JP2014006125A - Coordinates correction method - Google Patents

Coordinates correction method Download PDF

Info

Publication number
JP2014006125A
JP2014006125A JP2012141354A JP2012141354A JP2014006125A JP 2014006125 A JP2014006125 A JP 2014006125A JP 2012141354 A JP2012141354 A JP 2012141354A JP 2012141354 A JP2012141354 A JP 2012141354A JP 2014006125 A JP2014006125 A JP 2014006125A
Authority
JP
Japan
Prior art keywords
coordinates
measurement
axis direction
workpiece
stylus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012141354A
Other languages
Japanese (ja)
Inventor
jiro Saruwatari
治郎 猿渡
Minako Umeda
美奈子 楳田
Koichi Takita
宏一 滝田
Fumihiko Omura
文彦 大村
Yusuke Moru
裕介 毛留
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2012141354A priority Critical patent/JP2014006125A/en
Publication of JP2014006125A publication Critical patent/JP2014006125A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • A Measuring Device Byusing Mechanical Method (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a coordinates correction method which can correct a start position including an accuracy error in a linear scale for managing a position of a stylus using the linear scale.SOLUTION: A coordinates correction method takes a measurement start position of a stylus 6 on a measurement plane of a glass substrate W as a start point, and takes images of two points of indicators formed on the glass substrate W by an imaging means 7, and before correcting the start coordinates on the basis of measurement coordinates of linear scales 4a and 4b provided on respective frame 3 and Y-axis stage 5 and design values of the respective indicators, corrects the measurement coordinates of the respective indicators. The method includes the steps of: calculating a scale ratio on the basis of the design coordinates of the respective indicators and the measurement coordinates of the respective indicators; taking an intersection point of a straight line passing through the respective design coordinates and a straight line passing through the respective measurement coordinates as a rotation center coordinates to calculate an angle made by the rotation center coordinates and both straight lines; and calculating a gravity center position of a work. Then, the method performs similarity transformation on the respective measurement coordinates on the basis of the respective calculated values and corrects the measurement position.

Description

本発明は、座標補正方法に関し、より詳しくは、ワークに対して処理手段を相対移動させながら所定の処理を施す処理装置にて、ワークの処理面のうち処理開始の起点座標を定めるためワークに設けた2箇所の指標を撮像手段により夫々撮像し、この撮像した各指標の測定座標を補正するためのものに関する。   The present invention relates to a coordinate correction method, and more specifically, in a processing apparatus that performs a predetermined process while relatively moving a processing unit with respect to a work, in order to determine a starting coordinate of a processing start on a processing surface of the work. The present invention relates to an apparatus for imaging two provided indexes by an imaging unit and correcting the measurement coordinates of each captured index.

従来、互いに直交する水平2方向をX軸方向及びY軸方向として、ステージ上に保持されたワークに対しX軸方向に相対移動自在な門型のフレームと、このフレームの上端のY軸方向に長手のビームにリニアガイドを介してY軸方向に移動自在に支持されるY軸ステージとを備え、Y軸ステージに、ワークの表面に接触する触針を支持させた触針式測定装置は知られている(例えば、特許文献1参照)。この場合、門型のフレーム及びY軸ステージの位置は、ステージ及びビームに夫々設けたリニアスケール(リニアエンコーダ)でその測定値が検出されるようになっている。   Conventionally, a horizontal frame that is perpendicular to each other is defined as an X-axis direction and a Y-axis direction, and a portal frame that can move relative to the workpiece held on the stage in the X-axis direction, and a Y-axis direction at the upper end of the frame. A stylus-type measuring apparatus comprising a Y-axis stage supported on a longitudinal beam so as to be movable in the Y-axis direction via a linear guide, and having a stylus contacting the surface of the workpiece supported on the Y-axis stage is known. (For example, refer to Patent Document 1). In this case, the measured values of the positions of the portal frame and the Y-axis stage are detected by linear scales (linear encoders) provided on the stage and the beam, respectively.

上記触針式測定装置にて、例えば基板表面に成膜した薄膜の膜厚等のワークの表面形状を測定するのに際しては、ワークの測定面(処理面)内で測定開始座標を起点位置とし、ステージ上の基板に対して門型のフレームをX軸方向に相対移動すると共にワークに対してY軸ステージを相対移動させ、起点位置の直上に触針を位置させる。そして、ワークに対して触針を接触させ、この状態でX軸方向に任意の所定距離だけ相対移動させてワークの測定面の表面形状(凹凸)が測定される。   When measuring the surface shape of a workpiece, such as the thickness of a thin film formed on the substrate surface, with the above stylus type measuring device, the measurement start coordinate is set as the starting position within the workpiece measurement surface (processing surface). The portal frame is moved relative to the substrate on the stage in the X-axis direction, and the Y-axis stage is moved relative to the work, so that the stylus is positioned immediately above the starting position. Then, the stylus is brought into contact with the workpiece, and in this state, the workpiece is relatively moved by an arbitrary predetermined distance in the X-axis direction to measure the surface shape (unevenness) of the measurement surface of the workpiece.

ここで、例えばステージ上に基板を設置したときに位置ずれが生じている場合がある。このため、ステージに対する基板のずれ量を検出し、これを基に、起点座標の補正を行うことが一般である。具体的には、ワークの測定面に少なくとも2箇所のアライメントマーク(指標)を設けると共に、Y軸ステージにCCDカメラ等の撮像手段を付設する。そして、この撮像手段でアライメントマークを撮像し、このときのリニアスケールの測定値と、ワークに形成した指標の設計値とから、X軸方向及びY軸方向並びに基板の中心を回転中心する回転方向(θ方向)のずれ量を算出して起点座標を補正する。   Here, for example, when the substrate is placed on the stage, there may be a positional shift. For this reason, it is common to detect the amount of deviation of the substrate with respect to the stage and correct the starting point coordinates based on the detected amount. Specifically, at least two alignment marks (indexes) are provided on the measurement surface of the workpiece, and imaging means such as a CCD camera is attached to the Y-axis stage. Then, the alignment mark is imaged by this imaging means, and the rotation direction in which the X axis direction and the Y axis direction and the center of the substrate are rotated from the measured value of the linear scale at this time and the design value of the index formed on the workpiece. The starting point coordinates are corrected by calculating the deviation amount in the (θ direction).

然しながら、リニアスケールの分解能によっては、その検出した測定値と実測値とが一致していない場合(つまり、厳密な測長に対して誤差が生じている場合)があり、この測定値を基に起点位置を補正したのでは、補正精度が悪化する。このことは、リニアスケールにリニアリティがある場合、ワークのサイズ(例えば、一辺が3mの基板)が大きくなるに従い、累積する誤差の増大を招来する。このように起点位置が、測定しようとするワーク毎に変化したのでは、例えば成膜した膜厚を測定して品質管理するような場合にももはや利用できないことになる。   However, depending on the resolution of the linear scale, there may be a case where the detected measurement value does not match the actual measurement value (that is, there is an error with respect to the exact length measurement). If the starting position is corrected, the correction accuracy deteriorates. This means that when the linear scale has linearity, the accumulated error increases as the size of the workpiece (for example, a substrate having a side of 3 m) increases. In this way, if the starting position changes for each workpiece to be measured, it can no longer be used even when, for example, the formed film thickness is measured and quality control is performed.

特開平7−218207号公報JP 7-218207 A

本発明は、以上の点に鑑み、例えばリニアスケールを用いて処理手段の位置を管理する場合でも、リニアスケールの精度誤差を含めて起点位置の補正を行い得るようにした座標補正方法を提供することをその課題としている。   In view of the above points, the present invention provides a coordinate correction method capable of correcting the starting position including the accuracy error of the linear scale even when the position of the processing means is managed using, for example, a linear scale. That is the issue.

上記課題を解決するために、本発明は、ワークを、その処理面を開放してステージ上に保持させ、互いに直交する水平2方向をX軸方向及びY軸方向とし、ステージに対しX軸方向に相対移動自在な門型のフレームに装着された処理手段をワークに対してX軸方向及びY軸方向の少なくとも一方向に相対移動させながら所定の処理を施す処理装置にて、処理面のうち処理手段で処理を開始する位置を起点座標とし、ワークに設けた2箇所の指標を撮像手段により夫々撮像し、このときのフレームとY軸ステージとに夫々付設したリニアスケールの測定値と、両指標の設計座標とから起点座標を補正するのに先立ち、各指標の測定座標を補正する座標補正方法であって、前記両指標の設計座標と各指標の測定座標とから縮尺比を求める工程と、設計座標相互を通る直線と測定座標相互を通る直線との交点を回転中心座標とし、この回転中心座標と両直線がなす角度とを求める工程と、ワークの重心位置を求める工程とを含み、夫々求めた値から各測定座標を相似変換し、測定座標の補正を行うことを特徴とする。   In order to solve the above-described problems, the present invention allows a workpiece to be held on a stage with its processing surface open, and two horizontal directions orthogonal to each other are defined as an X-axis direction and a Y-axis direction, and the X-axis direction with respect to the stage. In a processing apparatus that performs predetermined processing while relatively moving a processing means mounted on a gate-shaped frame that is relatively movable relative to a workpiece in at least one of the X-axis direction and the Y-axis direction, The position at which processing is started by the processing means is set as the starting point coordinates, and the two indicators provided on the workpiece are respectively imaged by the imaging means, and the linear scale measurement values respectively attached to the frame and the Y-axis stage at this time, Prior to correcting the origin coordinates from the design coordinates of the index, a coordinate correction method for correcting the measurement coordinates of each index, the step of obtaining a scale ratio from the design coordinates of the both indices and the measurement coordinates of each index; , The intersection of the straight line that passes between the measured coordinates and the straight line that passes between the measurement coordinates is set as the rotation center coordinate, and the step of calculating the rotation center coordinate and the angle formed by the two straight lines and the step of determining the center of gravity position of the workpiece are included, respectively. Each measurement coordinate is similarly transformed from the obtained value, and the measurement coordinate is corrected.

本発明によれば、例えばリニアスケールで測長した測定値と設計値とを縮尺比とした相似変換を用いることで、リニアスケールの誤差率を予測することなく、当該リニアスケールの精度誤差を含めて測定座標の補正が可能となり、特に、ワークのサイズが大きくなる程、有利であり、その結果、例えばステージ上に基板を設置したときに位置ずれが生じていても、ワーク毎に確実に処理部の起点位置を略一致させることができる。   According to the present invention, for example, by using a similarity transformation using a measurement value measured with a linear scale and a design value as a scale ratio, the accuracy error of the linear scale is included without predicting the error rate of the linear scale. Measurement coordinates can be corrected, and in particular, the larger the workpiece size, the more advantageous. As a result, for example, even if a position shift occurs when a substrate is placed on the stage, it is reliably processed for each workpiece. The starting position of the part can be made substantially coincident.

なお、本発明は、前記処理手段がワークの表面に接触する触針であり、その表面形状を測定するものに適用することができる。   In addition, this invention is a stylus which the said process means contacts the surface of a workpiece | work, and can be applied to what measures the surface shape.

本発明の実施形態の触針式測定装置の正面図。The front view of the stylus type measuring device of an embodiment of the present invention. ステージ上に基板を載置した状態で当該基板のずれを説明する図。The figure explaining the shift | offset | difference of the said board | substrate in the state which mounted the board | substrate on the stage.

以下、図面を参照して、ワークを所定の薄膜が形成されたガラス基板Wとし、処理手段を、ガラス基板表面に接触した状態で相対移動する触針とし、処理装置たる触針式測定装置にて起点位置の座標を補正する場合を例に本発明の実施形態を説明する。   Hereinafter, referring to the drawings, the workpiece is a glass substrate W on which a predetermined thin film is formed, and the processing means is a stylus that moves relative to the surface of the glass substrate. The embodiment of the present invention will be described by taking as an example the case of correcting the coordinates of the starting position.

図1を参照して、1は、触針式測定装置を示している。この触針式測定装置1は、ベース2を備え、このベースの上面に基板Wが位置決め保持されるようにしている。なお、基板Wの位置決め保持方法は公知のものが利用できるため、ここでは省略する。そして、ベース2には、基板Wを跨ぐようにして門型のフレーム3が配置されている。   Referring to FIG. 1, reference numeral 1 denotes a stylus type measuring device. The stylus measuring device 1 includes a base 2 so that the substrate W is positioned and held on the upper surface of the base. Since a known method for positioning and holding the substrate W can be used, it is omitted here. A gate-shaped frame 3 is disposed on the base 2 so as to straddle the substrate W.

門型フレーム3は、ベース2に立設したY軸方向両側のコラム31,31と、両コラム31,31の上端間に横設したY軸方向に長手のビーム32とを備える。この場合、両コラム31,31は、ベース2上に固定したX軸方向に長手の他の一対のガイドレール33,33に移動自在に夫々支持されている。そして、例えば、図示省略したX軸方向に長手のボールねじの回転によりこのボールねじに螺合するナットを介して門型フレーム3をX軸方向に移動させることで、基板Wの測定面内で測定を開始する座標を起点位置(起点座標)とし、測定面の表面形状の測定に先立ち、ガラス基板Wに対し門型フレーム3を相対移動させ、この起点座標に対応するX軸方向の位置まで触針を移動するようになっている。この場合、ベース2の上面には、コラム31に対応させてリニアスケール(リニアエンコーダ)4aが設けられ、X軸方向での触針の移動量を測定できるようになっている。   The portal frame 3 includes columns 31 and 31 on both sides in the Y-axis direction that are erected on the base 2 and a beam 32 that is long in the Y-axis direction and is provided between the upper ends of the columns 31 and 31. In this case, both columns 31, 31 are supported by a pair of other guide rails 33, 33 that are fixed on the base 2 and that are long in the X-axis direction. Then, for example, by moving the portal frame 3 in the X-axis direction via a nut screwed to the ball screw by rotation of a ball screw elongated in the X-axis direction (not shown), the measurement is performed on the measurement surface of the substrate W. The coordinates at which the measurement is started are set as starting positions (starting coordinates), and prior to measurement of the surface shape of the measurement surface, the gate frame 3 is moved relative to the glass substrate W, and the X axis direction position corresponding to the starting coordinates is reached. The stylus is designed to move. In this case, a linear scale (linear encoder) 4a is provided on the upper surface of the base 2 so as to correspond to the column 31, so that the amount of movement of the stylus in the X-axis direction can be measured.

門型フレーム3の上端のビーム32には、図示省略のリニアガイドを介してY軸方向に移動自在にY軸ステージ5が、駆動機構51により往復動自在に支持されている。この場合、駆動機構51は、特に図示して説明しないが、X軸方向にも所定距離(ストローク)で移動自在に構成され、基板Wに対して後述の触針をX軸方向に所定距離だけ相対移動し、基板Wの測定面(処理面)表面形状(凹凸)が測定される。なお、駆動機構51を回転自在に構成し、触針の移動方向を変えるように構成してもよい。また、駆動機構については、例えばボールねじを用いたもの等、回転機構を含め、公知のものが利用できるため、ここでは、詳細な説明を省略する。また、Y軸ステージ5にもリニアスケール4bが付設され、Y軸方向での触針の移動量を測定できるようになっている。   The Y-axis stage 5 is supported on the beam 32 at the upper end of the portal frame 3 so as to be reciprocally movable by a drive mechanism 51 so as to be movable in the Y-axis direction via a linear guide (not shown). In this case, the driving mechanism 51 is configured to be movable at a predetermined distance (stroke) in the X-axis direction, although not specifically illustrated and described, and a stylus described later with respect to the substrate W is moved by a predetermined distance in the X-axis direction. The relative movement is performed, and the measurement surface (processing surface) surface shape (unevenness) of the substrate W is measured. The drive mechanism 51 may be configured to be rotatable so that the moving direction of the stylus is changed. As the drive mechanism, for example, a known mechanism including a rotation mechanism such as one using a ball screw can be used. The Y-axis stage 5 is also provided with a linear scale 4b so that the amount of movement of the stylus in the Y-axis direction can be measured.

Y軸ステージ5には、下方にのびる支持枠52が取付けられ、この支持枠52の下端に、ガラス基板Wの表面に接触する触針6がZ軸センサ61を介して上下方向に変位自在に支持され、触針6の上下方向変位をZ軸センサ61により検出できるになっている。また、Y軸ステージ5には、光源とCCDカメラを備えた撮像手段7が付設されている。撮像手段7には、図外の画像処理手段が付設され、画像処理手段にて処理した画像データが図示省略の制御手段に入力され、ステージ2に対するガラス基板Wのずれ量の測定に利用できるようになっている。制御手段は、マイクロコンピュータ、記憶素子やシーケンサ等を備えた公知のものであり、ステージ2、門型フレーム3及びY軸ステージ5の作動やリニアスケール4a、4bの測定値の処理等を含め触針式測定装置の稼動を統括制御する。   A support frame 52 that extends downward is attached to the Y-axis stage 5, and a stylus 6 that contacts the surface of the glass substrate W is displaceable in the vertical direction via the Z-axis sensor 61 at the lower end of the support frame 52. Supported, the Z-axis sensor 61 can detect the vertical displacement of the stylus 6. Further, the Y-axis stage 5 is provided with an imaging means 7 having a light source and a CCD camera. The image pickup means 7 is provided with an image processing means (not shown), and image data processed by the image processing means is input to a control means (not shown) so that it can be used for measuring a deviation amount of the glass substrate W with respect to the stage 2. It has become. The control means is a well-known one provided with a microcomputer, a storage element, a sequencer, etc., and includes the operation of the stage 2, the portal frame 3 and the Y-axis stage 5 and the processing of the measured values of the linear scales 4a and 4b. Controls the operation of the needle type measuring device.

上記触針式測定装置によるガラス基板Wの表面形状を測定するに際しては、門型フレーム3をベース1のX軸方向一側、Y軸ステージ5をY軸方向一側に夫々位置させた原点位置にて、ベース2上に測定対象物たるガラス基板Wを位置決め保持させる。次に、門型フレーム3及びY軸ステージ5を夫々X軸方向及びY軸方向に移動させて基板Wのうち相互に対向する隅部に形成したアライメントマーク(指標)M1,M2を撮像手段7により夫々撮像して画像処理し(図2参照)、このときの両リニアスケール4a、4bの測定値からアライメントマークM1,M2の座標(測定座標)を夫々特定する。   When measuring the surface shape of the glass substrate W by the stylus type measuring device, the origin position where the portal frame 3 is positioned on one side of the base 1 in the X-axis direction and the Y-axis stage 5 is positioned on one side in the Y-axis direction. Then, the glass substrate W as a measurement object is positioned and held on the base 2. Next, the gate-type frame 3 and the Y-axis stage 5 are moved in the X-axis direction and the Y-axis direction, respectively, and the alignment marks (indexes) M1 and M2 formed at the opposite corners of the substrate W are imaged. Respectively, and image processing is performed (see FIG. 2), and the coordinates (measurement coordinates) of the alignment marks M1 and M2 are specified from the measurement values of the linear scales 4a and 4b at this time.

次に、この測定座標から、制御手段に入力された起点位置(起点座標)を補正し、これに応じて触針6を起点位置の真上に位置するように門型フレーム3及びY軸ステージ5を夫々X軸方向及びY軸方向に移動させる。そして、触針6を基板Wの測定面に接触させ、この状態でY軸ステージ5をX軸方向に相対移動させることにより、触針6を基板Wの表面に沿ってX軸方向に走査する。そして、この走査中にZ軸センサ61で検出される触針6の上下方向変位に基づいて、基板Wの一つのX軸方向断面に沿った表面形状(凹凸)が測定される。   Next, the starting position (starting coordinates) input to the control means is corrected from the measured coordinates, and the portal frame 3 and the Y-axis stage are positioned so that the stylus 6 is positioned immediately above the starting position in accordance with this correction. 5 are moved in the X-axis direction and the Y-axis direction, respectively. Then, the stylus 6 is brought into contact with the measurement surface of the substrate W, and the Y-axis stage 5 is relatively moved in the X-axis direction in this state, whereby the stylus 6 is scanned in the X-axis direction along the surface of the substrate W. . Then, based on the vertical displacement of the stylus 6 detected by the Z-axis sensor 61 during this scanning, the surface shape (unevenness) along one X-axis direction cross section of the substrate W is measured.

ところで、図2に示すように、アライメントマーク(指標)を夫々撮像して測定座標を得たとき、リニアスケール4a、4bの分解能によっては、その検出した測定値と、ガラス基板Wに形成されるアライメントマークM1,M2の設計値とが一致していない場合(つまり、厳密な測長に対して誤差が生じている場合)がある。この場合、この測定座標を基に起点位置を補正したのでは、補正精度が悪化する。   By the way, as shown in FIG. 2, when the measurement coordinates are obtained by imaging the alignment marks (indexes), the detected measurement values and the glass substrate W are formed depending on the resolution of the linear scales 4 a and 4 b. There are cases where the design values of the alignment marks M1 and M2 do not match (that is, there is an error with respect to strict length measurement). In this case, if the starting position is corrected based on the measurement coordinates, the correction accuracy is deteriorated.

本実施形態では、両アライメントマークM1,M2の設計座標と測定座標とから縮尺比を求める工程と、設計座標相互を通る直線と、測定座標相互を通る直線との交点を回転中心座標とし、この回転中心座標と両直線がなす角度とを求める工程と、ガラス基板Wの重心位置を求める工程とを含み、夫々求めた値から各測定座標を相似変換し、実際の測定座標の補正を行うこととした。   In the present embodiment, the rotation center coordinate is defined as the intersection of the step of obtaining the scale ratio from the design coordinates and measurement coordinates of both alignment marks M1 and M2, the straight line passing between the design coordinates, and the straight line passing between the measurement coordinates. Including a step of obtaining a rotation center coordinate and an angle formed by both straight lines and a step of obtaining a center of gravity position of the glass substrate W, each measurement coordinate being similarly transformed from the obtained values, and the actual measurement coordinate being corrected. It was.

具体的には、基板に実施に形成されたときのアライメントマークM1の設計座標を(m1x,m1y)と、アライメントマークM2の設計座標を(m2x,m2y)とする。また、撮像手段7で特定されたアライメントマークM3の測定座標を(M1x,M1y)と、アライメントマークM4の測定座標を(M2x,M2y)とする。両アライメントマークM1,M2及びM3,M4間の夫々距離をmlen、Mlenとすると、次の関係式が成立する。   Specifically, the design coordinates of the alignment mark M1 when actually formed on the substrate are (m1x, m1y), and the design coordinates of the alignment mark M2 are (m2x, m2y). Further, the measurement coordinates of the alignment mark M3 specified by the imaging means 7 are (M1x, M1y), and the measurement coordinates of the alignment mark M4 are (M2x, M2y). If the distances between the alignment marks M1, M2 and M3, M4 are mlen and Mlen, respectively, the following relational expression is established.

Figure 2014006125
Figure 2014006125

そして、縮尺比をλとすると、次式で縮尺比が求められる。   When the scale ratio is λ, the scale ratio is obtained by the following equation.

Figure 2014006125
Figure 2014006125

次に、アライメントマークM1,M2及びM3,M4の相互を夫々通る直線の交点を回転中心座標(x0,y0)とすると、この回転中心座標と、そのときの両直線のなす角度θとは、以下の手順で求められる。
(1) (m1x,m1y)、(m2x,m2y)を通る直線の傾き及び切片
Next, if the intersections of the straight lines passing through the alignment marks M1, M2 and M3, M4 are the rotation center coordinates (x0, y0), the rotation center coordinates and the angle θ formed by the two straight lines at that time are: The following procedure is used.
(1) Slope and intercept of straight line passing through (m1x, m1y), (m2x, m2y)

Figure 2014006125
Figure 2014006125

(2) (M1x, M1y)、(M2x, M2y) を通る直線の傾き及び切片は、 (2) The slope and intercept of the straight line passing through (M1x, M1y) and (M2x, M2y) are

Figure 2014006125
Figure 2014006125

(3) 上記(1)及び(2)から、交点座標(x0,y0)は下記の如く求められる。即ち、 (3) From the above (1) and (2), the intersection coordinates (x0, y0) are obtained as follows. That is,

Figure 2014006125
Figure 2014006125

(4) 両直線のなす角である回転角θは、下記の如く求められる。即ち、 (4) The rotation angle θ, which is the angle formed by both straight lines, is obtained as follows. That is,

Figure 2014006125
Figure 2014006125

次に、ガラス基板Wを完全な長方形と考え、このガラス基板Wの中心を重心とし、設計上の基板中心座標(SGx,SGy)と、ガラス基板のサイズをGw×Ghとする。そして、上記数3〜数6からガラス基板の実際の重心位置(DGx、DGy)を次の手順(数7)で求める。   Next, the glass substrate W is considered to be a complete rectangle, the center of the glass substrate W is defined as the center of gravity, the designed substrate center coordinates (SGx, SGy), and the size of the glass substrate are defined as Gw × Gh. And the actual gravity center position (DGx, DGy) of a glass substrate is calculated | required by the following procedure (Formula 7) from the said Formula 3-Formula 6.

Figure 2014006125
Figure 2014006125

最後に、上記で求めた値から、測定座標を(x,y)、補正後のものを(x′,y′)とし、次式で各測定座標を相似変換し、実際の測定位置の補正を行う。最後に、この補正測定座標に基づき、制御手段に入力された起点座標を補正する。   Finally, from the values obtained above, the measurement coordinates are (x, y), the corrected one is (x ', y'), and each measurement coordinate is transformed by the following formula to correct the actual measurement position. I do. Finally, the starting point coordinates input to the control means are corrected based on the corrected measurement coordinates.

Figure 2014006125
Figure 2014006125

以上説明したように、本実施形態によれば、リニアスケール4a,4bで測長した測定値と設計値とを縮尺比とした相似変換を用いることで、リニアスケール4a,4bの誤差率を予測することなく、リニアスケール4a,4bの精度誤差を含めて測定座標位置の補正が可能となり、特に、数m×数mのガラス基板Wようにサイズの大きいものに対して有利であり、その結果、例えばステージ2上に基板を保持させたときに位置ずれが生じていても、ガラス基板W毎に確実に起点位置略一致させることができる。   As described above, according to the present embodiment, the error rate of the linear scales 4a and 4b is predicted by using the similarity transformation using the measurement values measured by the linear scales 4a and 4b and the design values as the scale ratio. The measurement coordinate position including the accuracy error of the linear scales 4a and 4b can be corrected without doing so, and it is particularly advantageous for a large-sized glass substrate W of several meters × several meters. For example, even if a positional deviation occurs when the substrate is held on the stage 2, it is possible to reliably make the starting position substantially coincide with each glass substrate W.

次に、以上の効果を確認するために、図1に示す触針式測定装置を用いて次の実験を行った。即ち、ワークを1800mm×1500mmのガラス基板Wとし、リニアスケール4a,4bに800mmで90μmの誤差があると仮定した場合、1800.090mm×1500.075mmのサイズであると誤認する可能性がある。つまり、回転方向のずれを考慮せずにガラス基板WのX軸方向及びY軸方向のずれのみを考え、設計座標を(m1x,m1y)=(10,10)と(M1x,M1y)=(11,11)で評価すると、従来方法で平行移動のみを補正すると、 (M1x-m1x,M1y-my)=(1,1)が補正値となり、測定座標(sx,sy)の補正後測定座標は、(sx+1,sy+1)となる。   Next, in order to confirm the above effect, the following experiment was conducted using the stylus type measuring apparatus shown in FIG. That is, if it is assumed that the workpiece is a glass substrate W of 1800 mm × 1500 mm and the linear scales 4a and 4b have an error of 90 μm at 800 mm, there is a possibility that the size is 1800.090 mm × 1500.075 mm. That is, without considering the rotation direction deviation, only the deviation of the glass substrate W in the X-axis direction and the Y-axis direction is considered, and the design coordinates are (m1x, m1y) = (10,10) and (M1x, M1y) = ( (11,11), if only the translation is corrected by the conventional method, (M1x-m1x, M1y-my) = (1,1) becomes the correction value, and the measurement coordinates after correction of the measurement coordinates (sx, sy) Becomes (sx + 1, sy + 1).

それに対して、上記実施形態の座標補正方法を適用すると、アライメントマークM1の測定座標は、(m1x,m1y)=(10,10)と(M1x,M1y)=(11.00055,11.00055)で評価され、アライメントマークトM2の座標は、(m2x,m2y)=(1790,1490)と(M2x,M2y)=(1791.08955,1491.07455)で評価される。次に、縮尺比を求めると、λ=1.00005となり、回転方向のずれを考慮しない場合、重心位置(DGx,DGy)=(901.05,751.0425)(λ*(sx - SGx) + DGx, λ*(sy - SGy) + DGy)となる。そして、λは1.00005、(SGx,SGy)=(900,750)、(DGx,DGy)=(901.05,751.0425となり、
(1.00005*(sx – 900) + 901.05, 1.00005*(sy -750) + 751.0425) =(1.00005*sx+1.005, 1.00005*sy+1.005)となり、(1.005,1.005)に補正される。
On the other hand, when the coordinate correction method of the above embodiment is applied, the measurement coordinates of the alignment mark M1 are evaluated by (m1x, m1y) = (10,10) and (M1x, M1y) = (11.00055,11.00055) The coordinates of the alignment mark M2 are evaluated by (m2x, m2y) = (1790,1490) and (M2x, M2y) = (1791.08955,1491.07455). Next, when calculating the scale ratio, λ = 1.00005, and when the shift in the rotation direction is not considered, the center of gravity (DGx, DGy) = (901.05,751.0425) (λ * (sx-SGx) + DGx, λ * ( sy-SGy) + DGy). And λ is 1.00005, (SGx, SGy) = (900,750), (DGx, DGy) = (901.05,751.0425,
(1.00005 * (sx – 900) + 901.05, 1.00005 * (sy -750) + 751.0425) = (1.00005 * sx + 1.005, 1.00005 * sy + 1.005), which is corrected to (1.005,1.005).

従って、従来例のものでは (1,1)であるのに対して、本実施形態では0.005mm改善される。よって、(1800,1500) の点は、(1801.095,1501.08)に補正される。移動平均のみだと(1801,1501)であり、X方軸向に0.095mm=95um改善され、Y軸方向には、0.08mm=80um改善されることとなる。   Therefore, in the present embodiment, it is (1,1), but in this embodiment, it is improved by 0.005 mm. Therefore, the point (1800, 1500) is corrected to (1801.095, 1501.08). The moving average alone is (1801,1501), which is improved by 0.095 mm = 95 μm in the X direction and 0.08 mm = 80 μm in the Y direction.

以上、本発明の実施形態について説明したが、本発明は上記のものに限定されるものではない。上記実施形態では、触針式測定装置に適用したものを例に説明したが、インクジェット式の塗布装置のノズルの位置を補正するような場合にも本発明を適用することができる。   As mentioned above, although embodiment of this invention was described, this invention is not limited to said thing. In the above-described embodiment, the example applied to the stylus type measuring apparatus has been described as an example. However, the present invention can also be applied to the case where the position of the nozzle of the ink jet type coating apparatus is corrected.

W…ワーク(ガラス基板)、2…ステージ、3…門型フレーム、4a,4b…リニアスケール、5…Y軸ステージ、6…触針(処理手段)。   W ... Work (glass substrate), 2 ... Stage, 3 ... Portal frame, 4a, 4b ... Linear scale, 5 ... Y-axis stage, 6 ... Stylus (processing means).

Claims (2)

ワークを、その処理面を開放してステージ上に保持させ、互いに直交する水平2方向をX軸方向及びY軸方向とし、ステージに対しX軸方向に相対移動自在な門型のフレームに装着された処理手段をワークに対してX軸方向及びY軸方向の少なくとも一方向に相対移動させながら所定の処理を施す処理装置にて、処理面のうち処理手段で処理を開始する位置を起点座標とし、ワークに設けた2箇所の指標を撮像手段により夫々撮像し、このときのフレームとY軸ステージとに夫々付設したリニアスケールの測定値と、両指標の設計座標とから起点座標を補正するのに先立ち、各指標の測定座標を補正する座標補正方法であって、
前記両指標の設計座標と各指標の測定座標とから縮尺比を求める工程と、設計座標相互を通る直線と測定座標相互を通る直線との交点を回転中心座標とし、この回転中心座標と両直線がなす角度とを求める工程と、ワークの重心位置を求める工程とを含み、夫々求めた値から各測定座標を相似変換し、測定座標の補正を行うことを特徴とする座標補正方法。
The workpiece is held on the stage with its processing surface open, and the two horizontal directions orthogonal to each other are the X-axis direction and Y-axis direction, and the work is mounted on a portal frame that can move relative to the stage in the X-axis direction. In the processing apparatus that performs predetermined processing while moving the processing means relative to the workpiece in at least one of the X-axis direction and the Y-axis direction, the position where the processing means starts processing on the processing surface is set as the starting coordinate. The two indices provided on the workpiece are respectively imaged by the imaging means, and the starting point coordinates are corrected from the measured values of the linear scales respectively attached to the frame and the Y-axis stage and the design coordinates of both indices. Is a coordinate correction method for correcting the measurement coordinates of each index,
The step of obtaining the scale ratio from the design coordinates of both indices and the measurement coordinates of each index, and the intersection of the straight line passing between the design coordinates and the straight line passing between the measurement coordinates as the rotation center coordinates, the rotation center coordinates and both straight lines A coordinate correction method comprising: a step of obtaining an angle formed by the step S3; and a step of obtaining a position of the center of gravity of the workpiece, wherein each measurement coordinate is subjected to similarity conversion from the obtained values, and the measurement coordinate is corrected.
前記処理手段は、ワークの表面に接触する触針であり、その表面形状を測定するものであることを特徴とする請求項1記載の座標測定方法。
The coordinate measuring method according to claim 1, wherein the processing means is a stylus that contacts the surface of the workpiece and measures the surface shape of the stylus.
JP2012141354A 2012-06-22 2012-06-22 Coordinates correction method Pending JP2014006125A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012141354A JP2014006125A (en) 2012-06-22 2012-06-22 Coordinates correction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012141354A JP2014006125A (en) 2012-06-22 2012-06-22 Coordinates correction method

Publications (1)

Publication Number Publication Date
JP2014006125A true JP2014006125A (en) 2014-01-16

Family

ID=50103981

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012141354A Pending JP2014006125A (en) 2012-06-22 2012-06-22 Coordinates correction method

Country Status (1)

Country Link
JP (1) JP2014006125A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106504223A (en) * 2016-09-12 2017-03-15 北京小米移动软件有限公司 The reference angle decision method of picture and device
CN113043738A (en) * 2021-03-15 2021-06-29 广东拓斯达科技股份有限公司 Glass silk-screen deviation calculation method and device and visual positioning method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07218207A (en) * 1994-02-01 1995-08-18 Nippon Steel Corp Surface shape measuring apparatus
JP2008014700A (en) * 2006-07-04 2008-01-24 Olympus Corp Workpiece inspection method and workpiece inspection device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07218207A (en) * 1994-02-01 1995-08-18 Nippon Steel Corp Surface shape measuring apparatus
JP2008014700A (en) * 2006-07-04 2008-01-24 Olympus Corp Workpiece inspection method and workpiece inspection device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106504223A (en) * 2016-09-12 2017-03-15 北京小米移动软件有限公司 The reference angle decision method of picture and device
CN106504223B (en) * 2016-09-12 2019-06-14 北京小米移动软件有限公司 The reference angle determination method and device of picture
CN113043738A (en) * 2021-03-15 2021-06-29 广东拓斯达科技股份有限公司 Glass silk-screen deviation calculation method and device and visual positioning method

Similar Documents

Publication Publication Date Title
TWI568571B (en) Print platform adjustment system and adjustment method therefor
EP2312264B1 (en) Offset Amount Calibrating Method and Surface Texture Measuring Machine
US8654351B2 (en) Offset amount calibrating method and surface profile measuring machine
TWI457534B (en) Vision inspection system and method for converting coordinates using the same
JP4970204B2 (en) Straightness measuring device, thickness variation measuring device, and orthogonality measuring device
TWI667090B (en) Laser processing device
JP5982194B2 (en) Origin coordinate correction method
JP2014006125A (en) Coordinates correction method
JP6128977B2 (en) Plate material peripheral edge processing apparatus and processing accuracy measurement and correction method
JP2017019290A (en) Scribe method and scribe device
JP5572247B2 (en) Image distortion correction method
CN116592757A (en) Two-dimensional precision compensation method of measurement system
JP2014019641A (en) Scribing method and scribing device
US20220397386A1 (en) Position measurement method
JP7070712B2 (en) How to correct the detected value of the linear scale
JP2021085807A (en) Surface inspection device, shape correction device, method for inspecting surface, and method for correcting shape
TWI392845B (en) Method and system for measuring squareness
JP2016205958A (en) Method for correcting movable head position of x-y substrate inspection device, and x-y substrate inspection device
JP5017034B2 (en) 2D coordinate measuring machine
JP2020085731A (en) Glass plate measuring apparatus and manufacturing method of glass plate
US11371828B2 (en) Coordinate measuring machine and method for measuring coordinates of a workpiece
CN218211215U (en) Glass plate deflection measuring device
JP6965795B2 (en) Rangefinder calibration method and calibration jig used for it
JP2010019742A (en) Straightness measurement method and device
JP2009152236A (en) Assembling device and position calibrating method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150312

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160223

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160906