JP2014006036A - Raw material air cooling method and apparatus of air liquefaction separation facility - Google Patents

Raw material air cooling method and apparatus of air liquefaction separation facility Download PDF

Info

Publication number
JP2014006036A
JP2014006036A JP2012144045A JP2012144045A JP2014006036A JP 2014006036 A JP2014006036 A JP 2014006036A JP 2012144045 A JP2012144045 A JP 2012144045A JP 2012144045 A JP2012144045 A JP 2012144045A JP 2014006036 A JP2014006036 A JP 2014006036A
Authority
JP
Japan
Prior art keywords
air
raw material
cooling
refrigerator
liquefaction separation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012144045A
Other languages
Japanese (ja)
Other versions
JP5910349B2 (en
Inventor
Toshiaki Amagasa
敏明 天笠
Masayuki Komuro
正之 小室
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2012144045A priority Critical patent/JP5910349B2/en
Publication of JP2014006036A publication Critical patent/JP2014006036A/en
Application granted granted Critical
Publication of JP5910349B2 publication Critical patent/JP5910349B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04157Afterstage cooling and so-called "pre-cooling" of the feed air upstream the air purification unit and main heat exchange line
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04769Operation, control and regulation of the process; Instrumentation within the process
    • F25J3/04775Air purification and pre-cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04866Construction and layout of air fractionation equipments, e.g. valves, machines
    • F25J3/04951Arrangements of multiple air fractionation units or multiple equipments fulfilling the same process step, e.g. multiple trains in a network
    • F25J3/04957Arrangements of multiple air fractionation units or multiple equipments fulfilling the same process step, e.g. multiple trains in a network and inter-connecting equipments upstream of the fractionation unit (s), i.e. at the "front-end"
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/24Processes or apparatus using other separation and/or other processing means using regenerators, cold accumulators or reversible heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/30Processes or apparatus using other separation and/or other processing means using a washing, e.g. "scrubbing" or bubble column for purification purposes
    • F25J2205/32Processes or apparatus using other separation and/or other processing means using a washing, e.g. "scrubbing" or bubble column for purification purposes as direct contact cooling tower to produce a cooled gas stream, e.g. direct contact after cooler [DCAC]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/30Processes or apparatus using other separation and/or other processing means using a washing, e.g. "scrubbing" or bubble column for purification purposes
    • F25J2205/34Processes or apparatus using other separation and/or other processing means using a washing, e.g. "scrubbing" or bubble column for purification purposes as evaporative cooling tower to produce chilled water, e.g. evaporative water chiller [EWC]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/90External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a raw material air cooling method and a raw material air cooling apparatus of an air liquefaction separation facility which efficiently cool a coolant (a coolant for cooling raw material air) that cools raw material air thereby reducing a power use amount in the air liquefaction separation facility.SOLUTION: A coolant for cooling raw material air is cooled by refrigeration machines 3a, 3b during night and a part of cold heat is accumulated in a heat accumulation tank (a heat accumulator) 1. The coolant for cooling the raw material air is cooled by the cold heat accumulated in the heat accumulation tank (the heat accumulator) 1 during the day.

Description

本発明は、圧縮機で圧縮した原料空気を冷却水で冷却した後、吸着器に導入して精製し、次いで冷却して精留を行い、酸素や窒素等を分離する空気液化分離設備における、原料空気の冷却方法及び装置に関するものである。   In the present invention, in the air liquefaction separation equipment that cools the raw material air compressed by a compressor with cooling water, introduces it into an adsorber and purifies it, then cools and performs rectification to separate oxygen, nitrogen, The present invention relates to a method and apparatus for cooling raw material air.

製鉄所等で使用する酸素、窒素、アルゴンといった空気中の成分ガスの製造技術としては、圧縮機で圧縮した原料空気を冷却水で冷却した後、吸着器に導入して精製し、次いで冷却して液化した後、精留を行い、酸素や窒素等を分離する空気液化分離技術が知られている(例えば、特許文献1、2参照)。   As a technology for producing component gases in the air such as oxygen, nitrogen, and argon used in steelworks, etc., the raw material air compressed by a compressor is cooled with cooling water, then introduced into an adsorber, purified, and then cooled. An air liquefaction separation technique for performing rectification and separating oxygen, nitrogen and the like after liquefaction is known (see, for example, Patent Documents 1 and 2).

図2は、一般的な空気液化分離設備(例えば、1時間当たり20000〜30000Nmの酸素を製造する空気液化分離設備)の概念図である。空気圧縮機6で圧縮された原料空気は、水冷塔2において、冷却塔5で常温まで冷やされた冷却水により冷却され、更に冷水塔4で冷却された冷水を冷水ポンプ7で送水して冷凍機3により約5℃まで冷却した冷水により約7℃まで冷却された後、吸着器8において水分及び二酸化炭素を吸着除去された後、コールドボックス12の内部に導入される。コールドボックス12の内部では、原料空気は蒸留塔11で分離された液体酸素や液体窒素等と熱交換器10により熱交換されて一層冷却されると共に、膨張タービン9により液化され、蒸留塔11において酸素や窒素等に分離される。 FIG. 2 is a conceptual diagram of a general air liquefaction separation facility (for example, an air liquefaction separation facility that produces 20000 to 30000 Nm 3 of oxygen per hour). The raw material air compressed by the air compressor 6 is cooled in the water cooling tower 2 by the cooling water cooled to room temperature in the cooling tower 5, and the cold water cooled in the cold water tower 4 is further fed by the cold water pump 7 to be frozen. After being cooled to about 7 ° C. by cold water cooled to about 5 ° C. by the machine 3, moisture and carbon dioxide are adsorbed and removed by the adsorber 8 and then introduced into the cold box 12. Inside the cold box 12, the raw material air is heat-exchanged with the liquid oxygen or liquid nitrogen separated by the distillation column 11 by the heat exchanger 10 and further cooled, and is liquefied by the expansion turbine 9. Separated into oxygen and nitrogen.

このような空気液化分離設備においては、原料空気を水冷塔2で如何に冷やすかがエネルギー効率(電力効率)に大きく影響することになる。   In such an air liquefaction separation facility, how the raw air is cooled by the water cooling tower 2 greatly affects the energy efficiency (power efficiency).

図3は、図2において原料空気を水冷塔2で冷却する部分をより詳細に示した部分拡大図である。空気圧縮機6で圧縮された原料空気は、断熱圧縮により夏場であれば約70℃まで上昇する。水冷塔2の内部は2段水冷スプレー2a、2bが設置されており、原料空気は、先ず1段目の水冷スプレー2aにより、冷却塔5で28℃まで冷やされた冷却水を用いて冷却され、更に、2段目の水冷スプレー2bにより、冷水塔4では製品にならない約10℃の粗窒素により16℃前後まで冷却された冷水を冷水ポンプ7で送水して冷凍機3により約5℃まで冷却した冷水を用いて、約7℃まで冷却される。   FIG. 3 is a partially enlarged view showing in more detail the portion of the raw air cooled in FIG. The raw material air compressed by the air compressor 6 rises to about 70 ° C. in the summer due to adiabatic compression. Two-stage water-cooled sprays 2a and 2b are installed inside the water-cooled tower 2, and the raw material air is first cooled by the first-stage water-cooled spray 2a using the cooling water cooled to 28 ° C. in the cooling tower 5. Furthermore, the cold water cooled to about 16 ° C. by crude nitrogen at about 10 ° C., which is not a product in the cold water tower 4, is supplied by the second stage water-cooled spray 2 b with the chilled water pump 7 to about 5 ° C. by the refrigerator 3. Cooled to about 7 ° C. using chilled cold water.

なお、冷凍機3は、通常、故障等による停止を想定して2台以上設置し、稼働冷凍機と予備冷凍機を設けることが一般的である。図2では、3aが稼働冷凍機、3bが予備冷凍機である。   In general, two or more refrigerators 3 are installed on the assumption of a stop due to a failure or the like, and an operation refrigerator and a spare refrigerator are generally provided. In FIG. 2, 3a is an operation refrigerator, and 3b is a preliminary refrigerator.

特開昭59−38573号公報JP 59-38573 A 特開平3−63490号公報Japanese Patent Laid-Open No. 3-63490

しかしながら、上記のような、1時間当たり20000〜30000Nmの酸素を製造する一般的な空気液化分離設備の場合、16℃前後まで冷却された原料空気冷却用冷却水を更に約5℃まで冷却するための冷凍機が数百kWの電力を使用していて、空気液化分離設備の製造コストの大きな部分を占めることが問題となっている。しかも、空気液化分離設備は常時稼働しており、夏季昼間などの気温が高く、一般的な電力需要が大きい時間帯に多くの電力を必要とするといった問題がある。 However, in the case of a general air liquefaction separation facility that produces 20000 to 30000 Nm 3 of oxygen per hour as described above, the cooling water for cooling the raw material air that has been cooled to around 16 ° C. is further cooled to about 5 ° C. For this reason, there is a problem that the refrigeration machine uses a power of several hundred kW and occupies a large part of the manufacturing cost of the air liquefaction separation equipment. In addition, the air liquefaction separation facility is always in operation, and there is a problem that a large amount of electric power is required in a time zone where the temperature is high during summer daytime and general electric power demand is large.

本発明は、上記のような事情に鑑みてなされたものであり、空気液化分離設備において、原料空気を冷却する冷却水(原料空気冷却用冷却水)を効率的に冷却して電力使用量を削減することができる空気液化分離設備の原料空気冷却方法及び装置を提供することを目的とするものである。   The present invention has been made in view of the above circumstances, and in an air liquefaction separation facility, cooling water for cooling raw material air (cooling water for raw material air cooling) is efficiently cooled to reduce power consumption. An object of the present invention is to provide a raw material air cooling method and apparatus for air liquefaction separation equipment that can be reduced.

上記課題を解決するために、本発明は以下の特徴を有する。   In order to solve the above problems, the present invention has the following features.

[1]圧縮機で圧縮した原料空気を冷却水で冷却した後、吸着器に導入して精製し、次いで液化して精留を行い、酸素及び窒素等を分離する空気液化分離設備において、
夜間は原料空気を冷却する冷却水を冷凍機で冷却すると共に、その冷熱の一部を蓄熱器に蓄熱し、昼間は原料空気を冷却する冷却水を前記蓄熱器に蓄熱した冷熱で冷却することを特徴とする空気液化分離設備の原料空気冷却方法。
[1] In an air liquefaction separation facility that cools raw material air compressed by a compressor with cooling water, introduces it into an adsorber, purifies it, liquefies it, performs rectification, and separates oxygen, nitrogen, etc.
Cool the cooling water that cools the raw material air with a refrigerator at night, store a part of the cold heat in the regenerator, and cool the cooling water that cools the raw air with the cold heat stored in the regenerator during the day. A raw material air cooling method for an air liquefaction separation facility.

[2]稼動冷凍機と予備冷凍機を備えた既設の空気液化分離設備に前記蓄熱器を設置する場合には、夜間に前記予備冷凍機を用いて前記蓄熱器に冷熱を蓄熱することを特徴とする前記[1]に記載の空気液化分離設備の原料空気冷却方法。   [2] When installing the heat accumulator in an existing air liquefaction separation facility equipped with an operating refrigerator and a preliminary refrigerator, cold energy is stored in the heat accumulator using the preliminary refrigerator at night. The method for cooling the raw material air of the air liquefaction separation facility according to the above [1].

[3]原料空気を圧縮する圧縮機と、該圧縮機で圧縮した原料空気を冷却水で冷却する水冷手段と、該水冷手段で冷却された原料空気を精製する吸着器と、該吸着器で精製された原料空気を液化して精留を行い、酸素及び窒素等を分離する精留手段とを備えた空気液化分離設備において、
原料空気を冷却する冷却水を夜間に冷却する冷凍機と、該冷凍機での冷熱の一部を夜間に蓄熱し、原料空気を冷却する冷却水を前記夜間に蓄熱した冷熱で昼間に冷却する蓄熱器とを備えたことを特徴とする空気液化分離設備の原料空気冷却装置。
[3] A compressor that compresses raw material air, a water cooling means that cools the raw material air compressed by the compressor with cooling water, an adsorber that purifies the raw air cooled by the water cooling means, and the adsorber In an air liquefaction separation facility equipped with rectification means for liquefying purified raw material air to perform rectification and separating oxygen, nitrogen and the like,
A refrigerator that cools the cooling water that cools the raw material air at night, a part of the cold heat in the refrigerator is stored at night, and the cooling water that cools the raw air is cooled in the daytime with the cold heat stored in the night A raw material air cooling device for an air liquefaction separation facility, comprising a heat accumulator.

[4]稼動冷凍機と予備冷凍機を備えた既設の空気液化分離設備に前記蓄熱器を設置する場合には、夜間に前記予備冷凍機を用いて前記蓄熱器に冷熱を蓄熱することを特徴とする前記[3]に記載の空気液化分離設備の原料空気冷却装置。   [4] When installing the heat accumulator in an existing air liquefaction separation facility equipped with an operating refrigerator and a preliminary refrigerator, cold energy is stored in the heat accumulator using the preliminary refrigerator at night. The raw material air cooling apparatus for the air liquefaction separation facility according to [3].

本発明によれば、空気液化分離設備において、夜間は原料空気冷却用冷却水を冷凍機で冷却すると共に、その冷熱の一部を蓄熱器に蓄熱し、昼間は原料空気冷却用冷却水を前記蓄熱器に蓄えた冷熱で冷却するようにしているので、原料空気冷却用冷却水を効率的に冷却することにより、昼間のように気温が高く、一般的に電力需要が大きい時間帯の電力使用量を削減することができる。   According to the present invention, in the air liquefaction separation facility, the cooling water for cooling the raw material air is cooled by the refrigerator at night, and part of the cold heat is stored in the regenerator, and the cooling water for cooling the raw material air is used in the daytime. Cooling with the cold energy stored in the regenerator allows efficient use of the cooling water for cooling the raw material air, so that electricity is used during times when the temperature is high during the daytime and the power demand is generally high. The amount can be reduced.

本発明の一実施形態を示す図である。It is a figure which shows one Embodiment of this invention. 一般的な空気液化分離設備の概念図である。It is a conceptual diagram of general air liquefaction separation equipment. 図2の部分拡大図である。FIG. 3 is a partially enlarged view of FIG. 2.

本発明の一実施形態を図面に基づいて説明する。   An embodiment of the present invention will be described with reference to the drawings.

図1は、本発明の一実施形態における空気液化分離設備の原料空気冷却システムを示す図である。   FIG. 1 is a diagram showing a raw material air cooling system of an air liquefaction separation facility according to an embodiment of the present invention.

図1に示すように、この実施形態においては、夜間に原料空気冷却用冷却水を冷凍機3a、3bで冷却すると共に、その冷熱の一部を蓄熱槽(蓄熱器)1に蓄熱し、昼間は原料空気冷却用冷却水を蓄熱槽(蓄熱器)1に蓄熱した冷熱にて冷却するようにしている。   As shown in FIG. 1, in this embodiment, the cooling water for cooling the raw material air is cooled by the refrigerators 3a and 3b at night, and part of the cold heat is stored in the heat storage tank (heat accumulator) 1 for daytime. The cooling water for cooling the raw material air is cooled by the cold energy stored in the heat storage tank (heat accumulator) 1.

すなわち、まず、図1(a)に示すように、夜間は、空気圧縮機6で圧縮された原料空気は、水冷塔2において、冷却塔5で常温まで冷やされた冷却水により冷却され、更に冷水塔4で冷却された冷水を冷水ポンプ7で送水して稼動冷凍機3aにより約5℃まで冷却した冷水により約7℃まで冷却される。それと同時に、予備冷凍機3bにより冷却された冷水は蓄熱体を内蔵した蓄熱槽1に送られ、その冷熱が蓄熱体に蓄熱される。そして、蓄熱槽1を通過した冷水は、その後、冷却塔5に送られる。   That is, first, as shown in FIG. 1A, at night, the raw material air compressed by the air compressor 6 is cooled in the water-cooled tower 2 by the cooling water cooled to room temperature by the cooling tower 5, The cold water cooled by the cold water tower 4 is fed by the cold water pump 7 and cooled to about 7 ° C. by the cold water cooled to about 5 ° C. by the operating refrigerator 3a. At the same time, the cold water cooled by the preliminary refrigerator 3b is sent to the heat storage tank 1 containing the heat storage body, and the cold heat is stored in the heat storage body. And the cold water which passed the thermal storage tank 1 is sent to the cooling tower 5 after that.

次に、図1(b)に示すように、昼間は、稼動冷凍機3aと予備冷凍機3bのいずれもが停止し、冷水塔4で冷却された冷水は冷水ポンプ7により蓄熱槽1に送水されて、蓄熱槽1に蓄熱された冷熱により約5℃まで冷却された後、水冷塔2へ送られる。   Next, as shown in FIG. 1 (b), both the active refrigerator 3 a and the preliminary refrigerator 3 b are stopped during the day, and the cold water cooled by the cold water tower 4 is sent to the heat storage tank 1 by the cold water pump 7. Then, after being cooled to about 5 ° C. by the cold heat stored in the heat storage tank 1, it is sent to the water cooling tower 2.

なお、図1(a)と図1(b)の間の切り替えは、制御装置(図示せず)からの指示に基づいて、開閉弁21、22a、22b、23、24を開閉することによって行われる。   Note that switching between FIG. 1A and FIG. 1B is performed by opening and closing the on-off valves 21, 22a, 22b, 23, and 24 based on instructions from a control device (not shown). Is called.

これによって、この実施形態では、昼間は、冷凍機3a、3bがいずれも停止しているため、昼間の冷凍機の電力使用量は0となる。   Accordingly, in this embodiment, since the refrigerators 3a and 3b are both stopped during the daytime, the power consumption of the daytime refrigerator is zero.

なお、図1(a)、(b)において、約7℃まで冷却された原料空気は、その後、図2に示したように、吸着器8において水分及び二酸化炭素を吸着除去された後、コールドボックス12の内部に導入される。コールドボックス12の内部では、原料空気は蒸留塔11で分離された液体酸素や液体窒素等と熱交換器10により熱交換されて一層冷却されると共に、膨張タービン9により液化され、蒸留塔11において酸素や窒素等に分離される。   In FIGS. 1 (a) and 1 (b), the raw material air cooled to about 7 ° C. is subjected to adsorption and removal of moisture and carbon dioxide in the adsorber 8, as shown in FIG. It is introduced inside the box 12. Inside the cold box 12, the raw material air is heat-exchanged with the liquid oxygen or liquid nitrogen separated by the distillation column 11 by the heat exchanger 10 and further cooled, and is liquefied by the expansion turbine 9. Separated into oxygen and nitrogen.

このようにして、この実施形態においては、夜間は原料空気冷却用冷却水を冷凍機3a、3bで冷却すると共に、その冷熱の一部を蓄熱槽1に蓄熱し、昼間は原料空気冷却用冷却水を蓄熱槽1に蓄えた冷熱で冷却するようにしているので、昼間の冷凍機の電力使用量を0にして、空気液化分離を行うことが可能である。   Thus, in this embodiment, the cooling water for cooling the raw material air is cooled by the refrigerators 3a and 3b at night, and part of the cold heat is stored in the heat storage tank 1, and the cooling for cooling the raw material air is performed during the day. Since water is cooled by the cold energy stored in the heat storage tank 1, it is possible to perform air liquefaction separation by setting the power consumption of the refrigerator in the daytime to zero.

この場合、例えば、30000Nm/hの酸素プラントで、昼間を8:00〜22:00とし、昼夜の電力単価差5円/kWhとすると、年間5百万円の電力コスト削減となる。 In this case, for example, in an oxygen plant of 30000 Nm 3 / h, if the daytime is 8:00 to 22:00 and the power unit price difference between day and night is 5 yen / kWh, the power cost is reduced by 5 million yen per year.

なお、蓄熱槽1の蓄熱体としては、約5℃に相変化点を持つ水和物スラリー蓄熱材を使用することにより、蓄熱密度を上げて、蓄熱体の容積を少なくし、建設コストを抑えることができる。   In addition, as a heat storage body of the heat storage tank 1, by using a hydrate slurry heat storage material having a phase change point at about 5 ° C., the heat storage density is increased, the volume of the heat storage body is reduced, and the construction cost is suppressed. be able to.

また、この実施形態においては、稼動冷凍機3aと予備冷凍機3bを備えた既設の空気液化分離設備を念頭において、複数台設置している予備冷凍機3bを夜間の冷熱の蓄熱用に利用するようにしているので、実施開始時の設備投資費用の負担も軽減される。   Further, in this embodiment, in consideration of the existing air liquefaction separation equipment provided with the operating refrigerator 3a and the preliminary refrigerator 3b, a plurality of the preliminary refrigerators 3b are used for storing the cold energy at night. As a result, the burden of capital investment costs at the start of implementation is reduced.

もちろん、予備冷凍機を備えていない空気液化分離設備においても、本発明の趣旨に基づいて同様に実施することが可能である。   Of course, it is possible to carry out similarly in an air liquefaction separation facility that does not include a preliminary refrigerator, based on the gist of the present invention.

1 蓄熱槽(蓄熱器)
2 水冷塔
2a 1段目の水冷スプレー
2b 2段目の水冷スプレー
3 冷凍機
3a 稼動冷凍機
3b 予備冷凍機
4 冷水塔
5 冷却塔
6 空気圧縮機
7 冷水ポンプ
8 吸着器
9 膨張タービン
10 熱交換器
11 蒸留塔
12 コールドボックス
21 開閉弁
22a 開閉弁
22b 開閉弁
23 開閉弁
24 開閉弁
1 heat storage tank (heat storage)
2 Water-cooled tower 2a First-stage water-cooled spray 2b Second-stage water-cooled spray 3 Refrigerator 3a Operation refrigeration machine 3b Pre-chiller 4 Chill tower 5 Cooling tower 6 Air compressor 7 Chilled water pump 8 Adsorber 9 Expansion turbine 10 Heat exchange Apparatus 11 Distillation tower 12 Cold box 21 On-off valve 22a On-off valve 22b On-off valve 23 On-off valve 24 On-off valve

Claims (4)

圧縮機で圧縮した原料空気を冷却水で冷却した後、吸着器に導入して精製し、次いで液化して精留を行い、酸素及び窒素等を分離する空気液化分離設備において、
夜間は原料空気を冷却する冷却水を冷凍機で冷却すると共に、その冷熱の一部を蓄熱器に蓄熱し、昼間は原料空気を冷却する冷却水を前記蓄熱器に蓄熱した冷熱で冷却することを特徴とする空気液化分離設備の原料空気冷却方法。
In the air liquefaction separation equipment that cools the raw material air compressed by the compressor with cooling water, introduces it into the adsorber and purifies it, then liquefies it, performs rectification, and separates oxygen, nitrogen, etc.
Cool the cooling water that cools the raw material air with a refrigerator at night, store a part of the cold heat in the regenerator, and cool the cooling water that cools the raw air with the cold heat stored in the regenerator during the day. A raw material air cooling method for an air liquefaction separation facility.
稼動冷凍機と予備冷凍機を備えた既設の空気液化分離設備に前記蓄熱器を設置する場合には、夜間に前記予備冷凍機を用いて前記蓄熱器に冷熱を蓄熱することを特徴とする請求項1に記載の空気液化分離設備の原料空気冷却方法。   In the case where the heat accumulator is installed in an existing air liquefaction separation facility equipped with an operating refrigerator and a preliminary refrigerator, cold energy is stored in the heat accumulator using the preliminary refrigerator at night. Item 2. A method for cooling a raw material air of an air liquefaction separation facility according to Item 1. 原料空気を圧縮する圧縮機と、該圧縮機で圧縮した原料空気を冷却水で冷却する水冷手段と、該水冷手段で冷却された原料空気を精製する吸着器と、該吸着器で精製された原料空気を液化して精留を行い、酸素及び窒素等を分離する精留手段とを備えた空気液化分離設備において、
原料空気を冷却する冷却水を夜間に冷却する冷凍機と、該冷凍機での冷熱の一部を夜間に蓄熱し、原料空気を冷却する冷却水を前記夜間に蓄熱した冷熱で昼間に冷却する蓄熱器とを備えたことを特徴とする空気液化分離設備の原料空気冷却装置。
Compressor for compressing raw air, water cooling means for cooling raw air compressed by the compressor with cooling water, an adsorber for purifying raw air cooled by the water cooling means, and purified by the adsorber In the air liquefaction separation equipment equipped with rectification means for liquefying raw material air to perform rectification and separating oxygen, nitrogen, etc.,
A refrigerator that cools the cooling water that cools the raw material air at night, a part of the cold heat in the refrigerator is stored at night, and the cooling water that cools the raw air is cooled in the daytime with the cold heat stored in the night A raw material air cooling device for an air liquefaction separation facility, comprising a heat accumulator.
稼動冷凍機と予備冷凍機を備えた既設の空気液化分離設備に前記蓄熱器を設置する場合には、夜間に前記予備冷凍機を用いて前記蓄熱器に冷熱を蓄熱することを特徴とする請求項3に記載の空気液化分離設備の原料空気冷却装置。   In the case where the heat accumulator is installed in an existing air liquefaction separation facility equipped with an operating refrigerator and a preliminary refrigerator, cold energy is stored in the heat accumulator using the preliminary refrigerator at night. Item 4. A raw material air cooling apparatus for an air liquefaction separation facility according to Item 3.
JP2012144045A 2012-06-27 2012-06-27 Raw material air cooling method and apparatus for air liquefaction separation equipment Expired - Fee Related JP5910349B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012144045A JP5910349B2 (en) 2012-06-27 2012-06-27 Raw material air cooling method and apparatus for air liquefaction separation equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012144045A JP5910349B2 (en) 2012-06-27 2012-06-27 Raw material air cooling method and apparatus for air liquefaction separation equipment

Publications (2)

Publication Number Publication Date
JP2014006036A true JP2014006036A (en) 2014-01-16
JP5910349B2 JP5910349B2 (en) 2016-04-27

Family

ID=50103913

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012144045A Expired - Fee Related JP5910349B2 (en) 2012-06-27 2012-06-27 Raw material air cooling method and apparatus for air liquefaction separation equipment

Country Status (1)

Country Link
JP (1) JP5910349B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105091504A (en) * 2015-09-11 2015-11-25 开封黄河空分集团有限公司 Energy-saving type test run device for water chilling unit
EP3974753A3 (en) * 2020-09-29 2022-09-21 Air Products And Chemicals, Inc. Chiller, air separation system, and related methods

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6237674A (en) * 1985-08-12 1987-02-18 大同ほくさん株式会社 Production unit for oxygen gas
JPH04254181A (en) * 1991-02-01 1992-09-09 Hitachi Ltd Refrigerator
JPH0682156A (en) * 1992-09-04 1994-03-22 Nippon Sanso Kk Method and apparatus for liquefying and separating air
JPH0913918A (en) * 1995-07-03 1997-01-14 Mitsubishi Heavy Ind Ltd Liquid air utilizing power generating facility
JPH09250360A (en) * 1996-03-14 1997-09-22 Hitachi Ltd Energy storaging type gas turbine power generating system
JP2000064813A (en) * 1998-08-25 2000-02-29 Toshiba Corp Cold storage type load leveling power generating system and power generating method using this system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6237674A (en) * 1985-08-12 1987-02-18 大同ほくさん株式会社 Production unit for oxygen gas
US4731102A (en) * 1985-08-12 1988-03-15 Daidousanso Co., Ltd. Oxygen gas production apparatus
JPH04254181A (en) * 1991-02-01 1992-09-09 Hitachi Ltd Refrigerator
JPH0682156A (en) * 1992-09-04 1994-03-22 Nippon Sanso Kk Method and apparatus for liquefying and separating air
JPH0913918A (en) * 1995-07-03 1997-01-14 Mitsubishi Heavy Ind Ltd Liquid air utilizing power generating facility
JPH09250360A (en) * 1996-03-14 1997-09-22 Hitachi Ltd Energy storaging type gas turbine power generating system
JP2000064813A (en) * 1998-08-25 2000-02-29 Toshiba Corp Cold storage type load leveling power generating system and power generating method using this system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105091504A (en) * 2015-09-11 2015-11-25 开封黄河空分集团有限公司 Energy-saving type test run device for water chilling unit
EP3974753A3 (en) * 2020-09-29 2022-09-21 Air Products And Chemicals, Inc. Chiller, air separation system, and related methods

Also Published As

Publication number Publication date
JP5910349B2 (en) 2016-04-27

Similar Documents

Publication Publication Date Title
EP3368630B1 (en) Low-temperature mixed--refrigerant for hydrogen precooling in large scale
AU2016344553B2 (en) Large-scale hydrogen liquefaction by means of a high pressure hydrogen refrigeration cycle combined to a novel single mixed-refrigerant precooling
WO2006051622A1 (en) Cryogenic liquefying refrigerating method and device
WO2000052403A1 (en) Natural gas letdown liquefaction system
US20170038136A1 (en) Method for the integration of a nitrogen liquefier and liquefaction of natural gas for the production of liquefied natural gas and liquid nitrogen
JP4276520B2 (en) Operation method of air separation device
EP3332198A1 (en) Method for the production of liquefied natural gas
JP5910349B2 (en) Raw material air cooling method and apparatus for air liquefaction separation equipment
JP3208547B2 (en) Liquefaction method of permanent gas using cold of liquefied natural gas
JP4594360B2 (en) Cryogenic air liquefaction separation device and operation method thereof
KR101045643B1 (en) Apparatus for liquefaction and purification of high purity and super high purity carbon dioxide
US9657986B2 (en) Installation and method for producing liquid helium
US20130139542A1 (en) Method and apparatus for producing liquid carbon dioxide
US10753682B2 (en) Facility and method for producing liquid helium
JP4365635B2 (en) Deuterium production apparatus, deuterium production method, and deuterium production plant
US10330381B2 (en) Plant for the liquefaction of nitrogen using the recovery of cold energy deriving from the evaporation of liquefied natural gas
EP3828487A1 (en) Process and apparatus for the production of liquid nitrogen
EP3845847A1 (en) A method and apparatus for improving efficiency of a front-end purification unit of an air separation plant
JP2017036898A (en) Method for operating an oxygen production device
JPS6338632B2 (en)
JP5244491B2 (en) Air separation device
JPH0682156A (en) Method and apparatus for liquefying and separating air
JPH0370976A (en) Air separating device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150721

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150909

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160314

R150 Certificate of patent or registration of utility model

Ref document number: 5910349

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees