JP2004078166A - Diffraction optical element and optical system with same - Google Patents

Diffraction optical element and optical system with same Download PDF

Info

Publication number
JP2004078166A
JP2004078166A JP2003166523A JP2003166523A JP2004078166A JP 2004078166 A JP2004078166 A JP 2004078166A JP 2003166523 A JP2003166523 A JP 2003166523A JP 2003166523 A JP2003166523 A JP 2003166523A JP 2004078166 A JP2004078166 A JP 2004078166A
Authority
JP
Japan
Prior art keywords
optical element
diffractive optical
diffraction
grating
order
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003166523A
Other languages
Japanese (ja)
Other versions
JP4006362B2 (en
Inventor
Takehiko Nakai
中井 武彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2003166523A priority Critical patent/JP4006362B2/en
Publication of JP2004078166A publication Critical patent/JP2004078166A/en
Application granted granted Critical
Publication of JP4006362B2 publication Critical patent/JP4006362B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0025Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical correction, e.g. distorsion, aberration
    • G02B27/0037Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical correction, e.g. distorsion, aberration with diffracting elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/42Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect
    • G02B27/4205Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect having a diffractive optical element [DOE] contributing to image formation, e.g. whereby modulation transfer function MTF or optical aberrations are relevant
    • G02B27/4211Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect having a diffractive optical element [DOE] contributing to image formation, e.g. whereby modulation transfer function MTF or optical aberrations are relevant correcting chromatic aberrations
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/42Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect
    • G02B27/4205Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect having a diffractive optical element [DOE] contributing to image formation, e.g. whereby modulation transfer function MTF or optical aberrations are relevant
    • G02B27/4216Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect having a diffractive optical element [DOE] contributing to image formation, e.g. whereby modulation transfer function MTF or optical aberrations are relevant correcting geometrical aberrations
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/42Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect
    • G02B27/4272Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect having plural diffractive elements positioned sequentially along the optical path
    • G02B27/4277Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect having plural diffractive elements positioned sequentially along the optical path being separated by an air space
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1814Diffraction gratings structurally combined with one or more further optical elements, e.g. lenses, mirrors, prisms or other diffraction gratings
    • G02B5/1819Plural gratings positioned on the same surface, e.g. array of gratings
    • G02B5/1823Plural gratings positioned on the same surface, e.g. array of gratings in an overlapping or superposed manner

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Geometry (AREA)
  • Lenses (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve a problem in which a conventional stack type diffraction optical element is insufficient in suppression of flare light of unnecessary diffraction order. <P>SOLUTION: The diffraction optical element structured by stacking a plurality of diffraction gratings 8 and 9 made of materials differing in Abbe number ν<SB>d</SB>is characterized in that the partial dispersion ratio θ<SB>g,F</SB>of a material constituting at lest one of the plurality diffraction gratings to a (g) line and an F line is <(-1/600)ν<SB>d</SB>+0.55, where θ<SB>g, F</SB>=(n<SB>g</SB>-n<SB>F</SB>)/(n<SB>F</SB>-n<SB>C</SB>), ν<SB>d</SB>=(n<SB>d</SB>-1)/(n<SB>F</SB>-n<SB>C</SB>), and n<SB>g</SB>, n<SB>F</SB>, n<SB>F</SB>, and n<SB>C</SB>are refractive indexes to the (g) line, the F line, a (d) line, and a C line. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、回折光学素子およびこれを有する光学系に関するものである。
【0002】
【従来の技術】
レンズ系の色収差を減じる方法としては、硝材の組み合わせによるものがあるが、レンズの表面や光学系の一部に回折作用を有する回折光学素子若しくは回折格子を設ける方法がある。
【0003】
例えば、非特許文献1や特許文献1〜3等にて提案若しくは開示されている。
【0004】
回折光学素子を用いる方法は、屈折面と回折面とでは、ある基準波長の光線に対する色収差の出方が逆方向に発現するという物理現象を利用したものである。また、回折光学素子には、その周期的構造の周期を適宜変化させることで非球面レンズ的な効果を持たせることができるので、色収差以外の収差の低減にも効果がある。
【0005】
回折光学素子を有するレンズ系において、使用波長領域の光束が特定の1つの次数(以下、「特定次数」又は「設計次数」ともいう)の回折光に集中している場合は、それ以外の回折次数の回折光強度は低いものとなり、強度が0の場合はその回折光は存在しない。
【0006】
しかし、設計次数以外の次数の回折光が存在し、それがある程度の強度を有する場合は、設計次数の光線とは別な所に結像するため、レンズ系でのフレア光となる。
【0007】
従って、前述の回折光学素子の収差低減作用を利用するためには、使用波長領域全域において設計次数の回折光の回折効率が十分高いことが必要であり、この設計次数での回折効率の分光分布および設計次数以外の回折光の振る舞いについても十分考慮することが重要である。
【0008】
図16には、基板302とこの基板302上に形成された回折格子301とからなる回折光学素子(以下、「単層型DOE」と言う)を示しており、この単層型DOEをある面に形成した場合の特定次数に対する回折効率の特性を図17に示す。
【0009】
図17において、横軸は入射光の波長を、縦軸は回折効率を示している。回折効率の値は、全透過光束の光量に対する各次数での回折光の光量の割合であり、格子境界面での反射光などは説明が複雑になるので考慮していない値になっている。
【0010】
図17に示すように、図16に示した単層型DOEは、1次の回折次数(図中に太い実線で示す)において使用波長領域で最も回折効率が高くなるように設計されており、設計次数は1次である。この設計次数で回折効率はある波長で最も高くなり(以下、この波長を「設計波長」という)、それ以外の波長では徐々に低くなる。この設計次数での回折効率の低下分は、他の次数の回折光となり、フレア光となる。図17には、この他の次数として設計次数近傍の次数(設計次数1±1次の0次と2次)の回折効率も併せて並記されている。
【0011】
このように発生するフレア光の影響を低減する構成として、様々な提案がなされている。
【0012】
特許文献4にて提案の回折光学素子は、図18に示すように、3種類の異なる格子材料306〜308と2種類の異なる格子厚d1 ,d2とを最適に選び、複数の回折格子を等しいピッチ分布で密着配置することによって、図19に示すように、設計次数において可視域全域にわたってある程度高い回折効率を実現している。
【0013】
また、特許文献5にて提案の回折光学素子は、図13に示すように、回折格子をそれぞれ含む素子部202,203を空気層210を介して互いに近接させた構造を有する回折光学素子(以下、このような構成の回折光学素子を「積層型DOE」という)201であり、各回折格子を構成する材料の屈折率、分散特性(アッベ数νd)および各層の格子厚を最適化することにより、図14に示すように、設計次数において可視領域全域にわたって高い回折効率を実現している。
【0014】
また、回折格子を構成する材料のアッベ数を規定することで、格子厚が10μm以下で高い回折効率を実現している。そしてこれに応じて、設計次数±1次の回折効率も図17の単層型DOEに比べて、図15に示すように良好に抑制されている。
【0015】
【非特許文献1】
SPIE Vol.1354 International Lens Design Conference(1990)
【特許文献1】
特開平4−213421号公報
【特許文献2】
特開平6−324262号公報
【特許文献3】
米国特許5044706号明細書
【特許文献4】
特開平9−127322号公報
【特許文献5】
特開2000−98118号公報
【0016】
【発明が解決しようとする課題】
上記特許文献4および特許文献5にて提案されている回折光学素子を用いることで、設計次数の回折効率は、単層型DOEに比べて大幅に改善され、使用波長全域で94%以上、450nmから650nmの主波長域では98%以上の高い回折効率が得られる。そして、不要回折次数のフレア光も、使用波長全域で2%以下、450nmから650nmの主波長域では0.6%以下と概ね良好に抑制されている。
【0017】
このため、撮影(投影)条件の変化しない光学系(例えば、複写機のリーダーレンズや液晶プロジェクターの投射レンズ)への応用では、積層型DOEによりフレアの影響は問題ないレベルまで抑制される。
【0018】
しかしながら、スチルカメラ、ビデオカメラ等、様々な被写体を様々な条件で撮影する光学装置の光学系においては、わずかに残存しているフレアが問題になる場合がある。
【0019】
例えば、被写体中に光源が存在する場合、一般に撮影時には光源が適正な露出になるようには撮影をせず、光源以外の被写体が適正露出になるような撮影を行う。
【0020】
このため、被写体中の光源は適正露出以上の露出で撮影されることになる。例えば、光源が適正露出の500倍で露出されると、フレアがわずか0.6%残存していたとしても、光源のフレアは500倍されるので、
0.6×500=300%
と適正露出の3倍のフレアとなり、必ず撮影画像に現れる。
【0021】
上述のように、スチルカメラやビデオカメラの光学系に積層型DOEを応用した場合、わずかなフレアでも問題となる。
【0022】
そこで本発明は、広い使用波長領域で、特に特定次数の光に関して高い回折効率が得られるとともに、不要回折次数の回折光を特に抑制できる回折光学素子およびこの回折光学素子を用いた光学系を提供することを目的としている。
【0023】
【課題を解決するための手段】
上記の目的を達成するために、本発明では、それぞれアッベ数νd が異なる材料からなる複数の回折格子を互いに重ね合わせ、積層した構造を有する回折光学素子において、上記複数の回折格子のうち少なくとも1つの回折格子を構成する材料のg線およびF線に対する部分分散比θg,Fが、
θg,F<(−1/600)ν+0.55    …(1)
但し、θg,F=(n−n)/(n−n
ν=(n−1)/(n−n
,n,n,nはそれぞれ、g線,F線,d線,C線に対する屈折率
なる条件を満足するようにしている。
【0024】
すなわち、g線およびF線に対する部分分散比が上記条件式(1)の右辺の値(図6のグラフ中に実線で示す値)よりも小さな材料を用いた回折格子を少なくとも1つ含んだ積層型の回折光学素子とすることにより、入射光の波長(使用波長)領域の全域において特定次数(設計次数)の回折効率を高くしつつ、光学系に組み込んだ際にフレア光となり得る不要回折次数の光を良好に抑制することが可能な回折光学素子を実現している。
【0025】
さらに、上記複数の回折格子それぞれの格子厚を10μm以下とすることにより、薄い回折格子形状で高い回折効率を達成でき、より広画角の光学系に組み込んだ場合でもフレア光となり得る不要回折次数の光を良好に抑制することが可能な回折光学素子を実現できる。
【0026】
また、上記条件式(1)を満足する材料のアッベ数νを30以下とするとよりよい。
【0027】
さらに、上記複数の回折格子の材料のうち条件式(1)を満足する材料以外の少なくとも1つの材料のアッベ数νを40以上とすると、条件式(1)を満足する材料の選択の幅が広がり好ましい。
【0028】
なお、上記条件式(1)を満足する材料として、例えば、アッベ数νが15以下の微粒子材料(TiOやITO等で、特に粒子径が入射光波長の1/20以下のものがよい)を樹脂材料(例えば、紫外線硬化樹脂)に混合したものを用いることにより、回折格子の成形性を良好とすることができる。
【0029】
また、上記複数の回折格子のうち少なくとも1つの回折格子における格子周期方向での格子厚の変化方向を他の回折格子における格子厚の変化方向と異ならせることにより、使用波長領域の全域での高い回折効率の達成により効果的である。
【0030】
また、上記複数の回折格子のそれぞれが、格子ピッチをPとし、それぞれの格子厚をdとしたときに、
d/P<1/6
なる条件を満足することにより、回折格子の加工性を良好なものとすることができる。
【0031】
さらに、回折格子を(透明な)基板と同じ材料で基板と一体形成することにより、回折格子および基板からなる素子部(単層型DOEに相当する部分)の製作が容易になり、ひいては複数の素子部を重ね合わせて作られる回折光学素子の製作も容易になる。
【0032】
【発明の実施の形態】
(第1実施形態)
図1(a)は、本発明の第1実施形態である回折光学素子の正面図であり、図1(b)は上記回折光学素子の側面図である。また、図2には、図1の回折光学素子をA−A’線で切断したときの断面形状の一部を拡大して示している。但し、図2は格子深さ方向にかなりデフォルメされた図となっている。
【0033】
これらの図に示すように、回折光学素子1は、第1の素子部2と第2の素子部3とを、それぞれの素子部に形成された第1の回折格子8と第2の回折格子9とが空気層10を挟んで互いに近接するように重ね合わせた構成となっており、これら第1,第2の素子部2,3および空気層10の全体で1つの回折光学素子として作用するものである。
【0034】
第1および第2の回折格子8,9は同心円状の格子形状からなり、径方向における格子ピッチが変化することで、レンズ作用を有する。また、第1の回折格子8と第2の回折格子9はほぼ等しい格子ピッチ分布を持っている。
【0035】
また、図2に示すように、第1の素子部2は、第1の透明基板4と、この第1の透明基板4上に設けられた格子ベース部6およびこの格子ベース部6に一体形成された第1の回折格子8からなる第1格子形成層とを有し、第1の回折格子8における空気層10との境界部には格子面8aが形成されている。
【0036】
一方、第2の素子部3も第1の素子部2と同様に、第2の透明基板5と、この第2の透明基板5上に設けられた格子ベース部7およびこの格子ベース部7に一体形成された第2の回折格子9からなる第2格子形成層とを有し、第2の回折格子9における空気層10との境界部には格子面9aが形成されている。
【0037】
なお、空気層10は、両回折格子8,9の格子面8a,9aと格子側面とがなすエッジ間において厚さがDとなるように設定されている。
【0038】
ここで、第1および第2の素子部2,3の寸法に関してそれぞれ、格子ピッチをP,P(μm)、格子厚をd,d(μm)としたとき、
/P<1/6
/P<1/6
を満たすようにすると、素子部2,3自体やこれら素子部2,3を製造(樹脂成形)するための型に対して格子形状を機械加工し易いというメリットがある。
【0039】
本実施形態において、回折光学素子1に入射させる光の波長領域、すなわち使用波長領域は可視領域であり、第1および第2の回折格子8,9を構成する材料および格子厚さは、可視領域全体で1次の回折光の回折効率を高くするように選択される。
【0040】
次に、本実施形態の回折光学素子1の回折効率について説明する。図15に示す通常の単層型DOEにおいて、設計波長がλの場合に、ある次数の回折光の回折効率が最大となる条件は、光束が回折格子のベース面(図2に点線で示す面)に対して垂直に入射する場合は、回折格子の山と谷の光学光路長差(つまりは、山と谷のそれぞれを通過する光線間における光路長差)が光束の波長の整数倍になることであり、これを式で表わすと、
(n01−1)d=mλ   …(2)
となる。
【0041】
ここで、n01は波長λの光に対する回折格子の材料の屈折率である。また、dは格子厚、mは回折次数である。
【0042】
上記(2)式は波長の項を含むため、同一次数では設計波長でしか等号は成り立たず、設計波長以外の波長では回折効率は最大値から低下してしまう。
【0043】
また、任意の波長λでの回折効率η(λ)は、
η(λ)=sinc〔π{M−(n(λ)−1)d/λ}〕  …(3)
で表すことができる。
【0044】
上記(3)式において、Mは評価すべき回折光の次数、n(λ)は波長λの光に対する回折格子の材料の屈折率である。また、sinc(x)は、={sin(x)/x}で表わされる関数である。
【0045】
本実施形態のように、2層以上の積層構造を持つ回折光学素子でも、基本は同様であり、全層を通して1つの回折光学素子として作用させるためには、各層を構成する材料(空気等も含む)の境界に形成された回折格子の山と谷とでの光学光路長差を求め、この光学光路長差を全回折格子にわたって加え合わせたものが波長の整数倍になるように格子形状その他の寸法を決定する。
【0046】
従って、図1に示した回折光学素子1において、設計波長がλの場合に、回折次数mの回折光の回折効率が最大となる条件は、
±(n01−1)d±(n02−1)d=mλ    …(4)
となる。
【0047】
ここで、上記(4)式において、n01は第1の素子部2において第1の回折格子8を形成する材料の波長λ0の光に対する屈折率であり、n02は第2の素子部3において第2の回折格子9を形成する材料の波長λの光に対する屈折率である。また、d,dはそれぞれ、第1の回折格子8と第2の回折格子9の格子厚である。
【0048】
図2中の0次回折光から下向きに回折する光の回折次数を正の回折次数、0次回折光から上向きに回折する光の回折次数を負の回折次数とすると、上記(3)式での各層の加減の符号は、図中上から下に格子厚が減少する格子形状を持つ第1の回折格子8の場合が負となり、逆に上から下に格子厚が増加する格子形状を持つ第2の回折格子9の場合が正となる。
【0049】
図2に示す構成において、設計波長λ0以外の波長λでの回折効率η(λ)は、
η(λ)=sinc〔π{M−{±(n(λ)−1)d±(n(λ)−1)d}/λ}〕
=sinc〔π{M−φ(λ)/λ}〕    …(5)
という式で表わすことができる。
【0050】
上記(5)式中のφ(λ)は、
φ(λ)=±(n(λ)−1)d±(n(λ)−1)d
である。また、Mは評価すべき回折光の次数、n(λ)は第1の回折格子8を形成する材料の波長λでの屈折率、n(λ)は第2の回折格子9を形成する材料の波長λでの屈折率、d,dはそれぞれ第1の回折格子8と第2の回折格子9の格子厚である。またsinc(x)は、={sin(x)/x}で表わされる関数である。
【0051】
なお、図2に示した回折光学素子1では、格子面8a,9aを空気層10との境界面に形成しているが、本発明の回折光学素子はこれに限定されるものではなく、例えば図9に示すように、空気とは異なる2つの異なる材質(光学材料)の境界面に格子面を形成した2つの回折格子で構成した回折光学素子を用いることもできる。
【0052】
図9(a)は格子厚の異なる回折格子8,9を密着させた場合であり、図9(b)は同じ格子厚の回折格子8,9を密着させた場合の例である。回折格子を構成する材料の組み合わせによっては、2つの回折格子8,9の格子厚を図9(b)に示すごとく等しくすることもできる。
【0053】
次に、本実施形態の回折光学素子1において高い回折効率を得るための条件について説明する。
【0054】
使用波長領域の全域にわたって高い回折効率を得るためには、(5)式で表される値η(λ)が全ての使用波長λに対して、1に近づけばよい。言い換えれば、設計次数mでの回折効率を高めるには、(5)式中のφ(λ)/λがmになればよいことが式から分かる。例えば、設計次数mを1次としたときは、φ(λ)/λが1に近づけばよいわけである。
【0055】
さらに、格子形状から得られる光学光路長差φ(λ)は、上記関係から、波長λに比例して線形に変化していく必要があることが分かる。
【0056】
このためには、光学光路長差φ(λ)の中の波長によって変化する項である、
±n(λ)d±n(λ)d
が線形性を有することが必要となってくる。つまり、第1の回折格子8を形成する材料の波長による屈折率の変化に対する第2の回折格子9を形成する材料の波長による屈折率の変化が、全使用波長域で一定の比率であることが必要となってくる。
【0057】
このことを式で表現すると、
(λ)−n(λ):n(λ)−n(λ
=n(λ)−n(λ):n(λ)−n(λ) …(6)
但し、λ,λ,λ,λは任意の使用波長を示す
となる。
【0058】
ここで、上記(6)式の関係をほぼ満足する構成として、図2に示した積層構造の回折光学素子1を例にとって説明する。まず、高い回折効率を得るためには、少なくとも2つの回折格子が存在すればよいが、図2に示した回折光学素子1はこれを満足するものである。
【0059】
また、図2に示した回折光学素子1において、第1の回折格子8を、本実施形態において特徴となる材料(n=1.5702,ν=13.5)を用い、格子厚を5.6μmとする。一方、第2の回折格子9を、大日本インキ化学工業(株)製の紫外線硬化樹脂C001(n=1.524,ν=50.8)を用い、格子厚を7.2μmとする。
【0060】
図3には、この回折光学素子1の設計次数である1次での回折効率特性を、図4には、設計次数±1次(0次と2次)の回折効率特性をそれぞれ示している。これらの特性図から分かるように、上記回折光学素子1は、図13および図14に示した特性に比べて設計次数の回折効率が改善しているとともに、不要次数の回折効率が低減されてよりフレア光が発生しにくくなっている。
【0061】
しかも、設計次数の回折効率は、可視領域全域で99.7%以上得られており、これに伴い不要次数のフレア光も可視領域で0.05%以下と従来の材料を使用した回折光学素子に比べて約1/10まで低下している。
【0062】
ここで、不要次数光の回折効率については、設計次数±1次である0次と2次についてのみ対象としているが、これは設計次数から離れた回折次数ほどフレアに寄与する割合が少ないため、0次と2次のフレア光が低減されれば、それ以外のフレア光も同様に影響を低減できるからである。
【0063】
このことは、特定の設計次数の光が主に回折するように設計された回折光学素子は、設計次数から離れた次数にいくに従って、回折効率は低下している傾向にあること、および設計次数から離れた次数ほど結像面でぼけが大きくフレアとして目立たなくなってくることに起因している。
【0064】
次に、特開2000−98118号公報(前述の特許文献5)に記載されている材料と本実施形態において特徴となる材料の可視波長域での屈折率特性を図5に示す。図5中、材料1は、本実施形態の第2の回折格子9と従来例の両方に用いられている材料であり、材料2は、本実施形態の第1の回折格子8を構成する材料である。また、材料3は、特開2000−98118号公報に記載された第1の回折格子を構成する材料である。
【0065】
この特性図において、本実施形態にて用いられている材料1と材料2とでは、グラフの傾きが異なっているように見えるが、波長の変化に対する屈折率の変化がほぼ一定である。
【0066】
一方、特開2000−98118号公報に記載の回折光学素子で用いられている材料1と材料3とでは、波長に対する屈折率の変化が材料1はほぼ一定であるのに対し、材料3は短波長側の変化の度合いが大きい特性となっている。
【0067】
これは、特開2000−98118号公報で提案されているアッベ数νdの特性が、
ν=(n−1)/(n−n
但し、n,n,nはそれぞれ、F線,d線,C線に対する屈折率
で表わされるため、d線(波長587nm)付近の屈折率変化の平均的な傾きを定義した値に過ぎないためである。
【0068】
このν特性は、積層構造の回折光学素子で、格子厚を薄く保ちつつ、回折効率特性を単層型DOEに比べて改善するのには適した評価特性であった。しかし、本発明が目的とするさらなる回折効率特性を改善することのためには、平均的な屈折率変化を表わした従来のν評価尺度だけでは不十分であることが様々な検討で明らかになってきた。
【0069】
これら2つの材料、すなわち材料2と材料3の違いを明確にするため、光学ガラス材料の特性として用いられている、1つの評価尺度を調べることにする。
【0070】
図6には、その評価尺度であるg線およびF線に対する部分分散比θg,Fの特性を示している。なお、図6において、横軸はν、縦軸はθg,Fの値である。θg,Fは、
θg,F=(n−n)/(n−n
但し、n,n,n,nはそれぞれ、g線,F線,d線,C線に対する屈折率で定義される値であり、短波長側の屈折率の変化と長波長側の屈折率の変化の比を表わす評価尺度である。
【0071】
図6中の材料2が本実施形態における第1の回折格子8に用いている材料であり、この材料2では、θg,Fが0.3程度のかなり小さな値を示している。
【0072】
また、材料3は特開2000−98118号公報に記載されている材料であり、この材料3は一般光学材料に属している。そして、本実施形態の材料2が、特開2000−98118号公報に記載された材料を含む一般の光学材料のθg,F特性とは大きく異なるθg,F特性を有することも図6から理解できる。
【0073】
図6中に材料4として示されている光学材料を用いた回折光学素子の回折効率を図7と図8に示している。図7は設計次数である1次の回折効率特性を、図8は設計次数±1次である0次と2次の回折効率特性をそれぞれ示している。設計次数の回折効率として、使用波長全域では97%以上、さらに450nmから650nmの主波長域では99.5%以上の高い回折効率が得られている。
【0074】
一方、不要回折次数のフレア光も使用波長全域では0.9%以下、さらに450nmから650nmの主波長域では0.2%以下と、従来例の約1/3と良好に抑制されている。
【0075】
以上のことから分かるように、θg,F特性に関して、材料4でも十分な回折効率特性が得られる。
【0076】
したがって、本発明の目的である回折効率の改善のためには、図6中に実線で示す直線よりもθg,Fの値が小さいこと、すなわち、
θg,F<(−1/600)ν+0.55
を満足するような光学材料を用いればよい。
【0077】
このような光学特性を示す材料としては、ITO(Indium−Tin Oxide)などがある。但し、ITOのままでは格子形状を作成するのが困難である場合には、特開2001−74901号公報にて提案されているような、ITOを直径がナノメートルオーダーの微粒子とし、この微粒子を格子形状が形成し易い樹脂材料に混在させた材料2や材料4に示すような材料を用いるのが好ましい。材料2はベース材としてのフッ素樹脂サイトップ(旭硝子製n=1.34,ν=90)にITO微粒子を混合したものである。材料4はベース材としてのポリビニルカルバゾール(n=1.70,ν=18)にITO微粒子を混合したものである。
【0078】
また、同材料として、アッベ数νが30以下の材料を用いると、回折格子の格子厚を薄くすることができ、好ましい。
【0079】
同様に、上記樹脂材料に微粒子を混在させる光学材料としては、微粒子混合後にアッベ数が30以下であることが望ましく、このために、微粒子としてはアッベ数が15以下の特性を有する微粒子材料を使用することが望ましい。このような条件を満足する微粒子材料として、例えば上記したITO以外にも、TiOの使用が考えられる。
【0080】
また、混在した微粒子によって光が散乱しないように、使用する微粒子の大きさ(径)は、使用波長の1/20以下であることが好ましい。
【0081】
一方、第2の回折格子9を形成する材料としては、アッベ数が40以上の材料を用いると、格子厚を薄く保つことができるので、好ましい。
【0082】
また、第1の回折格子8を形成する材料や第2の回折格子9を形成する材料として光学ガラスを用いる場合は、図2に示した透明基板4,5とその光学ガラス材料とを同じ材料とすれば、両者を一体で製作することができ、部品点数が減り、低コスト化にも有利である。
【0083】
また、回折格子8,9のそれぞれが、格子ピッチをP、格子厚をdとしたときに、
d/P<1/6
を満たす格子形状を有する場合には、回折格子8,9を成形するための型を製造し易くなり、好ましい。
【0084】
なお、以上説明した第1実施形態では、平板としての基板4,5上に回折格子(積層型DOE)8,9を設けた回折光学素子について説明したが、レンズの凸面や凹面等の曲面表面に回折部を設けても、本実施形態で説明したのと同様の効果を得ることができる。
【0085】
また、本実施形態では、設計次数が1であるいわゆる1次回折光を用いる回折光学素子について説明したが、設計次数は1に限定されるものではなく、2次や3次の1次とは異なる回折光であっても、各回折格子8,9における光学光路長差の合成値を所望の設計次数で所望の設計波長となるように設定すれば、本実施形態と同様の効果が得られる。
【0086】
(第2実施形態)
上記第1実施形態では、従来例と比較するため、2つの回折格子8,9を形成する材料が2種類の場合について説明したが、本発明の実施形態はこれに限定されるものではない。
【0087】
例えば、図10に示すように、3つの回折格子8,9,11をそれぞれ異なる3種類の材料(8,9および11で示す部分の材料)で形成した3層構成の回折光学素子にも本発明を提供することができる。
【0088】
この場合でも、少なくとも1つの材料を、上記(1)式を満足する材料とすればよい。例えば、図10の回折光学素子1’では、第2の回折格子9と空気層10との間に、第2の回折格子9の格子面9aに接するかたちで設けられた第3の回折格子11に上記(1)式を満足する材料を用いるのが好ましい。
【0089】
なお、図10において示した各部の寸法の意味は第1実施形態と同様であり、第1実施形態にはないD1,D2はそれぞれ、第1の回折格子8の格子面8aと格子側面とのなすエッジから第3の回折格子11における空気層10との境界面までの寸法および第2の回折格子9の格子面9aと格子側面とのなすエッジから第3の回折格子11における空気層10との境界面までの寸法である。
【0090】
(第3実施形態)
図11には、本発明の第3実施形態であるカメラ(スチルカメラやビデオカメラ等)の撮影(結像)光学系の構成を示している。この図中、101は大部分が屈折光学素子(例えば通常のレンズ素子)で構成される撮影レンズであり、内部に開口絞り102と第1実施形態にて説明した回折光学素子1を有する。
【0091】
103は結像面に配置されたフィルム又はCCD等の撮影媒体である。回折光学素子1はレンズ機能を有する素子であり、撮影レンズ101中の屈折光学素子で発生する色収差を補正する。
【0092】
そして、回折光学素子1は、第1実施形態にて説明したように、回折効率特性が従来のものに比べて大幅に改善されているので、フレア光が少なく低周波数での解像力も高く、高い光学性能を有した撮影光学系を実現することができる。
【0093】
また、回折光学素子1は、図2に示した空気層10を有する光学素子のように、各回折格子を製造した後に周辺部で貼り合わせるというような簡単な方法でも製作することができるので、撮影光学系として量産性に優れ、かつ安価な光学系を提供することができる。
【0094】
なお、本実施形態では、絞り102の近傍に配置された平板ガラス面に回折光学素子1を設けているが、本発明はこれに限定するものではなく、前述したように、回折光学素子1をレンズの凹面又は凸面上に設けてもよい。さらに、撮影レンズ101内に回折光学素子1を複数個配置してもよい。
【0095】
また、本実施形態では、カメラの撮影レンズに本発明に係る回折光学素子を用いた場合について説明したが、これに限らず、事務機のイメージスキャナーやデジタル複写機のリーダーレンズなど、広い波長域で使用される結像光学系に本発明の回折光学素子を使用しても、先に説明したのと同様の効果が得られる。
【0096】
(第4実施形態)
図12には、本発明の第4実施形態である双眼鏡の観察光学系の構成を示している。この図中、104は対物レンズ、105は倒立像を正立させるためのプリズム、106は接眼レンズ、107は評価面(瞳面)である。1は第1実施形態にて説明した回折光学素子であり、対物レンズ104の結像面103での色収差等を補正する目的で設けられている。
【0097】
この観察光学系は、第1実施形態にて説明したように、回折効率特性が従来のものに比べて大幅に改善されているので、フレア光が少なく低周波数での解像力も高く、高い光学性能を有する。
【0098】
また、回折光学素子1は、図2に示した空気層10を有する光学素子のように、各回折格子を製造した後に周辺部で貼り合わせるというような簡単な方法でも製作することができるので、観察光学系(の対物レンズ部)として量産性に優れた安価な光学系を提供することができる。
【0099】
なお、本実施形態では、平板ガラス面に回折光学素子1を設けた場合について説明したが、本発明はこれに限定されず、回折光学素子1をレンズの凹面又は凸面上に設けてもよい。さらに、観察光学系内に回折光学素子1を複数個配置してもよい。
【0100】
また、本実施形態では、対物レンズ部に回折光学素子1を設けた場合を示したが、これに限らず、プリズム105の表面や接眼レンズ106内の位置に設けることもでき、この場合も先に説明したのと同様の効果が得られる。但し、回折光学素子1を結像面103より物体側に設けることで対物レンズ部のみでの色収差低減効果があるため、肉眼の観察系の場合、少なくとも対物レンズ部に設けることが望ましい。
【0101】
また、本実施形態では、双眼鏡の観察光学系について説明したが、本発明の回折光学素子は、地上望遠鏡や天体観測用望遠鏡等の観察光学系にも適用することができ、さらにはレンズシャッターカメラやビデオカメラなどの光学式ファインダーにも適用することができ、先に説明したのと同様の効果が得られる。
【0102】
【発明の効果】
以上説明したように、本発明によれば、g線およびF線に対する部分分散比が上記条件式(1)の右辺の値よりも小さな材料を用いた回折格子を少なくとも1つ含んだ積層型の回折光学素子とすることにより、入射光の波長(使用波長)領域の全域において特定次数(設計次数)の回折効率を高くしつつ、光学系に組み込んだ際にフレア光となり得る不要回折次数の光を良好に抑制することが可能な回折光学素子を実現することができる。
【図面の簡単な説明】
【図1】本発明の第1実施形態である回折光学素子の正面図および側面図。
【図2】上記第1実施形態の回折光学素子の部分断面図。
【図3】上記第1実施形態の回折光学素子の設計次数での回折効率特性を示すグラフ図。
【図4】上記第1実施形態の回折光学素子の設計次数±1次での回折効率特性を示すグラフ図。
【図5】上記第1実施形態の回折光学素子を構成する材料の屈折率特性(nd−λ特性)を示すグラフ図。
【図6】上記第1実施形態の回折光学素子を構成する材料の部分分散比特性(θg,F−νd特性)を示すグラフ図。
【図7】上記第1実施形態の回折光学素子であって、他の材料を用いた場合の設計次数の回折効率特性を示すグラフ図。
【図8】上記第1実施形態の回折光学素子であって、他の材料を用いた場合の設計次数±1次の回折効率特性を示すグラフ図。
【図9】上記第1実施形態の回折光学素子の他の態様の部分断面図。
【図10】本発明の第2実施形態である回折光学素子の部分断面図。
【図11】本発明の第3実施形態である撮影光学系の構成図。
【図12】本発明の第4実施形態である撮影光学系の構成図。
【図13】従来の積層型回折光学素子の部分断面図。
【図14】従来の積層型回折光学素子の設計次数での回折効率特性を示すグラフ図。
【図15】従来の積層型回折光学素子の設計次数±1次での回折効率特性を示すグラフ図。
【図16】従来の単層型回折光学素子の部分断面図。
【図17】従来の単層型回折光学素子の設計次数での回折効率特性を示すグラフ図。
【図18】従来の積層型回折光学素子の部分断面図。
【図19】従来の積層型回折光学素子の設計次数での回折効率特性を示すグラフ図。
【符号の説明】
1 回折光学素子
2 第1の素子部
3 第2の素子部
4 第1の基板
5 第2の基板
6 第1の格子ベース部
7 第2の回折ベース部
8 第1の回折格子
9 第2の回折格子
10 空気層
11 第3層
101 撮影レンズ
102 絞り
103 結像面
104 対物レンズ
105 プリズム
106 接眼レンズ
107 評価面(瞳面)
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a diffractive optical element and an optical system having the same.
[0002]
[Prior art]
As a method for reducing chromatic aberration of the lens system, there is a method using a combination of glass materials, and there is a method of providing a diffractive optical element or a diffraction grating having a diffractive action on the surface of the lens or a part of the optical system.
[0003]
For example, it is proposed or disclosed in Non-Patent Document 1, Patent Documents 1 to 3, and the like.
[0004]
The method using a diffractive optical element utilizes a physical phenomenon in which chromatic aberration appears with respect to a light beam having a certain reference wavelength in the opposite direction between a refraction surface and a diffraction surface. In addition, the diffractive optical element can have the effect of an aspheric lens by appropriately changing the period of the periodic structure, so that it is effective in reducing aberrations other than chromatic aberration.
[0005]
In a lens system having a diffractive optical element, when a light beam in a used wavelength region is concentrated on diffracted light of one specific order (hereinafter, also referred to as “specific order” or “design order”), other diffractions are performed. The intensity of the diffracted light of the order is low, and when the intensity is 0, the diffracted light does not exist.
[0006]
However, when diffracted light of an order other than the design order exists and has a certain degree of intensity, an image is formed at a place different from the light of the design order, so that the light becomes flare light in the lens system.
[0007]
Therefore, in order to utilize the above-described aberration reducing effect of the diffractive optical element, it is necessary that the diffraction efficiency of the diffracted light of the design order is sufficiently high over the entire use wavelength range, and the spectral distribution of the diffraction efficiency at this design order is required. It is important to fully consider the behavior of diffracted light other than the design order.
[0008]
FIG. 16 shows a diffractive optical element (hereinafter, referred to as “single-layer DOE”) including a substrate 302 and a diffraction grating 301 formed on the substrate 302. FIG. 17 shows the characteristic of the diffraction efficiency with respect to a specific order when the light emitting device is formed as follows.
[0009]
In FIG. 17, the horizontal axis represents the wavelength of the incident light, and the vertical axis represents the diffraction efficiency. The value of the diffraction efficiency is a ratio of the amount of the diffracted light in each order to the amount of the total transmitted light flux, and the value of the reflected light at the lattice boundary is not considered because the description is complicated.
[0010]
As shown in FIG. 17, the single-layer DOE shown in FIG. 16 is designed to have the highest diffraction efficiency in the used wavelength region in the first diffraction order (shown by a thick solid line in the drawing). The design order is the first order. At this design order, the diffraction efficiency becomes highest at a certain wavelength (hereinafter, this wavelength is referred to as “design wavelength”), and gradually decreases at other wavelengths. The decrease in the diffraction efficiency at this design order becomes diffracted light of another order and becomes flare light. FIG. 17 also shows diffraction efficiencies of orders near the design order (0th order and 2nd order of 1 ± 1 order) as other orders.
[0011]
Various proposals have been made as a configuration for reducing the influence of flare light generated as described above.
[0012]
As shown in FIG. 18, the diffractive optical element proposed in Patent Document 4 optimally selects three types of different grating materials 306 to 308 and two types of different grating thicknesses d1 and d2, and makes a plurality of diffraction gratings equal. As shown in FIG. 19, the close contact arrangement with the pitch distribution achieves a somewhat high diffraction efficiency over the entire visible range in the design order.
[0013]
As shown in FIG. 13, a diffractive optical element proposed in Patent Document 5 has a structure in which element portions 202 and 203 each including a diffraction grating are brought close to each other via an air layer 210 (hereinafter, referred to as a diffractive optical element). The diffractive optical element having such a configuration is referred to as a “stacked DOE” 201, and by optimizing the refractive index, dispersion characteristics (Abbe number νd) of the material constituting each diffraction grating, and the grating thickness of each layer. As shown in FIG. 14, high diffraction efficiency is realized over the entire visible region in the design order.
[0014]
Further, by defining the Abbe number of the material constituting the diffraction grating, a high diffraction efficiency is realized with a grating thickness of 10 μm or less. Accordingly, the diffraction efficiency of the design order ± 1st order is more favorably suppressed as shown in FIG. 15 than the single-layer DOE of FIG.
[0015]
[Non-patent document 1]
SPIE @ Vol. 1354 \ International \ Lens \ Design \ Conference (1990)
[Patent Document 1]
JP-A-4-213421
[Patent Document 2]
JP-A-6-324262
[Patent Document 3]
U.S. Pat. No. 5,044,706
[Patent Document 4]
JP-A-9-127322
[Patent Document 5]
JP 2000-98118 A
[0016]
[Problems to be solved by the invention]
By using the diffractive optical elements proposed in Patent Documents 4 and 5, the diffraction efficiency of the design order is greatly improved as compared with the single-layer DOE, and is 94% or more and 450 nm over the entire wavelength range used. A high diffraction efficiency of 98% or more can be obtained in the main wavelength range from 650 nm to 650 nm. Further, the flare light of the unnecessary diffraction order is also approximately satisfactorily suppressed to 2% or less over the entire use wavelength range and 0.6% or less over the main wavelength range from 450 nm to 650 nm.
[0017]
For this reason, in an application to an optical system in which photographing (projection) conditions do not change (for example, a leader lens of a copying machine or a projection lens of a liquid crystal projector), the effect of flare is suppressed to a level that does not cause any problem by the stacked DOE.
[0018]
However, in an optical system of an optical device such as a still camera or a video camera that photographs various subjects under various conditions, a slight remaining flare may be a problem.
[0019]
For example, when a light source is present in a subject, generally, the photographing is not performed so that the light source has a proper exposure at the time of photographing, and the photographing is performed such that a subject other than the light source has a proper exposure.
[0020]
For this reason, the light source in the subject is photographed with an exposure equal to or more than the proper exposure. For example, if the light source is exposed at 500 times the proper exposure, the flare of the light source will be multiplied by 500, even if only 0.6% of the flare remains.
0.6 × 500 = 300%
And a flare that is three times the proper exposure, and will always appear in the captured image.
[0021]
As described above, when the laminated DOE is applied to the optical system of a still camera or a video camera, even a slight flare poses a problem.
[0022]
Accordingly, the present invention provides a diffractive optical element capable of obtaining high diffraction efficiency, particularly for light of a specific order, in a wide range of use wavelengths, and capable of particularly suppressing diffracted light of unnecessary diffraction orders, and an optical system using the diffractive optical element. It is intended to be.
[0023]
[Means for Solving the Problems]
In order to achieve the above object, according to the present invention, in a diffractive optical element having a structure in which a plurality of diffraction gratings made of materials having different Abbe numbers νd are superimposed on each other, at least one of the plurality of diffraction gratings is provided. Partial dispersion ratio θ of materials constituting two diffraction gratings to g-line and F-lineg, FBut,
θg, F<(-1/600) νd+0.55 (1)
Where θg, F= (Ng-NF) / (NF-NC)
νd= (Nd-1) / (nF-NC)
ng, NF, Nd, NCIs the refractive index for g-line, F-line, d-line, and C-line, respectively.
To satisfy certain conditions.
[0024]
That is, a stack including at least one diffraction grating using a material whose partial dispersion ratio with respect to the g-line and the F-line is smaller than the value on the right side of the conditional expression (1) (the value indicated by the solid line in the graph of FIG. 6). -Type diffractive optical element, while increasing the diffraction efficiency of a specific order (design order) over the entire wavelength (operating wavelength) region of the incident light, and unnecessary diffraction orders that can become flare light when incorporated into an optical system. Is realized.
[0025]
Further, by setting the grating thickness of each of the plurality of diffraction gratings to 10 μm or less, high diffraction efficiency can be achieved with a thin diffraction grating shape, and unnecessary diffraction orders that can become flare even when incorporated in an optical system having a wider angle of view. A diffractive optical element capable of favorably suppressing this light can be realized.
[0026]
The Abbe number ν of a material satisfying the above conditional expression (1)dIs preferably 30 or less.
[0027]
Furthermore, the Abbe number ν of at least one of the materials of the plurality of diffraction gratings other than the material satisfying conditional expression (1).dIs preferably 40 or more, the range of selection of materials satisfying conditional expression (1) is increased, which is preferable.
[0028]
As a material satisfying the above conditional expression (1), for example, Abbe number νdHaving a particle size of 15 or less (TiO 2)2The moldability of the diffraction grating is improved by using a mixture of a resin material (for example, an ultraviolet-curable resin) and a material such as ITO or the like, particularly having a particle diameter of 1/20 or less of the wavelength of the incident light. be able to.
[0029]
Further, by changing the direction of change of the grating thickness in the grating period direction of at least one of the plurality of diffraction gratings from the direction of change of the grating thickness of the other diffraction gratings, a high value over the entire wavelength region to be used is obtained. More effective in achieving diffraction efficiency.
[0030]
When each of the plurality of diffraction gratings has a grating pitch P and a grating thickness d,
d / P <1/6
By satisfying the following conditions, the workability of the diffraction grating can be improved.
[0031]
Further, by integrally forming the diffraction grating with the substrate using the same material as the (transparent) substrate, it becomes easy to manufacture an element portion (a portion corresponding to a single-layer DOE) composed of the diffraction grating and the substrate. It is also easy to manufacture a diffractive optical element made by overlapping element parts.
[0032]
BEST MODE FOR CARRYING OUT THE INVENTION
(1st Embodiment)
FIG. 1A is a front view of a diffractive optical element according to a first embodiment of the present invention, and FIG. 1B is a side view of the diffractive optical element. FIG. 2 is an enlarged view of a part of the cross-sectional shape when the diffractive optical element of FIG. 1 is cut along the line A-A ′. However, FIG. 2 is a diagram that is considerably deformed in the lattice depth direction.
[0033]
As shown in these figures, the diffractive optical element 1 includes a first element part 2 and a second element part 3 which are formed by a first diffraction grating 8 and a second diffraction grating formed in each element part. 9 are superposed so as to be close to each other with the air layer 10 interposed therebetween, and the first, second element sections 2 and 3 and the air layer 10 as a whole act as one diffractive optical element. Things.
[0034]
The first and second diffraction gratings 8 and 9 have a concentric grating shape, and have a lens function by changing the grating pitch in the radial direction. Further, the first diffraction grating 8 and the second diffraction grating 9 have substantially the same grating pitch distribution.
[0035]
As shown in FIG. 2, the first element section 2 includes a first transparent substrate 4, a lattice base section 6 provided on the first transparent substrate 4, and an integral formation with the lattice base section 6. And a first grating forming layer formed of the first diffraction grating 8, and a grating surface 8 a is formed at a boundary between the first diffraction grating 8 and the air layer 10.
[0036]
On the other hand, similarly to the first element section 2, the second element section 3 includes a second transparent substrate 5, a grid base section 7 provided on the second transparent substrate 5, and a A second grating forming layer made of an integrated second diffraction grating 9, and a grating surface 9 a is formed at the boundary between the second diffraction grating 9 and the air layer 10.
[0037]
The air layer 10 is set so that the thickness becomes D between the edges formed by the grating surfaces 8a and 9a of the two diffraction gratings 8 and 9 and the grating side surfaces.
[0038]
Here, regarding the dimensions of the first and second element portions 2 and 3, the lattice pitch is P1, P2(Μm), the grating thickness is d1, D2(Μm),
d1/ P1<1/6
d2/ P2<1/6
Is satisfied, there is an advantage that the lattice shape is easily machined with respect to the element parts 2 and 3 themselves and a mold for manufacturing (resin molding) these element parts 2 and 3.
[0039]
In the present embodiment, the wavelength region of light incident on the diffractive optical element 1, that is, the used wavelength region is a visible region, and the materials and grating thicknesses of the first and second diffraction gratings 8, 9 are in the visible region. It is selected so as to increase the diffraction efficiency of the first-order diffracted light as a whole.
[0040]
Next, the diffraction efficiency of the diffractive optical element 1 of the present embodiment will be described. In the ordinary single-layer DOE shown in FIG.0In the case of (1), the condition under which the diffraction efficiency of the diffracted light of a certain order is maximized is that when the light beam is incident perpendicularly to the base surface of the diffraction grating (the surface indicated by a dotted line in FIG. 2), The optical path length difference of a valley (that is, the optical path length difference between light beams passing through each of a peak and a valley) is to be an integral multiple of the wavelength of a light flux.
(N01-1) d = mλ0… (2)
It becomes.
[0041]
Where n01Is the wavelength λ0Is the refractive index of the material of the diffraction grating for this light. Also, d is the grating thickness and m is the diffraction order.
[0042]
Since the above equation (2) includes a wavelength term, the equality can be established only at the design wavelength with the same order, and the diffraction efficiency decreases from the maximum value at wavelengths other than the design wavelength.
[0043]
The diffraction efficiency η (λ) at an arbitrary wavelength λ is
η (λ) = sinc2[Π {M- (n1(Λ) -1) d / λ}] (3)
Can be represented by
[0044]
In the above equation (3), M is the order of the diffracted light to be evaluated, n1(Λ) is the refractive index of the material of the diffraction grating for the light of wavelength λ. Also, sinc2(X) = {sin (x) / x}2Is a function represented by
[0045]
The basic principle is the same for a diffractive optical element having a laminated structure of two or more layers as in the present embodiment. In order for the diffractive optical element to function as one diffractive optical element through all the layers, the material (air or the like) constituting each layer is also required. The optical path length difference between the peaks and valleys of the diffraction grating formed at the boundary of the diffraction grating is calculated, and the sum of the optical path length differences over the entire diffraction grating is set to be an integer multiple of the wavelength. Is determined.
[0046]
Therefore, in the diffractive optical element 1 shown in FIG.0In the case of, the condition for maximizing the diffraction efficiency of the diffracted light of the diffraction order m is
± (n01-1) d1± (n02-1) d2= Mλ0… (4)
It becomes.
[0047]
Here, in the above equation (4), n01Is a refractive index of a material forming the first diffraction grating 8 in the first element section 2 with respect to light having a wavelength λ0, and n02Is the wavelength λ of the material forming the second diffraction grating 9 in the second element section 3.0Is the refractive index for the light. Also, d1, D2Is the grating thickness of the first diffraction grating 8 and the second diffraction grating 9, respectively.
[0048]
Assuming that the diffraction order of light diffracted downward from the 0th-order diffracted light in FIG. 2 is a positive diffraction order and the diffraction order of light diffracted upward from the 0th-order diffracted light is a negative diffraction order, each layer in the above formula (3) Is negative in the case of the first diffraction grating 8 having a grating shape in which the grating thickness decreases from top to bottom in the drawing, and conversely, in the second diffraction grating having a grating shape in which the grating thickness increases from top to bottom. Is positive in the case of the diffraction grating 9.
[0049]
In the configuration shown in FIG. 2, the diffraction efficiency η (λ) at a wavelength λ other than the design wavelength λ0 is
η (λ) = sinc2[Π {M- {± (n1(Λ) -1) d1± (n2(Λ) -1) d2} / Λ}]
= Sinc2[Π {M-φ (λ) / λ}] (5)
It can be expressed by the following equation.
[0050]
Φ (λ) in the above equation (5) is
φ (λ) = ± (n1(Λ) -1) d1± (n2(Λ) -1) d2
It is. M is the order of the diffracted light to be evaluated, n1(Λ) is the refractive index of the material forming the first diffraction grating 8 at the wavelength λ, n2(Λ) is the refractive index of the material forming the second diffraction grating 9 at the wavelength λ, d1, D2Is the grating thickness of the first diffraction grating 8 and the second diffraction grating 9, respectively. Also sinc2(X) = {sin (x) / x}2Is a function represented by
[0051]
In the diffractive optical element 1 shown in FIG. 2, the grating surfaces 8a and 9a are formed on the boundary surface with the air layer 10, but the diffractive optical element of the present invention is not limited to this. As shown in FIG. 9, it is also possible to use a diffractive optical element composed of two diffraction gratings each having a grating surface formed on a boundary surface between two different materials (optical materials) different from air.
[0052]
FIG. 9A shows an example in which diffraction gratings 8 and 9 having different grating thicknesses are closely attached, and FIG. 9B shows an example in which diffraction gratings 8 and 9 having the same grating thickness are closely attached. Depending on the combination of materials constituting the diffraction grating, the grating thicknesses of the two diffraction gratings 8 and 9 can be made equal as shown in FIG. 9B.
[0053]
Next, conditions for obtaining high diffraction efficiency in the diffractive optical element 1 of the present embodiment will be described.
[0054]
In order to obtain a high diffraction efficiency over the entire use wavelength range, the value η (λ) expressed by the expression (5) should be close to 1 for all use wavelengths λ. In other words, it can be seen from the equation that φ (λ) / λ in equation (5) should be m in order to increase the diffraction efficiency at the design order m. For example, when the design order m is the first order, φ (λ) / λ only needs to approach 1.
[0055]
Further, it can be seen from the above relationship that the optical path length difference φ (λ) obtained from the grating shape needs to change linearly in proportion to the wavelength λ.
[0056]
To this end, a term that varies with the wavelength in the optical path length difference φ (λ),
± n1(Λ) d1± n2(Λ) d2
Need to have linearity. In other words, the ratio of the change in the refractive index due to the wavelength of the material forming the second diffraction grating 9 to the change in the refractive index due to the wavelength of the material forming the first diffraction grating 8 is constant over the entire wavelength range used. Is required.
[0057]
Expressing this in an equation,
n11) -N12): N21) -N22)
= N13) -N14): N23) -N24)… (6)
Where λ1, Λ2, Λ3, Λ4Indicates any wavelength used
It becomes.
[0058]
Here, as a configuration that almost satisfies the relationship of the above expression (6), a diffractive optical element 1 having a laminated structure shown in FIG. 2 will be described as an example. First, in order to obtain high diffraction efficiency, it is sufficient that at least two diffraction gratings exist, but the diffractive optical element 1 shown in FIG. 2 satisfies this.
[0059]
Further, in the diffractive optical element 1 shown in FIG. 2, the first diffraction grating 8 is made of a material (nd= 1.5702, νd= 13.5) and the grating thickness is 5.6 μm. On the other hand, the second diffraction grating 9 is made of an ultraviolet curable resin C001 (n) manufactured by Dainippon Ink and Chemicals, Inc.d= 1.524, νd= 50.8) and the grating thickness is 7.2 μm.
[0060]
FIG. 3 shows the diffraction efficiency characteristics in the first order, which is the design order of the diffractive optical element 1, and FIG. 4 shows the diffraction efficiency characteristics in the design order ± 1st order (0th order and 2nd order). . As can be seen from these characteristic diagrams, the diffractive optical element 1 has improved diffraction efficiency of the design order as compared with the characteristics shown in FIGS. Flare light is less likely to occur.
[0061]
In addition, the diffraction efficiency of the design order is 99.7% or more in the entire visible region, and accordingly, the flare light of the unnecessary order is 0.05% or less in the visible region, and the diffractive optical element using the conventional material. Is reduced to about 1/10.
[0062]
Here, regarding the diffraction efficiency of the unnecessary order light, only the 0th order and the 2nd order, which are the design order ± 1st order, are considered. However, since the diffraction orders farther away from the design order contribute less to the flare, This is because if the zero-order and second-order flare lights are reduced, the influence of other flare lights can be similarly reduced.
[0063]
This means that the diffractive optical element designed to diffract light of a specific design order mainly has a tendency that the diffraction efficiency tends to decrease as the order moves away from the design order. This is due to the fact that the order farther away from the lens is, the larger the blur is on the image forming surface and the less noticeable a flare is.
[0064]
Next, FIG. 5 shows the refractive index characteristics in the visible wavelength region of the material described in Japanese Patent Application Laid-Open No. 2000-98118 (the aforementioned Patent Document 5) and the material that is a feature of the present embodiment. In FIG. 5, a material 1 is a material used for both the second diffraction grating 9 of the present embodiment and the conventional example, and a material 2 is a material constituting the first diffraction grating 8 of the present embodiment. It is. Material 3 is a material constituting the first diffraction grating described in JP-A-2000-98118.
[0065]
In this characteristic diagram, the material 1 and the material 2 used in the present embodiment appear to have different slopes in the graph, but the change in the refractive index with respect to the change in wavelength is almost constant.
[0066]
On the other hand, in the material 1 and the material 3 used in the diffractive optical element described in JP-A-2000-98118, the change in the refractive index with respect to the wavelength is almost constant in the material 1, whereas the material 3 is short. The characteristic has a large degree of change on the wavelength side.
[0067]
This is because the characteristic of the Abbe number νd proposed in JP-A-2000-98118 is
νd= (Nd-1) / (nF-NC)
Where nF, Nd, NCIs the refractive index for F-line, d-line, and C-line, respectively.
This is because it is only a value that defines the average gradient of the refractive index change near the d-line (wavelength 587 nm).
[0068]
This νdThe characteristics were evaluation characteristics suitable for improving the diffraction efficiency characteristics as compared with the single-layer DOE while keeping the grating thickness small with a diffractive optical element having a laminated structure. However, in order to further improve the diffraction efficiency characteristic aimed at by the present invention, a conventional ν representing an average refractive index change is used.dVarious studies have shown that rating scales alone are not enough.
[0069]
In order to clarify the difference between these two materials, that is, material 2 and material 3, one evaluation scale used as a characteristic of the optical glass material will be examined.
[0070]
FIG. 6 shows the partial dispersion ratio θ with respect to the g-line and the F-line as the evaluation scales.g, FShows the characteristics of In FIG. 6, the horizontal axis is νd, The vertical axis is θg, FIs the value of θg, FIs
θg, F= (Ng-NF) / (NF-NC)
Where ng, NF, Nd, NCIs a value defined by the refractive index for the g-line, F-line, d-line, and C-line, respectively, and is an evaluation scale representing the ratio of the change in the refractive index on the short wavelength side to the change in the refractive index on the long wavelength side. .
[0071]
The material 2 in FIG. 6 is the material used for the first diffraction grating 8 in the present embodiment.g, FShows a considerably small value of about 0.3.
[0072]
Material 3 is a material described in JP-A-2000-98118, and this material 3 belongs to a general optical material. Then, the material 2 of the present embodiment is the same as the general optical material including the material described in JP-A-2000-98118.g, FΘ greatly different from characteristicsg, FIt can be understood from FIG. 6 that it has characteristics.
[0073]
FIGS. 7 and 8 show the diffraction efficiency of the diffractive optical element using the optical material shown as the material 4 in FIG. FIG. 7 shows the first-order diffraction efficiency characteristic, which is the design order, and FIG. 8 shows the zero-order and second-order diffraction efficiency characteristics, which are the design order ± 1 order. As the diffraction efficiency of the design order, a high diffraction efficiency of 97% or more over the entire use wavelength region and 99.5% or more over the main wavelength region of 450 nm to 650 nm is obtained.
[0074]
On the other hand, the flare light of the unnecessary diffraction order is 0.9% or less in the entire use wavelength range, and is 0.2% or less in the main wavelength range from 450 nm to 650 nm, which is about 1 / of the conventional example, which is well suppressed.
[0075]
As can be seen from the above, θg, FRegarding the characteristics, even with the material 4, sufficient diffraction efficiency characteristics can be obtained.
[0076]
Therefore, in order to improve the diffraction efficiency, which is the object of the present invention, the angle θ is larger than the solid line shown in FIG.g, FIs small, that is,
θg, F<(-1/600) νd+0.55
An optical material that satisfies the above condition may be used.
[0077]
As a material exhibiting such optical characteristics, there is ITO (Indium-Tin Oxide) or the like. However, when it is difficult to form a lattice shape using ITO as it is, ITO is used as fine particles having a diameter of the order of nanometers as proposed in Japanese Patent Application Laid-Open No. 2001-74701. It is preferable to use a material such as a material 2 or a material 4 mixed with a resin material that easily forms a lattice shape. Material 2 is a fluororesin Cytop (asahi Glass nd= 1.34, νd= 90) mixed with ITO fine particles. Material 4 is polyvinyl carbazole (nd= 1.70, νd= 18) mixed with ITO fine particles.
[0078]
As the same material, Abbe number νdThe use of a material having a value of 30 or less is preferable because the grating thickness of the diffraction grating can be reduced.
[0079]
Similarly, as the optical material in which fine particles are mixed in the resin material, it is preferable that the Abbe number is 30 or less after the fine particles are mixed. For this reason, a fine particle material having an Abbe number of 15 or less is used as the fine particles. It is desirable to do. As a particulate material satisfying such conditions, for example, in addition to the above-mentioned ITO, TiO2The use of is considered.
[0080]
Also, the size (diameter) of the fine particles used is preferably 1/20 or less of the used wavelength so that light is not scattered by the mixed fine particles.
[0081]
On the other hand, it is preferable to use a material having an Abbe number of 40 or more as the material for forming the second diffraction grating 9 because the thickness of the grating can be kept small.
[0082]
When optical glass is used as a material for forming the first diffraction grating 8 or a material for forming the second diffraction grating 9, the transparent substrates 4 and 5 shown in FIG. In this case, both can be manufactured integrally, and the number of parts is reduced, which is advantageous for cost reduction.
[0083]
When each of the diffraction gratings 8 and 9 has a grating pitch P and a grating thickness d,
d / P <1/6
It is preferable to have a grating shape that satisfies the condition, since it becomes easy to manufacture a mold for forming the diffraction gratings 8 and 9.
[0084]
In the first embodiment described above, the diffractive optical element in which the diffraction gratings (laminated DOEs) 8 and 9 are provided on the substrates 4 and 5 as flat plates has been described. However, curved surfaces such as convex and concave surfaces of the lens are described. The same effect as that described in the present embodiment can be obtained even if the diffractive portion is provided in the first embodiment.
[0085]
Further, in the present embodiment, the diffractive optical element using the so-called first-order diffracted light whose design order is 1 has been described, but the design order is not limited to 1 and is different from the 2nd or 3rd-order first order. Even in the case of diffracted light, the same effect as in the present embodiment can be obtained by setting the combined value of the optical path length differences in the diffraction gratings 8 and 9 so as to have a desired design order and a desired design wavelength.
[0086]
(2nd Embodiment)
In the first embodiment, two kinds of materials forming the two diffraction gratings 8 and 9 have been described for comparison with the conventional example. However, the embodiment of the present invention is not limited to this.
[0087]
For example, as shown in FIG. 10, the present invention is also applicable to a diffractive optical element having a three-layer structure in which three diffraction gratings 8, 9, and 11 are formed of three different materials (materials indicated by 8, 9, and 11). An invention can be provided.
[0088]
Even in this case, at least one material may be a material that satisfies the above expression (1). For example, in the diffractive optical element 1 ′ shown in FIG. 10, the third diffraction grating 11 provided between the second diffraction grating 9 and the air layer 10 so as to be in contact with the grating surface 9 a of the second diffraction grating 9. It is preferable to use a material satisfying the above formula (1).
[0089]
In addition, the meaning of the dimension of each part shown in FIG. 10 is the same as that of the first embodiment, and D1 and D2, which are not included in the first embodiment, are the difference between the grating surface 8a and the grating side surface of the first diffraction grating 8, respectively. The dimension from the edge formed to the boundary surface with the air layer 10 in the third diffraction grating 11 and the air layer 10 in the third diffraction grating 11 from the edge formed by the grating surface 9a of the second diffraction grating 9 and the side surface of the grating. Is the dimension up to the boundary surface.
[0090]
(Third embodiment)
FIG. 11 shows a configuration of a photographing (imaging) optical system of a camera (still camera, video camera, or the like) according to the third embodiment of the present invention. In this figure, reference numeral 101 denotes a photographing lens mostly constituted by a refractive optical element (for example, a normal lens element), and includes an aperture stop 102 and the diffractive optical element 1 described in the first embodiment.
[0091]
Reference numeral 103 denotes a photographing medium such as a film or a CCD disposed on the image plane. The diffractive optical element 1 is an element having a lens function, and corrects chromatic aberration generated by the refractive optical element in the taking lens 101.
[0092]
As described in the first embodiment, since the diffraction efficiency characteristic of the diffractive optical element 1 is greatly improved as compared with the conventional one, the flare light is small, the resolving power at a low frequency is high, and the diffractive optical element 1 is high. A photographing optical system having optical performance can be realized.
[0093]
Further, the diffractive optical element 1 can be manufactured by a simple method such as bonding each of the diffraction gratings at the peripheral portion after manufacturing the respective diffraction gratings, like the optical element having the air layer 10 shown in FIG. An inexpensive optical system which is excellent in mass productivity as a photographing optical system can be provided.
[0094]
In the present embodiment, the diffractive optical element 1 is provided on the flat glass surface arranged near the stop 102. However, the present invention is not limited to this. It may be provided on the concave or convex surface of the lens. Further, a plurality of diffractive optical elements 1 may be arranged in the taking lens 101.
[0095]
Further, in the present embodiment, the case where the diffractive optical element according to the present invention is used for the photographing lens of the camera has been described. However, the present invention is not limited to this, and a wide wavelength range such as an image scanner of an office machine or a leader lens of a digital copier is used. When the diffractive optical element of the present invention is used in the imaging optical system used in the above, the same effects as described above can be obtained.
[0096]
(Fourth embodiment)
FIG. 12 shows a configuration of an observation optical system of binoculars according to a fourth embodiment of the present invention. In this figure, 104 is an objective lens, 105 is a prism for erecting an inverted image, 106 is an eyepiece, and 107 is an evaluation plane (pupil plane). Reference numeral 1 denotes the diffractive optical element described in the first embodiment, which is provided for the purpose of correcting chromatic aberration and the like on the imaging surface 103 of the objective lens 104.
[0097]
As described in the first embodiment, this observation optical system has significantly improved diffraction efficiency characteristics as compared with the conventional one, so that there is little flare light, high resolution at low frequencies, and high optical performance. Having.
[0098]
Further, the diffractive optical element 1 can be manufactured by a simple method such as bonding each of the diffraction gratings at the peripheral portion after manufacturing the respective diffraction gratings, like the optical element having the air layer 10 shown in FIG. An inexpensive optical system having excellent mass productivity can be provided as (the objective lens unit of) the observation optical system.
[0099]
In this embodiment, the case where the diffractive optical element 1 is provided on the flat glass surface has been described. However, the present invention is not limited to this, and the diffractive optical element 1 may be provided on a concave or convex surface of a lens. Further, a plurality of diffractive optical elements 1 may be arranged in the observation optical system.
[0100]
In the present embodiment, the case where the diffractive optical element 1 is provided in the objective lens unit has been described. However, the present invention is not limited to this, and the diffractive optical element 1 may be provided on the surface of the prism 105 or the position in the eyepiece 106. The same effect as described in (1) can be obtained. However, providing the diffractive optical element 1 on the object side with respect to the imaging plane 103 has an effect of reducing chromatic aberration only with the objective lens unit. Therefore, in the case of a visual observation system, it is desirable to provide the diffractive optical element 1 at least in the objective lens unit.
[0101]
Further, in this embodiment, the observation optical system of the binoculars has been described. However, the diffractive optical element of the present invention can be applied to an observation optical system such as a terrestrial telescope or an astronomical observation telescope, and furthermore, a lens shutter camera. It can also be applied to an optical viewfinder such as a camera or a video camera, and the same effects as described above can be obtained.
[0102]
【The invention's effect】
As described above, according to the present invention, the laminated type including at least one diffraction grating using a material whose partial dispersion ratio with respect to the g-line and the F-line is smaller than the value on the right side of the conditional expression (1) is described. By using a diffractive optical element, while increasing the diffraction efficiency of a specific order (design order) over the entire wavelength (use wavelength) region of incident light, light of an unnecessary diffraction order that can become flare light when incorporated into an optical system. Can be realized.
[Brief description of the drawings]
FIG. 1 is a front view and a side view of a diffractive optical element according to a first embodiment of the present invention.
FIG. 2 is a partial cross-sectional view of the diffractive optical element according to the first embodiment.
FIG. 3 is a graph showing diffraction efficiency characteristics at a design order of the diffractive optical element according to the first embodiment.
FIG. 4 is a graph showing diffraction efficiency characteristics of the diffractive optical element according to the first embodiment at a design order ± 1st order.
FIG. 5 is a graph showing a refractive index characteristic (nd-λ characteristic) of a material constituting the diffractive optical element of the first embodiment.
FIG. 6 is a graph showing partial dispersion ratio characteristics (θg, F−νd characteristics) of a material constituting the diffractive optical element of the first embodiment.
FIG. 7 is a graph showing a diffraction efficiency characteristic of a design order when another material is used in the diffractive optical element of the first embodiment.
FIG. 8 is a graph showing the diffraction efficiency characteristic of the design order ± 1 order when another material is used in the diffractive optical element of the first embodiment.
FIG. 9 is a partial cross-sectional view of another mode of the diffractive optical element of the first embodiment.
FIG. 10 is a partial sectional view of a diffractive optical element according to a second embodiment of the present invention.
FIG. 11 is a configuration diagram of a photographic optical system according to a third embodiment of the present invention.
FIG. 12 is a configuration diagram of a photographic optical system according to a fourth embodiment of the present invention.
FIG. 13 is a partial sectional view of a conventional laminated diffractive optical element.
FIG. 14 is a graph showing diffraction efficiency characteristics at a design order of a conventional laminated diffractive optical element.
FIG. 15 is a graph showing diffraction efficiency characteristics of a conventional laminated diffractive optical element at a design order ± 1st order.
FIG. 16 is a partial cross-sectional view of a conventional single-layer diffractive optical element.
FIG. 17 is a graph showing diffraction efficiency characteristics at a design order of a conventional single-layer diffractive optical element.
FIG. 18 is a partial sectional view of a conventional laminated diffractive optical element.
FIG. 19 is a graph showing diffraction efficiency characteristics at a design order of a conventional laminated diffractive optical element.
[Explanation of symbols]
1 diffractive optical element
2 First element part
3 2nd element part
4 First substrate
5 Second substrate
6 First grid base
7 Second diffraction base
8 First diffraction grating
9 Second diffraction grating
10 air layer
11 3rd layer
101mm shooting lens
102 aperture
103 image plane
104 objective lens
105 ° prism
106 eyepiece
107 ° evaluation plane (pupil plane)

Claims (12)

それぞれアッベ数νdが異なる材料からなる複数の回折格子を積層した構造を有する回折光学素子であって、
前記複数の回折格子のうち少なくとも1つの回折格子を構成する材料のg線およびF線に対する部分分散比θg,Fが、
θg,F<(−1/600)ν+0.55
但し、θg,F=(n−n)/(n−n
ν=(n−1)/(n−n
,n,n,nはそれぞれ、g線,F線,d線,C線に対する屈折率
なる条件を満足することを特徴とする回折光学素子。
A diffractive optical element having a structure in which a plurality of diffraction gratings made of materials having different Abbe numbers νd are stacked,
The partial dispersion ratio θ g, F of the material constituting at least one of the plurality of diffraction gratings with respect to the g-line and the F-line is:
θ g, F <(− 1/600) ν d +0.55
However, θ g, F = (n g -n F) / (n F -n C)
ν d = (n d -1) / (n F -n C)
n g, n F, n d , each of n C, g-line, F-line, d line, the diffractive optical element which satisfies the condition that the refractive index for the C line.
前記複数の回折格子それぞれの格子厚が10μm以下であることを特徴とする請求項1に記載の回折光学素子。2. The diffractive optical element according to claim 1, wherein each of the plurality of diffraction gratings has a grating thickness of 10 μm or less. 前記条件を満足する材料のアッベ数νが30以下であることを特徴とする請求項1又は2に記載の回折光学素子。The diffractive optical element according to claim 1, wherein the Abbe number ν d of the material satisfying the condition is 30 or less. 前記複数の回折格子の材料のうち前記条件を満足する材料以外の少なくとも1つの材料のアッベ数νが40以上であることを特徴とする請求項1又は2に記載の回折光学素子。The diffractive optical element according to claim 1, wherein at least one of the materials of the plurality of diffraction gratings other than a material satisfying the condition has an Abbe number ν d of 40 or more. 前記条件を満足する材料は、アッベ数νが15以下の微粒子材料を樹脂材料に混合したものであることを特徴とする請求項1に記載の回折光学素子。Material satisfying the condition, the diffractive optical element according to claim 1, wherein the Abbe number [nu d is a mixture of 15 or less particulate material in the resin material. 前記微粒子材料の粒子径が、入射光の波長の1/20以下であることを特徴とする請求項5に記載の回折光学素子。The diffractive optical element according to claim 5, wherein a particle diameter of the fine particle material is 1/20 or less of a wavelength of incident light. 前記微粒子材料が、TiO又はITOであることを特徴とする請求項5に記載の回折光学素子。The diffractive optical element according to claim 5, wherein the particulate material, characterized in that it is a TiO 2 or ITO. 前記樹脂材料が、紫外線硬化樹脂であることを特徴とする請求項5に記載の回折光学素子。The diffractive optical element according to claim 5, wherein the resin material is an ultraviolet curable resin. 前記複数の回折格子のうち少なくとも1つの回折格子における格子周期方向の格子厚の変化方向が他の回折格子における格子厚の変化方向と異なることを特徴とする請求項1又は2に記載の回折光学素子。The diffractive optic according to claim 1, wherein a change direction of a grating thickness in a grating period direction of at least one of the plurality of diffraction gratings is different from a change direction of a grating thickness of another diffraction grating. element. 前記複数の回折格子のそれぞれが、格子ピッチをPとし、それぞれの格子厚をdとしたときに、
d/P<1/6
なる条件を満足することを特徴とする請求項1又は2に記載の回折光学素子。
When each of the plurality of diffraction gratings has a grating pitch P and a grating thickness d,
d / P <1/6
The diffractive optical element according to claim 1, wherein the following condition is satisfied.
可視波長域の光に対して回折作用を有することを特徴とする請求項1又は2に記載の回折光学素子。3. The diffractive optical element according to claim 1, wherein the diffractive optical element has a diffractive effect on light in a visible wavelength range. 屈折光学素子と、請求項1から11のいずれかに記載の回折光学素子を有することを特徴とする光学系。An optical system comprising a refractive optical element and the diffractive optical element according to claim 1.
JP2003166523A 2002-06-17 2003-06-11 Diffractive optical element and optical system having the same Expired - Fee Related JP4006362B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003166523A JP4006362B2 (en) 2002-06-17 2003-06-11 Diffractive optical element and optical system having the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002176144 2002-06-17
JP2003166523A JP4006362B2 (en) 2002-06-17 2003-06-11 Diffractive optical element and optical system having the same

Publications (2)

Publication Number Publication Date
JP2004078166A true JP2004078166A (en) 2004-03-11
JP4006362B2 JP4006362B2 (en) 2007-11-14

Family

ID=32032434

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003166523A Expired - Fee Related JP4006362B2 (en) 2002-06-17 2003-06-11 Diffractive optical element and optical system having the same

Country Status (1)

Country Link
JP (1) JP4006362B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005338798A (en) * 2004-04-28 2005-12-08 Canon Inc Diffraction optical element and optical system having same
WO2008099945A1 (en) * 2007-02-13 2008-08-21 Nikon Vision Co., Ltd. Achromatic lens system and optical instrument
JP2008203821A (en) * 2007-01-22 2008-09-04 Canon Inc Laminated diffraction optical element
EP1978380A1 (en) * 2006-01-27 2008-10-08 Asahi Glass Company, Limited Fluoropolymer for chromatic aberration correction lens, and chromatic aberration correction lens
JP2008242391A (en) * 2007-03-29 2008-10-09 Canon Inc Diffraction optical element and optical system using the same
JP2009134223A (en) * 2007-12-03 2009-06-18 Canon Inc Diffractive optical device and optical system including the same
JP2009192597A (en) * 2008-02-12 2009-08-27 Canon Inc Diffractive optical element and optical system with the same
US7700714B2 (en) 2005-11-10 2010-04-20 Teijin Chemicals, Ltd. Optical element and achromatic lens
US7710651B2 (en) 2007-03-23 2010-05-04 Canon Kabushiki Kaisha Contacting two-layer diffractive optical element
JP2012220899A (en) * 2011-04-14 2012-11-12 Canon Inc Diffractive optical element, optical system, and optical device
EP2581768A1 (en) * 2011-03-18 2013-04-17 Olympus Medical Systems Corp. Optical diffraction element and endoscope
JP5251517B2 (en) * 2007-01-25 2013-07-31 株式会社ニコン Eyeglass lenses
US8520304B2 (en) 2010-07-07 2013-08-27 Canon Kabushiki Kaisha Diffractive optical element and optical system including the same
JP5382531B2 (en) * 2007-12-20 2014-01-08 株式会社ニコン Eyepiece system, optical device
WO2023097850A1 (en) * 2021-12-03 2023-06-08 浙江水晶光电科技股份有限公司 Diffractive optical element and preparation method therefor, and method for designing master diffraction pattern

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10281693B2 (en) 2014-05-09 2019-05-07 Nikon Corporation Inverted equal-magnification relay lens and camera system

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005338798A (en) * 2004-04-28 2005-12-08 Canon Inc Diffraction optical element and optical system having same
US7236302B2 (en) 2004-04-28 2007-06-26 Canon Kabushiki Kaisha Diffraction optical element
JP4673120B2 (en) * 2004-04-28 2011-04-20 キヤノン株式会社 Diffractive optical element and optical system having the same
US7700714B2 (en) 2005-11-10 2010-04-20 Teijin Chemicals, Ltd. Optical element and achromatic lens
KR101288726B1 (en) 2005-11-10 2013-07-23 테이진 카세이 가부시키가이샤 Optical device and achromatic lens
EP1978380A1 (en) * 2006-01-27 2008-10-08 Asahi Glass Company, Limited Fluoropolymer for chromatic aberration correction lens, and chromatic aberration correction lens
EP1978380A4 (en) * 2006-01-27 2014-07-09 Asahi Glass Co Ltd Fluoropolymer for chromatic aberration correction lens, and chromatic aberration correction lens
JP2008203821A (en) * 2007-01-22 2008-09-04 Canon Inc Laminated diffraction optical element
JP5251517B2 (en) * 2007-01-25 2013-07-31 株式会社ニコン Eyeglass lenses
JP2008197378A (en) * 2007-02-13 2008-08-28 Nikon Vision Co Ltd Achromatic lens system and optical device
US8797649B2 (en) 2007-02-13 2014-08-05 Nikon Vision Co., Ltd. Achromatic lens system and optical apparatus
WO2008099945A1 (en) * 2007-02-13 2008-08-21 Nikon Vision Co., Ltd. Achromatic lens system and optical instrument
US8004778B2 (en) 2007-02-13 2011-08-23 Nikon Vision Co., Ltd. Achromatic lens system and optical apparatus
US7710651B2 (en) 2007-03-23 2010-05-04 Canon Kabushiki Kaisha Contacting two-layer diffractive optical element
JP2008242391A (en) * 2007-03-29 2008-10-09 Canon Inc Diffraction optical element and optical system using the same
JP2009134223A (en) * 2007-12-03 2009-06-18 Canon Inc Diffractive optical device and optical system including the same
JP5382531B2 (en) * 2007-12-20 2014-01-08 株式会社ニコン Eyepiece system, optical device
JP2009192597A (en) * 2008-02-12 2009-08-27 Canon Inc Diffractive optical element and optical system with the same
US8520304B2 (en) 2010-07-07 2013-08-27 Canon Kabushiki Kaisha Diffractive optical element and optical system including the same
EP2581768A1 (en) * 2011-03-18 2013-04-17 Olympus Medical Systems Corp. Optical diffraction element and endoscope
EP2581768A4 (en) * 2011-03-18 2014-12-24 Olympus Medical Systems Corp Optical diffraction element and endoscope
JP2012220899A (en) * 2011-04-14 2012-11-12 Canon Inc Diffractive optical element, optical system, and optical device
US8755119B2 (en) 2011-04-14 2014-06-17 Canon Kabushiki Kaisha Diffractive optical element, optical system and optical apparatus
WO2023097850A1 (en) * 2021-12-03 2023-06-08 浙江水晶光电科技股份有限公司 Diffractive optical element and preparation method therefor, and method for designing master diffraction pattern

Also Published As

Publication number Publication date
JP4006362B2 (en) 2007-11-14

Similar Documents

Publication Publication Date Title
JP5137432B2 (en) Adherent two-layer type diffractive optical element and optical system and optical apparatus using the same
JP3472097B2 (en) Diffractive optical element and optical system using the same
JP4673120B2 (en) Diffractive optical element and optical system having the same
JP3472103B2 (en) Diffractive optical element and optical system using the same
JP4587418B2 (en) Diffractive optical element and optical system having the diffractive optical element
JP5132284B2 (en) Diffractive optical element, optical system having the same, and optical instrument
JP4006362B2 (en) Diffractive optical element and optical system having the same
JP4336412B2 (en) Diffractive optical element and optical system using the same
US7916394B2 (en) Diffractive optical element and optical system using the same
US7710651B2 (en) Contacting two-layer diffractive optical element
JP5258204B2 (en) Diffractive optical element, optical system using the same, and optical instrument
JP3495884B2 (en) Diffractive optical element and optical system using the same
JP5546217B2 (en) Diffractive optical element, optical system having the same, and imaging apparatus
JP2012103543A (en) Diffraction optical element and imaging optical system
JP2005062526A (en) Optical element and optical system
JP3472154B2 (en) Diffractive optical element and optical system having the same
US6930833B2 (en) Diffractive optical element, and optical system and optical apparatus provide with the same
JP5765998B2 (en) Diffractive optical element, optical system and optical instrument
JP2002082214A (en) Diffractive optical element and optical system using the same
JP4590082B2 (en) Diffractive optical element and optical system using the same
JP5459966B2 (en) Diffractive optical element, optical system having the same, and optical instrument
JPH1152233A (en) Attachment lens and optical system loaded therewith
JP4088283B2 (en) Diffractive optical element, optical system including the same, and optical apparatus
JP6929350B2 (en) Diffractive optical element and its optical system, image pickup device, lens device
JP2017215478A (en) Diffraction optical element and optical system, imaging device and lens device having the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070619

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070821

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070827

R150 Certificate of patent or registration of utility model

Ref document number: 4006362

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100831

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110831

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120831

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120831

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130831

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees