JP2014005480A - Enameled article of mao crystalline metal oxide - Google Patents
Enameled article of mao crystalline metal oxide Download PDFInfo
- Publication number
- JP2014005480A JP2014005480A JP2012139579A JP2012139579A JP2014005480A JP 2014005480 A JP2014005480 A JP 2014005480A JP 2012139579 A JP2012139579 A JP 2012139579A JP 2012139579 A JP2012139579 A JP 2012139579A JP 2014005480 A JP2014005480 A JP 2014005480A
- Authority
- JP
- Japan
- Prior art keywords
- metal oxide
- crystalline metal
- mao
- resin
- crystalline
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Other Surface Treatments For Metallic Materials (AREA)
Abstract
Description
本発明は、アルミニウム及びその合金、又はチタニウム及びその合金を基材金属とし、前記基材金属のマイクロア−ク酸化(以下MAOと略す)により生成された結晶性金属酸化物を接着界面とし、前記接着界面にホウロウ加工によるホウロウ被膜、又は樹脂加工による樹脂被膜を形成し構成され、前記結晶性金属酸化物の絶縁破壊電圧の安定と向上をさせたものである。 The present invention uses aluminum and an alloy thereof, or titanium and an alloy thereof as a base metal, and a crystalline metal oxide generated by micro-arc oxidation (hereinafter abbreviated as MAO) of the base metal as an adhesive interface. The adhesive interface is formed by forming a enamel coating by enamel processing or a resin coating by resin processing, and the dielectric breakdown voltage of the crystalline metal oxide is stabilized and improved.
従来、金属の防錆、耐薬品性などに付与する技術にホウロウ加工、又は樹脂加工がある。ホウロウ加工は鉄、アルミニウム等の金属を主体に、ガラス粉であるガラスフリットを加熱する事により金属と表面反応させる事で界面を生成し、一体化する事でホウロウ被膜、別名ガラス被膜をする技術である。 Conventionally, techniques for imparting rust prevention and chemical resistance of metals include enamel processing or resin processing. The enameling process is mainly a metal such as iron or aluminum. By heating the glass frit, which is glass powder, the surface reacts with the metal to create an interface, and the enamel is used to create a enameled film, also known as a glass film. It is.
樹脂加工の第一としてフッ素加工がある。フッ素加工は金属の表面を機械的に荒らす、例えばサンドブラスト処理をし、前記金属の表面に凸凹を形成し樹脂に対してのアンカ−効果を期待する。次にフッ素樹脂を塗布、印刷又は浸漬し、次に塗擦、又は焼き付け、一体化する事でフッ素樹脂被膜を形成する技術である。 There is fluorine processing as the first of resin processing. Fluorine processing mechanically roughens the surface of the metal, for example, sandblasting, forms irregularities on the surface of the metal, and expects an anchor effect on the resin. Next, it is a technique for forming a fluororesin film by applying, printing or dipping a fluororesin, and then rubbing or baking and integrating them.
他に冷蔵庫、エアコン等、温度計測を必要とする機器に用いる電子部品として温度センサ−があり、温度センサ−の組立にもエポキシ樹脂、シリコン樹脂、ポリイミド樹脂、又は熱可塑性樹脂を用いる樹脂加工を行っている。 In addition, there are temperature sensors as electronic parts used in devices that require temperature measurement, such as refrigerators and air conditioners, and resin processing using epoxy resin, silicon resin, polyimide resin, or thermoplastic resin is also used for assembly of temperature sensors. Is going.
前記温度センサ−の組立は、導体とサーミスタを電気的に接続し、次に金属パイプ、又は金属板へ前記導体とサ−ミスタを挿入、又は取付け、前記金属パイプ、又は金属板との空間をエポキシ樹脂、或いはシリコン樹脂等で充填、又は固定する樹脂加工技術である。 The temperature sensor is assembled by electrically connecting a conductor and a thermistor, and then inserting or attaching the conductor and the thermistor to a metal pipe or metal plate, thereby providing a space between the metal pipe or metal plate. This is a resin processing technique that is filled or fixed with an epoxy resin or a silicon resin.
本発明に用いるMAOとは、アルミニウム及びその合金、又はチタニウム及びその合金を基材金属とし、選ばれた電解水溶液中で前記基材金属を陽極とし、陰極との間に400v以上の直流高電圧を印荷すると連続した火花放電が起き、前記火花放電をMAOと言う。 MAO used in the present invention is aluminum and its alloy, or titanium and its alloy as a base metal, and the base metal is an anode in a selected electrolytic aqueous solution, and a direct current high voltage of 400 V or more between the cathode and the cathode. When this is applied, a continuous spark discharge occurs, and the spark discharge is called MAO.
前記MAOによって基材金属の表面に生成された物質が、結晶性金属酸化物である。図2参照。 A material generated on the surface of the base metal by the MAO is a crystalline metal oxide. See FIG.
ホウロウ加工技術は、鉄等の金属とガラスフリットの熱化学反応を利用したもので、加熱による歪を防止する為に、前記金属にあうガラスフリット組成の設計、加熱操作の制御など高度な技術的ノウハウが必要である。また ホウロウ被膜厚みを均一で50μm以下にする事と、複雑な形状、パタ−ンへの対応が困難である。 The enamel processing technology uses the thermochemical reaction between a metal such as iron and glass frit. In order to prevent distortion due to heating, the technical design of the glass frit composition suitable for the metal and the control of the heating operation are advanced. Know-how is required. In addition, it is difficult to make the enamel coating thickness uniform to 50 μm or less and to cope with complicated shapes and patterns.
従来の樹脂加工は、樹脂と金属を接着、又は固定する為に、金属表面を機械的に凸凹化するが、単純な凸凹となり高いアンカ−効果が得られず、前記金属と樹脂との高い接着強度が期待できない。 In conventional resin processing, the metal surface is mechanically uneven to bond or fix the resin and metal, but it becomes a simple unevenness and a high anchor effect cannot be obtained, and high adhesion between the metal and the resin. I cannot expect strength.
金属のパイプ、又は板にシリコン樹脂、エポキシ樹脂等を充填、又は塗布する場合、前記金属パイプ、又は板と前記樹脂との界面の接着が悪い場合には、前記界面を通じて水分の侵入、或いは前記金属パイプ内で樹脂の回転、抜け、又は剥離等の不具合を生む原因の一つにアンカ−効果の不十分があげられる。 When a metal pipe or plate is filled or coated with silicon resin, epoxy resin, etc., if the interface between the metal pipe or plate and the resin is poor, moisture may enter through the interface, or Insufficient anchor effect is one of the causes of problems such as rotation, slipping, or peeling of the resin in the metal pipe.
LED、又は基板等に使用しているセラミックスは、放熱性、断熱性、高い絶縁破壊電圧、加工性等を兼ね備える機能が必要であるが、前記機能を有した短小軽薄なセラミックスの加工は難しい面がある。 Ceramics used for LEDs or substrates, etc. need to have functions that combine heat dissipation, heat insulation, high dielectric breakdown voltage, workability, etc., but it is difficult to process short, small, and thin ceramics with the above functions There is.
MAOによって生成される結晶性金属酸化物は、処理条件により左右するが基材金属上に5μm〜100μm程度の厚みが生成できる、反面一般的に用いられる市販のセラミックス系絶縁物と比較すると、ミリ単位の厚みは同程度の性能を保持できるが、実態は5μm〜100μmと薄く、基材金属との絶縁破壊電圧に不安定な面が観られる。 Although the crystalline metal oxide produced by MAO depends on the processing conditions, it can produce a thickness of about 5 μm to 100 μm on the base metal. On the other hand, when compared with a commonly used commercially available ceramic insulator, Although the unit thickness can maintain the same level of performance, the actual thickness is as thin as 5 μm to 100 μm, and an unstable surface is observed in the dielectric breakdown voltage with the base metal.
本発明は、基材金属のアルミニウム、及びその合金、又はチタニウム、及びその合金に、MAOにより表面に結晶性金属酸化物を生成し、前記結晶性金属酸化物を接着界面とし、前記接着界面にホウロウ加工によるホウロウ被膜の形成、又は樹脂加工により樹脂被膜を形成し、前記結晶性金属酸化物の絶縁破壊電圧を高め、安定化をする技術の提供である。 The present invention produces a crystalline metal oxide on the surface of the base metal aluminum and alloy thereof, or titanium and alloy thereof by MAO, and uses the crystalline metal oxide as an adhesive interface. The present invention provides a technique for forming a enamel film by enamel processing or forming a resin film by resin processing to increase the dielectric breakdown voltage of the crystalline metal oxide and stabilize it.
MAOは交流高電圧の印荷でも可能であるが、一般的には直流高圧電源を用いて結晶性金属酸化物の生成を行う。 MAO can be applied with an AC high voltage, but generally a crystalline metal oxide is generated using a DC high voltage power source.
MAOをする際に、基材金属にマスキングを施す事で、火花放電部分を選択し結晶性金属酸化物を任意の場所、形状に生成できる事も可能である。 When performing MAO, it is also possible to generate a crystalline metal oxide in an arbitrary place and shape by selecting a spark discharge portion by masking the base metal.
前記結晶性金属酸化物は基材金属より直接生成される為に、密着は非常に強固である。 Since the crystalline metal oxide is generated directly from the base metal, the adhesion is very strong.
前記結晶性金属酸化物の結晶型、結晶形状、大きさ、厚み等はMAOに用いる電解水溶液の選択や、印加時間等の処理条件により制御する事が可能である。 The crystal type, crystal shape, size, thickness and the like of the crystalline metal oxide can be controlled by selecting the electrolytic aqueous solution used for MAO and processing conditions such as application time.
前記結晶性金属酸化物の凸凹形状、或いは高低差模様は複雑で、かつ熱的に安定である為に、ホウロウ加工、又は樹脂加工の接着界面としては最適である。 The uneven shape or the height difference pattern of the crystalline metal oxide is complicated and thermally stable, so that it is optimal as an adhesive interface for enamel processing or resin processing.
前記結晶性金属酸化物へホウロウ加工を行う場合、一般的な平均粒径4.5μmのガラスフリットを用いてのホウロウ加工も可能だが、ビ−ズミル等により平均粒径を0.1〜1μm以下のサブミクロンレベルのガラスフリットを用いる事で、熱処理温度の低下、ホウロウ被膜の均一化、及び薄膜化に大きな効果を生む事ができる。 When enameling the crystalline metal oxide, enameling using a glass frit with a general average particle size of 4.5 μm is possible, but the average particle size is 0.1 to 1 μm or less with a bead mill or the like. By using the glass frit of the submicron level, it is possible to produce a great effect in lowering the heat treatment temperature, making the enamel coating uniform, and reducing the film thickness.
前記サブミクロンレベルのガラスフリットを、前記結晶性金属性酸化物へ塗布、又は印刷し、500℃以上1000℃以下の温度でホウロウ被膜を形成し一体化する。図1参照。 The glass frit of the submicron level is applied or printed on the crystalline metal oxide, and a hollow film is formed at a temperature of 500 ° C. or higher and 1000 ° C. or lower to be integrated. See FIG.
樹脂加工を行う場合は、前記結晶性金属酸化物の上に樹脂を含む紛体又は溶液を散布、塗布、又は印刷し載せた後、70℃以上300℃以下の温度で加熱する事で樹脂被膜を形成し一体化する。樹脂が紛体の場合は、前記結晶性金属酸化物を加熱し、常温の紛体を塗布する方法もある。図1参照。 When performing resin processing, after spraying, applying, or printing a powder or solution containing a resin on the crystalline metal oxide, the resin film is formed by heating at a temperature of 70 ° C to 300 ° C. Form and integrate. When the resin is a powder, there is a method in which the crystalline metal oxide is heated and a powder at room temperature is applied. See FIG.
本発明の観点は、前記基材金属のMAOによって生成された接着界面となる結晶性金属酸化物において、前記接着界面上にガラスフリットを塗布、又は印刷し熱処理により一体化しホウロウ被膜を形成し、又は樹脂を含む紛体、又は溶液を散布、塗布、又は印刷し、熱処理により樹脂被膜を形成し一体化し構成され、前記MAOによって生成された結晶性金属酸化物の絶縁破壊電圧の向上と安定化させる事にある。 In an aspect of the present invention, in the crystalline metal oxide serving as an adhesion interface generated by MAO of the base metal, a glass frit is applied or printed on the adhesion interface and integrated by heat treatment to form a enamel coating. Alternatively, a powder containing a resin or a solution is sprayed, applied, or printed, and a resin film is formed by heat treatment to be integrated to improve and stabilize the dielectric breakdown voltage of the crystalline metal oxide generated by the MAO. There is a thing.
基材金属の一つであるφ5アルミニウム丸棒にMAOを行い、結晶性金属酸化物厚み10μm以上、25μm以下を生成した試料、甲と、前記甲にホウロウ被膜厚み30μm以上、50μm以下のホウロウ加工品と、樹脂被膜厚み300μm以上、400μm以下の樹脂加工品、各々10ケの絶縁破壊電圧試験結果を次に示す。図5参照。 MAO is applied to a φ5 aluminum round bar, one of the base metals, to produce a crystalline metal oxide thickness of 10 μm or more and 25 μm or less, a former, and a hollow coating process of 30 μm or more and 50 μm or less of the enamel coating on the former. The following shows the breakdown voltage test results for 10 products and resin processed products having a resin coating thickness of 300 μm or more and 400 μm or less. See FIG.
本発明においてMAOに用いる基材金属とは、チタニウム、及びその合金、又はアルミニウム、及びその合金である。 The base metal used for MAO in the present invention is titanium and its alloy, or aluminum and its alloy.
アルミニウムの合金とはアルミニウムを主成分とし、その他に例えば、Cu、Mn、Si、Mg又はZn等の金属を一種類以上含有しているものである。 The alloy of aluminum is mainly composed of aluminum and contains one or more kinds of metals such as Cu, Mn, Si, Mg or Zn.
チタニウムの合金とはTiを主成分とし、その他に例えば、Pd、Ru、Cr、Ni又はCo等の金属を一種類以上含有しているものである。 The titanium alloy is mainly composed of Ti and contains one or more kinds of metals such as Pd, Ru, Cr, Ni or Co.
本発明における樹脂は例として、シリコン樹脂、エポキシ樹脂、ポリイミド樹脂であるが、ポリプロピレン、ポリエチレン等の熱可塑性樹脂も静電塗装、インサ−ト成形等を用いる事で成膜できる。 The resin in the present invention is, for example, a silicon resin, an epoxy resin, or a polyimide resin, but a thermoplastic resin such as polypropylene or polyethylene can also be formed by using electrostatic coating, insert molding, or the like.
本発明のホウロウ加工に用いるサブミクロンレベルのガラスフリットは、二酸化珪素を主成分とし、その他に、PbO、B2O3、Na2O、又はP2O5の酸化物を一種類以上含有しているものである。 The glass frit of the submicron level used for the enamel processing according to the present invention contains silicon dioxide as a main component and additionally contains one or more kinds of oxides of PbO, B2O3, Na2O, or P2O5.
本発明に用いる選ばれた電解水溶液の代表例として、水酸化ナトリウム、水酸化カリウム、リン酸ナトリウム、リン酸カリウム、ホウ酸ナトリウム、があげられ、前記電解水溶液濃度は0.01N〜2Nを主とし、前記選ばれた電解水溶液には適宜の珪酸ナトリウムを添加すると安定的なMAOにより結晶性金属酸化物が生成される。 Representative examples of the selected electrolytic aqueous solution used in the present invention include sodium hydroxide, potassium hydroxide, sodium phosphate, potassium phosphate, and sodium borate. The concentration of the electrolytic aqueous solution is mainly 0.01N to 2N. When an appropriate sodium silicate is added to the selected electrolytic aqueous solution, a crystalline metal oxide is generated by stable MAO.
MAOにより生成された結晶性金属酸化物に、ホウロウ加工によって形成されたホウロウ被膜、又は樹脂加工によって形成された樹脂被膜は、前記結晶性金属酸化物と剥離の無い強固な接着を有し、前記ホウロウ被膜、又は樹脂被膜共にMAOによって生成された結晶性金属酸化物の、絶縁破壊電圧の向上と安定を付与する事が可能となる。 The enamel coating formed by enamel processing on the crystalline metal oxide generated by MAO or the resin coating formed by resin processing has a strong adhesion without peeling from the crystalline metal oxide, It is possible to improve and stabilize the breakdown voltage of the crystalline metal oxide produced by MAO for both the enamel coating and the resin coating.
MAOは、基材金属の複雑な形状、或いはマスキングをする事で、任意の形状、場所へ結晶性金属酸化物を生成し、前記任意の形状、場所へホウロウ加工、又は樹脂加工を行う事が可能となり、必要な部分への絶縁破壊電圧の向上と安定を付与する事もできる。 MAO can produce a crystalline metal oxide in any shape and location by masking the complicated shape or masking of the base metal, and can perform enamel processing or resin processing to the arbitrary shape and location. It becomes possible, and the breakdown voltage can be improved and stabilized to a necessary part.
MAOによって生成された結晶性金属酸化物の上に、ホウロウ加工、又は樹脂加工をする事で、現在のLED等に使用する断熱用セラミックスと放熱用金属板を一体にできる可能性も生まれる。 By performing enamel processing or resin processing on the crystalline metal oxide produced by MAO, there is a possibility that heat insulating ceramics and heat radiating metal plates used in current LEDs and the like can be integrated.
基材金属のMAOによって生成した結晶性金属酸化物のホウロウ加工、又は樹脂加工は、従来銅、又はSUSを用いる劣悪な環境下での材料を、本発明のホウロウ加工品、又は樹脂加工品に代替する事で、コスト面、或いは軽量化への効果も期待できる。またフッ素樹脂被膜からシリコン樹脂被膜へ、ポリイミド樹脂被膜からエポキシ樹脂被膜へ等、樹脂材料選定範囲拡大も可能となる。 The enamel processing or resin processing of the crystalline metal oxide produced by the MAO of the base metal is conventionally performed by using the copper or SUS material in an inferior environment to the enamel processing product or resin processing product of the present invention. By substituting it, the effect on the cost aspect or weight reduction can also be expected. In addition, the resin material selection range can be expanded from a fluororesin coating to a silicon resin coating and from a polyimide resin coating to an epoxy resin coating.
選ばれた電解水溶液の中で基材金属を陽極に、陰極は白金、或いは炭素とし、400V以上の通電を開始する事で、陽極に火花放電が連続的に発生し、前記基材金属から直接結晶性金属酸化物を生成する。この時、基材金属にマスキングを施す事で、前記金属の露出部分へ選択的に火花放電を起こす事も可能となり、任意の場所、大きさで結晶性金属酸化物が生成できる。図2、図3、図4参照。 In the selected aqueous electrolytic solution, the base metal is the anode, the cathode is platinum or carbon, and when starting energization of 400 V or more, a spark discharge is continuously generated at the anode, directly from the base metal. Crystalline metal oxide is produced. At this time, by performing masking on the base metal, it is possible to selectively cause a spark discharge to the exposed portion of the metal, and a crystalline metal oxide can be generated at an arbitrary place and size. See FIG. 2, FIG. 3, and FIG.
前記マスキングに用いるテ−プは耐アルカリ性のある、例えばポリエチレンテ−プ等が良く、電解水溶液の侵入を防ぐ為に基材金属への巻きつけは、しっかり行う必要がある。 The tape used for the masking is preferably alkali-resistant, for example, a polyethylene tape, and it is necessary to wind the base metal firmly in order to prevent the electrolytic aqueous solution from entering.
次に前記電解水溶液より基材金属を取り出し、前記基材金属と生成された結晶性金属酸化物の洗浄、乾燥を行う。 Next, the base metal is taken out from the electrolytic aqueous solution, and the base metal and the generated crystalline metal oxide are washed and dried.
次に前記結晶性金属酸化物被膜の上にサブミクロンレベルのガラスフリットを塗布、印刷、又は浸漬し、乾燥し、次に500℃以上、1000℃以下の温度で熱処理しホウロウ被膜と結晶性金属酸化物を一体化する。図1参照。 Next, a glass frit of a submicron level is applied on the crystalline metal oxide film, printed, or dipped, dried, and then heat-treated at a temperature of 500 ° C. or higher and 1000 ° C. or lower to carry out the enamel coating and the crystalline metal. Integrate the oxide. See FIG.
樹脂加工は、MAO処理、洗浄、乾燥を終えた前記結晶性金属酸化物の上に、樹脂を含む紛体、又は溶液を散布、塗布、印刷、又は浸漬し、含まれている溶剤を揮発させた後に70℃以上、300℃以下のオ−ブンの中に保持し、場合によってはオ−ブン内を減圧、又は加圧し、樹脂被膜と結晶性金属酸化物を一体化する。図1参照。 Resin processing was performed by spraying, applying, printing, or immersing the powder or solution containing resin on the crystalline metal oxide that had been subjected to MAO treatment, washing, and drying, and volatilizing the contained solvent. Thereafter, the resin is held in an oven at 70 ° C. or higher and 300 ° C. or lower, and the oven is decompressed or pressurized in some cases to integrate the resin film and the crystalline metal oxide. See FIG.
樹脂加工には予熱された金型に前記結晶性金属酸化物を取り付けた後、樹脂を加圧しながら前記金型に流すインサ−ト成形法等もある。 In resin processing, there is an insert molding method in which the crystalline metal oxide is attached to a preheated mold, and then the resin is pressed while flowing into the mold.
前記インサ−ト成形は結晶性金属酸化物の局部に樹脂を接着するには有効である。 The insert molding is effective for bonding a resin to a local part of a crystalline metal oxide.
MAOにてマスキングを行った場合は、サブミクロンガラスフリット、又は樹脂塗布後、一体化前にマスキングテ−プを剥離する必要がある。 When masking is performed with MAO, it is necessary to peel off the masking tape after the application of sub-micron glass frit or resin and before integration.
前記結晶性金属酸化物の模様は、高低差のある複雑な凸凹で有る為に、積層状態となるホウロウ被膜、或いは樹脂被膜へのアンカ−効果が強く、強固な接着性を有しており、絶縁破壊電圧の安定と向上に富んだ材料となる。 Since the pattern of the crystalline metal oxide has complex irregularities with different heights, it has a strong anchoring effect on the enameled film or resin film in a laminated state, and has a strong adhesiveness. It becomes a material rich in stability and improvement of dielectric breakdown voltage.
1 基材金属。
2 結晶性金属酸化物。
3 ホウロウ被膜、又は樹被膜層。
4 マイクロア−ク酸化中の基材金属。
5 白金又は炭素。
6 選ばれた電解水溶液。
7 電源。
8 ホウロウ加工、又は樹脂加工された基材金属。
9 LOW側金属球。
10 HIGH側電線。
11 絶縁破壊試験装置。
12 LOW側電線。
13 容器
14 ガラス容器
1 Base metal.
2 Crystalline metal oxide.
3 A enamel coat or tree coat layer.
4 Base metal during micro-arc oxidation.
5 Platinum or carbon.
6 Selected aqueous electrolytic solution.
7 Power supply.
8 Base metal processed by enamel processing or resin processing.
9 LOW side metal sphere.
10 HIGH side electric wire.
11 Dielectric breakdown test equipment.
12 LOW side electric wire.
13 containers
14 Glass container
本発明はアルミニウム若しくはその合金、又はチタニウム若しくはその合金を基材金属とし、前記基材金属のマイクロア−ク酸化(以下MAOと略す)により生成された結晶性金属酸化物を接着界面とし、前記接着界面にホウロウ加工によるホウロウ被膜を形成し構成され、前記結晶性金属酸化物の絶縁破壊電圧の安定と向上をさせたものである。 The present invention is aluminum Moshiku is and its alloys, or titanium or base metal alloys thereof, micro-of the base metal - a crystalline metal oxide produced by click oxide (hereinafter abbreviated as MAO) to the adhesive interface The enamel interface is formed with a enamel coating by enamel processing to stabilize and improve the dielectric breakdown voltage of the crystalline metal oxide.
従来、金属の防錆、耐薬品性等に付与する技術にホウロウ加工がある。ホウロウ加工は鉄、アルミニウムなどの金属を主体に、ガラス粉であるガラスフリットを加熱する事により金属と表面反応させる事で界面を生成し、一体化する事でホウロウ被膜、別名ガラス被膜を生成する技術である。 Conventionally, a technique for imparting rust prevention, chemical resistance, etc. of metal has been enamel processing . In the enameling process, mainly glass such as iron and aluminum is heated, and the glass frit that is glass powder is heated to react with the metal to generate an interface, and by integration, a enamel coating, also known as a glass coating, is generated. Technology.
本発明に用いるMAOとは、アルミニウム若しくはその合金、又は、チタニウム若しくはその合金を基材金属とし、選ばれた電解水溶液中で前記基材金属を陽極とし、陰極との間に400v以上の直流高電圧を印加すると連続した火花放電が起き、前記火花放電をMAOと言う。 MAO used in the present invention is aluminum or an alloy thereof, or titanium or an alloy thereof as a base metal, and the base metal is used as an anode in a selected electrolytic aqueous solution. When a voltage is applied, a continuous spark discharge occurs, and the spark discharge is called MAO.
前記MAOによって基材金属の表面に生成された物質が、結晶性金属酸化物である。図2参照。 A material generated on the surface of the base metal by the MAO is a crystalline metal oxide. See FIG.
ホウロウ加工技術は、鉄等の金属とガラスフリットの熱化学反応を利用したもので、加熱による歪を防止する為に、前記金属にあうガラスフリットの組成設計、加熱操作の制御など高度な技術的ノウハウが必要である。また ホウロウ被膜厚みを均一で50μm以下にする事と、複雑な形状、パタ−ンへの対応が困難である。 The enamel processing technology uses the thermochemical reaction between a metal such as iron and glass frit. In order to prevent distortion due to heating, the technical design of the glass frit that matches the metal, control of heating operation, etc. Know-how is required. In addition, it is difficult to make the enamel coating thickness uniform to 50 μm or less and to cope with complicated shapes and patterns.
LED、又は基板等に使用しているセラミックスは、放熱性、断熱性、高い絶縁破壊電圧、加工性などを兼ね備える機能が必要であるが、前記機能を有した短小軽薄なセラミックスの加工は難しい面がある。 Ceramics used for LEDs or substrates, etc. need to have functions that combine heat dissipation, heat insulation, high breakdown voltage, workability, etc., but it is difficult to process short, small, and thin ceramics with these functions There is.
MAOによって生成される結晶性金属酸化物は、処理条件により左右するが基材金属上に5μm〜100μm程度の厚みが生成できる、反面一般的に用いられる市販のセラミック系絶縁物と比較すると、ミリ単位の厚みは同程度の性能が保持できるが、実態は5μm〜100μmと薄く、基材金属との絶縁破壊電圧に不安な面が観られる。 Although the crystalline metal oxide produced by MAO depends on the processing conditions, it can produce a thickness of about 5 μm to 100 μm on the base metal. On the other hand, when compared with commonly used commercially available ceramic insulators, Although the unit thickness can maintain the same level of performance, the actual thickness is as thin as 5 to 100 μm, and an uneasy aspect is observed in the dielectric breakdown voltage with the base metal.
本発明は、基材金属のアルミニウム若しくはその合金、又は、チタニウム若しくはその合金にMAOにより結晶性金属酸化物を生成し、前記金属酸化物を接着界面とするホウロウ加工による被膜の形成し、前記結晶性金属酸化物の絶縁破壊電圧を高め、安定化する技術の提供である。 According to the present invention, a crystalline metal oxide is produced by MAO on aluminum or an alloy thereof, or titanium or an alloy thereof, and a film is formed by enameling using the metal oxide as an adhesive interface. Providing a technique for increasing and stabilizing the dielectric breakdown voltage of a conductive metal oxide.
MAOは交流高電圧の印加でも可能であるが、一般的には直流高電圧電源を用いて結晶性金属酸化物の生成を行う。 Although MAO can be applied by applying an AC high voltage, generally, a crystalline metal oxide is generated using a DC high voltage power source.
MAOをする際に、基材金属にマスキングをする事で、火花放電部分を選択し結晶性金属酸化物を任意の場所、形状に生成できる事も可能である。 When performing MAO, by masking the base metal, it is possible to select a spark discharge portion and generate a crystalline metal oxide in an arbitrary place and shape.
前記結晶性金属酸化物は基材金属より直接生成される為に、密着は非常に強固である。 Since the crystalline metal oxide is generated directly from the base metal, the adhesion is very strong.
前記結晶性金属酸化物の結晶型、結晶形状、大きさ、厚み等は、MAOに用いる電解水溶液の選択や、印加時間等の処理条件により制御する事が可能である。 Crystalline form of the crystalline metal oxide, crystal shape, size, thickness, etc., it is possible to control selection of the electrolytic solution used for the MAO, the processing conditions such as the application time.
前記結晶性金属酸化物の凸凹形状、或いは高低差模様は複雑で、かつ熱的に安定である為に、ホウロウ加工の接着界面としては最適である。 The uneven shape or the height difference pattern of the crystalline metal oxide is complicated and thermally stable, and is therefore optimal as an adhesive interface for enamel processing.
前記結晶性金属酸化物へホウロウ加工を行う場合、一般的な平均粒径4.5μmのガラスフリットを用いてのホウロウ加工も可能だが、ビ−スミル等により平均粒径を0.1〜1μm以下のサブミクロンレベルのガラスフリットを用いる事で、熱処理温度の低下、ホウロウ被膜の均一化、及び薄膜化に大きな効果を生む事ができる。 When enamelling the crystalline metal oxide, enameling using a glass frit with a general average particle size of 4.5 μm is possible, but the average particle size is 0.1 to 1 μm or less with a bead mill or the like. By using the glass frit of the submicron level, it is possible to produce a great effect in lowering the heat treatment temperature, making the enamel coating uniform, and reducing the film thickness.
前記サブミクロンレベルのガラスフリットを、前記結晶性金属酸化物に塗布、又は印刷し、500℃以上1000℃以下の温度でホウロウ被膜を形成し一体化する。図1参照。 The glass frit of the submicron level is applied or printed on the crystalline metal oxide, and a hollow film is formed at a temperature of 500 ° C. or higher and 1000 ° C. or lower to be integrated. See FIG.
本発明の観点は、前記基材金属のMAOによって生成された接着界面となる結晶性金属酸化物において、前記接着界面上にガラスフリットを塗布、又は印刷し熱処理により一体化しホウロウ被膜を形成し構成され、前記MAOによって生成された結晶性金属酸化物の絶縁破壊電圧の向上と安定化をさせる事にある。 An aspect of the present invention is that a crystalline metal oxide serving as an adhesive interface generated by MAO of the base metal is formed by coating or printing glass frit on the adhesive interface and integrating them by heat treatment to form a enamel coating. It is, in fact to improve and stabilize the breakdown voltage of a crystalline metal oxide produced by the MAO.
基材金属の一つであるφ5アルミニウム丸棒にMAOを行い、結晶性金属酸化物厚み10μm以上、25μm以下を生成した試料甲と、前記甲にホウロウ被膜30μm以上50μm以下のホウロウ加工品10個の絶縁破壊試験結果を次に示す。図5参照。
Performed MAO to φ5 aluminum round rod, which is one of the base metal, the crystalline metal oxide thickness 10μm or more, the sample Jia generating the 25μm or less,
本発明においてMAOに用いる基材金属とは、チタニウム若しくはその合金、又は、アルミニウム若しくはその合金である。 The base metal used for MAO in the present invention is titanium or an alloy thereof, or aluminum or an alloy thereof.
アルミニウム合金とはアルミニウムを主成分とし、その他に例えば、Cu、Mn、Si Mg又はZn等の金属を一種類以上含有しているものである。 The aluminum alloy contains aluminum as a main component and contains one or more kinds of metals such as Cu, Mn, Si Mg and Zn.
チタニウム合金とはTiを主成分とし、その他に例えば、Pb、Ru、Cr、Ni又はCo等の金属を一種類以上含有しているものである。 The titanium alloy is mainly composed of Ti and contains one or more kinds of metals such as Pb, Ru, Cr, Ni or Co.
本発明のホウロウ加工に用いるサブミクロンレベルのガラスフリットは、二酸化珪素を主成分とし、その他に、PbO、B2O3、Na2O、又はP2O5の酸化物を一種類以上含有しているものである。 The glass frit of the submicron level used for the enamel processing according to the present invention contains silicon dioxide as a main component and additionally contains one or more kinds of oxides of PbO, B2O3, Na2O, or P2O5.
本発明に用いる選ばれた電解水溶液の代表例として、水酸化ナトリウム、水酸化カリウム、リン酸ナトリウム、リン酸カリウム、ホウ酸ナトリウム、があげられ、前記電解水溶液濃度は、0.01N〜2Nを主とし、前記選ばれた電解水溶液には適宜の珪酸ナトリウムを添加すると安定的なMAOにより結晶性金属酸化物が生成される。 Representative examples of the selected electrolytic aqueous solution used in the present invention include sodium hydroxide, potassium hydroxide, sodium phosphate, potassium phosphate, sodium borate, and the electrolytic aqueous solution concentration is 0.01N to 2N. Mainly, when appropriate sodium silicate is added to the selected electrolytic aqueous solution, a crystalline metal oxide is generated by stable MAO.
MAOにより生成された結晶性金属酸化物は、ホウロウ加工によって形成されたホウロウ被膜は、前記結晶性金属酸化物と剥離の無い強固な接着を有し、前記ホウロウ被膜は、前記結晶性金属酸化物と剥離の無い強固な接着を有し、前記ホウロウ被膜は、MAOによって生成された結晶性金属酸化物の絶縁破壊電圧の向上と、安定を付与する事が可能となる。 The crystalline metal oxide produced by MAO is a enamel coating formed by enamel processing, and has a strong adhesion without peeling from the crystalline metal oxide, and the enamel coating is composed of the crystalline metal oxide. Thus, the enamel coating can provide improved breakdown voltage and stability of the crystalline metal oxide produced by MAO.
MAOは、基材金属の複雑な形状、或いはマスキングをする事で、任意の形状、場所へ結晶性金属酸化物を生成し、前記任意の形状、場所へホウロウ加工を行う事が可能となり、必要な部分への絶縁破壊電圧の向上と安定を付与する事もできる。 MAO can form a crystalline metal oxide in any shape and location by masking the complicated shape or masking of the base metal, and it is possible to perform enamel processing on the desired shape and location. It is also possible to impart improvement and stability of the dielectric breakdown voltage to the critical part.
MAOによって生成された結晶性金属酸化物の上にホウロウ加工をする事で、現在のLED等に使用する断熱用セラミックスと放熱用金属板を一体にできる可能性も生まれる。 By performing a hollow process on the crystalline metal oxide produced by MAO, there is a possibility that the heat insulating ceramics and the heat radiating metal plate used in current LEDs can be integrated.
基材金属のMAOによって生成した結晶性金属酸化物のホウロウ加工は、従来、銅又はSUSを用いる劣悪な環境下での材料を、本発明のホウロウ加工品に代替する事で、コスト面、或いは軽量化への効果も期待できる。 Conventionally, the process of enamelling a crystalline metal oxide produced by the MAO of the base metal can be achieved by substituting the material in a poor environment using copper or SUS with the enameled product of the present invention, in terms of cost, or The effect on weight reduction can also be expected.
選ばれた電解水溶液の中で基材金属を陽極に、陰極は白金、或いは炭素とし、400V以上の通電を開始する事で、陽極に火花放電が連続的に発生し、前記基材金属から直接結晶性金属酸化物を生成する。この時、基材金属にマスキングを施す事で、前記金属の露出部分へ選択的に火花放電を起こす事も可能となり、任意の場所、大きさで結晶性金属酸化物が生成できる。図2、図3、図4参照。 In the selected aqueous electrolytic solution, the base metal is the anode, the cathode is platinum or carbon, and when starting energization of 400 V or more, a spark discharge is continuously generated at the anode, directly from the base metal. Crystalline metal oxide is produced. At this time, by performing masking on the base metal, it is possible to selectively cause a spark discharge to the exposed portion of the metal, and a crystalline metal oxide can be generated at an arbitrary place and size. See FIG. 2, FIG. 3, and FIG.
前記マスキングに用いるテ−プは耐アルカリ性のある、例えばポリエチレンテ−プ等が良く、電解水溶液の侵入を防ぐ為に基材金属への巻きつけは、しっかり行う必要がある The tape used for the masking is alkali-resistant, for example, polyethylene tape, etc., and it is necessary to wrap around the base metal firmly in order to prevent the penetration of the electrolytic aqueous solution.
次に前記電解水溶液より基材金属を取り出し、前記基材金属と生成された結晶性金属酸化物の洗浄、乾燥を行う。 Next, the base metal is taken out from the electrolytic aqueous solution, and the base metal and the generated crystalline metal oxide are washed and dried.
次に前記結晶性金属酸化物被膜の上にサブミクロンレベルのガラスフリットを塗布、印刷、又は浸漬し、乾燥し、次に500℃以上1000℃以下の温度で熱処理しホウロウ被膜と結晶性金属酸化物を一体化する。図1参照。 Next, a glass frit of a submicron level is applied on the crystalline metal oxide film, printed or dipped, dried, and then heat-treated at a temperature of 500 ° C. or higher and 1000 ° C. or lower to carry out the enamel coating and the crystalline metal oxide. Integrate things. See FIG.
MAOにてマスキングを行った場合は、サブミクロンガラスフリット塗布後、一体化前にマスキングテ−プを剥離する必要がある。 When masking is performed by MAO, it is necessary to peel off the masking tape after integration after the submicron glass frit is applied .
前記結晶性金属酸化物の模様は、高低差のある複雑な凸凹である為に、積層状態となるホウロウ被膜へのアンカ−効果は強く、強固な接着性を有しており、絶縁破壊電圧の安定と向上に富んだ材料となる。 Since the pattern of the crystalline metal oxide is a complex unevenness with a difference in height, the anchor effect on the enamel coating in a laminated state is strong and has strong adhesiveness, and has a dielectric breakdown voltage. The material is rich in stability and improvement.
1 基材金属
2 結晶性金属酸化物
3 ホウロウ被膜
4 マイクロア−ク酸化中の基材金属
5 白金又は炭素
6 選ばれた電解水溶液
7 電源
8 ホウロウ加工された基材金属
9 LOW側金属球
10 HIGHT側電線
11 絶縁破壊試験装置
12 LOW側電線
13 容器
14 ガラス容器
DESCRIPTION OF
Claims (1)
In a crystalline metal oxide produced by micro-arc oxidation of aluminum and its alloy, or titanium and its alloy, any one of the crystalline metal oxide, a hollow film, or a resin film is treated with the crystalline metal oxide. A hollow processed product or a resin processed product, characterized by being bonded and integrated to an object, and providing stability and improvement of the dielectric breakdown voltage of the crystalline metal oxide.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012139579A JP2014005480A (en) | 2012-06-21 | 2012-06-21 | Enameled article of mao crystalline metal oxide |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012139579A JP2014005480A (en) | 2012-06-21 | 2012-06-21 | Enameled article of mao crystalline metal oxide |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2014005480A true JP2014005480A (en) | 2014-01-16 |
Family
ID=50103467
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012139579A Pending JP2014005480A (en) | 2012-06-21 | 2012-06-21 | Enameled article of mao crystalline metal oxide |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2014005480A (en) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5216517A (en) * | 1975-07-30 | 1977-02-07 | Mitsubishi Heavy Ind Ltd | Process for coating metal surface |
JPH0272515A (en) * | 1988-07-06 | 1990-03-12 | Alum Pechiney | Method of continuously coating aluminum alloy wire for electric coil manufacturing with enamel |
JPH10212107A (en) * | 1997-01-28 | 1998-08-11 | Nippon Alum Co Ltd | Ozonizer and its manufacture |
JPH11137440A (en) * | 1997-09-10 | 1999-05-25 | Seb Sa | Multi-layer coating of aluminum or aluminum alloy, aluminum or aluminum alloy, and kitchen utensil using same |
JP2006116398A (en) * | 2004-10-20 | 2006-05-11 | Norio Shimizu | Method for producing photocatalyst |
JP2007517983A (en) * | 2004-01-12 | 2007-07-05 | アレクサンドロビチ ニキフォロフ,アレクセイ | How to produce high adhesion thick protective coating of valve metal parts by micro arc oxidation |
JP2009102721A (en) * | 2007-10-25 | 2009-05-14 | Ulvac Japan Ltd | Surface treatment method |
-
2012
- 2012-06-21 JP JP2012139579A patent/JP2014005480A/en active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5216517A (en) * | 1975-07-30 | 1977-02-07 | Mitsubishi Heavy Ind Ltd | Process for coating metal surface |
JPH0272515A (en) * | 1988-07-06 | 1990-03-12 | Alum Pechiney | Method of continuously coating aluminum alloy wire for electric coil manufacturing with enamel |
JPH10212107A (en) * | 1997-01-28 | 1998-08-11 | Nippon Alum Co Ltd | Ozonizer and its manufacture |
JPH11137440A (en) * | 1997-09-10 | 1999-05-25 | Seb Sa | Multi-layer coating of aluminum or aluminum alloy, aluminum or aluminum alloy, and kitchen utensil using same |
JP2007517983A (en) * | 2004-01-12 | 2007-07-05 | アレクサンドロビチ ニキフォロフ,アレクセイ | How to produce high adhesion thick protective coating of valve metal parts by micro arc oxidation |
JP2006116398A (en) * | 2004-10-20 | 2006-05-11 | Norio Shimizu | Method for producing photocatalyst |
JP2009102721A (en) * | 2007-10-25 | 2009-05-14 | Ulvac Japan Ltd | Surface treatment method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108541149A (en) | The manufacturing method of metal/ceramic circuit board | |
JP2008231578A (en) | Manufacturing method of magnesium or magnesium alloy product having anodic oxidation coating on surface | |
JP2014222611A (en) | Copper fine particle dispersion liquid, conductive film forming method, and circuit board | |
US20160360846A1 (en) | Hair iron and heat transfer material for hair iron | |
KR101013078B1 (en) | Method of fabrication electrode using cold spray and electrode by the same | |
JP6362171B2 (en) | Airtight terminal and aluminum electrolytic capacitor using the airtight terminal | |
JP2019509237A (en) | Thick film paste intervening ceramics joined by metal or metal hybrid foil | |
US20150047876A1 (en) | Busbar | |
TW200644003A (en) | Method for oxide dielectric layer formation, and capacitor layer forming material comprising oxide dielectric layer formed by said formation method | |
JP2014005480A (en) | Enameled article of mao crystalline metal oxide | |
CN108962860A (en) | A kind of preparation method of resistance to oxidation bonding brass wire material | |
CN106409403B (en) | A kind of flat enamel-covered wire and its manufacturing process | |
CN105632672B (en) | A kind of electronic ceramic component surface treatment method and surface treatment liquid | |
JPH04277406A (en) | Copper conductor paste | |
US20150044493A1 (en) | METHOD FOR ANCHORING Sn POWDER ON ALUMINIUM SUBSTRATE AND ALUMINIUM ELECRTOCONDUCTIVE MEMBER | |
Hlina et al. | Comparison of copper and silver thick film on alumina substrates properties | |
JPH04500584A (en) | Method for manufacturing a substrate for arranging electrical and/or electronic components | |
US3290170A (en) | Oxidation-resistant coating method and coated article | |
US1037887A (en) | Process of plating metals. | |
CN108538515A (en) | A kind of enameled wire machining technique | |
JPH08330105A (en) | Electronic component | |
CN109294297B (en) | Heat pipe coating, preparation method thereof and prepared heat pipe | |
JP2000277021A (en) | Barrier for gas discharge type display panel and manufacture thereof | |
JPS58125B2 (en) | insulated wire | |
JP2007157577A (en) | Spray heating element for low temperature and method of manufacturing, and heating device using it |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20131015 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20140325 |