JP2014003587A - 画像符号化装置及びその方法 - Google Patents

画像符号化装置及びその方法 Download PDF

Info

Publication number
JP2014003587A
JP2014003587A JP2013052495A JP2013052495A JP2014003587A JP 2014003587 A JP2014003587 A JP 2014003587A JP 2013052495 A JP2013052495 A JP 2013052495A JP 2013052495 A JP2013052495 A JP 2013052495A JP 2014003587 A JP2014003587 A JP 2014003587A
Authority
JP
Japan
Prior art keywords
lower limit
block
limit value
quantization step
quantization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013052495A
Other languages
English (en)
Other versions
JP2014003587A5 (ja
Inventor
Kimio Shiozawa
公男 塩澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2013052495A priority Critical patent/JP2014003587A/ja
Priority to US13/901,057 priority patent/US9167244B2/en
Publication of JP2014003587A publication Critical patent/JP2014003587A/ja
Publication of JP2014003587A5 publication Critical patent/JP2014003587A5/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/124Quantisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/146Data rate or code amount at the encoder output
    • H04N19/149Data rate or code amount at the encoder output by estimating the code amount by means of a model, e.g. mathematical model or statistical model
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/146Data rate or code amount at the encoder output
    • H04N19/15Data rate or code amount at the encoder output by monitoring actual compressed data size at the memory before deciding storage at the transmission buffer
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/17Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
    • H04N19/176Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a block, e.g. a macroblock
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/119Adaptive subdivision aspects, e.g. subdivision of a picture into rectangular or non-rectangular coding blocks

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Algebra (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)

Abstract

【課題】
量子化を利用する符号化方式で、効率的な符号量割り当てを実現する。
【解決手段】
DCT部(105)は、入力画像又は予測画像との差分画像を離散コサイン変換する。量子化部(106)は、量子化制御部(115)により設定される量子化ステップに従い、DCT部(105)からのDCT変換係数を量子化する。量子化制御部(115)には、レート制御部(114)からバッファメモリ(113)の占有量に関する情報が入力され、符号化制御部(117)から量子化制御のための情報が入力される。量子化制御部(115)は、これらの情報に基づき、目標データレートになるように各フレームの目標符号量を割り当てるとともに、量子化ブロックのサイズに応じた量子化ステップ下限値を設定し、設定された量子化ステップ下限値を下回らないように量子化ブロックごとの量子化ステップを設定する。
【選択図】 図1

Description

本発明は、動画像を圧縮符号化する画像符号化装置及びその方法に関する。
近年、デジタルビデオカメラやハードディスクレコーダーなど、動画像を記録できるデジタル機器が普及している。これらのデジタル機器では、情報量の多い動画像を容量に制限のあるフラッシュメモリやハードディスクといった記録メディアに効率的に記録するため、動画像データの圧縮符号化を行っている。代表的な動画像の圧縮符号化方式にMPEG2やH.264が挙げられる。これら動画像の圧縮符号化方式では、多くの映像信号が有する自己相関性の高さ(すなわち、冗長性)を利用して情報量(データ量)を圧縮する。映像信号が有する冗長性には、時間冗長性と二次元(画面内)の空間冗長性がある。時間冗長性は、ブロック単位の動き検出及び動き補償を用いて低減できる。一方、空間冗長性は、離散コサイン変換(DCT)や量子化を用いて低減出来る。動画像の圧縮符号化では更に、エントロピー符号化を用いてデータ量を圧縮する。
これらの動画像の圧縮符号化方式では、先に述べた通り、DCT後のDCT係数データを量子化するが、量子化を行うための量子化ステップサイズは、16画素×16画素のマクロブロックに対して1つ与えるのみである。特許文献1には、動きの少ない/大きい画像など種々の動画像に対して、効率的に符号量を割り当てるために、与える量子化ステップの下限値をフレーム毎に決めることが記載されている。
特開2003−102007号公報
ところで、動画像圧縮符号化の分野では、量子化を行うブロックの単位を可変にすることにより、更なる符号化効率の向上を目指した技術提案がなされている。特許文献1に記載の技術は、量子化ステップサイズの割当て対象であるマクロブロック(量子化を行うブロック)が固定のサイズであることを前提としており、そのままでは量子化を行うブロックの単位が可変である動画像の圧縮符号化方法に適用できない。
本発明は上記問題点に鑑み、量子化ステップサイズの割当て対象であるブロックの単位が可変である動画像圧縮符号化方法に適用可能とし、量子化ステップ下限値を設定可能にした画像符号化装置及びその方法を提示することを目的とする。
上記目的を達成するために、本発明に係る画像符号化装置は、符号化されるブロックのサイズを複数のサイズの中から選択可能な符号化方式に対応する画像符号化装置であって、符号化対象の画像において、前記ブロックごとに量子化ステップサイズを割り当てて量子化を行う量子化手段と、前記量子化手段によって量子化された前記ブロックに係る画像データを符号化する符号化手段と、前記ブロックのサイズに応じた量子化ステップの下限値を設定し、前記符号化対象の画像の各ブロックに対して適用する下限値設定手段と、前記ブロックの各々において、前記量子化ステップの下限値を下回らないように前記量子化ステップサイズを決定する量子化ステップ決定手段とを具備することを特徴とする。
また、本発明に係る画像符号化方法は、符号化されるブロックのサイズを複数のサイズの中から選択可能な符号化方式に対応する画像符号化方法であって、符号化対象の画像において、前記ブロックごとに量子化ステップサイズを割り当てて量子化を行う量子化工程と、前記量子化工程で量子化された前記ブロックに係る画像データを符号化する符号化工程と、前記ブロックのサイズに応じた量子化ステップの下限値を設定し、前記符号化対象の画像の各ブロックに対して適用する下限値設定工程と、前記ブロックの各々において、前記量子化ステップの下限値を下回らないように前記量子化ステップサイズを決定する量子化ステップ決定工程とを具備することを特徴とする
本発明によれば、量子化されるブロックのサイズに応じて量子化ステップ下限値を設定するので、効率的かつ高画質な符号化が可能となる。
本発明の第1実施例の概略構成ブロック図である。 第1実施例に係るブロックサイズに応じた量子化ステップ下限値の説明図である。 量子化ステップサイズの分布例である。 第2実施例に係るブロックサイズに応じた量子化ステップ下限値の説明図である。 本発明の第2実施例の概略構成ブロック図である。 本発明の第1実施例をあるシーンに適用した説明例である。 本発明の第1実施例に係るフローチャートである。 本発明の第2実施例をあるシーンに適用した説明例である。 本発明の第2実施例に係るフローチャートである。
以下、図面を参照して、本発明の実施例を詳細に説明する。
図1は、本発明に係る画像符号化装置の一実施例の概略構成ブロック図を示す。図1に示す実施例において、入力信号は、撮像素子からの画像信号である。カメラ信号処理部100は、入力信号をマトリクス処理することによって輝度信号と色差信号を生成し、ガンマ処理及びA/D変換などの処理を行う。カメラ信号処理部100は、処理後の信号と処理の際に用いた情報を画像符号化装置101に出力する。
符号化制御部117及び量子化制御部115は、CPU等の演算部を有し、符号化制御部117は、量子化制御部115を含む画像符号化装置101の各動作を制御するための制御信号を発する。量子化制御部115は、符号化制御部117からの制御信号等に基づいて量子化処理を制御する。フレーム並び替え部102は、画像符号化装置101に入力される入力画像信号を符号化されるフレーム順序に応じた順番に並べ替え、スイッチ103、減算器104、動き補償予測部111及び特徴抽出部116に出力する。
画像符号化装置101は、入力画像信号の各フレーム(ピクチャ)を、画面内符号化(Iピクチャ)及び画面間予測符号化(Pピクチャ/Bピクチャ)を用いて、所定の符号化順序で符号化する。符号化順序は、H.265等、符号化ブロックのサイズが可変の符号化方式に従う。入力画像信号は、可変のブロックサイズにてブロック化され、量子化され、符号化される。符号化制御部117は、Iピクチャとして符号化されるフレームの画像信号に対してスイッチ103を端子Aに接続し、P/Bピクチャとして符号化されるフレームの画像信号に対してスイッチ103を端子Bに接続する。スイッチ103が端子Aに接続するとき、フレーム並び替え部102から出力される画像信号がそのまま離散コサイン変換(DCT)部105に入力する。
減算器104は、フレーム並べ替え部102からのP/Bピクチャの画像信号と、動き補償予測部111から出力される予測画像信号の差分を算出する。減算器104の出力する残差信号は、スイッチ103を介してDCT部105に供給される。入力画像信号から予測画像信号を減算することにより、時間軸方向の冗長度が削減される。
DCT部105は、スイッチ103からの画像信号(P/Bピクチャの場合には残差信号)に離散コサイン変換処理を施し、得られるDCT係数を量子化部106に出力する。量子化部106は、量子化制御部115から指示された、量子化対象のブロック(量子化ブロック)に対する量子化ステップサイズに従い、DCT部105からのDCT係数を量子化し、量子化されたDCT係数をエントロピー符号化部112に出力する。
量子化部106により得られる量子化されたDCT係数は、局所復号化のための逆量子化部107にも供給される。逆量子化部107は、量子化部106からの量子化されたDCT係数を逆量子化し、DCT係数代表値を逆離散コサイン変換(IDCT)部108に出力する。IDCT部108は、逆量子化部107からのDCT係数代表値に逆DCT処理を施し、得られる局所復号化画像信号を加算器109に出力する。
符号化制御部117は、IDCT部108がIピクチャの局所復号化画像信号を出力するときスイッチ110をオフに切り替え、IDCT部108がP/Bピクチャの局所復号化画像信号を出力するときスイッチ110をオンに切り替える。スイッチ110がオフのとき、加算器109は、IDCT部108の出力信号をそのまま動き補償予測部111に出力する。スイッチ110がオンのとき、加算器109は、動き補償予測部111からの予測画像信号をIDCT部108からの局所復号化画像信号に加算し、加算結果を動き補償予測部111に出力する。
動き補償予測部111は、加算器109から出力されるIピクチャ及びPピクチャの局所復号化画像信号を内蔵メモリに記憶し、複数の画素からなるブロック単位に分割し、ブロックごとに読み出す。動き補償予測部111は、内蔵メモリから画像信号をフレーム並び替え部102からのP/Bピクチャの画像信号とブロック単位で比較し、差が最も少なくなる動きベクトルを検出し、予測画像信号を生成する。動き補償予測部111は、生成した予測画像信号を減算器104及びスイッチ110に供給し、検出した動きベクトルをエントロピー符号化部112に出力する。
エントロピー符号化部112は、量子化部106からの量子化DCT係数(すなわち量子化された画像データ)をエントロピー符号化し、動き補償予測部111からの動きベクトルを多重して、バッファメモリ113に出力する。レート制御部114は、バッファメモリ113に記憶される符号化画像データの占有量を監視し、量子化制御部115に通知する。
量子化制御部115には、レート制御部114からバッファメモリ113における符号化画像データの占有量(発生符号量)に関する情報が入力される。また、量子化制御部115には、符号化制御部117から量子化の制御信号として、符号化されるフレームのピクチャタイプ情報及び目標データレートが入力される。ピクチャタイプ情報は、Iピクチャ/Pピクチャ/Bピクチャの何れかのピクチャを示す情報である。目標データレートは、発生する符号化画像データのデータレートの指標となる目標値である。さらに、符号化制御部117は、符号化対象のフレーム内の量子化ブロックのサイズを複数の値から選択可能であり、選択されたブロックのサイズをフレーム内の量子化ブロックの情報として、量子化制御部115に通知する。
量子化制御部115は、これらの情報に基づき、目標データレートに従って各フレームの目標符号量を割り当てる。さらに量子化制御部115は、フレーム内の各ブロックに対して、フレームの目標符号量と当該フレーム内の量子化ブロックの情報(サイズ、位置、個数など)とに応じて、各ブロックに割り当てられるべき符号量を決定づける量子化ステップサイズを決定する。このとき、量子化制御部115は、量子化を行うべき各量子化ブロックを量子化の単位にして、量子化ステップ下限値を設定して適用する。
図2は、量子化ステップ下限値を説明する模式図である。本実施例では、4画素×4画素、8画素×8画素、16画素×16画素のサイズのブロックを量子化ブロックの単位として選択できるものとする。なお、このサイズの選択範囲は、上記に限らず32画素×32画素、64画素×64画素など、その他のブロックサイズを含んでも良い。そして、図2では、量子化ブロック単位ごとに、さらに、そのピクチャタイプごとに、量子化ステップ下限値(MinQs)を設定する例を示している。ブロックのサイズが大きいと量子化によるブロックノイズ(画質劣化)が視覚的に目立つようになるので、いずれも、ブロックのサイズが大きくなるほど、量子化ステップ下限値が小さい値になるように(高画質になるように)している。
例えば、目標データレートが6Mbpsの場合、量子化制御部115は、ピクチャタイプごと及び量子化ブロックのサイズごとに、図2に例示した値の量子化ステップ下限値を設定し、ブロックごとに平均的に符号量を割り当てて量子化ステップを算出する。即ち、ピクチャタイプ毎に、ブロックサイズと目標データレート(目標符号量)とに従って、量子化ステップ下限値が設定される。さらに、量子化制御部115は、設定された量子化ステップ下限値を下回らないように、量子化ブロックごとの量子化ステップを設定する。即ち、量子化制御部115は、量子化ステップ下限値を設定する量子化ステップ下限値設定手段としての機能と、量子化ステップ下限値を下回らないように量子化ステップサイズを設定する量子化ステップ決定手段としての機能を具備する。
また、量子化制御部115は、特徴抽出部116による量子化ブロックに対応する画像の特徴に従い量子化ステップサイズを調整する機能を有する。即ち、量子化制御部115は、特徴抽出部116により抽出された特徴に応じて、量子化ステップ下限値を下回らない範囲で量子化ブロックごとの量子化ステップサイズを調整する。量子化ステップ下限値を設定した結果、発生する符号量が目標符号量に届かないブロックが発生しうる。その場合、量子化制御部115は、余った符号量を、量子化ステップサイズが量子化ステップ下限値を大きく超えている他のブロックに割り当てるために、当該他のブロックの量子化ステップサイズを下限値に近づけるように調整する。量子化制御部115は、このように調整された各量子化ブロックに対する量子化ステップサイズを量子化部106に設定する。
図3は、フレーム内の、量子化ブロックごとの量子化ステップサイズの分布例を示す。図3(a)は、量子化ステップ下限値を設けない場合の量子化ステップサイズの分布の様子を示す。図3(b)は、本実施例において量子化ステップ下限値を設けた場合の量子化ステップサイズの分布の様子を示す。
図3(a)では、フレーム内の上方で、ブロックのサイズに関わらず量子化ステップが6〜13と比較的小さく、下方では14〜19と比較的大きく設定されている。これは、フレーム内の上方で量子化ステップサイズを小さくし過ぎたため、符号量が足りなくなり、フレーム内の下方で適切な値よりも量子化ステップサイズが大きくなってしまった現象である。
これに対し、図3(b)では、フレーム内の上方で量子化ステップ下限値による制限がかかるので、ブロック毎の量子化ステップサイズがその下限値を下回ることがない。その結果、フレーム内の上方で発生符号量の浪費を抑え、適切な符号量の余りを発生させることができ、フレーム内の下方のブロックにその余った符号量を割り当てることが可能となる。従って、フレーム内の下方のブロックにおける量子化ステップが図3(a)に示す例に比べて小さくなる。そのうえ、ブロックサイズごとに量子化ステップ下限値を異ならせたことによって、ブロックサイズが大きい場合は劣化が目立つので、下限値を他よりも小さくすることで、視覚的劣化軽減との両立を維持できる。
図6は、本実施例を実際のシーンの符号化に適当したブロック分割例である。符号化制御部117は、図6のように、肌色や空など同一色で平坦な画像領域には16画素×16画素のブロックを、複雑な絵柄の画像領域には8画素×8画素、又は、4画素×4画素のブロックを割り当てている。従来技術では、フレーム内の上方の背景部分や髪の毛の部分に符号量を浪費してしまい、フレーム内の下方の顔の部分で画質が低下する懸念があった。それに対し、本実施例によれば、図6のように、例えば顔のアップのときなどに、フレーム内の下方にある肌色のブロックにも適切な符号量が行き渡る。すなわち、フレーム内の下方に、特にサイズの大きいブロックが多発するようなシーンであっても、符号化による劣化を軽減することができる。
図7は、本実施例で量子化制御部115が実行する制御処理の一例を説明するフローチャートである。このフローチャートは、量子化制御部115が有するROMに格納されているプログラムをRAMに展開し、CPUが実行することにより実現される。
量子化制御部115は、目標データレートの情報を取得し(ステップS701)、符号化対象の画像のピクチャタイプの情報を取得する(ステップS702)。量子化制御部115は、ピクチャタイプ毎に、目標データレートに基づいてブロックサイズごとの量子化ステップ下限値A,B,Cを設定する(ステップS703)。4画素×4画素の量子化ステップ下限値をA、8画素×8画素の量子化ステップ下限値をB、16画素×16画素の量子化ステップ下限値をCとした場合、本実施例では、A>B>Cを満たす値に設定する。ここで設定される量子化ステップ下限値は、図2に例示した値のようになる。
量子化制御部115は、対象となる量子化ブロックのサイズが4画素×4画素の場合(ステップS704)、量子化ステップ下限値Aを適用する(ステップS705)。そして、下限値Aを下回らない範囲で量子化ステップサイズを調整し、その値を決定する(ステップS706)。
量子化制御部115は、対象となる量子化ブロックのサイズが8画素×8画素の場合(ステップS707)、量子化ステップ下限値Bを適用する(ステップS708)。そして、下限値Bを下回らない範囲で量子化ステップサイズを調整し、その値を決定する(ステップS709)。
量子化制御部115は、対象となる量子化ブロックのサイズが4画素×4画素又は8画素×8画素でない場合、量子化ブロックのサイズは16画素×16画素として(ステップS710)、そのブロックに量子化ステップ下限値Cを適用する(ステップS711)。さらに、量子化制御部115は、下限値Cを下回らない範囲で量子化ステップサイズを調整し、その値を決定する(ステップS712)。S706、S709、S712のいずれかにより量子化ステップサイズが決定されると、量子化制御部115は、符号化対象のフレームの最終ブロックであるかどうかを判断する(ステップS713)。最終ブロックでなければ次の量子化ブロックに対してS704からフローを繰り返す。S713で最終ブロックであればフローは終了となり、次のフレームを量子化するまで待機する。
以上、説明したように、本実施例では、量子化ブロックごとにブロックサイズに依存して量子化ステップ下限値を設定する。これにより、量子化ステップを小さくしても視覚的な効果が期待できないブロックに対して無駄に符号量を割り当てることを避けることができる。なおかつ、フレーム全体、特にフレーム内の下方のブロックにおいて、画質の向上が期待できる。
上記実施例では、符号化制御部117による指示に応じて、ブロックサイズと目標データレートに基づいて量子化ステップ下限値を設定した。一方、本実施例では、量子化制御部115が、ブロックサイズと、入力画像中の主要被写体かどうかの情報と、符号化難易度とに応じて量子化ステップ下限値を設定する。図5は、本発明の第2実施例の概略構成ブロック図を示す。画像符号化装置501は特徴抽出部502を備え、特徴抽出部502は、各ブロックの画像の特徴情報として、ブロックごとの符号化難易度である分散値を演算によって検出する機能を有する。さらに、特徴抽出部502は、距離検出や顔検出の技術を用いて、符号化対象画像(フレーム)中の主要被写体領域のブロックを検出する機能を有する。そして、特徴抽出部502は、符号化対象フレーム中の、符号化難易度に関する情報と、主要被写体領域に関する情報とを含む特徴情報を符号化制御部117及び量子化制御部115に出力する。なお、画像符号化装置501におけるその他のブロックは、図1で説明した同じ符号を有するブロックと同様の機能を有するので、ここでの詳細な説明は省略する。
被写体の絵柄が複雑でごちゃごちゃした画像(すなわち、高周波成分の多い画像)の場合、分散値が高くなり、視覚的に劣化が目立ち難い。この場合、量子化ブロックが小さいほど、DCT係数以外のオーバーヘッドが増えてしまう。そこで、本実施例の量子化制御部115は、図4(a)に示すように、複雑な画像ならば、量子化ブロックのサイズが小さくなるに従って量子化ステップ下限値が大きくなるように設定するモードを有する。
他方、分散値が高いブロックであっても、それが主要被写体に含まれている場合には、ディテールにこだわった画質が要求されると考えられる。例えば、一面平坦な画像領域の中に存在する一部の複雑な模様の領域や、顔画像の中やその周辺に存在する複雑な画像領域(目、鼻、髪等)などが、それに該当する。このようなケースを想定して、本実施例では、量子化制御部115は、図4(b)に示すように、量子化ブロックのサイズが小さくなるに従い、量子化ステップ下限値が小さくなるように設定するモードも有する。本実施例の画像符号化装置は、このような符号化対象の画像の特徴に応じて、量子化ステップの下限値設定モードを異ならせる。
図8は、本実施例を実際のシーンの符号化に適当したブロック分割例である。符号化制御部117は、図8のように、画像の特徴に応じて、肌色の平坦で一様な画像領域には16画素×16画素のブロックを、複雑な絵柄の画像領域には8画素×8画素、又は、4画素×4画素のブロックを割り当てる。さらに、本実施例では、符号化制御部117が、各ブロックが、主要被写体領域に含まれるブロックか、主要被写体領域に含まれないブロック(すなわち、背景部分)かを分類する。図8の例では、クロスハッチングを付加した部分が主要被写体領域と判定されたブロックを示している。そして、主要被写体領域と判定された各ブロックには、量子化制御部115が、量子化ブロックのサイズが小さくなるに従い、量子化ステップ下限値が小さくなるモードを適用する。他方、主要被写体領域と判定されなかった各ブロックには、量子化制御部115が、量子化ブロックのサイズが小さくなるに従い、量子化ステップ下限値が大きくなるモードを適用する。
本実施例によれば、図8のように、例えば顔のアップのときなどに、フレーム内の下方にある肌色のブロックにも適切な符号量が行き渡るだけでなく、顔等の主要被写体内のディテールも高画質に量子化及び符号化できる。
図9は本実施例の量子化制御部115が実行する制御処理の一例を説明するフローチャートである。このフローチャートは、量子化制御部115が有するROMに格納されているプログラムをRAMに展開し、CPUが実行することにより実現される。
量子化制御部115は、目標データレートの情報を取得し(ステップS901)、主要被写体領域に関する情報を取得する(ステップS902)。量子化制御部115は、目標データレートに基づいてブロックサイズごとの量子化ステップ下限値A,B,Cを設定する。ここで、量子化制御部115は、主要被写体領域外(背景部分)の量子化ブロックに適用するモード1と、主要被写体領域内(主被写体)の量子化ブロックに適用するモード2を設定する(ステップS903)。モード1では、4画素×4画素の量子化ステップ下限値をA、8画素×8画素の量子化ステップ下限値をB、16画素×16画素の量子化ステップ下限値をCとした場合、A>B>Cを満たす値に設定される。モード1で設定される量子化ステップ下限値は、図4(a)に例示した値のようになる。モード2では、4画素×4画素の量子化ステップ下限値をA、8画素×8画素の量子化ステップ下限値をB、16画素×16画素の量子化ステップ下限値をCとした場合、A<B<Cを満たす値に設定される。モード2で設定される量子化ステップ下限値は、図4(b)に例示した値のようになる。このように、本実施例では、複数のモードが適用される。
量子化制御部115は、対象となる量子化ブロックが主要被写体領域内に存在するか否かを判断する(ステップS904)。主要被写体領域内になければ、量子化制御部115はモード1を適用し(ステップS905)、主要被写体領域内にあれば、量子化制御部115はモード2を適用する(ステップS906)。
対象となる量子化ブロックに適用されるモードが決定された以降、ブロックサイズに応じて下限値A,B,Cを適用するフローは、第1実施例の図7を用いて説明した内容(ステップS704乃至ステップS713)と同様となるので、説明は省略する。なお、本実施例のステップS705、S708、S711で適用される各下限値は、ステップS905又はS906で決定されたモード1又はモード2のいずれかが適用される。
本実施例では、ブロックのサイズと画像の特徴から量子化ステップ下限値を設定し、特に複数の下限値設定モードを有することで、量子化ステップを小さくしても視覚的な効果が期待できないブロックに対する無駄な符号量割当てを減らすことができる。さらに、それにより余った符号量を、顔等の主要被写体や、更にその中のディテールのブロックに好適に振り分けられるので、効率的な符号化により高画質な画像を提供できる。
なお、上記の説明では、特徴抽出部502が出力するブロックごとの分散値を用いて符号化難易度を推定したが、動き補償予測部111が発生する動き探索の予測誤差(差分情報)を用いてもよい。
また、特徴抽出部502が検出する分散値をブロックごととしたが、フレームとしての総和を用いてもよい。
また、上述した各実施例では、4画素×4画素、8画素×8画素及び16画素×16画素の各量子化ブロックの量子化ステップ下限値をA,B,Cとするとき、A<B<C又はA>B>Cとしたが、A≦B≦C又はA≧B≧Cと設定してもよい(A=B=Cは除く)。
本発明は、本発明の技術思想の範囲内において、上記実施例に限定されるものではなく、対象となる回路形態により適時変更されて適応するべきものである。
(その他の実施形態)
さらに、上述した本発明の実施形態における図7、図9に示した各処理は、各処理の機能を実現する為のコンピュータプログラムを本件発明の画像符号化装置が動作するシステムのメモリから読み出してシステムのCPUが実行することによっても実現できる。この場合、メモリに記憶されたプログラムは本件発明を構成する。
上記プログラムは、前述した機能の一部を実現する為のものであっても良い。さらに、前述した機能をコンピュータシステムに既に記録されているプログラムとの組合せで実現できるもの、いわゆる差分ファイル(差分プログラム)であっても良い。
また、図7、図9に示した各処理の全部または一部の機能を専用のハードウェアにより実現してもよい。また、図7、図9に示した各処理の機能を実現する為のプログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することにより各処理を行っても良い。なお、ここでいう「コンピュータシステム」とは、OSや周辺機器等のハードウェアを含むものとする。
ここで、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、CD−ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置を含む。さらに、インターネット等のネットワークや電話回線等の通信回線を介してプログラムが送信された場合のサーバやクライアントとなるコンピュータシステム内部の揮発メモリ(RAM)のように、一定時間プログラムを保持しているものも含むものとする。
また、上記プログラムは、このプログラムを記憶装置等に格納したコンピュータシステムから、伝送媒体を介して、あるいは、伝送媒体中の伝送波により他のコンピュータシステムに伝送されてもよい。ここで、プログラムを伝送する「伝送媒体」は、インターネット等のネットワーク(通信網)や電話回線等の通信回線(通信線)のように情報を伝送する機能を有する媒体のことをいう。
また、上記のプログラムを記録したコンピュータ読み取り可能な記録媒体等のプログラムプロダクトも本発明の実施形態として適用することができる。上記のプログラム、記録媒体、伝送媒体およびプログラムプロダクトは、本発明の範疇に含まれる。
以上、本発明を好ましい実施例により説明したが、本発明は上述した実施例に限ることなくクレームに示した範囲で種々の変更が可能である。

Claims (22)

  1. 符号化されるブロックのサイズを複数のサイズの中から選択可能な符号化方式に対応する画像符号化装置であって、
    符号化対象の画像において、前記ブロックごとに量子化ステップサイズを割り当てて量子化を行う量子化手段と、
    前記量子化手段によって量子化された前記ブロックに係る画像データを符号化する符号化手段と、
    前記ブロックのサイズに応じた量子化ステップの下限値を設定し、前記符号化対象の画像の各ブロックに対して適用する下限値設定手段と、
    前記ブロックの各々において、前記量子化ステップの下限値を下回らないように前記量子化ステップサイズを決定する量子化ステップ決定手段
    とを具備することを特徴とする画像符号化装置。
  2. 前記下限値設定手段は、前記量子化ステップの下限値を、量子化されるブロックのサイズと、目標データレートとに基づいて設定することを特徴とする請求項1に記載の画像符号化装置。
  3. 前記量子化ステップ決定手段は、前記量子化ステップの下限値を設定したことによって生じさせた符号量を、前記量子化ステップの下限値を超えているブロックに割り当てるよう量子化ステップサイズを調整することを特徴とする請求項1又は2に記載の画像符号化装置。
  4. 前記量子化されるブロックに対応する画像の特徴を抽出する特徴抽出手段をさらに具備し、
    前記下限値設定手段は、前記量子化ステップの下限値を、量子化されるブロックのサイズと、画像の特徴とに基づいて設定することを特徴とする請求項1に記載の画像符号化装置。
  5. 前記下限値設定手段は、前記量子化ステップの下限値を、量子化されるブロックのサイズと、主要被写体領域の情報に基づいて設定することを特徴とする請求項1に記載の画像符号化装置。
  6. 前記下限値設定手段は、量子化されるブロックのサイズが大きくなるほど、量子化ステップの下限値が小さい値になるように設定することを特徴とする請求項1乃至5の何れか1項に記載の画像符号化装置。
  7. 前記下限値設定手段は、量子化されるブロックのサイズが大きくなるほど、量子化ステップの下限値が大きい値になるように設定することを特徴とする請求項1乃至5の何れか1項に記載の画像符号化装置。
  8. 前記下限値設定手段は、複数の下限値設定モードを有することを特徴とする請求項1に記載の画像符号化装置。
  9. 前記下限値設定手段は、量子化の対象となるブロックが主要被写体領域内に有るか無いかに応じて、前記複数の下限値設定モードを使い分けることを特徴とする請求項8に記載の画像符号化装置。
  10. 前記下限値設定手段は、量子化の対象となるブロックが主要被写体領域内に有る場合と、無い場合とで、同じブロックサイズであっても設定される下限値の値を異ならせることを特徴とする請求項1に記載の画像符号化装置。
  11. 符号化されるブロックのサイズを複数のサイズの中から選択可能な符号化方式に対応する画像符号化方法であって、
    符号化対象の画像において、前記ブロックごとに量子化ステップサイズを割り当てて量子化を行う量子化工程と、
    前記量子化工程で量子化された前記ブロックに係る画像データを符号化する符号化工程と、
    前記ブロックのサイズに応じた量子化ステップの下限値を設定し、前記符号化対象の画像の各ブロックに対して適用する下限値設定工程と、
    前記ブロックの各々において、前記量子化ステップの下限値を下回らないように前記量子化ステップサイズを決定する量子化ステップ決定工程
    とを具備することを特徴とする画像符号化方法。
  12. 前記下限値設定工程は、前記量子化ステップの下限値を、量子化されるブロックのサイズと、目標データレートとに基づいて設定することを特徴とする請求項11に記載の画像符号化方法。
  13. 前記量子化ステップ決定工程は、前記量子化ステップの下限値を設定したことによって生じさせた符号量を、前記量子化ステップの下限値を超えているブロックに割り当てるよう量子化ステップサイズを調整することを特徴とする請求項11又は12に記載の画像符号化方法。
  14. 前記量子化されるブロックに対応する画像の特徴を抽出する特徴抽出工程をさらに具備し、
    前記下限値設定工程は、前記量子化ステップの下限値を、量子化されるブロックのサイズと、画像の特徴とに基づいて設定することを特徴とする請求項11に記載の画像符号化方法。
  15. 前記下限値設定工程は、前記量子化ステップの下限値を、量子化されるブロックのサイズと、主要被写体領域の情報に基づいて設定することを特徴とする請求項11に記載の画像符号化方法。
  16. 前記下限値設定工程は、量子化されるブロックのサイズが大きくなるほど、量子化ステップの下限値が小さい値になるように設定することを特徴とする請求項11乃至15の何れか1項に記載の画像符号化方法。
  17. 前記下限値設定工程は、量子化されるブロックのサイズが大きくなるほど、量子化ステップの下限値が大きい値になるように設定することを特徴とする請求項11乃至15の何れか1項に記載の画像符号化方法。
  18. 前記下限値設定工程は、複数の下限値設定モードを有することを特徴とする請求項11に記載の画像符号化方法。
  19. 前記下限値設定工程は、量子化の対象となるブロックが主要被写体領域内に有るか無いかに応じて、前記複数の下限値設定モードを使い分けることを特徴とする請求項18に記載の画像符号化方法。
  20. 前記下限値設定工程は、量子化の対象となるブロックが主要被写体領域内に有る場合と、無い場合とで、同じブロックサイズであっても設定される下限値の値を異ならせることを特徴とする請求項11に記載の画像符号化方法。
  21. コンピュータに、請求項11に記載の画像符号化方法の各工程を実行させるためのプログラム。
  22. コンピュータに、請求項11に記載の画像符号化方法の各工程を実行させるためのプログラムを記録したコンピュータが読み取り可能な記録媒体。
JP2013052495A 2012-05-25 2013-03-14 画像符号化装置及びその方法 Pending JP2014003587A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013052495A JP2014003587A (ja) 2012-05-25 2013-03-14 画像符号化装置及びその方法
US13/901,057 US9167244B2 (en) 2012-05-25 2013-05-23 Image coding apparatus and method thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012119175 2012-05-25
JP2012119175 2012-05-25
JP2013052495A JP2014003587A (ja) 2012-05-25 2013-03-14 画像符号化装置及びその方法

Publications (2)

Publication Number Publication Date
JP2014003587A true JP2014003587A (ja) 2014-01-09
JP2014003587A5 JP2014003587A5 (ja) 2016-04-21

Family

ID=49621583

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013052495A Pending JP2014003587A (ja) 2012-05-25 2013-03-14 画像符号化装置及びその方法

Country Status (2)

Country Link
US (1) US9167244B2 (ja)
JP (1) JP2014003587A (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112018007925A2 (pt) * 2015-11-06 2018-10-30 Huawei Technologies Co., Ltd. método e aparelho de dequantização de coeficiente de transformada, e dispositivo de decodificação
CN112558873B (zh) * 2020-12-14 2021-10-15 上海创米科技有限公司 嵌入式音视频数据存储、检索、删除方法及装置、存储器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000078588A (ja) * 1998-08-31 2000-03-14 Sharp Corp 動画像符号化装置
JP2003102007A (ja) * 2001-09-25 2003-04-04 Canon Inc 信号処理装置
JP2009011279A (ja) * 2007-07-09 2009-01-22 Duel:Kk ルアー
JP2009246540A (ja) * 2008-03-28 2009-10-22 Ibex Technology Co Ltd 符号化装置、符号化方法および符号化プログラム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000078588A (ja) * 1998-08-31 2000-03-14 Sharp Corp 動画像符号化装置
JP2003102007A (ja) * 2001-09-25 2003-04-04 Canon Inc 信号処理装置
JP2009011279A (ja) * 2007-07-09 2009-01-22 Duel:Kk ルアー
JP2009246540A (ja) * 2008-03-28 2009-10-22 Ibex Technology Co Ltd 符号化装置、符号化方法および符号化プログラム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KRIT PANUSOPONE (外3名): "QP adaptation at sub_CU level", JOINT COLLABORATIVE TEAM ON VIDEO CODING (JCT-VC) OF ITU-T SG16 WP3 AND ISO/IEC JTC1/SC29/WG11 JCTVC, JPN6017006233, 22 July 2011 (2011-07-22), US, pages 1 - 3 *

Also Published As

Publication number Publication date
US9167244B2 (en) 2015-10-20
US20130315301A1 (en) 2013-11-28

Similar Documents

Publication Publication Date Title
US8331449B2 (en) Fast encoding method and system using adaptive intra prediction
KR101298389B1 (ko) 비디오 코더 및 디코더 공동 최적화를 위한 방법 및 시스템
US20210152621A1 (en) System and methods for bit rate control
US20090245353A1 (en) Method and apparatus for intra-prediction video coding/decoding
US11190775B2 (en) System and method for reducing video coding fluctuation
US10812832B2 (en) Efficient still image coding with video compression techniques
JP6660868B2 (ja) 動画像符号化装置及び動画像復号装置並びにプログラム
CN111164972A (zh) 用于在帧级别控制视频编码的系统和方法
CN111164980A (zh) 用于控制图像帧内的视频编码的系统和方法
KR101596085B1 (ko) 적응적인 인트라 예측을 이용한 영상 부호화/복호화 장치 및 방법
JP5649296B2 (ja) 画像符号化装置
JP2014007469A (ja) 画像符号化装置及び画像符号化方法
CN115428451A (zh) 视频编码方法、编码器、系统以及计算机存储介质
KR101911587B1 (ko) 적응적인 인트라 예측을 이용한 영상 부호화/복호화 장치 및 방법
JP6946979B2 (ja) 動画像符号化装置、動画像符号化方法、及び動画像符号化プログラム
JP2014003587A (ja) 画像符号化装置及びその方法
KR20130023444A (ko) 다단계 화면간 예측을 이용한 영상 부호화/복호화 장치 및 방법
JPH07203430A (ja) 画像符号化装置
JP4942208B2 (ja) 符号化装置
JP6200220B2 (ja) 画像処理装置、符号化装置、復号装置、及びプログラム
KR20150096353A (ko) 이미지 인코딩 시스템, 디코딩 시스템 및 그 제공방법
JP4857243B2 (ja) 画像符号化装置及びその制御方法、コンピュータプログラム
KR101583870B1 (ko) 이미지 인코딩 시스템, 디코딩 시스템 및 그 제공방법
JP7340658B2 (ja) 画像符号化装置、画像復号装置、及びプログラム
JP2010166275A (ja) 画像符号化装置

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160304

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160304

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170228

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20171010