子を積層した回折光学素子において、波長λを有するある回折次数において回折効率が最大となる条件は、以下の通りである。その条件は、格子の山と谷における光学光路長差(例えば、格子の山の頂点と谷の底点のそれぞれを通過する光線の光路長の差)を全回折格子にわたって加え合わせたものが波長の整数倍になることである。したがって、波長λの光が回折格子のベース面(格子配列方向に延びる面であり、図2中に点線で示す)に対して垂直に入射するときの回折次数mにおける回折効率が最大となる条件は以下の式(1)により表される。
First, the diffraction efficiency using the conventional scalar diffraction theory will be described. In the diffractive optical element in which a plurality of diffraction gratings are stacked, the conditions under which the diffraction efficiency becomes maximum at a certain diffraction order having the wavelength λ are as follows. The condition is that the optical path length difference between the peaks and troughs of the grating (for example, the difference in the optical path lengths of the light beams passing through the peak of the grating peaks and the bottom of the valley) is added over the entire diffraction grating. Is an integral multiple of. Therefore, the condition that the diffraction efficiency at the diffraction order m is maximized when the light of wavelength λ is incident perpendicular to the base surface of the diffraction grating (the surface extending in the grating arrangement direction and indicated by the dotted line in FIG. 2). Is represented by the following formula (1).

式(1)において、λは使用波長帯域に含まれるいずれかの波長であり、niは積層された複数の回折格子のうちi番目の回折格子を形成する材料の波長λでの屈折率である。diはi番目の回折格子の格子高さであり、mは回折次数である。   In Formula (1), λ is any wavelength included in the used wavelength band, and ni is the refractive index at the wavelength λ of the material forming the i-th diffraction grating among the plurality of stacked diffraction gratings. . di is the grating height of the i-th diffraction grating, and m is the diffraction order.

diの符号は、図2中のように0次回折光から下向きに回折する光線を正の回折次数の光線とするとき、図2中の下から上に向かって回折格子の格子高さが増加する場合は負とし、下から上に向かって回折格子の格子高さが減少する場合は正とする。   The sign of di is that when a light beam diffracted downward from the 0th order diffracted light as shown in FIG. 2 is a positive diffraction order light beam, the grating height of the diffraction grating increases from the bottom to the top in FIG. The case is negative, and the case where the grating height of the diffraction grating decreases from bottom to top is positive.

複数の回折格子を積層した回折光学素子の波長λおよび回折次数mでの回折効率η(λ)は、以下の式(2)により表される。
The diffraction efficiency η (λ) at the wavelength λ and the diffraction order m of the diffractive optical element in which a plurality of diffraction gratings are stacked is expressed by the following equation (2).

ここで、mを使用回折次数として、ΔΦ(λ)を以下の式(3)のように定義する。
Here, ΔΦ (λ) is defined as the following expression (3), where m is the diffraction order used.

この式(3)で定義されるΔΦ(λ)が0となる場合に、式(2)で示した回折効率η(λ)が100%となる。   When ΔΦ (λ) defined by the equation (3) becomes 0, the diffraction efficiency η (λ) shown by the equation (2) becomes 100%.

また、図1および図2に示した本実施例の回折光学素子10のような密着2層DOEは、2つの回折格子を積層し、さらに該2つの回折格子の格子面を互いに密着させた構成を有する。この構成では、波長λの光が回折格子のベース面に対して垂直に入射するときの回折次数mにおける回折効率が最大となる条件は以下の式(4)により表される。
The close-contact two-layer DOE such as the diffractive optical element 10 of this embodiment shown in FIGS. 1 and 2 has a structure in which two diffraction gratings are stacked and the grating surfaces of the two diffraction gratings are in close contact with each other. Have In this configuration, the condition that maximizes the diffraction efficiency at the diffraction order m when light of wavelength λ is incident on the base surface of the diffraction grating perpendicularly is expressed by the following equation (4).

式(4)において、n1は第1の回折格子1を形成する材料の波長λに対する屈折率であり、n2は第2の回折格子2を形成する材料の波長λに対する屈折率である。dは第1および第2の回折格子1,2の格子高さである。   In Expression (4), n1 is the refractive index with respect to the wavelength λ of the material forming the first diffraction grating 1, and n2 is the refractive index with respect to the wavelength λ of the material forming the second diffraction grating 2. d is the grating height of the first and second diffraction gratings 1 and 2.

本実施例の回折光学素子(密着2層DOE)10の波長λおよび回折次数mでの回折効率η(λ)は以下の式(5)により表される。
The diffraction efficiency η (λ) at the wavelength λ and the diffraction order m of the diffractive optical element (adherent two-layer DOE) 10 of the present embodiment is expressed by the following equation (5).

本実施例では、回折光学素子10において広い波長帯域で高い回折効率を得るために、第1の回折格子1に低屈折率で高分散の材料を用い、第2の回折格子2に高屈折率で低分散の材料を用いる。また、可視波長帯域の全域で99%以上の回折効率を得るためには、低屈折率高分散材料に部分分散比θgFが通常の材料より小さいリニア分散特性を有する材料を用いることが知られている。このリニア分散特性を得るために、ベース樹脂材料にITO微粒子を分散させて混合する方法も知られている。   In this embodiment, in order to obtain high diffraction efficiency in a wide wavelength band in the diffractive optical element 10, a low refractive index and high dispersion material is used for the first diffraction grating 1, and a high refractive index is used for the second diffraction grating 2. And a low dispersion material. In addition, in order to obtain a diffraction efficiency of 99% or more in the entire visible wavelength band, it is known to use a material having a linear dispersion characteristic with a partial dispersion ratio θgF smaller than that of a normal material for a low refractive index and high dispersion material. Yes. In order to obtain this linear dispersion characteristic, a method of dispersing and mixing ITO fine particles in a base resin material is also known.

また、ΔΦ(λ)を以下の式(6)のように定義する。
Further, ΔΦ (λ) is defined as the following formula (6).

この式(6)で定義されるΔΦが0となる場合に、式(5)で表される回折効率ηが100%となる。   When ΔΦ defined by the equation (6) is 0, the diffraction efficiency η represented by the equation (5) is 100%.

先に説明した特許文献1,2にて開示されている回折光学素子では、いずれもスカラー回折理論を用いて回折効率を計算し、設計評価を行っている。スカラー回折理論は、回折格子の格子ピッチが入射光の波長と比べて十分に大きい場合に高い精度で計算できることは知られている。しかし、このスカラー回折理論は、回折格子の格子面(斜面)による回折現象に関してのみ記述したものであり、格子側面の影響については考慮されていない。つまり、特許文献1,2にて開示されている回折効率には、格子側面の影響は考慮されていない。実際の回折光学素子には、当然に格子面だけでなく格子側面も存在する以上、格子側面の影響も考慮されるべきである。   In the diffractive optical elements disclosed in Patent Documents 1 and 2 described above, the diffraction efficiency is calculated using the scalar diffraction theory, and the design evaluation is performed. It is known that scalar diffraction theory can be calculated with high accuracy when the grating pitch of the diffraction grating is sufficiently larger than the wavelength of incident light. However, this scalar diffraction theory describes only the diffraction phenomenon due to the grating surface (slope) of the diffraction grating, and does not consider the influence of the grating side surface. That is, the diffraction efficiency disclosed in Patent Documents 1 and 2 does not consider the influence of the grating side surface. Since an actual diffractive optical element naturally has not only a grating surface but also a grating side surface, the influence of the grating side surface should be considered.

次に、本実施例の特徴である厳密電磁場計算を用いた回折効率について説明する。この厳密電磁場計算を用いることで、格子面だけでなく格子側面も考慮した回折効率を計算することができる。厳密電磁場計算は、Maxwell方程式を数値的に解くことにより、任意形状の構造物に対する透過回折光および反射回折光の各回折次数での回折効率を厳密に計算することができる。従来、厳密電磁場計算は、スカラー理論の精度が低下する、格子ピッチが入射光の波長に比べて小さい場合に用いられることが多い。しかし、格子ピッチが入射光の波長に比べて十分に大きい場合においても、厳密電磁場計算を用いて厳密な回折効率を求めることが可能である。   Next, diffraction efficiency using strict electromagnetic field calculation, which is a feature of this embodiment, will be described. By using this exact electromagnetic field calculation, it is possible to calculate the diffraction efficiency considering not only the grating plane but also the grating side face. In the exact electromagnetic field calculation, the diffraction efficiency at each diffraction order of the transmitted diffracted light and the reflected diffracted light with respect to a structure of an arbitrary shape can be strictly calculated by solving the Maxwell equation numerically. Conventionally, strict electromagnetic field calculation is often used when the accuracy of scalar theory is reduced and the grating pitch is smaller than the wavelength of incident light. However, even when the grating pitch is sufficiently larger than the wavelength of incident light, it is possible to obtain strict diffraction efficiency using strict electromagnetic field calculation.

ここでは、厳密電磁場計算のうち厳密結合波解析(RCWA:Rigorous Coupled Wave Analysis)を用いて、以下の数値例1〜4に示す回折光学素子の回折効率を評価した。   Here, the diffraction efficiency of the diffractive optical elements shown in Numerical Examples 1 to 4 below was evaluated using rigorous coupled wave analysis (RCWA) among strict electromagnetic field calculations.

従来のスカラー回折理論では式(3)(および式(6))で定義されるΔΦ(λ)が0となるように第1および第2の回折格子の材料を組み合わせる。   In the conventional scalar diffraction theory, the materials of the first and second diffraction gratings are combined so that ΔΦ (λ) defined by Expression (3) (and Expression (6)) becomes zero.

これに対して、本実施例(各数値例)では、式(3)(および式(6))で定義されるΔΦ(λ)が、使用波長帯域のうち2/3以上の範囲において短波長側ほど大きくなる第1および第2の回折格子の材料の組み合わせを用いる。これにより、格子側面の影響を含めた使用回折次数での回折効率の波長特性を均一に近付けることができる。言い換えれば、使用波長帯域の2/3以上の範囲でこの条件を満足しないと、回折効率の波長特性が均一にならない。   On the other hand, in the present embodiment (each numerical example), ΔΦ (λ) defined by Expression (3) (and Expression (6)) is a short wavelength in the range of 2/3 or more of the used wavelength band. A combination of materials of the first and second diffraction gratings that increase toward the side is used. As a result, the wavelength characteristics of the diffraction efficiency at the used diffraction order including the influence of the grating side surface can be made closer to each other. In other words, unless this condition is satisfied within a range of 2/3 or more of the used wavelength band, the wavelength characteristics of diffraction efficiency will not be uniform.

また、回折光学素子は、以下の式(7)で表される関係を満足することが好ましい。
Moreover, it is preferable that the diffractive optical element satisfies the relationship represented by the following formula (7).

式(7)において、λν1およびλν2はともに可視波長帯域の波長(nm)である。また、λ550は波長550nmであり、E−nは×10−nである。 In Equation (7), both λν1 and λν2 are wavelengths (nm) in the visible wavelength band. Further, λ 550 has a wavelength of 550 nm, and E−n is × 10 −n .

さらに、回折光学素子は、以下の式(8)で表される関係を満足することが好ましい。
Furthermore, it is preferable that the diffractive optical element satisfies the relationship represented by the following formula (8).

ただし、λνは可視波長帯域の波長(nm)であり、λ550は波長550nmである。また、E−nは×10−nである。 However, Ramudanyu is the wavelength of the visible wavelength range (nm), λ 550 is the wavelength 550 nm. Further, En is x10 -n.

これらの式(7),(8)の値が下限値を下回るとスカラー回折理論に近づき、上限値を上回ると逆に悪化してしまう。このように、式(7),(8)の関係を満足しないと、格子側面の影響を含めた使用回折次数での回折効率の波長特性が均一にならないため、好ましくない。   If the values of these formulas (7) and (8) are below the lower limit, they approach the scalar diffraction theory, and if they exceed the upper limit, they are worsened. As described above, unless the relations of the expressions (7) and (8) are satisfied, the wavelength characteristics of the diffraction efficiency in the used diffraction order including the influence of the grating side surface are not uniform, which is not preferable.

また、使用回折次数が+1次または−1次であることが好ましい。それら以外の回折次数を使用回折次数とすると、格子高さが高くなって、回折光学素子に対して斜めに光が入射する際の回折効率が低下するおそれがある。   Moreover, it is preferable that the used diffraction order is + 1st order or −1st order. If the other diffraction orders are used, the grating height increases, and the diffraction efficiency when light is incident on the diffractive optical element obliquely may be reduced.

さらに、各回折格子の格子ピッチは、80μm以上であることが好ましい。格子ピッチが80μmより小さくなると、格子側面の回折現象に対する影響が大きくなるために、使用回折次数の回折効率が低下するおそれがある。
[数値例1]
数値例1では、第1の回折格子1の材料として、アクリル系紫外線硬化樹脂にITO微粒子を混合させた紫外線硬化樹脂を用いた。また、第2の回折格子2の材料として、アクリル系紫外線硬化樹脂にZrO微粒子を混合させた紫外線硬化樹脂を用いた。さらに、各材料の屈折率を調整して、表1に示すΔΦ(λ)が得られるようにした。ΔΦ(λ)は、使用波長帯域の全域(2/3以上の範囲)において短波長側ほど大きくなっている。なお、本数値例における格子高さdは11.00μm、使用回折次数は+1次、入射光のベース面に対する入射角度は0deg(垂直入射)、格子ピッチは100μmである。
Furthermore, the grating pitch of each diffraction grating is preferably 80 μm or more. When the grating pitch is smaller than 80 μm, the influence on the diffraction phenomenon on the grating side surface is increased, so that the diffraction efficiency of the used diffraction order may be lowered.
[Numerical example 1]
In Numerical Example 1, as the material of the first diffraction grating 1, an ultraviolet curable resin in which ITO fine particles are mixed with an acrylic ultraviolet curable resin is used. Further, as the material of the second diffraction grating 2, an ultraviolet curable resin in which ZrO 2 fine particles were mixed with an acrylic ultraviolet curable resin was used. Further, the refractive index of each material was adjusted so that ΔΦ (λ) shown in Table 1 was obtained. ΔΦ (λ) is larger toward the shorter wavelength side in the entire use wavelength band (range of 2/3 or more). In this numerical example, the grating height d is 11.00 μm, the used diffraction order is + 1st order, the incident angle of incident light with respect to the base surface is 0 deg (perpendicular incidence), and the grating pitch is 100 μm.

本数値例において、RCWAを用いて回折効率を評価した結果を図3に示す。図3(a)は、使用回折次数+1次での回折効率の波長特性である。図3(a)から、可視波長帯域である400〜700nmにおいて格子側面の影響を考慮した回折効率がほぼ均一になっていることが分かる。また、後に示す比較例1に比べて、波長特性が向上していることも分かる。   In this numerical example, the results of evaluating the diffraction efficiency using RCWA are shown in FIG. FIG. 3A shows the wavelength characteristics of diffraction efficiency at the used diffraction order + 1 order. FIG. 3A shows that the diffraction efficiency considering the influence of the grating side surface is substantially uniform in the visible wavelength band of 400 to 700 nm. Moreover, it turns out that the wavelength characteristic is improving compared with the comparative example 1 shown later.

図3(b)は、波長400nm、550nmおよび700nmにおける高回折次数での回折効率のうち低い部分を拡大して示している。図3(b)から、−60次〜−40次付近の不要回折光の回折次数(以下、不要回折次数という)での回折効率のピークは、短波長側である波長400nmと比較して長波長側である波長700nmの方が高い。これは、入射光が回折光学素子(ベース面)に対して垂直入射する場合でも格子側面にて発生する回折現象であり、回折効率のピークは波長とほぼ同じ割合になっている。比較的低回折次数(およそ−10次〜0次)では、波長700nmと比較して400nmの方が回折効率のピークが高くなっている。これら高回折次数と低回折次数の不要回折光をバランスさせることによって、使用回折次数の回折効率の波長特性がほぼ均一になっている。   FIG. 3B shows an enlarged view of the lower part of the diffraction efficiency at high diffraction orders at wavelengths of 400 nm, 550 nm and 700 nm. From FIG. 3 (b), the diffraction efficiency peak at the diffraction order of unnecessary diffraction light in the vicinity of the −60th to −40th order (hereinafter referred to as unnecessary diffraction order) is longer than the wavelength of 400 nm on the short wavelength side. The wavelength 700 nm on the wavelength side is higher. This is a diffraction phenomenon that occurs on the side surface of the grating even when incident light is perpendicularly incident on the diffractive optical element (base surface), and the peak of the diffraction efficiency is approximately the same as the wavelength. At a relatively low diffraction order (approximately −10th to 0th orders), the peak of diffraction efficiency is higher at 400 nm than at the wavelength of 700 nm. By balancing the unnecessary diffraction light of the high diffraction order and the low diffraction order, the wavelength characteristics of the diffraction efficiency of the used diffraction order are almost uniform.

短波長側の低回折次数の不要回折光については、比較的目立たないため、存在していてもあまり問題はない。また、最近の光学機器のデジタル化や、撮影画像を大型プリントする際に要求される高画質化に伴う撮影光学系のレンズ枚数の増加によって、短波長側の吸収が大きくなる傾向にあるため、短波長側の低回折次数の不要回折光は、より問題とならない傾向にある。   Unnecessary diffracted light having a low diffraction order on the short wavelength side is relatively inconspicuous, so there is no problem even if it exists. In addition, the absorption on the short wavelength side tends to increase due to the digitization of recent optical equipment and the increase in the number of lenses in the photographic optical system accompanying the increase in image quality required when printing large images. Unnecessary diffracted light having a low diffraction order on the short wavelength side tends to be less problematic.

本数値例の材料は、ベース樹脂材料と微粒子とを混合した材料であるが、屈折率を調整するために、さらに異なる樹脂や微粒子を混合させてもよい。また、回折格子を紫外線で硬化させる際のプロセスを変化させることで、各回折格子の材料の屈折率を調整してもよい。   The material of this numerical example is a material in which a base resin material and fine particles are mixed. However, in order to adjust the refractive index, a different resin or fine particles may be mixed. Further, the refractive index of the material of each diffraction grating may be adjusted by changing the process for curing the diffraction grating with ultraviolet rays.

本数値例の式(7),(8)の値は、表7に示す。
[数値例2]
数値例2では、数値例1と同様に、第1の回折格子1の材料として、アクリル系紫外線硬化樹脂にITO微粒子を混合させた紫外線硬化樹脂を用いた。また、第2の回折格子2の材料として、アクリル系紫外線硬化樹脂にZrO微粒子を混合させた紫外線硬化樹脂を用いた。ただし、これらの材料は、数値例1の材料とは異なる材料である。さらに、各材料の屈折率を調整して、表2に示すΔΦ(λ)が得られるようにした。ΔΦ(λ)は、使用波長帯域の全域(2/3以上の範囲)において短波長側ほど大きくなっている。なお、本数値例における格子高さdは11.00μm、使用回折次数は+1次、入射光のベース面に対する入射角度は0deg(垂直入射)、格子ピッチは100μmである。
Table 7 shows the values of Equations (7) and (8) in this numerical example.
[Numerical example 2]
In Numerical Example 2, as in Numerical Example 1, an ultraviolet curable resin in which ITO fine particles are mixed with an acrylic ultraviolet curable resin is used as the material of the first diffraction grating 1. Further, as the material of the second diffraction grating 2, an ultraviolet curable resin in which ZrO 2 fine particles were mixed with an acrylic ultraviolet curable resin was used. However, these materials are different from those of Numerical Example 1. Furthermore, the refractive index of each material was adjusted so that ΔΦ (λ) shown in Table 2 was obtained. ΔΦ (λ) is larger toward the shorter wavelength side in the entire use wavelength band (range of 2/3 or more). In this numerical example, the grating height d is 11.00 μm, the used diffraction order is + 1st order, the incident angle of incident light with respect to the base surface is 0 deg (perpendicular incidence), and the grating pitch is 100 μm.

本数値例において、RCWAを用いて回折効率を評価した結果を図4に示す。図4(a)は、使用回折次数+1次での回折効率の波長特性である。図4(a)から、可視波長帯域である400〜700nmにおいて格子側面の影響を考慮した回折効率がほぼ均一になっていることが分かる。また、後に示す比較例1に比べて、波長特性が向上していることも分かる。   In this numerical example, the results of evaluation of diffraction efficiency using RCWA are shown in FIG. FIG. 4A shows the wavelength characteristics of the diffraction efficiency at the used diffraction order + 1 order. From FIG. 4A, it can be seen that the diffraction efficiency considering the influence of the grating side surface is almost uniform in the visible wavelength band of 400 to 700 nm. Moreover, it turns out that the wavelength characteristic is improving compared with the comparative example 1 shown later.

図4(b)は、波長400nm、550nmおよび700nmにおける高回折次数での回折効率のうち低い部分を拡大して示している。数値例1と同様に、高回折次数と低回折次数の不要回折光をバランスさせることによって、使用回折次数の回折効率の波長特性がほぼ均一になっている。   FIG. 4B shows an enlarged view of the lower part of the diffraction efficiency at high diffraction orders at wavelengths of 400 nm, 550 nm and 700 nm. Similar to Numerical Example 1, the wavelength characteristics of the diffraction efficiency of the used diffraction orders are substantially uniform by balancing the unnecessary diffraction light of the high diffraction order and the low diffraction order.

本数値例の式(7),(8)の値は、表7に示す。
[比較例1]
実施例1(数値例1,2)の特徴をより明確にするために、比較例1を示す。本比較例はスカラー回折理論を用いた設計例である。本比較例でも、第1の回折格子の材料として、アクリル系紫外線硬化樹脂にITO微粒子を混合させた紫外線硬化樹脂を用いた。また、第2の回折格子の材料として、アクリル系紫外線硬化樹脂にZrO微粒子を混合させた紫外線硬化樹脂を用いた。さらに、各材料の屈折率を調整して、表3に示すΔΦ(λ)が得られるようにした。なお、本比較例における格子高さdは11.00μm、使用回折次数は+1次、入射光のベース面に対する入射角度は0deg(垂直入射)、格子ピッチは100μmである。
Table 7 shows the values of Equations (7) and (8) in this numerical example.
[Comparative Example 1]
In order to clarify the features of Example 1 (Numerical Examples 1 and 2), Comparative Example 1 is shown. This comparative example is a design example using scalar diffraction theory. Also in this comparative example, an ultraviolet curable resin obtained by mixing ITO fine particles with an acrylic ultraviolet curable resin was used as the material of the first diffraction grating. Further, as the material of the second diffraction grating, an ultraviolet curable resin in which ZrO 2 fine particles were mixed with an acrylic ultraviolet curable resin was used. Further, the refractive index of each material was adjusted so that ΔΦ (λ) shown in Table 3 was obtained. In this comparative example, the grating height d is 11.00 μm, the used diffraction order is + 1st order, the incident angle of incident light with respect to the base surface is 0 deg (perpendicular incidence), and the grating pitch is 100 μm.

表3から分かるように、ΔΦ(λ)は、使用波長帯域の全域において0であり、式(3)(および式(6))のスカラー回折理論では回折効率が100%となる。   As can be seen from Table 3, ΔΦ (λ) is 0 in the entire wavelength band used, and the diffraction efficiency is 100% in the scalar diffraction theory of Equation (3) (and Equation (6)).

一方、本比較例において、RCWAを用いて回折効率を評価した結果を図8に示す。図8(a)は、使用回折次数である+1次での回折効率の波長特性である。図8(a)から、可視波長帯域である400〜700nmに対して、格子側面の影響を考慮した回折効率は、長波長側の方が短波長側よりも低く、波長特性は好ましくないことが分かる。   On the other hand, in this comparative example, the result of having evaluated diffraction efficiency using RCWA is shown in FIG. FIG. 8A shows the wavelength characteristics of the diffraction efficiency in the + 1st order which is the used diffraction order. From FIG. 8A, the diffraction efficiency in consideration of the influence of the grating side surface is 400 nm to 700 nm which is a visible wavelength band, and the long wavelength side is lower than the short wavelength side, and the wavelength characteristics are not preferable. I understand.

図8(b)は、波長400nm、550nmおよび700nmにおける高回折次数での回折効率のうち低い部分を拡大して示している。図8(b)から、不要回折次数での回折効率のピークは、数値例1,2と同様に、波長400nmに比べて波長700nmの方が高い。これは、数値例1でも説明したように、入射光が回折光学素子(ベース面)に対して垂直入射する場合でも格子側面にて発生する回折現象であり、回折効率のピークは波長とほぼ同じ割合になっている。また、低回折次数でも、波長400nmと比較して700nmの方が回折効率のピークが高くなっている。このため、使用回折次数での回折効率は、短波長側よりも長波長側の方が低くなっている。   FIG. 8B shows an enlarged view of the lower part of the diffraction efficiency at high diffraction orders at wavelengths of 400 nm, 550 nm and 700 nm. From FIG. 8B, the peak of the diffraction efficiency at the unnecessary diffraction order is higher at the wavelength of 700 nm than at the wavelength of 400 nm, as in Numerical Examples 1 and 2. As described in Numerical Example 1, this is a diffraction phenomenon that occurs on the grating side surface even when incident light is perpendicularly incident on the diffractive optical element (base surface), and the peak of diffraction efficiency is almost the same as the wavelength. It is a ratio. Even at a low diffraction order, the peak of diffraction efficiency is higher at 700 nm than at a wavelength of 400 nm. For this reason, the diffraction efficiency at the used diffraction order is lower on the long wavelength side than on the short wavelength side.

このように、回折格子の格子側面の影響を考慮していない従来のスカラー回折理論に基づいて設計された回折光学素子では、格子側面を考慮すると、良好な特性が得られない。
[数値例3]
数値例3では、数値例1,2と同様に、第1の回折格子1の材料として、アクリル系紫外線硬化樹脂にITO微粒子を混合させた紫外線硬化樹脂を用いた。また、第2の回折格子2の材料として、アクリル系紫外線硬化樹脂にZrO微粒子を混合させた紫外線硬化樹脂を用いた。ただし、これらの材料は、数値例1,2とは異なる材料である。さらに、各材料の屈折率を調整して、表4に示すΔΦ(λ)が得られるようにした。ΔΦ(λ)は、使用波長帯域の全域(2/3以上の範囲)において短波長側ほど大きくなっている。なお、本数値例における格子高さdは11.00μm、使用回折次数は+1次、入射光のベース面に対する入射角度は0deg(垂直入射)、格子ピッチは、数値例1,2とは異なり、200μmである。
Thus, in the diffractive optical element designed based on the conventional scalar diffraction theory that does not consider the influence of the grating side surface of the diffraction grating, good characteristics cannot be obtained when the grating side surface is considered.
[Numerical example 3]
In Numerical Example 3, as in Numerical Examples 1 and 2, an ultraviolet curable resin in which ITO fine particles are mixed with an acrylic ultraviolet curable resin is used as the material of the first diffraction grating 1. Further, as the material of the second diffraction grating 2, an ultraviolet curable resin in which ZrO 2 fine particles were mixed with an acrylic ultraviolet curable resin was used. However, these materials are different from those of Numerical Examples 1 and 2. Further, the refractive index of each material was adjusted so that ΔΦ (λ) shown in Table 4 was obtained. ΔΦ (λ) is larger toward the shorter wavelength side in the entire use wavelength band (range of 2/3 or more). In this numerical example, the grating height d is 11.00 μm, the used diffraction order is + 1st order, the incident angle of the incident light with respect to the base surface is 0 deg (perpendicular incidence), and the grating pitch is different from the numerical examples 1 and 2, 200 μm.

本数値例において、RCWAを用いて回折効率を評価した結果を図5に示す。図5(a)は、使用回折次数+1次での回折効率の波長特性である。図4(a)から、可視波長帯域である400〜700nmにおいて格子側面の影響を考慮した回折効率がほぼ均一になっていることが分かる。また、後に示す比較例2に比べて、波長特性が向上していることも分かる。   In this numerical example, the results of evaluation of diffraction efficiency using RCWA are shown in FIG. FIG. 5A is a wavelength characteristic of diffraction efficiency at the used diffraction order + 1 order. From FIG. 4A, it can be seen that the diffraction efficiency considering the influence of the grating side surface is almost uniform in the visible wavelength band of 400 to 700 nm. Moreover, it turns out that the wavelength characteristic is improving compared with the comparative example 2 shown later.

図5(b)は、波長400nm、550nmおよび700nmにおける高回折次数での回折効率のうち低い部分を拡大して示している。図5(b)から、−120次〜−80次付近の不要回折次数での回折効率のピークは、波長400nmに比べて波長700nmの方が高い。本数値例よりも格子ピッチが小さい数値例1,2および比較例1と比較すると、回折効率のピークが低くなっている。これは、本数値例での格子ピッチが大きいことによって、回折格子全体に対する格子側面の回折現象に与える影響が小さくなっているためである。一方、比較的低回折次数(およそ−20次〜0次)での回折効率は、波長700nmに比べて波長400nmの方が高くなっている。このように、格子ピッチが異なっても、高回折次数と低回折次数の不要回折光をバランスさせることによって、使用回折次数の回折効率の波長特性がほぼ均一になっている。   FIG. 5B shows an enlarged view of the lower part of the diffraction efficiency at high diffraction orders at wavelengths of 400 nm, 550 nm and 700 nm. From FIG. 5B, the peak of diffraction efficiency at the unnecessary diffraction orders near −120th to −80th is higher at the wavelength of 700 nm than at the wavelength of 400 nm. Compared with Numerical Examples 1 and 2 and Comparative Example 1 in which the grating pitch is smaller than this numerical example, the peak of diffraction efficiency is lower. This is because the influence of the grating side face on the entire diffraction grating on the diffraction phenomenon is reduced by the large grating pitch in this numerical example. On the other hand, the diffraction efficiency at a relatively low diffraction order (approximately −20th to 0th orders) is higher at a wavelength of 400 nm than at a wavelength of 700 nm. As described above, even if the grating pitch is different, the wavelength characteristics of the diffraction efficiency of the used diffraction order are substantially uniform by balancing the unnecessary diffraction light of the high diffraction order and the low diffraction order.

本数値例の式(7),(8)の値は、表7に示す。
[比較例2]
実施例1(数値例3)の特徴をより明確にするために、比較例2を示す。本比較例はスカラー回折理論を用いた設計例であり、格子ピッチが数値例3と同じである。また、本比較例での回折格子の材料の屈折率は、スカラー回折理論は式(5)から分かるように格子ピッチに依存しないため、比較例1(表3)と同じである。なお、格子高さdは11.00μm、使用回折次数は+1次、入射光のベース面に対する入射角度は0deg(垂直入射)、入射角度は0deg、格子ピッチは100μmである。
Table 7 shows the values of Equations (7) and (8) in this numerical example.
[Comparative Example 2]
In order to clarify the characteristics of Example 1 (Numerical Example 3), Comparative Example 2 is shown. This comparative example is a design example using the scalar diffraction theory, and the grating pitch is the same as the numerical example 3. Further, the refractive index of the material of the diffraction grating in this comparative example is the same as that of Comparative Example 1 (Table 3) because the scalar diffraction theory does not depend on the grating pitch as can be seen from Equation (5). The grating height d is 11.00 μm, the used diffraction order is + 1st order, the incident angle of the incident light with respect to the base surface is 0 deg (perpendicular incidence), the incident angle is 0 deg, and the grating pitch is 100 μm.

本比較例において、RCWAを用いて回折効率を評価した結果を図9に示す。図9(a)は、使用回折次数である+1次での回折効率の波長特性である。図9(a)から、可視波長帯域である400〜700nmに対して、格子側面の影響を考慮した回折効率は、長波長側の方が短波長側よりも低く、波長特性は好ましくないことが分かる。   In this comparative example, the result of evaluating the diffraction efficiency using RCWA is shown in FIG. FIG. 9A shows the wavelength characteristics of the diffraction efficiency in the + 1st order which is the used diffraction order. From FIG. 9A, for the visible wavelength band of 400 to 700 nm, the diffraction efficiency considering the influence of the grating side surface is lower on the long wavelength side than on the short wavelength side, and the wavelength characteristics are not preferable. I understand.

図9(b)は、波長400nm、550nmおよび700nmにおける高回折次数での回折効率のうち低い部分を拡大して示している。図9(b)から、不要回折次数での回折効率のピークは、波長400nmに比べて波長700nmの方が高い。また、格子ピッチが小さい比較例1と比較すると、回折効率のピークが低くなっている。これは、数値例3でも説明したように、格子ピッチが大きいことによって、回折格子全体に対する格子側面の回折現象に与える影響が小さくなっているためである。   FIG. 9B shows an enlarged view of the lower part of the diffraction efficiency at high diffraction orders at wavelengths of 400 nm, 550 nm and 700 nm. From FIG. 9B, the peak of the diffraction efficiency at the unnecessary diffraction order is higher at the wavelength of 700 nm than at the wavelength of 400 nm. Moreover, the peak of diffraction efficiency is low compared with the comparative example 1 with a small grating | lattice pitch. This is because, as described in Numerical Example 3, the influence on the diffraction phenomenon of the grating side surface with respect to the entire diffraction grating is reduced due to the large grating pitch.

本比較例は、比較例1に対して格子ピッチが異なるが、比較例1と同様に、使用回折次数での回折効率が、短波長側よりも長波長側の方が低くなっている。このように、格子ピッチが異なっても、回折格子の格子側面の影響を考慮していない従来のスカラー回折理論に基づいて設計された回折光学素子では、格子側面を考慮すると、良好な特性が得られない。
[数値例4]
数値例4では、数値例1〜3と同様に、第1の回折格子1の材料として、チオアクリル系紫外線硬化樹脂にITO微粒子を混合させた紫外線硬化樹脂を用いた。一方、第2の回折格子2の材料として、低融点ガラスを用いた。さらに、各材料の屈折率を調整して、表5に示すΔΦ(λ)が得られるようにした。ΔΦ(λ)は、使用波長帯域の全域(2/3以上の範囲)において短波長側ほど大きくなっている。なお、本数値例における格子高さdは、数値例1〜3とは異なり、5.00μmである。使用回折次数は+1次、入射光のベース面に対する入射角度は0deg(垂直入射)、格子ピッチは100μmである。
In this comparative example, although the grating pitch is different from that of the comparative example 1, as in the comparative example 1, the diffraction efficiency at the used diffraction order is lower on the long wavelength side than on the short wavelength side. As described above, even if the grating pitch is different, the diffractive optical element designed based on the conventional scalar diffraction theory that does not consider the influence of the grating side surface of the diffraction grating has good characteristics when the grating side surface is taken into consideration. I can't.
[Numerical example 4]
In Numerical Example 4, as in Numerical Examples 1 to 3, an ultraviolet curable resin obtained by mixing ITO fine particles with a thioacrylic ultraviolet curable resin was used as the material of the first diffraction grating 1. On the other hand, low melting point glass was used as the material of the second diffraction grating 2. Further, the refractive index of each material was adjusted so that ΔΦ (λ) shown in Table 5 was obtained. ΔΦ (λ) is larger toward the shorter wavelength side in the entire use wavelength band (range of 2/3 or more). Note that the grid height d in this numerical example is 5.00 μm, unlike the numerical examples 1 to 3. The diffraction order used is + 1st order, the incident angle of incident light with respect to the base surface is 0 deg (perpendicular incidence), and the grating pitch is 100 μm.

本数値例において、RCWAを用いて回折効率を評価した結果を図6に示す。図6(a)は、使用回折次数+1次での回折効率の波長特性である。図6(a)から、可視波長帯域である400〜700nmにおいて格子側面の影響を考慮した回折効率がほぼ均一になっていることが分かる。また、後に示す比較例3に比べて、波長特性が向上していることも分かる。   In this numerical example, the results of evaluation of diffraction efficiency using RCWA are shown in FIG. FIG. 6A shows the wavelength characteristics of the diffraction efficiency at the used diffraction order + 1 order. From FIG. 6A, it is understood that the diffraction efficiency considering the influence of the grating side surface is almost uniform in the visible wavelength band of 400 to 700 nm. Moreover, it turns out that the wavelength characteristic is improving compared with the comparative example 3 shown later.

図6(b)は、波長400nm、550nmおよび700nmにおける高回折次数での回折効率のうち低い部分を拡大して示している。図6(b)から、−90次〜−70次付近の不要回折次数での回折効率のピークは、波長400nmに比べて波長700nmの方が高く、格子高さが異なっても波長とほぼ同じ割合になっている。   FIG. 6B shows an enlarged view of the lower part of the diffraction efficiency at high diffraction orders at wavelengths of 400 nm, 550 nm and 700 nm. From FIG. 6B, the peak of the diffraction efficiency at the unnecessary diffraction orders in the vicinity of the −90th order to the −70th order is higher at the wavelength of 700 nm than the wavelength of 400 nm, and is almost the same as the wavelength even if the grating height is different. It is a ratio.

本数値例よりも格子高さが高い数値例1,2および比較例1と比較すると、回折効率のピークが低くなっている。これは、本数値例の格子高さが低いことによって、格子側面での回折現象が小さくなっているためである。比較的低回折次数(およそ−10次〜0次)での回折効率が、波長700nmと比較して波長400nmの方が高くなっている。このように、格子高さが異なっても、高回折次数と低回折次数の不要回折光をバランスさせることによって、使用回折次数の回折効率の波長特性がほぼ均一になっている。
[比較例3]
実施例1(数値例4)の特徴をより明確にするために、比較例3を示す。本比較例はスカラー回折理論を用いた設計例であり、格子高さが数値例4と同じである。数値例4と同様に、第1の回折格子の材料としてチオアクリル系紫外線硬化樹脂にITO微粒子を混合させた紫外線硬化樹脂を用い、第2の回折格子の材料として低融点ガラスを用いた。
Compared to Numerical Examples 1 and 2 and Comparative Example 1 in which the grating height is higher than this numerical example, the peak of diffraction efficiency is low. This is because the diffraction phenomenon on the side surface of the grating is reduced due to the low grating height in this numerical example. The diffraction efficiency at a relatively low diffraction order (approximately −10th to 0th orders) is higher at a wavelength of 400 nm than at a wavelength of 700 nm. As described above, even if the grating heights are different, the wavelength characteristics of the diffraction efficiency of the used diffraction orders are substantially uniform by balancing the unnecessary diffraction light of the high diffraction order and the low diffraction order.
[Comparative Example 3]
In order to clarify the characteristics of Example 1 (Numerical Example 4), Comparative Example 3 is shown. This comparative example is a design example using the scalar diffraction theory, and the grating height is the same as the numerical example 4. As in Numerical Example 4, an ultraviolet curable resin obtained by mixing ITO fine particles with a thioacrylic ultraviolet curable resin was used as the first diffraction grating material, and low-melting glass was used as the second diffraction grating material.

さらに、各材料の屈折率を調整して、表6に示すΔΦ(λ)が得られるようにした。なお、本比較例における格子高さdは5.00μm、使用回折次数は+1次、入射光のベース面に対する入射角度は0deg(垂直入射)、格子ピッチは100μmである。   Further, the refractive index of each material was adjusted so that ΔΦ (λ) shown in Table 6 was obtained. In this comparative example, the grating height d is 5.00 μm, the used diffraction order is + 1st order, the incident angle of incident light with respect to the base surface is 0 deg (normal incidence), and the grating pitch is 100 μm.

表6から分かるように、ΔΦ(λ)は、使用波長帯域の全域において0であり、式(3)(および式(6))のスカラー回折理論では回折効率が100%となる。   As can be seen from Table 6, ΔΦ (λ) is 0 in the entire wavelength band used, and the diffraction efficiency is 100% in the scalar diffraction theory of Equation (3) (and Equation (6)).

本比較例において、RCWAを用いて回折効率を評価した結果を図10に示す。図10(a)は、使用回折次数である+1次での回折効率の波長特性である。図8(a)から、可視波長帯域である400〜700nmに対して、格子側面の影響を考慮した回折効率は、長波長側の方が短波長側よりも低く、波長特性は好ましくないことが分かる。   In this comparative example, the result of evaluating the diffraction efficiency using RCWA is shown in FIG. FIG. 10A shows the wavelength characteristics of the diffraction efficiency in the + 1st order which is the used diffraction order. From FIG. 8A, the diffraction efficiency in consideration of the influence of the grating side surface is 400 nm to 700 nm which is a visible wavelength band, and the long wavelength side is lower than the short wavelength side, and the wavelength characteristics are not preferable. I understand.

図10(b)は、波長400nm、550nmおよび700nmにおける高回折次数での回折効率のうち低い部分を拡大して示している。図10(b)から、不要回折次数での回折効率のピークは、波長400nmに比べて波長700nmの方が高い。これは、格子高さが異なっても、比較例1と同様に、入射光が回折光学素子(ベース面)に対して垂直入射する場合でも格子側面にて発生する回折現象であり、回折効率のピークは波長とほぼ同じ割合になっている。低回折次数でも、波長400nmと比較して700nmの方が回折効率のピークが高くなっている。このため、使用回折次数での回折効率は、長波長側の方が低くなっている。   FIG. 10B shows an enlarged view of the lower part of the diffraction efficiency at high diffraction orders at wavelengths of 400 nm, 550 nm and 700 nm. From FIG. 10B, the peak of the diffraction efficiency at the unnecessary diffraction order is higher at the wavelength of 700 nm than at the wavelength of 400 nm. This is a diffraction phenomenon that occurs on the side surface of the grating even when the grating height is different, as in Comparative Example 1, even when incident light is perpendicularly incident on the diffractive optical element (base surface). The peak is almost the same as the wavelength. Even at a low diffraction order, the peak of diffraction efficiency is higher at 700 nm than at a wavelength of 400 nm. For this reason, the diffraction efficiency at the used diffraction order is lower on the long wavelength side.

このように、格子高さが異なっても、回折格子の格子側面の影響を考慮していない従来のスカラー回折理論に基づいて設計された回折光学素子では、格子側面を考慮すると、良好な特性が得られない。   As described above, even when the grating height is different, the diffractive optical element designed based on the conventional scalar diffraction theory that does not consider the influence of the grating side surface of the diffraction grating has good characteristics when the grating side surface is taken into consideration. I can't get it.

以上説明した数値例1〜4におけるΔΦ(λ)の値と、式(7),(8)の値を、表7にまとめて示す。なお、式(7),(8)におけるλν1は400nmであり、λν2は700nmである。   Table 7 summarizes the values of ΔΦ (λ) and the values of equations (7) and (8) in Numerical Examples 1 to 4 described above. In equations (7) and (8), λν1 is 400 nm and λν2 is 700 nm.

表7から、数値例1〜4はいずれも、式(7),(8)で示す関係を満足していることが分かる。また、比較例1〜3は、ΔΦ(λ)が0であるため、式(7),(8)で示す関係を満足しないことは明らかである。このため、式(7),(8)の関係を満足することによって、格子側面の影響を含めた使用回折次数での回折効率の波長特性が均一である回折光学素子を得ることができる。   From Table 7, it can be seen that all of Numerical Examples 1 to 4 satisfy the relationships represented by the equations (7) and (8). In Comparative Examples 1 to 3, since ΔΦ (λ) is 0, it is clear that the relations expressed by the equations (7) and (8) are not satisfied. Therefore, by satisfying the relations of the expressions (7) and (8), it is possible to obtain a diffractive optical element in which the wavelength characteristic of the diffraction efficiency at the used diffraction order including the influence of the grating side surface is uniform.

図7には、本発明の実施例2である撮影光学系の構成を示している。この撮影光学系は、デジタルスチルカメラやビデオカメラ等の撮像装置や交換レンズに用いられる。   FIG. 7 shows the configuration of a photographing optical system that is Embodiment 2 of the present invention. This photographing optical system is used for an imaging device such as a digital still camera or a video camera, or an interchangeable lens.

101は撮影光学系(撮影レンズ)であり、その内部には、絞り40と、実施例1にて説明した回折光学素子10とを含む。回折光学素子10は、撮影光学系101のうち最も物体側のレンズユニットを構成するレンズ(基板レンズ)20,30の貼り合せ面に設けられている。   Reference numeral 101 denotes a photographing optical system (photographing lens), which includes an aperture 40 and the diffractive optical element 10 described in the first embodiment. The diffractive optical element 10 is provided on a bonding surface of lenses (substrate lenses) 20 and 30 constituting a lens unit closest to the object side in the photographing optical system 101.

102は撮像装置(光学機器)であり、41はCCDセンサ等により構成される撮像素子である。撮影光学系101は、撮像素子41の撮像面に被写体像を形成する。回折光学素子10は、撮影光学系101の色収差を補正する役割を有する。撮像素子41は、被写体像を光電変換して撮像信号を出力する。撮像装置102内の画像処理回路103は、撮像信号に対して各種処理を行って、画像を生成し、不図示のモニタでの表示のために出力したり、不図示の記憶媒体に記憶させたりする。   Reference numeral 102 denotes an image pickup apparatus (optical device), and reference numeral 41 denotes an image pickup element constituted by a CCD sensor or the like. The imaging optical system 101 forms a subject image on the imaging surface of the imaging element 41. The diffractive optical element 10 has a role of correcting chromatic aberration of the photographing optical system 101. The image sensor 41 photoelectrically converts the subject image and outputs an imaging signal. An image processing circuit 103 in the imaging apparatus 102 performs various processes on the imaging signal to generate an image, which is output for display on a monitor (not shown) or stored in a storage medium (not shown). To do.

実施例1の回折光学素子10は、波長特性が良好であり、かつ高い回折効率を与えることができるので、フレアが少ない高性能な撮影光学系を実現できる。   Since the diffractive optical element 10 of Example 1 has good wavelength characteristics and can provide high diffraction efficiency, a high-performance photographic optical system with less flare can be realized.

なお、撮影光学系に回折光学素子10を用いる場合の該回折光学素子10の配置位置は、図7に示す位置に限られず、また撮影光学系内に複数の回折光学素子を設けてもよい。さらに、本実施例では、回折光学素子を含む光学系として撮影光学系を例に説明したが、イメージスキャナや複写機の読み取り光学系等、広波長域で使用される各種光学機器の光学系として用いることができる。   When the diffractive optical element 10 is used in the photographic optical system, the arrangement position of the diffractive optical element 10 is not limited to the position shown in FIG. 7, and a plurality of diffractive optical elements may be provided in the photographic optical system. Further, in this embodiment, the photographic optical system has been described as an example of an optical system including a diffractive optical element. However, as an optical system of various optical devices used in a wide wavelength region such as an image scanner or a reading optical system of a copying machine. Can be used.

以上説明した各実施例は代表的な例にすぎず、本発明の実施に際しては、各実施例に対して種々の変形や変更が可能である。   Each embodiment described above is only a representative example, and various modifications and changes can be made to each embodiment in carrying out the present invention.

波長特性が良好であり、かつ高い回折効率を与える回折光学素子を提供でき、これにより、高性能な光学系や光学機器を提供できる。 A diffractive optical element having good wavelength characteristics and high diffraction efficiency can be provided, whereby a high-performance optical system and optical apparatus can be provided.

10 回折光学素子
1 第1の回折格子
2 第2の回折格子
10 diffractive optical element 1 first diffraction grating 2 second diffraction grating

Claims (10)

それぞれ異なる材料により形成された複数の回折格子が積層されて構成された回折光学素子であって、
前記複数の回折格子の材料はそれぞれ、該回折光学素子の使用波長帯域のうち2/3以上の範囲において、以下に示すΔΦ(λ)が短波長側ほど大きくなる材料であることを特徴とする回折光学素子。

ただし、λは前記使用波長帯域に含まれるいずれかの波長であり、niは前記複数の回折格子のうちi番目の回折格子の材料の波長λに対する屈折率であり、diは前記i番目の回折格子の格子高さであり、mは使用回折次数である。
A diffractive optical element formed by laminating a plurality of diffraction gratings formed of different materials,
Each of the materials of the plurality of diffraction gratings is a material in which ΔΦ (λ) shown below becomes larger toward the shorter wavelength side in a range of 2/3 or more of the wavelength band used for the diffractive optical element. Diffractive optical element.

Here, λ is any wavelength included in the use wavelength band, ni is a refractive index with respect to the wavelength λ of the material of the i-th diffraction grating among the plurality of diffraction gratings, and di is the i-th diffraction Is the grating height of the grating, and m is the diffraction order used.
前記複数の回折格子の材料はそれぞれ、前記使用波長帯域の全域において、ΔΦ(λ)が短波長側ほど大きくなる材料であることを特徴とする請求項1に記載の回折光学素子。   2. The diffractive optical element according to claim 1, wherein each of the materials of the plurality of diffraction gratings is a material in which ΔΦ (λ) increases toward the shorter wavelength side in the entire use wavelength band. 該回折光学素子が、互いに異なる材料により形成された第1の回折格子と第2の回折格子が積層されて構成され、
前記第1および第2の回折格子の格子面が互いに密着していることを特徴とする請求項1または2に記載の回折光学素子。
The diffractive optical element is configured by laminating a first diffraction grating and a second diffraction grating formed of different materials,
The diffractive optical element according to claim 1 or 2, wherein the grating surfaces of the first and second diffraction gratings are in close contact with each other.
前記使用波長帯域が、可視波長帯域であることを特徴とする請求項1から3のいずれか1項に記載の回折光学素子。   The diffractive optical element according to claim 1, wherein the used wavelength band is a visible wavelength band. 以下の2つの関係をともに満足することを特徴とする請求項1から4のいずれか1項に記載の回折光学素子。

ただし、λν1およびλν2はともに可視波長帯域の波長(nm)であり、λ550は波長550nmであり、E−nは×10−nである。
The diffractive optical element according to claim 1, wherein both of the following two relationships are satisfied.

However, Ramudanyu1 and λν2 are both wavelengths in the visible wavelength range (nm), λ 550 is the wavelength 550 nm, E-n is × 10 -n.
以下の関係を満足することを特徴とする請求項1から5のいずれか1項に記載の回折光学素子。

ただし、λνは可視波長帯域の波長(nm)であり、λ550は波長550nmであり、
E−nは×10−nである。
The diffractive optical element according to claim 1, wherein the following relationship is satisfied.

However, Ramudanyu is the wavelength of the visible wavelength range (nm), λ 550 is the wavelength 550 nm,
En is x10 -n.
該回折光学素子の使用回折次数が、+1次または−1次であることを特徴とする請求項1から6のいずれか1項に記載の回折光学素子。   7. The diffractive optical element according to claim 1, wherein the diffractive optical element used has a + 1st order or −1st order diffraction order. 該回折光学素子の格子ピッチが、80μm以上であることを特徴とする請求項1から7のいずれか1項に記載の回折光学素子。   The diffractive optical element according to claim 1, wherein a grating pitch of the diffractive optical element is 80 μm or more. 請求項1から8のいずれか1項に記載の回折光学素子を用いたことを特徴とする光学系。   An optical system using the diffractive optical element according to claim 1. 請求項9に記載の光学系を用いたことを特徴とする光学機器。   An optical apparatus using the optical system according to claim 9.
JP2012139689A 2012-06-21 2012-06-21 Diffractive optical element, optical system and optical instrument Expired - Fee Related JP6071262B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012139689A JP6071262B2 (en) 2012-06-21 2012-06-21 Diffractive optical element, optical system and optical instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012139689A JP6071262B2 (en) 2012-06-21 2012-06-21 Diffractive optical element, optical system and optical instrument

Publications (3)

Publication Number Publication Date
JP2014006280A true JP2014006280A (en) 2014-01-16
JP2014006280A5 JP2014006280A5 (en) 2015-07-23
JP6071262B2 JP6071262B2 (en) 2017-02-01

Family

ID=50104085

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012139689A Expired - Fee Related JP6071262B2 (en) 2012-06-21 2012-06-21 Diffractive optical element, optical system and optical instrument

Country Status (1)

Country Link
JP (1) JP6071262B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1144808A (en) * 1997-07-28 1999-02-16 Canon Inc Diffractive optics and optical system using the same
JP2011022255A (en) * 2009-07-14 2011-02-03 Canon Inc Diffraction optical element and optical system having the same
JP2011107586A (en) * 2009-11-20 2011-06-02 Canon Inc Diffraction optical element and optical system having the same
JP2012083382A (en) * 2010-10-06 2012-04-26 Canon Inc Diffraction optical element, optical system, and optical instrument

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1144808A (en) * 1997-07-28 1999-02-16 Canon Inc Diffractive optics and optical system using the same
JP2011022255A (en) * 2009-07-14 2011-02-03 Canon Inc Diffraction optical element and optical system having the same
JP2011107586A (en) * 2009-11-20 2011-06-02 Canon Inc Diffraction optical element and optical system having the same
JP2012083382A (en) * 2010-10-06 2012-04-26 Canon Inc Diffraction optical element, optical system, and optical instrument

Also Published As

Publication number Publication date
JP6071262B2 (en) 2017-02-01

Similar Documents

Publication Publication Date Title
JP5137432B2 (en) Adherent two-layer type diffractive optical element and optical system and optical apparatus using the same
JP4630393B2 (en) Diffraction lens and imaging apparatus using the same
US8120852B2 (en) Diffractive optical element, optical system, and optical apparatus
JP5132284B2 (en) Diffractive optical element, optical system having the same, and optical instrument
JP5258204B2 (en) Diffractive optical element, optical system using the same, and optical instrument
JP5787508B2 (en) Diffractive optical element and optical system
JP5546217B2 (en) Diffractive optical element, optical system having the same, and imaging apparatus
JP2013125259A (en) Diffractive optical element, optical system, and optical apparatus
JP2011022255A (en) Diffraction optical element and optical system having the same
JP4944275B2 (en) Diffractive optical element
WO2011105067A1 (en) Diffraction lens and photographic device using the same
US20140247492A1 (en) Diffraction optical element, optical system, and optical apparatus
JP4955133B2 (en) Diffractive lens
JP2004078166A (en) Diffraction optical element and optical system with same
JP2016218436A (en) Diffraction optical element, optical system, and optical instrument
CN101131444A (en) Diffractive optical element, objective optical system including the same, and optical pickup including the same
JP5765998B2 (en) Diffractive optical element, optical system and optical instrument
JP5091369B2 (en) Diffraction grating lens and imaging device using the same
JP6071262B2 (en) Diffractive optical element, optical system and optical instrument
JP2011022319A (en) Diffraction optical element, optical system and optical apparatus
JP5676930B2 (en) Diffractive optical element, optical system and optical instrument
JP2013205534A (en) Diffractive-optical element, method for manufacturing the same, and optical system using diffractive-optical element
US8508847B2 (en) Diffractive optical element and optical device
US20110157701A1 (en) Diffractive optical element and optical device
JP2009192597A (en) Diffractive optical element and optical system with the same

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150602

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150602

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160405

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160603

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161227

R151 Written notification of patent or utility model registration

Ref document number: 6071262

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees