JP2014005482A - Operating method of blast furnace - Google Patents

Operating method of blast furnace Download PDF

Info

Publication number
JP2014005482A
JP2014005482A JP2012139806A JP2012139806A JP2014005482A JP 2014005482 A JP2014005482 A JP 2014005482A JP 2012139806 A JP2012139806 A JP 2012139806A JP 2012139806 A JP2012139806 A JP 2012139806A JP 2014005482 A JP2014005482 A JP 2014005482A
Authority
JP
Japan
Prior art keywords
coal
blast furnace
self
amount
iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012139806A
Other languages
Japanese (ja)
Other versions
JP5855536B2 (en
Inventor
Yasuhiro Yamaguchi
山口  泰弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2012139806A priority Critical patent/JP5855536B2/en
Publication of JP2014005482A publication Critical patent/JP2014005482A/en
Application granted granted Critical
Publication of JP5855536B2 publication Critical patent/JP5855536B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacture Of Iron (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable manufacturing pig iron stably by preventing certainly a decrease of air permeability in a blast furnace even at the time of manufacturing of the pig iron with blowing dust coal including low volatile component coal.SOLUTION: Dust coal including low volatile component coal is blown to satisfy PCR×V/100≤273P (however, P>0), PCR×V/100≥90 where PCR is a blowing amount of the dust coal per 1 t of pig iron (kg/t of molten iron), V is a blending ratio of the low volatile component coal in total blown dust coal (%) and P is a blending amount of a self-fluxing pellet in all iron source (T/t of molten iron), at the time of manufacturing pig iron with blowing the dust coal including the low volatile component coal with a hot wind from a tuyere of a blast furnace.

Description

本発明は、高炉の羽口から熱風と共に低揮発分炭を含む微粉炭を吹き込みながら銑鉄を製造する高炉の操業方法に関する。   The present invention relates to a method of operating a blast furnace in which pig iron is produced while blowing pulverized coal containing low-volatile coal together with hot air from the tuyere of the blast furnace.

従来から、高炉では、その上部から鉄鉱石、コークス、石灰石などの原料を層状に装入し、下部から熱風を吹込んで、鉄鉱石の還元、溶解等の一連の反応を行わせ、銑鉄を製造している。高炉の操業では、還元材として、微粉炭を高炉の羽口から熱風と共に吹き込んで操業しており、この技術として特許文献1〜特許文献4に示すものがある。
特許文献1は、微粉炭吹き込み量が120kg/tを越える高炉への微粉炭吹き込み操業において、揮発分が20質量%以下の低揮発分炭を使用するに際して、全微粉炭の10〜38質量%を該低揮発分炭とし、かつ揮発分が30質量%以上の高揮発分炭を62〜90質量%混合して羽口から吹き込んでいる。
Conventionally, in a blast furnace, iron ore, coke, limestone and other raw materials are charged in layers from the top, and hot air is blown from the bottom to produce a series of reactions such as reduction and melting of iron ore to produce pig iron doing. In the operation of the blast furnace, pulverized coal is blown together with hot air from the tuyere of the blast furnace as a reducing material, and this technique is disclosed in Patent Documents 1 to 4.
In Patent Document 1, in the operation of injecting pulverized coal into a blast furnace where the amount of pulverized coal injection exceeds 120 kg / t, when using low volatile coal having a volatile content of 20% by mass or less, 10 to 38% by mass of the total pulverized coal. The low volatile coal is mixed with 62 to 90% by mass of high volatile coal having a volatile content of 30% by mass or more and blown from the tuyere.

特許文献2は、高炉羽口から160kg/pt以上の吹込量で微粉炭を吹き込む高炉操業方法において、配合されるいずれの炭種の揮発分含有率も25質量%以下である微粉炭を吹き込むとともに、Al23含有率が1.75質量%以上で、かつCaO含有率とSiO2含有率との和からMgO含有率を差し引いた値が11質量%以下の焼結鉱を炉頂部から装入している。 In Patent Document 2, in a blast furnace operation method in which pulverized coal is blown from a blast furnace tuyere at a blowing amount of 160 kg / pt or more, pulverized coal having a volatile content of any of the blended coal types of 25% by mass or less is blown. A sintered ore having an Al 2 O 3 content of 1.75% by mass or more and a value obtained by subtracting the MgO content from the sum of the CaO content and the SiO 2 content of 11% by mass or less is loaded from the top of the furnace. It has entered.

特許文献3は、高炉送風羽口より熱風と共に微粉炭を吹込む高炉操業方法において、微粉炭の許容揮発分含有量が、−0.2×(PC/R)+60、但し、PC/R(微粉炭比)=微粉炭量(kg/hr) /出銑量で示される値以下となるように石炭を配合して高炉内に吹き込んでいる。
特許文献4は、羽口部から微粉炭を高炉の内部に吹込む高炉操業法において、低揮発分含有微粉炭吹込み位置の手前より、高揮発分含有微粉炭を吹き込んでいる。
Patent Document 3 discloses that in a blast furnace operation method in which pulverized coal is blown together with hot air from a blast furnace blower tuyere, the allowable volatile content of pulverized coal is −0.2 × (PC / R) +60, provided that PC / R ( Coal is blended and blown into the blast furnace so that the ratio is equal to or less than the value indicated by pulverized coal ratio) = pulverized coal amount (kg / hr) / output.
In Patent Document 4, in a blast furnace operation method in which pulverized coal is blown into the interior of a blast furnace from a tuyere, high volatile content pulverized coal is blown from before the low volatile content pulverized coal blowing position.

特許4224218号公報Japanese Patent No. 4224218 特開4572734号公報JP 4572734 A 特開2000−282112号公報JP 2000-282112 A 特開平06−128614号公報Japanese Patent Laid-Open No. 06-128614

上述した特許文献1〜4は、微粉炭を吹き込んで高炉の操業を行う技術であって、微粉炭のうち低揮発分炭を吹き込む技術も開示されているが、これらの技術を用いたとしても高炉の通気性が低下する場合があった。
そこで、本発明は上記問題点を鑑み、低揮発分炭を含む微粉炭を吹き込みながら銑鉄を製造したとしても、高炉内の通気性の低下を確実に防止して安定的に銑鉄を製造することができる高炉の操業方法を提供することを目的とする。
Patent Documents 1 to 4 described above are techniques for operating a blast furnace by blowing pulverized coal, and a technique for blowing low-volatile coal among pulverized coal is also disclosed, but even if these techniques are used, In some cases, the air permeability of the blast furnace decreased.
Therefore, in view of the above problems, the present invention reliably prevents the deterioration of air permeability in the blast furnace and stably manufactures pig iron even if the pig iron is manufactured while blowing pulverized coal containing low-volatile coal. It aims at providing the operation method of the blast furnace which can do.

上述の目的を達成するため、本発明においては以下の技術的手段を講じた。
本発明に係る高炉の操業方法は、高炉の羽口から熱風と共に低揮発分炭を含む微粉炭を吹き込みながら銑鉄を製造するに際し、式(1)〜式(2)を満たすように、前記低揮発分炭を含む微粉炭を吹き込むことを特徴とする。
PCR×V/100≦273P ・・・(1)
PCR×V/100≧90 ・・・(2)
ただし、
PCR:銑鉄1トン当たりの微粉炭の吹き込み量(kg/溶銑ton)
V:吹き込んだ全微粉炭中の低揮発分炭の配合比(%)
P:全鉄源中の自溶性ペレットの配合量(ton/溶鉄ton)
P=鉱石比(ton/溶鉄ton)×自溶性ペレット配合比(%)
P>0
なお、「ton/溶銑t」とは、溶鉄1ton当たりのton数のことである。以降、「ton/溶銑t」のことを「T/溶鉄t」と表すこととする。また、この表記に合わせて、「kg/溶銑ton」のことを「kg/溶銑t」と表すこととする。
In order to achieve the above-described object, the present invention takes the following technical means.
The method of operating a blast furnace according to the present invention is such that, when producing pig iron while blowing pulverized coal containing low-volatile coal together with hot air from the tuyeres of the blast furnace, the low blast furnace satisfies the formulas (1) to (2). It is characterized by blowing pulverized coal containing volatile coal.
PCR × V / 100 ≦ 273P (1)
PCR × V / 100 ≧ 90 (2)
However,
PCR: Amount of pulverized coal blown per ton of pig iron (kg / molten iron ton)
V: Mixing ratio (%) of low volatile coal in all pulverized coal injected
P: Compounding amount of self-soluble pellet in total iron source (ton / molten iron ton)
P = Ore ratio (ton / molten iron ton) × self-fluxing pellet mixing ratio (%)
P> 0
Note that “ton / molten iron t” is the number of tons per ton of molten iron. Hereinafter, “ton / molten iron t” is expressed as “T / molten iron t”. In accordance with this notation, “kg / molten metal ton” is represented as “kg / molten metal t”.

本発明によれば、低揮発分炭を含む微粉炭を吹き込みながら銑鉄を製造したとしても、高炉内の通気性の低下を確実に防止して安定的に銑鉄を製造することができる。   According to the present invention, even if pig iron is produced while blowing pulverized coal containing low-volatile coal, pig iron can be stably produced while reliably preventing a decrease in air permeability in the blast furnace.

高炉の全体の概念図を示したものである。It shows a conceptual diagram of the entire blast furnace. 低揮発分炭の吹き込み量と、高炉の下部通気抵抗指数との関係図である。It is a related figure of the amount of low volatile coal injection, and the lower ventilation resistance index of a blast furnace. 高炉の操業に用いた低揮発分炭の吹き込み量を90kg/t以上として、自溶性ペレットに対する低揮発分炭の吹き込み量の割合(揮発分炭の吹き込み量/自溶性ペレット)と、下部通気抵抗指数との関係図である。The low volatile coal injection rate used for the operation of the blast furnace is 90 kg / t or more, the ratio of low volatile coal injection rate to the self-soluble pellet (volatile coal injection rate / self-soluble pellet), and lower ventilation resistance It is a relationship figure with an index.

以下、本発明に係る高炉の操業方法の実施の形態を、図をもとに説明する。
図1は、高炉の全体の概略図を示したものである。
図1に示すように、高炉1は、外部を鋼板製の鉄皮で覆い且つ、内部を耐火物で内張りされた炉体2を有している。高炉1の炉体2は、上部から下方にかけて下広がりになっており、上からシャフト部3、直胴状のベリー部4、さらにその下に、上広がりのボッシュ部5、そして最下部の炉床部6を有する。炉床部6の側壁には、炉内に熱風や微粉炭を吹き込む開口(羽口7)が設けられている。また、炉床部の側壁には、銑鉄(溶銑)を取り出す出銑口8が設けられている。
DESCRIPTION OF EMBODIMENTS Hereinafter, an embodiment of a blast furnace operating method according to the present invention will be described with reference to the drawings.
FIG. 1 shows a schematic view of the entire blast furnace.
As shown in FIG. 1, a blast furnace 1 has a furnace body 2 whose outside is covered with a steel plate-made iron skin and whose inside is lined with a refractory. The furnace body 2 of the blast furnace 1 is spread downward from the upper part to the lower part, the shaft part 3 from the top, the straight barrel-like berry part 4, further below it, the Bosch part 5 spreading upward, and the bottom furnace It has a floor 6. The side wall of the hearth part 6 is provided with an opening (a tuyere 7) through which hot air or pulverized coal is blown into the furnace. In addition, an outlet 8 for taking out pig iron (hot metal) is provided on the side wall of the hearth.

このような高炉1では、炉体2の上方から焼結鉱、ペレット状にした粉鉱石、コークス、石灰石などの原料を投入すると共に、羽口7から熱風を吹き込むと共に微粉炭を吹き込むことにより、銑鉄を製造する。
近年、世界的に粗鋼生産量が増加していることから、高炉の還元材の一部として使用される微粉炭の需要も多くなってきており、燃焼性の高い高揮発分炭は減少する傾向にある。そんな中、燃焼性が低い低揮発分炭を使用することも検討されている。例えば、特許第4224218号公報では、全微粉炭のうち低揮発分炭の割合を規定することによって燃焼効率を向上させたり、特許第4572734号公報では、投入するCaO等の配合割合を調整することにより未燃焼の低揮発性分炭を消失させたり、特開2000−282112号公報では、許容揮発分含有量を規定することによる石炭の配合を規定している。しかしながらこれらの技術を用いたとしても、未燃焼の微粉炭の消費を促進しつつ通気性を確保することが難しく、低揮発分炭を使用するためには、新しい技術の開発が必要である。
In such a blast furnace 1, raw materials such as sintered ore, pelletized ore, coke, limestone and the like are introduced from above the furnace body 2, and hot air is blown from the tuyere 7 and pulverized coal is blown. Produces pig iron.
In recent years, the global production of crude steel has increased, so the demand for pulverized coal used as part of blast furnace reducing material has increased, and the tendency for flammable highly volatile coal to decrease is increasing. It is in. Meanwhile, the use of low-volatile coal with low combustibility is also being considered. For example, in Japanese Patent No. 4224218, combustion efficiency is improved by defining the proportion of low-volatile coal in the total pulverized coal, or in Japanese Patent No. 4572734, the proportion of CaO or the like to be added is adjusted. Thus, unburned low-volatile coal is eliminated, or JP 2000-282112 discloses coal blending by regulating the allowable volatile content. However, even if these technologies are used, it is difficult to ensure air permeability while promoting consumption of unburned pulverized coal, and in order to use low-volatile coal, it is necessary to develop a new technology.

そこで、発明者らは、まず、低揮発分炭の使用による高炉の通気性についての調査を行った。高炉の通気性は、特開2004−263258号公報の段落0011に示されているように、通気抵抗指数の値で評価されるもので、通気抵抗指数が小さい場合、炉下部で発生した還元ガスが安定して炉内を流れ、操業が安定(鉱石の還元や装入物の昇温が安定)することから、通気抵抗指数が小さいほどよいとされている。この通気抵抗指数は、高炉の送風絶対圧力をPb(g/cm)とし、炉頂絶対圧力をPb(g/cm)とし、炉下部で発生するガス量をVb(Nm/min)としたき、[(Pb−Pt)/Vb1.7]で求められる値である。 Therefore, the inventors first investigated the air permeability of the blast furnace using low volatile coal. The air permeability of the blast furnace is evaluated by the value of the airflow resistance index as shown in paragraph 0011 of JP 2004-263258 A. When the airflow resistance index is small, the reducing gas generated in the lower part of the furnace Is stable and the operation is stable (reduction of the ore and the temperature rise of the charge are stable), the smaller the ventilation resistance index, the better. The ventilation resistance index is such that the absolute pressure of the blast furnace is Pb (g / cm 2 ), the absolute pressure at the top of the furnace is Pb (g / cm 2 ), and the amount of gas generated in the lower part of the furnace is Vb (Nm 3 / min). And [(Pb 2 −Pt 2 ) / Vb 1.7 ].

なお、Pb(g/cm)とは、特開2004−263258号公報の段落0014に示されているように、高炉のボッシュ部におけるガス量( Vb )のことで、送風空気中のN量( Nair×0.79) と、送風空気中のOおよび送風空気中に富化されたOと微粉炭との燃焼反応(O+2C→2CO) により生成するCO量( 2×Nair×0.21+2×NO) との総和として表される。具体的には、[Vb= Nair×0.79+2×Nair×0.21+2×NO]で表される。Nairは、送風空気量(Nm/min) 、NOは、送風空気中への酸素富化量(Nm/min)であ
る。
Incidentally, Pb (g / cm 2) and, as shown in paragraph 0014 of JP-A-2004-263258, since the amount of gas in the Bosch portion of blast furnace (Vb), N 2 of the blown in air Amount (N air × 0.79) and the amount of CO generated by the combustion reaction (O 2 + 2C → 2CO) between O 2 in the blown air and O 2 enriched in the blown air and pulverized coal (2 × N air × 0.21 + 2 × NO 2 ). Specifically, it is represented by [Vb = N air × 0.79 + 2 × N air × 0.21 + 2 × NO 2 ]. N air is the blown air amount (Nm 3 / min), and NO 2 is the oxygen enrichment amount (Nm 3 / min) into the blown air.

ここで、未燃焼の低揮発分炭は、高炉の下部で滞留して当該高炉の通気性を阻害すると考えられることから、本発明では、高炉の通気性は、高炉の炉頂ではなく高炉の中段(シャフト2段)に備えられている圧力計の絶対圧力を用いて評価することとした。また、高炉の下側であってシャフト2段での通気性について評価したことから、通気抵抗指数を「下部通気抵抗指数」として表することとする。下部通気抵抗指数が2.0より大きくなると、通気障害による減風が生じることから、下部通気抵抗指数は2.0以下であることが好ましい。なお、この実施形態では、高炉の中段であるシャフト2段に圧力計を設けて通気性について評価しているが、圧力計の位置及び下部通気抵抗指数の数値は限定されない。例えば、圧力計の位置は、高炉の下部通気抵抗が測定できる位置であって高炉の融着帯10を含む位置に設定することが好ましい。また、下部通気抵抗指数は、通気性の度合いを示すものであるため、それ自体の数値も限定されない。例えば、高炉の操業において下部通気抵抗指数の上限値を設定して、当該上限値以下にすればよい。   Here, since it is considered that unburned low volatile coal stays in the lower part of the blast furnace and impairs the air permeability of the blast furnace, in the present invention, the air permeability of the blast furnace is not the top of the blast furnace but the blast furnace. Evaluation was made using the absolute pressure of the pressure gauge provided in the middle stage (two stages of shafts). In addition, since the air permeability in the lower stage of the blast furnace and the two-stage shaft was evaluated, the air flow resistance index is expressed as a “lower air flow resistance index”. If the lower ventilation resistance index is greater than 2.0, wind reduction due to ventilation failure occurs, and therefore the lower ventilation resistance index is preferably 2.0 or less. In this embodiment, a pressure gauge is provided on the second stage of the shaft, which is the middle stage of the blast furnace, and the air permeability is evaluated. However, the position of the pressure gauge and the numerical value of the lower ventilation resistance index are not limited. For example, the position of the pressure gauge is preferably set to a position where the lower ventilation resistance of the blast furnace can be measured and includes the fusion zone 10 of the blast furnace. Further, since the lower ventilation resistance index indicates the degree of air permeability, its own numerical value is not limited. For example, in the operation of the blast furnace, an upper limit value of the lower ventilation resistance index may be set to be equal to or lower than the upper limit value.

図2は、低揮発分炭の吹き込み量と、高炉の下部通気抵抗指数との関係をまとめたものである。図2に示すように、低揮発分炭の吹き込み量が増加すると、下部通気抵抗指数が上昇する傾向にある。低揮発分炭の吹き込み量が90kg/溶銑t以上になると下部通気抵抗指数が2.0を超えてしまう傾向にある。しかしながら、実際の操業では、上述したように、世界的に粗鋼生産量が増加するに伴う高揮発分炭の減少に対応して、高揮発分炭の代わりに多くの低揮発分炭を使用する必要があり、例えば、上述したように、低揮発分炭の吹き込み量を90kg/溶銑t以上用いたとしても下部通気抵抗指数を低下させないようにする、即ち、下部通気抵抗指数を2.0以下にすることが必要である。   FIG. 2 summarizes the relationship between the amount of low volatile coal injected and the lower ventilation resistance index of the blast furnace. As shown in FIG. 2, the lower ventilation resistance index tends to increase as the amount of low-volatile coal injection increases. When the amount of low volatile coal injected is 90 kg / molten iron or more, the lower ventilation resistance index tends to exceed 2.0. However, in actual operations, as described above, many low-volatile coals are used instead of high-volatile coals in response to the decrease in high-volatile coals as crude steel production increases worldwide. For example, as described above, even if the amount of low volatile coal injected is 90 kg / molt or more, the lower ventilation resistance index is not lowered, that is, the lower ventilation resistance index is 2.0 or less. It is necessary to make it.

そこで、発明者らは、低揮発分炭の吹き込み量を90kg/溶銑t以上にしても下部通気抵抗指数は2.0以下にできる方法は無いか様々な角度から検証した。その結果、後述するように、自溶性ペレットと、微粉炭の吹き込み量と、全微粉炭中の低揮発分炭の配合比とのバランスを考慮することによって、低揮発分炭の吹き込み量を90kg/溶銑t以上にしても下部通気抵抗指数は2.0以下にすることができることを見いだした。なお、低揮発性分炭とは、特許第4224218号公報に記載に記載されているように、揮発分が20%以下であり、高揮発性分炭とは、揮発分が30%以上のものである。揮発分は、石炭類の工業分析(JIS M 8812)により求めることができる。   Therefore, the inventors have verified from various angles whether there is a method for reducing the lower ventilation resistance index to 2.0 or less even when the amount of low volatile coal injected is 90 kg / molten iron or more. As a result, as will be described later, by considering the balance between the self-fluxing pellets, the amount of pulverized coal blown, and the blending ratio of the low volatile coal in the total pulverized coal, the amount of low volatile coal blown is 90 kg. / It has been found that the lower airflow resistance index can be made 2.0 or less even when the hot metal is made t or more. As described in Japanese Patent No. 4224218, the low volatility coal has a volatile content of 20% or less, and the high volatility coal has a volatile content of 30% or more. It is. Volatiles can be determined by industrial analysis of coals (JIS M 8812).

鉄鉱材料(鉄原)としてペレットが良く用いられている。このペレットは、焼結鉱に比べ、気孔が少ないため界面積が小さく、間接還元比率が低い一方で直接還元比率が高い傾向がある。そのため、ペレットを使用すると、直接還元を行うカーボンが多く必要となり、より多くの微粉炭を消費し易くなる。ペレットは、自溶性でないペレット(非自溶性ペレット)と、自溶性ペレットとに分けられ、これらいずれも微粉炭を消費し易い傾向にあるが、それぞれ下記に示すような傾向がある。   Pellets are often used as iron ore materials (iron source). Since this pellet has fewer pores than the sintered ore, the interfacial area is small, and the indirect reduction ratio tends to be low while the direct reduction ratio tends to be high. Therefore, when pellets are used, a large amount of carbon for direct reduction is required, and it becomes easy to consume more pulverized coal. The pellets are classified into non-self-soluble pellets (non-self-soluble pellets) and self-soluble pellets, both of which tend to consume pulverized coal, but each has the following tendency.

非自溶性ペレットは、高温還元性が劣っていると共にCaO/SiO(C/S)が低いものが多いため、これを使用した場合、高炉排出スラグのC/S調整のための多くの副原料が必要となる。また、非自溶性ペレットは溶融し難い性質もあることから、融着帯10の幅が大きくなり、高炉の通気性を低下させてしまう可能性がある。
一方、自溶性ペレットは、非自溶性ペレットに比べて溶融性が高く、直接還元性も高いことから、微粉炭、特に、揮発性の低い低揮発分炭を使用して未燃微粉炭が残留しても高炉下部で消費し易く、融着帯10の幅の拡大を抑制して、高炉の通気性を向上させることができる。このようなことから、本発明では、低揮発分炭を用いて操業するに際しては、ペレットのうち、自溶性ペレットの量(供給量)を用いることとし、低揮発分炭と自溶性ペレットとを同時に用いることによって、多くの低揮発分炭をしても高炉の通気性を確保することとした。
Many non-self-soluble pellets have poor high-temperature reducibility and low CaO / SiO 2 (C / S). When this is used, many secondary additives for C / S adjustment of blast furnace discharge slag are used. Raw materials are required. In addition, since non-self-soluble pellets are difficult to melt, the width of the cohesive zone 10 is increased, which may reduce the air permeability of the blast furnace.
On the other hand, self-fluxing pellets have higher meltability and higher direct reduction than non-self-fluxing pellets, so pulverized coal, especially low volatility low-volatile coal, remains unburned pulverized coal. Even if it is easy to consume at the lower part of the blast furnace, expansion of the width of the cohesive zone 10 can be suppressed, and the air permeability of the blast furnace can be improved. For this reason, in the present invention, when operating using low volatile coal, the amount (supply amount) of the self-soluble pellet is used among the pellets, and the low volatile coal and the self-soluble pellet are used. By using it at the same time, it was decided to ensure the air permeability of the blast furnace even with many low-volatile coals.

具体的には、銑鉄1トン当たりの微粉炭の吹き込み量をPCR(kg/溶銑t)とし、吹き込んだ全微粉炭中の低揮発分炭の配合比をV(%)とし、全鉄源中の自溶性ペレットの配合量をP(T/溶鉄t)としたとき、式(1)及び式(2)を満たすように、低揮発分炭と、自溶性ペレットとを用いて操業することとしている。
PCR×V/100≦273P ・・・(1)
PCR×V/100≧90 ・・・(2)
ただし、
P>0
全微粉炭中の低揮発分炭の配合比V(%)とは、全微粉炭粉炭量を100%とした時の全微粉炭に含まれる低揮発分炭配合割合のことで、例えば、微粉炭吹込み量が60t/hのときに、低揮発分炭を30t/h使用した場合は30/60×100で50%となる。
Specifically, the amount of pulverized coal injected per ton of pig iron is PCR (kg / molten iron t), the blending ratio of low-volatile coal in the total pulverized coal injected is V (%), and the total iron source Assuming that the blending amount of the self-fluxing pellets is P (T / molten iron t), the low-volatile coal and the self-fluxing pellets are used so as to satisfy the formulas (1) and (2). Yes.
PCR × V / 100 ≦ 273P (1)
PCR × V / 100 ≧ 90 (2)
However,
P> 0
The blending ratio V (%) of the low volatile coal in the total pulverized coal is the low volatile coal blending ratio contained in the total pulverized coal when the total amount of the pulverized coal is 100%. When the amount of blown coal is 60 t / h and 30 t / h of low-volatile coal is used, 30/60 × 100, which is 50%.

全鉄源中の自溶性ペレットの配合量P(T/溶鉄t)とは、鉱石比(T/溶鉄t)×自溶性のペレット配合比(%)で表されるもので、鉱石比(T/溶鉄t)のうち自溶性ペレットの量のことである。ここで、鉱石比とは、溶銑1トン当たりに使用する鉱石の原単位(T/溶銑t)である。自溶性のペレット配合比(%)は、高炉の原料のうち鉄源となる原料を100%とした時の自溶性ペレット配合割合のことである。例えば、鉄源となる原料が16000t/日で自溶性ペレットを1600t/日使用した場合は、自溶性のペレット配合比(%)は、1600/16000×100で10%となる。また、鉱石比が1.6(T/溶鉄t)で自溶性ペレット10%使用した場合は、全鉄源中の自溶性ペレットの配合量P(T/溶鉄t)は、0.16(T/溶鉄t)となる。   The blending amount P (T / molten iron t) of self-fluxing pellets in the total iron source is expressed as ore ratio (T / molten iron t) × self-solubilizing pellet blending ratio (%). / The amount of self-fluxing pellets in molten iron t). Here, the ore ratio is a basic unit of ore used per ton of hot metal (T / hot metal t). The self-fluxing pellet blending ratio (%) is the blending ratio of self-fluxing pellets when the raw material that is the iron source is 100% of the raw material of the blast furnace. For example, when the raw material serving as the iron source is 16000 t / day and the self-soluble pellet is used at 1600 t / day, the self-soluble pellet blending ratio (%) is 10% at 1600/16000 × 100. In addition, when the ore ratio is 1.6 (T / molten iron t) and 10% self-fluxing pellets are used, the blending amount P (T / molten iron t) of the self-fluxing pellets in the total iron source is 0.16 (T / Molten iron t).

なお、補足すると、式(1)及び式(2)の「PCR×V/100」は、低揮発分炭の吹き込み量であり、式(1)は、低揮発分炭の吹き込み量と自溶性ペレットとの関係、式(2)は、低揮発分炭の吹き込み量が90kg/溶銑t以上であることを示している。
図3は、高炉の操業に用いた低揮発分炭の吹き込み量を90kg/t以上として、自溶性ペレットに対する低揮発分炭の吹き込み量の割合(揮発分炭の吹き込み量/自溶性ペレット)と、下部通気抵抗指数との関係をまとめたものである。図3に示すように、自溶性ペレットに対する揮発分炭の吹き込み量の割合、即ち、式(1)を満たす場合、下部通気抵抗指数を2.0以下にすることができる。
In addition, “PCR × V / 100” in the formulas (1) and (2) is the amount of low volatile coal blown, and the formula (1) is the amount of low volatile coal blown and self-soluble. The relationship with the pellet, equation (2), indicates that the amount of low-volatile coal blown is 90 kg / molten iron or more.
FIG. 3 shows the ratio of the amount of low volatile coal injected to the self-soluble pellets (the amount of volatile coal injected / self-soluble pellets), assuming that the amount of low-volatile coal used in the operation of the blast furnace is 90 kg / t or more. It summarizes the relationship with the lower ventilation resistance index. As shown in FIG. 3, when satisfy | filling the ratio of the blowing amount of the volatile coal with respect to a self-fluxing pellet, ie, Formula (1), a lower ventilation resistance index can be 2.0 or less.

表1、2は本発明の高炉の操業方法で高炉の操業を行った実施例と、本発明とは異なる方法で高炉の操業を行った比較例とを示したものである。   Tables 1 and 2 show examples in which the blast furnace was operated by the method of operating the blast furnace of the present invention and comparative examples in which the blast furnace was operated by a method different from the present invention.

Figure 2014005482
Figure 2014005482

Figure 2014005482
Figure 2014005482

まず、実施例及び比較例における実施条件について説明する。
高炉は、炉内容積が5400mであるものを用いた。還元材として、微粉炭及びコークスを用い、微粉炭比は144〜203kg/溶銑t、コークス比は300〜361kg/溶銑tとした。
鉄源として、自溶性ペレット、焼結鉱、塊鉱石、非自溶性ペレットを用いた。自溶性ペ
レットの配合比は21.9〜29.1%、焼結鉱の配合比は42〜51%、塊鉱石は20〜21%、非自溶性ペレットは0〜15.1%とした。自溶性ペレットと非自溶性ペレットの合比は、28〜38%とした。なお、自溶性ペレット以外の条件は、何でもよい。また、自溶性ペレットは、特許第4418836号公報に示されているように、0.8≦CaO/SiO(C/S)≦2.0且つ0.4≦MgO/SiO(Mg/S)≦1.1であり、高温荷重還元試験の圧損急昇温度(Ts)が1310℃上なるものである。圧損急昇温度(Ts)は、Ts=110×C/S+100×M/S+25×%TFe−480で求められるもので、%TFeは全鉄分含有量(質量%)である。副原料は当業者常法通りのものを用いた。出銑量は、9577〜10784t/日とした。なお、生産量及び副原料は、限定しない。
First, implementation conditions in Examples and Comparative Examples will be described.
A blast furnace having a furnace internal volume of 5400 m 3 was used. As the reducing material, pulverized coal and coke were used, the pulverized coal ratio was 144 to 203 kg / molten metal t, and the coke ratio was 300 to 361 kg / molten metal t.
As the iron source, self-fluxing pellets, sintered ore, lump ore, and non-self-fluxing pellets were used. The blending ratio of the self-fluxing pellets was 21.9 to 29.1%, the blending ratio of the sintered ore was 42 to 51%, the lump ore was 20 to 21%, and the non-self-fluxing pellets were 0 to 15.1%. The total ratio of self-fluxing pellets and non-self-fluxing pellets was 28 to 38%. In addition, conditions other than a self-fluxing pellet may be anything. Further, as shown in Japanese Patent No. 4418836, self-fluxing pellets are 0.8 ≦ CaO / SiO 2 (C / S) ≦ 2.0 and 0.4 ≦ MgO / SiO 2 (Mg / S ) ≦ 1.1, and the pressure loss rapid increase temperature (Ts) of the high temperature load reduction test is 1310 ° C. higher. The pressure loss rapid increase temperature (Ts) is determined by Ts = 110 × C / S + 100 × M / S + 25 ×% TFe-480, where% TFe is the total iron content (mass%). The auxiliary materials used were those according to ordinary methods in the art. The amount of tapping was 9577 to 10784 t / day. The production amount and auxiliary materials are not limited.

低揮発分炭比率(低VM比率)は、0より大きく70%以下とし、高揮発分炭比率(高VM比率)は、30以上100%未満とした。低揮発分炭VMは、13〜20%、高揮発分炭VMは、32〜44.3%とした。送風圧力は、熱風炉から高炉へ吹き込まれた熱風の圧力計測値を用い、炉下部圧力は、シャフト中段(2段)で通常操業に融着帯10を含む位置で計測された炉体圧力値を用いた。   The low volatile coal ratio (low VM ratio) was greater than 0 and 70% or less, and the high volatile coal ratio (high VM ratio) was 30 or more and less than 100%. The low volatile coal VM was 13 to 20%, and the high volatile coal VM was 32 to 44.3%. The blowing pressure was measured using the pressure of the hot air blown from the hot blast furnace into the blast furnace, and the lower pressure of the furnace was measured at a position including the cohesive zone 10 in the normal operation in the middle stage (two stages) of the shaft. Was used.

実施例1〜31では、低揮発分炭の吹き込み量を示す「低VM量(式1の左辺値)」の欄の値が、90kg/溶銑t以上であって、式(2)を満たしており、多くの低揮発分炭を吹き込んで高炉の操業を行っている。このような操業のうえで、実施例1〜31では、低揮発分炭の吹き込み量(低VM量)は、自溶性ペレットの指数を示す「式1の右辺値」の値(指数)よりも小さく式(1)を満たしているため、下部通気抵抗指数を2.0以下にすることができる。   In Examples 1 to 31, the value in the column of “low VM amount (left side value of Equation 1)” indicating the amount of low volatile coal blown is 90 kg / molten iron t or more and satisfies Equation (2). The blast furnace is operated with a lot of low volatile coal. After such operation, in Examples 1 to 31, the amount of low volatile coal injected (low VM amount) is greater than the value (index) of the “right side value of Formula 1” indicating the index of the self-soluble pellet. Since the formula (1) is small, the lower ventilation resistance index can be made 2.0 or less.

一方、比較例1〜25では、低VM量が「式1の右辺値」の値(指数)よりも大きく、式(1)を満たしていないため、下部通気抵抗指数は2.0よりも大きくなった。
以上 本発明によれば、式(1)及び式(2)を満たしているため、低揮発分炭を含む微粉炭を吹き込みながら銑鉄を製造したとしても、高炉内の通気性の低下を確実に防止して安定的に銑鉄を製造することができる。
On the other hand, in Comparative Examples 1 to 25, the low VM amount is larger than the value (index) of the “right side value of Formula 1” and does not satisfy Formula (1), so the lower ventilation resistance index is larger than 2.0. became.
As described above, according to the present invention, since the formulas (1) and (2) are satisfied, even if pig iron is produced while blowing pulverized coal containing low-volatile coal, it is possible to reliably reduce the air permeability in the blast furnace. It is possible to prevent and stably manufacture pig iron.

なお、今回開示された実施形態において、明示的に開示されていない事項、例えば、操業条件、各種パラメータ、構成物の寸法、重量、体積などは、当業者が通常実施する範囲を逸脱するものではなく、通常の当業者であれば、容易に想定することが可能な事項を採用している。   In the embodiment disclosed herein, matters not explicitly disclosed, for example, operating conditions, various parameters, dimensions, weights, volumes, etc. of the components do not deviate from the range normally practiced by those skilled in the art. However, matters that can be easily assumed by those skilled in the art are employed.

1 高炉
2 炉体
3 シャフト部
4 ベリー部
5 ボッシュ部
6 炉床部
7 羽口
8 出銑口
10 融着帯
DESCRIPTION OF SYMBOLS 1 Blast furnace 2 Furnace body 3 Shaft part 4 Berry part 5 Bosch part 6 Hearth part 7 tuyere 8 Outlet 10 Fusion zone

Claims (1)

高炉の羽口から熱風と共に低揮発分炭を含む微粉炭を吹き込みながら銑鉄を製造するに際し、式(1)及び式(2)を満たすように、前記低揮発分炭を含む微粉炭を吹き込むことを特徴とする高炉の操業方法。
PCR×V/100≦273P ・・・(1)
PCR×V/100≧90 ・・・(2)
ただし、
PCR:銑鉄1トン当たりの微粉炭の吹き込み量(kg/溶銑ton)
V:吹き込んだ全微粉炭中の低揮発分炭の配合比(%)
P:全鉄源中の自溶性ペレットの配合量(ton/溶鉄ton)
P=鉱石比(ton/溶鉄ton)×自溶性ペレット配合比(%)
P>0
When producing pig iron while blowing pulverized coal containing low volatile coal together with hot air from the tuyeres of the blast furnace, blowing pulverized coal containing the low volatile coal so as to satisfy Equation (1) and Equation (2). A blast furnace operating method characterized by
PCR × V / 100 ≦ 273P (1)
PCR × V / 100 ≧ 90 (2)
However,
PCR: Amount of pulverized coal blown per ton of pig iron (kg / molten iron ton)
V: Mixing ratio (%) of low volatile coal in all pulverized coal injected
P: Compounding amount of self-soluble pellet in total iron source (ton / molten iron ton)
P = Ore ratio (ton / molten iron ton) × self-fluxing pellet mixing ratio (%)
P> 0
JP2012139806A 2012-06-21 2012-06-21 Blast furnace operation method Active JP5855536B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012139806A JP5855536B2 (en) 2012-06-21 2012-06-21 Blast furnace operation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012139806A JP5855536B2 (en) 2012-06-21 2012-06-21 Blast furnace operation method

Publications (2)

Publication Number Publication Date
JP2014005482A true JP2014005482A (en) 2014-01-16
JP5855536B2 JP5855536B2 (en) 2016-02-09

Family

ID=50103469

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012139806A Active JP5855536B2 (en) 2012-06-21 2012-06-21 Blast furnace operation method

Country Status (1)

Country Link
JP (1) JP5855536B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111041139A (en) * 2019-12-17 2020-04-21 首钢集团有限公司 Material distribution method for blast furnace blowing-in

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60141810A (en) * 1983-12-28 1985-07-26 Kobe Steel Ltd Method for controlling operation of blast furnace using iron ore pellet
JP2009149942A (en) * 2007-12-20 2009-07-09 Kobe Steel Ltd Self-fluxing pellet for blast furnace, and its manufacturing method
JP4572734B2 (en) * 2005-05-02 2010-11-04 住友金属工業株式会社 Blast furnace operation method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60141810A (en) * 1983-12-28 1985-07-26 Kobe Steel Ltd Method for controlling operation of blast furnace using iron ore pellet
JP4572734B2 (en) * 2005-05-02 2010-11-04 住友金属工業株式会社 Blast furnace operation method
JP2009149942A (en) * 2007-12-20 2009-07-09 Kobe Steel Ltd Self-fluxing pellet for blast furnace, and its manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111041139A (en) * 2019-12-17 2020-04-21 首钢集团有限公司 Material distribution method for blast furnace blowing-in

Also Published As

Publication number Publication date
JP5855536B2 (en) 2016-02-09

Similar Documents

Publication Publication Date Title
KR101355325B1 (en) Blast furnace operation method
US9816151B2 (en) Method for operating blast furnace and method for producing molten pig iron
EP4067510A1 (en) Blast furnace operation method
CN104471078A (en) Method for preparing blast furnace blow-in coal
EP2202324A1 (en) Vertical furnace and method of operating the same
JP5855536B2 (en) Blast furnace operation method
JP2011246757A (en) Method for operating blast furnace
JP5426997B2 (en) Blast furnace operation method
JP4765723B2 (en) Method of charging ore into blast furnace
KR20180058813A (en) How to charge raw materials into blast furnace
JP5400600B2 (en) Blast furnace operation method
JP5012138B2 (en) Blast furnace operation method
JP2004263258A (en) Method for operating blast furnace
JP2011190471A (en) Method for operating blast furnace
JP2020132928A (en) Determination method of blowing amount of reducing gas and operation method of blast furnace
JP5369848B2 (en) Operation method of vertical melting furnace
JP2002105517A (en) Method for operating blast furnace
WO2023199550A1 (en) Operation method for blast furnace
US20240018615A1 (en) Method for producing pig iron in a shaft furnace
JP5693768B2 (en) Blast furnace operating method and hot metal manufacturing method
KR100356156B1 (en) A method for promoting combustibility in balst furnace
Eklund et al. Operation at high pellet ratio and without external slag formers–trials in an experimental blast furnace
JP2023018430A (en) Estimation method of cohesive zone slag amount in blast furnace and operation method
JP3705243B2 (en) Blast furnace operation method
JP2008045175A (en) Method for operating blast furnace

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150908

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151030

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151209

R150 Certificate of patent or registration of utility model

Ref document number: 5855536

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150