JP2014003182A - Joining method and joining member - Google Patents

Joining method and joining member Download PDF

Info

Publication number
JP2014003182A
JP2014003182A JP2012138034A JP2012138034A JP2014003182A JP 2014003182 A JP2014003182 A JP 2014003182A JP 2012138034 A JP2012138034 A JP 2012138034A JP 2012138034 A JP2012138034 A JP 2012138034A JP 2014003182 A JP2014003182 A JP 2014003182A
Authority
JP
Japan
Prior art keywords
bonding
metal particles
joining
bonding surface
electrode member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012138034A
Other languages
Japanese (ja)
Other versions
JP6019790B2 (en
Inventor
Yasuto Kinoshita
慶人 木下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2012138034A priority Critical patent/JP6019790B2/en
Publication of JP2014003182A publication Critical patent/JP2014003182A/en
Application granted granted Critical
Publication of JP6019790B2 publication Critical patent/JP6019790B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve joining strength.SOLUTION: A joining member 3 comprises: a body part 3a having a joining surface 3b joined to an electrode member 1 while facing a principal surface of the electrode member 1; and an inclined joining surface 3c provided, at an upper position relative to a joining direction of the joining surface 3b to the electrode member 1 in the body part 3a, in an inclined manner while facing a central portion side of the joining surface 3b. When the joining member 3 as described above is pressed against the electrode member 1 via a joining material 2 containing metal particles 2a, the metal particles 2a are pressed in the vertical direction by the joining surface 3b of the body part 3a. At the same time, the metal particles 2a are pressed toward the central portion side of the joining surface 3b by the inclined joining surface 3c.

Description

本発明は、接合方法及び接合部材に関する。   The present invention relates to a joining method and a joining member.

半導体パワーモジュールは、半導体チップを、回路パターンが形成されたベース基板に半田等で接合し、半導体チップ表面の電気配線は、プリント基板が有する導電ポストと半田等で接合し、これらが封止樹脂により封止されて構成される。   In a semiconductor power module, a semiconductor chip is joined to a base substrate on which a circuit pattern is formed by solder or the like, and electrical wiring on the surface of the semiconductor chip is joined to a conductive post on the printed board by solder or the like, which is a sealing resin It is sealed and configured.

次世代のパワー半導体デバイスとして、炭化ケイ素(SiC)等が利用されたパワーモジュールが期待されている。このようなパワーモジュールは従来よりも高温動作が必要とされるために、高温では溶融してしまう半田に代わり、例えば、有機物で被覆した金属粒子での接合が利用されている(例えば、特許文献1,2参照)。   As a next-generation power semiconductor device, a power module using silicon carbide (SiC) or the like is expected. Since such a power module is required to operate at a higher temperature than before, instead of solder that melts at a high temperature, for example, bonding with metal particles coated with an organic substance is used (for example, Patent Documents). 1 and 2).

このような金属粒子は、例えば、半導体チップと導電ポストとを接合する場合には、加熱されつつ、導電ポストにより押圧されて焼結して、半導体チップと導電ポストとの電気的接合を実現する。   For example, when joining a semiconductor chip and a conductive post, such metal particles are pressed and sintered by the conductive post while being heated, thereby realizing electrical connection between the semiconductor chip and the conductive post. .

特開2010−140928号公報JP 2010-140928 A 特開2010−283105号公報JP 2010-283105 A

このような金属粒子を利用した接合では、金属粒子は加圧(押圧)される必要がある。特に、体積に対して接合面積の割合が小さい、例えば、導電ポストでは、加圧方向に対して垂直な、例えば、導電ポストの底面には大きな圧力が発生するものの、加圧方向に対して平行な、例えば、導電ポストの側面には大きな圧力は発生しない。したがって、導電ポストの底面側では金属粒子に対して十分な接合強度が得られるものの、導電ポストの側面側では接合強度が不足してしまうという問題点があった。このため、半導体チップと接合した導電ポストは、例えば、外部から衝撃により半導体チップから外れてしまう恐れがある。導電ポストが外れてしまうと、半導体チップに対する電気的接続が維持できなくなってしまい、半導体チップが正常に動作しなくなることも考えられる。   In joining using such metal particles, the metal particles need to be pressed (pressed). In particular, the ratio of the bonding area to the volume is small. For example, in a conductive post, the pressure is perpendicular to the pressing direction. For example, a large pressure is generated on the bottom surface of the conductive post, but parallel to the pressing direction. For example, a large pressure is not generated on the side surface of the conductive post. Therefore, although sufficient bonding strength to the metal particles can be obtained on the bottom surface side of the conductive post, there is a problem that the bonding strength is insufficient on the side surface side of the conductive post. For this reason, the conductive post bonded to the semiconductor chip may be detached from the semiconductor chip due to an impact from the outside, for example. If the conductive posts are removed, it is possible that the electrical connection to the semiconductor chip cannot be maintained, and the semiconductor chip does not operate normally.

本発明は、このような点に鑑みてなされたものであり、接合強度を向上させる接合方法及び接合部材を提供することを目的とする。   This invention is made | formed in view of such a point, and it aims at providing the joining method and joining member which improve joining strength.

上記課題を解決するために、電極部材と、金属粒子を介して接合部材とを接合する接合方法において、前記接合部材は、前記電極部材の主面と対向して前記電極部材と接合する接合面を備える胴体部と、前記胴体部において前記接合面の前記電極部材への接合方向に対して上方に、前記接合面の中心部側を向いて傾斜して備えられた傾斜接合面と、を有し、前記金属粒子が主面に配置された前記電極部材に対して前記接合部材を押圧して、前記胴体部の前記接合面で前記金属粒子を押圧し、前記接合部材をさらに押圧して、前記接合面と共に前記傾斜接合面で前記金属粒子を押圧する接合方法が提供される。   In order to solve the above problems, in the joining method of joining the electrode member and the joining member via the metal particles, the joining member is opposed to the main surface of the electrode member and joined to the electrode member. And a tilted joint surface that is inclined upward toward the center portion of the joint surface above the joining direction of the joint surface to the electrode member in the trunk portion. Then, the metal particles are pressed against the electrode member disposed on the main surface, the metal particles are pressed at the bonding surface of the body portion, and the bonding member is further pressed, A joining method is provided in which the metal particles are pressed together with the joint surface along the inclined joint surface.

また、上記課題を解決するために、上記方法で用いられる接合部材が提供される。   Moreover, in order to solve the said subject, the joining member used with the said method is provided.

このような接合方法及び接合部材によれば、接合強度が向上する。   According to such a joining method and joining member, joining strength improves.

第1の実施の形態に係る接合部材及び接合方法を説明するための図である。It is a figure for demonstrating the joining member and joining method which concern on 1st Embodiment. 第2の実施の形態に係る半導体装置を示す図である。It is a figure which shows the semiconductor device which concerns on 2nd Embodiment. 第2の実施の形態に係る半導体装置の導電ポストを示す図である。It is a figure which shows the conductive post of the semiconductor device which concerns on 2nd Embodiment. 第2の実施の形態に係る半導体装置の製造方法の処理フローの一例を示す図である。It is a figure which shows an example of the processing flow of the manufacturing method of the semiconductor device which concerns on 2nd Embodiment. 第2の実施の形態に係る半導体装置の導電ポストの接合方法を説明するための図である。It is a figure for demonstrating the joining method of the conductive post of the semiconductor device which concerns on 2nd Embodiment. 第3の実施の形態に係る半導体装置の導電ポストの接合方法を説明するための図である。It is a figure for demonstrating the joining method of the conductive post of the semiconductor device which concerns on 3rd Embodiment. 第4の実施の形態に係る半導体装置の導電ポストを示す図である。It is a figure which shows the conductive post of the semiconductor device which concerns on 4th Embodiment. 第4の実施の形態に係る半導体装置の導電ポストの接合方法を説明するための図である。It is a figure for demonstrating the joining method of the conductive post of the semiconductor device which concerns on 4th Embodiment. 第5の実施の形態に係る半導体装置の導電ポストを示す図である。It is a figure which shows the conductive post of the semiconductor device which concerns on 5th Embodiment.

以下、実施の形態について図面を参照して説明する。
[第1の実施の形態]
第1の実施の形態について図1を用いて説明する。
Hereinafter, embodiments will be described with reference to the drawings.
[First Embodiment]
A first embodiment will be described with reference to FIG.

図1は、第1の実施の形態に係る接合部材及び接合方法を説明するための図である。
なお、図1(A)は接合材2が塗布された電極部材1、図1(B)は接合部材3、図1(C),(D)は、接合工程についてそれぞれ模式的に表している。
FIG. 1 is a diagram for explaining a joining member and a joining method according to the first embodiment.
1A is an electrode member 1 to which a bonding material 2 is applied, FIG. 1B schematically illustrates a bonding member 3, and FIGS. 1C and 1D schematically illustrate a bonding process. .

接合部材3(後述)が接合される、例えば、ベース基板(図示を省略)に配置された電極部材1に、図1(A)に示すように、金属粒子2aを予め塗布しておく。金属粒子2aは、例えば、揮発性のバインダー材2b中に分散させて、金属粒子2aの表面を当該バインダー材2bで被覆して、ペースト状の接合材2として、電極部材1に塗布するようにする。なお、金属粒子2aは、例えば、銅(Cu)、銀(Ag)等を適用することができる。バインダー材2bは、例えば、カルボン酸類、アルコール類、アミン類のうち少なくとも1種からなる有機物を適用することができる。   As shown in FIG. 1A, metal particles 2a are applied in advance to, for example, the electrode member 1 disposed on a base substrate (not shown) to which the bonding member 3 (described later) is bonded. For example, the metal particles 2a are dispersed in a volatile binder material 2b, and the surface of the metal particles 2a is coated with the binder material 2b, and applied to the electrode member 1 as a paste-like bonding material 2. To do. In addition, copper (Cu), silver (Ag), etc. are applicable to the metal particle 2a, for example. For the binder material 2b, for example, an organic substance composed of at least one of carboxylic acids, alcohols, and amines can be applied.

次に、接合部材3について説明する。
接合部材3は、図1(B)に示すように、電極部材1の主面と対向して電極部材1と接合する接合面3bを備える胴体部3aを有する。さらに、接合部材3は、胴体部3aにおいて接合面3bの電極部材1への接合方向に対して上方に、接合面3bの中心部側を向いて傾斜して備えられた傾斜接合面3cを有する。なお、図1の場合では、胴体部3aは、例えば、柱状(ポスト状)であって、胴体部3aの側面の周りに傾斜接合面3cが形成されている。このような接合部材3は、例えば、銀、銅等の導電性の材料により構成されている。
Next, the joining member 3 will be described.
As illustrated in FIG. 1B, the bonding member 3 includes a body portion 3 a including a bonding surface 3 b that is opposed to the main surface of the electrode member 1 and is bonded to the electrode member 1. Furthermore, the joining member 3 has an inclined joining surface 3c provided to be inclined toward the center of the joining surface 3b above the joining direction of the joining surface 3b to the electrode member 1 in the body portion 3a. . In the case of FIG. 1, the body portion 3 a is, for example, a column shape (post shape), and an inclined joint surface 3 c is formed around the side surface of the body portion 3 a. Such a joining member 3 is comprised with electroconductive materials, such as silver and copper, for example.

次いで、このような接合部材3の電極部材1に対する接合方法について説明する。
電極部材1上に塗布した金属粒子2aを含む接合材2を加熱して、接合材2から揮発性のバインダー材2bを揮発させて、金属粒子2aを電極部材1上に残留させる。
Next, a method for joining the joining member 3 to the electrode member 1 will be described.
The bonding material 2 including the metal particles 2 a applied on the electrode member 1 is heated to volatilize the volatile binder material 2 b from the bonding material 2 so that the metal particles 2 a remain on the electrode member 1.

揮発後、さらに加熱して所定の温度まで上昇させると共に、図1(C)に示すように、接合部材3を電極部材1に向けて押圧する。これにより、揮発により接合材2中に残留した金属粒子2aが胴体部3aの接合面3bにより図1中下方に押圧されるようになる。   After volatilization, the material is further heated to a predetermined temperature, and the bonding member 3 is pressed toward the electrode member 1 as shown in FIG. Thus, the metal particles 2a remaining in the bonding material 2 due to volatilization are pressed downward in FIG. 1 by the bonding surface 3b of the body portion 3a.

続けて、接合部材3をさらに押圧すると、胴体部3aの接合面3bと共に、傾斜接合面3cも接合材2を押圧するようになる。
この際、金属粒子2aは、加熱されつつ、接合面3bから電極部材1に対して垂直に圧力を受けると共に、傾斜接合面3cから接合面3bの中心部側に圧力を受ける。すると、金属粒子2aは焼結して、図1(D)に示されるように、強固な接合層2cが形成されて、接合部材3と電極部材1とが接合層2cを介して接合されるようになる。また、このようにして形成された接合層2cは、その金属粒子元来の融点の耐熱性を有する構造となる。
Subsequently, when the bonding member 3 is further pressed, the inclined bonding surface 3c also presses the bonding material 2 together with the bonding surface 3b of the body portion 3a.
At this time, while being heated, the metal particles 2a receive pressure from the bonding surface 3b perpendicular to the electrode member 1 and also receive pressure from the inclined bonding surface 3c toward the center of the bonding surface 3b. Then, the metal particles 2a are sintered to form a strong bonding layer 2c as shown in FIG. 1D, and the bonding member 3 and the electrode member 1 are bonded via the bonding layer 2c. It becomes like this. Further, the bonding layer 2c formed in this way has a structure having heat resistance of the original melting point of the metal particles.

このように、接合部材3は、電極部材1の主面と対向して電極部材1と接合する接合面3bを備える胴体部3aと共に、胴体部3aにおいて接合面3bの電極部材1への接合方向に対して上方に、接合面3bの中心部側を向いて傾斜して備えられた傾斜接合面3cを有するようにした。このような接合部材3を金属粒子2aを含む接合材2を介して電極部材1に押圧すると、胴体部3aの接合面3bにより金属粒子2aが垂直方向に押圧されると共に、傾斜接合面3cにより金属粒子2aが接合面3bの中心部側に押圧されるようになる。これにより、金属粒子2aが焼結して形成した接合層2cは、接合部材3の接合面3bのみならず、傾斜接合面3cとも接合することから、接合部材3は、接合層2cを介して電極部材1に強固に接合するようになる。   As described above, the bonding member 3 is connected to the body portion 3a including the bonding surface 3b that faces the main surface of the electrode member 1 and is bonded to the electrode member 1, and the bonding direction of the bonding surface 3b to the electrode member 1 in the body portion 3a. On the other hand, an inclined joint surface 3c provided so as to be inclined toward the central portion side of the joint surface 3b is provided. When such a joining member 3 is pressed against the electrode member 1 through the joining material 2 including the metal particles 2a, the metal particles 2a are pressed in the vertical direction by the joining surface 3b of the body portion 3a, and the inclined joining surface 3c. The metal particles 2a are pressed toward the center of the bonding surface 3b. Accordingly, the bonding layer 2c formed by sintering the metal particles 2a is bonded not only to the bonding surface 3b of the bonding member 3 but also to the inclined bonding surface 3c. Therefore, the bonding member 3 is interposed via the bonding layer 2c. It comes to join to the electrode member 1 firmly.

[第2の実施の形態]
第2の実施の形態では、第1の実施の形態の接合方法及び接合部材を半導体装置に適用した場合を例に挙げて説明する。
[Second Embodiment]
In the second embodiment, a case where the bonding method and the bonding member according to the first embodiment are applied to a semiconductor device will be described as an example.

まず、半導体装置について図2を用いて説明する。
図2は、第2の実施の形態に係る半導体装置を示す図である。
なお、図2では、半導体装置100の断面図を表している。
First, a semiconductor device will be described with reference to FIG.
FIG. 2 is a diagram illustrating a semiconductor device according to the second embodiment.
In FIG. 2, a cross-sectional view of the semiconductor device 100 is shown.

半導体装置100の一例である半導体パワーモジュールは、絶縁基板102に放熱板101a,101b及び回路パターン103a,103bが形成されたDCB(Direct Copper Bonding)基板104と、DCB基板104上に接合材105a,105bにより接合された半導体チップ106a,106bとを備える。なお、半導体チップ106a,106bは、IGBT(Insulating Gate Bipolar Transistor)、MOSFET(Metal Oxide Semiconductor Field Effect Transistor)等のスイッチング素子、または、フリーホイーリングダイオード(FWD)等を適用することができる。また、これらの半導体チップ106a,106bは、シリコン基板、あるいは、SiC基板や窒化ガリウム(GaN)基板等の基板上に形成したものを用いることができる。接合材105a,105bは、例えば、後述する接合材110a,110b,110cと同様に金属粒子を含む接合材を用いることができる。   A semiconductor power module which is an example of the semiconductor device 100 includes a DCB (Direct Copper Bonding) substrate 104 in which heat sinks 101 a and 101 b and circuit patterns 103 a and 103 b are formed on an insulating substrate 102, and bonding materials 105 a and 105 B on the DCB substrate 104. Semiconductor chips 106a and 106b joined by 105b. The semiconductor chips 106a and 106b can employ switching elements such as IGBTs (Insulating Gate Bipolar Transistors) and MOSFETs (Metal Oxide Semiconductor Field Effect Transistors), or free wheeling diodes (FWDs). These semiconductor chips 106a and 106b can be formed on a silicon substrate or a substrate such as a SiC substrate or a gallium nitride (GaN) substrate. As the bonding materials 105a and 105b, for example, a bonding material containing metal particles can be used similarly to the bonding materials 110a, 110b, and 110c described later.

半導体装置100は、プリント基板108に設けられた導電ポスト120a,120b(接合部材)が、半導体チップ106a,106b上に形成された上部電極107a,107b上に金属粒子を含んだ接合材110a,110bを介して接合されている。また、同様に、プリント基板108に設けられた導電ポスト120c(接合部材)が、DCB基板104の回路パターン103a上に金属粒子を含んだ接合材110cを介して接合されている。なお、プリント基板108は、その少なくとも一方の面には導体パターン(図示を省略)が形成されている。導電ポスト120a,120b,120cは、プリント基板108に形成されているスルーホールに設けられ、導体パターンと電気的に接続されている。   In the semiconductor device 100, conductive posts 120a and 120b (bonding members) provided on a printed circuit board 108 are bonded materials 110a and 110b containing metal particles on upper electrodes 107a and 107b formed on the semiconductor chips 106a and 106b. It is joined via. Similarly, conductive posts 120c (joining members) provided on the printed circuit board 108 are joined to the circuit pattern 103a of the DCB board 104 via a joining material 110c containing metal particles. The printed circuit board 108 has a conductor pattern (not shown) formed on at least one surface thereof. The conductive posts 120a, 120b, and 120c are provided in through holes formed in the printed circuit board 108, and are electrically connected to the conductor pattern.

また、半導体装置100は、外部導出端子109a,109bが回路パターン103a,103b及びプリント基板108に固着されている。
半導体装置100は、図2に示すように、このような構成が封止樹脂130で封止されて構成されている。
In the semiconductor device 100, the external lead-out terminals 109a and 109b are fixed to the circuit patterns 103a and 103b and the printed board 108.
As shown in FIG. 2, the semiconductor device 100 is configured by sealing such a configuration with a sealing resin 130.

次に、導電ポスト120a,120b,120c(これらをまとめて、「導電ポスト120」と記す)について図3を用いて説明する。
図3は、第2の実施の形態に係る半導体装置の導電ポストを示す図である。
Next, the conductive posts 120a, 120b, and 120c (collectively referred to as “conductive posts 120”) will be described with reference to FIG.
FIG. 3 is a view showing a conductive post of the semiconductor device according to the second embodiment.

なお、図3(A)は導電ポスト120の(接合側の)先端部の斜視図、図3(B)は導電ポスト120の底面図をそれぞれ表している。
導電ポスト120は、半導体チップ106a,106bの上部電極107a,107b並びに回路パターン103aと接合する接合面121aを備える。また、導電ポスト120は、その直径Lが、例えば、0.1mm〜1.0mmの円柱状をなしている。導電ポスト120の胴体部121の直径は、半導体チップ106a,106bの上部電極107a,107bの面積や、所望の電流容量に応じて選択することができる。また、導電ポスト120は、胴体部121において接合面121aの図3中上方に、胴体部121の周囲に沿って、接合面121aの中心部側を向いて傾斜(傾斜角θ)した傾斜接合面122aを含む傾斜部122をさらに備える。なお、傾斜接合面122aの傾斜角θは、例えば、30度〜60度とすることができる。また、このような導電ポスト120は、例えば、銅もしくは銅合金を成型したもの、または、これらの部材の表面に金(Au)、銀、ニッケル(Ni)等のめっき処理を施したものを適用することができる。導電ポスト120a,120bの高さは、例えば、1mm〜1.5mm程度である。導電ポスト120の高さは、半導体チップ106a,106b並びに回路パターン130aとプリント基板108との間を所望の距離とするように選択することができる。
3A is a perspective view of the tip (on the joining side) of the conductive post 120, and FIG. 3B is a bottom view of the conductive post 120. FIG.
The conductive post 120 includes a joining surface 121a that joins the upper electrodes 107a and 107b and the circuit pattern 103a of the semiconductor chips 106a and 106b. Further, the conductive post 120 has a cylindrical shape with a diameter L of, for example, 0.1 mm to 1.0 mm. The diameter of the body 121 of the conductive post 120 can be selected according to the area of the upper electrodes 107a and 107b of the semiconductor chips 106a and 106b and a desired current capacity. In addition, the conductive post 120 is inclined (inclination angle θ) inclined toward the center of the bonding surface 121a along the periphery of the bonding body 121 in the upper portion of the bonding surface 121a in FIG. An inclined portion 122 including 122a is further provided. In addition, inclination | tilt angle (theta) of the inclination joining surface 122a can be 30 degrees-60 degrees, for example. In addition, for example, such a conductive post 120 is formed by molding copper or a copper alloy, or by applying a plating treatment such as gold (Au), silver, nickel (Ni) to the surface of these members. can do. The height of the conductive posts 120a and 120b is, for example, about 1 mm to 1.5 mm. The height of the conductive post 120 can be selected so that the semiconductor chips 106a and 106b and the circuit pattern 130a and the printed circuit board 108 have a desired distance.

次に、このような半導体装置100の製造方法の処理フローの一例について図2と共に図4を用いて説明する。
図4は、第2の実施の形態に係る半導体装置の製造方法の処理フローの一例を示す図である。
Next, an example of the processing flow of the method for manufacturing the semiconductor device 100 will be described with reference to FIGS.
FIG. 4 is a diagram illustrating an example of a process flow of the semiconductor device manufacturing method according to the second embodiment.

半導体装置100を製造するにあたり、導電ポスト120を備えたプリント基板108を形成する。プリント基板108の形成工程の一例を挙げるが、これに限るものではない。   In manufacturing the semiconductor device 100, the printed circuit board 108 including the conductive posts 120 is formed. An example of the process of forming the printed circuit board 108 is given, but the present invention is not limited to this.

まず、プリント基板108に対して、導電ポスト120a,120b,120c、外部導出端子109a,109bの挿入用スルーホールを穿設するためのスルーホール加工を行う(ステップS11)。   First, through-hole processing is performed on the printed board 108 to form through holes for insertion of the conductive posts 120a, 120b, and 120c and the external lead-out terminals 109a and 109b (step S11).

次いで、スルーホール加工が行われたプリント基板108に対して、表裏の少なくともいずれか一方に導体パターン(図示を省略)を形成し(ステップS12)、スルーホールのめっき加工(ステップS13)を行う。   Next, a conductor pattern (not shown) is formed on at least one of the front and back surfaces of the printed board 108 that has been subjected to through-hole processing (step S12), and through-hole plating processing (step S13) is performed.

次いで、このようなプリント基板108に加工されたスルーホールに導電ポスト120a,120b,120c及び外部導出端子109a,109bを挿入する(ステップS14)。これにより、プリント基板108の導体パターンと導電ポスト120a,120b,120c及び外部導出端子109a,109bとが接続する。以上の処理フローにより、導電ポスト120a,120b,120c及び外部導出端子109a,109bを備えたプリント基板108を事前に形成しておく。   Next, the conductive posts 120a, 120b, 120c and the external lead-out terminals 109a, 109b are inserted into the through holes processed in the printed circuit board 108 (step S14). As a result, the conductive pattern of the printed circuit board 108 is connected to the conductive posts 120a, 120b, 120c and the external lead terminals 109a, 109b. The printed circuit board 108 provided with the conductive posts 120a, 120b, 120c and the external lead terminals 109a, 109b is formed in advance by the above processing flow.

他方、絶縁基板102に対して、一方の主面に回路パターン103a,103bを形成し(ステップS21)、他方の主面に伝導性に優れた材質により放熱板101a,101bを形成する(ステップS22)。以上により、DCB基板104が形成される。なお、ステップS21,S22の処理順序は逆であっても構わない。   On the other hand, circuit patterns 103a and 103b are formed on one main surface with respect to the insulating substrate 102 (step S21), and heat radiation plates 101a and 101b are formed on the other main surface with a material having excellent conductivity (step S22). ). Thus, the DCB substrate 104 is formed. Note that the processing order of steps S21 and S22 may be reversed.

次いで、このようにして形成されたDCB基板104の回路パターン103bの所定箇所に接合材105a,105bをそれぞれ塗布する。塗布した接合材105a,105b上に半導体チップ106a,106bをセットして、DCB基板104の回路パターン103bと半導体チップ106a,106bとを接合する(ステップS23)。このようにして接合した半導体チップ106a,106bの上部電極107a,107b及びDCB基板104の回路パターン103aの各所定箇所に、ディスペンサを用いて接合材110a,110b,110cを滴下(または描画)して塗布する(ステップS24)。   Next, bonding materials 105a and 105b are respectively applied to predetermined portions of the circuit pattern 103b of the DCB substrate 104 thus formed. Semiconductor chips 106a and 106b are set on the applied bonding materials 105a and 105b, and the circuit pattern 103b of the DCB substrate 104 and the semiconductor chips 106a and 106b are bonded (step S23). The bonding materials 110a, 110b, and 110c are dropped (or drawn) onto the respective predetermined positions of the upper electrodes 107a and 107b of the semiconductor chips 106a and 106b and the circuit pattern 103a of the DCB substrate 104 bonded in this way using a dispenser. Apply (step S24).

次いで、ステップS11〜S14の処理を経て形成したプリント基板108の導電ポスト120a,120b,120cの端部を、半導体チップ106a,106bの上部電極107a,107b及びDCB基板104の回路パターン103aに塗布した接合材110a,110b,110cにそれぞれ位置合わせする。続けて、加熱を行いつつ、プリント基板108をDCB基板104側に押圧して、導電ポスト120a,120b,120cと、半導体チップ106a,106bの上部電極107a,107b及びDCB基板104の回路パターン103aとを接合する(ステップS25)。また、この際、外部導出端子109a,109bも、DCB基板104の回路パターン103a,103bにそれぞれ固着される。なお、ステップS25の詳細については後述する。   Next, the ends of the conductive posts 120a, 120b, 120c of the printed circuit board 108 formed through the processes of steps S11 to S14 are applied to the upper electrodes 107a, 107b of the semiconductor chips 106a, 106b and the circuit pattern 103a of the DCB substrate 104. Alignment with the bonding materials 110a, 110b, and 110c, respectively. Subsequently, while heating, the printed circuit board 108 is pressed to the DCB substrate 104 side, the conductive posts 120a, 120b, 120c, the upper electrodes 107a, 107b of the semiconductor chips 106a, 106b, and the circuit pattern 103a of the DCB substrate 104, Are joined (step S25). At this time, the external lead-out terminals 109a and 109b are also fixed to the circuit patterns 103a and 103b of the DCB substrate 104, respectively. Details of step S25 will be described later.

このようにして形成された各構成を封止樹脂130により封止することで(ステップS26)、図2に示される、半導体装置100が形成される(ステップS27)。
このような半導体装置100の製造方法における導電ポスト120a,120b,120cの接合方法(ステップS25)の詳細について、図5を用いて説明する。なお、以下では、導電ポスト120a,120bの半導体チップ106a,106b(これらをまとめて、「半導体チップ106」と記す)の上部電極107a,107b(これらをまとめて、「上部電極107」と記す)に対する接合について説明するが、DCB基板104の回路パターン103aに対する接合も同様に行うことができる。
Each of the components thus formed is sealed with the sealing resin 130 (step S26), thereby forming the semiconductor device 100 shown in FIG. 2 (step S27).
Details of the bonding method (step S25) of the conductive posts 120a, 120b, and 120c in the method of manufacturing the semiconductor device 100 will be described with reference to FIG. Hereinafter, the upper electrodes 107a and 107b (collectively referred to as “upper electrode 107”) of the semiconductor chips 106a and 106b of the conductive posts 120a and 120b (collectively referred to as “semiconductor chip 106”). The bonding to the circuit pattern 103a of the DCB substrate 104 can be similarly performed.

図5は、第2の実施の形態に係る半導体装置の導電ポストの接合方法を説明するための図である。
なお、図5(A)は、導電ポスト120の接合面121aで接合材110a,110b(これらをまとめて、「接合材110」と記す)が押圧された状態、図5(B)は、導電ポスト120の接合面121a及び傾斜接合面122aで接合材110が押圧された状態をそれぞれ表している。
FIG. 5 is a view for explaining a method of bonding conductive posts of the semiconductor device according to the second embodiment.
5A shows a state in which the joining materials 110a and 110b (collectively referred to as “joining material 110”) are pressed on the joining surface 121a of the conductive post 120, and FIG. The bonding material 110 is pressed by the bonding surface 121a and the inclined bonding surface 122a of the post 120, respectively.

まず、半導体チップ106の上部電極107に対して塗布される接合材110(図4のステップS24)は、直径が数nm〜数100nm程度の極めて微細な、例えば、金、銀、銅、鉛(Pb)、白金(Pt)等の金属粒子(図示を省略)と、個々の粒子の表面を保護する有機被膜(表面保護膜)(図示を省略)と、接合材110の取り扱いを容易とするための揮発性のバインダー材から構成される。   First, the bonding material 110 (step S24 in FIG. 4) applied to the upper electrode 107 of the semiconductor chip 106 is extremely fine, for example, gold, silver, copper, lead (diameter about several nm to several hundred nm). In order to facilitate handling of metal particles (not shown) such as Pb) and platinum (Pt), an organic film (surface protective film) (not shown) for protecting the surface of each particle, and the bonding material 110 The volatile binder material.

このような接合材110は、半導体チップ106の上部電極107に対して、ディスペンサが用いられて、50KPa〜500KPa程度の吐出圧力で、塗布後の厚さが50μm〜400μm程度になるように塗布される。   Such a bonding material 110 is applied to the upper electrode 107 of the semiconductor chip 106 by using a dispenser with a discharge pressure of about 50 KPa to 500 KPa so that the thickness after application is about 50 μm to 400 μm. The

半導体チップ106の上部電極107に接合材110を塗布した後、加熱により雰囲気温度を200度〜250度に高める。これにより、半導体チップ106の上部電極107上の接合材110のバインダー材が揮発して、表面保護膜が加熱分解し、金属粒子の表面が露出し、露出した金属粒子は凝集する(図1(C)参照)。雰囲気温度を維持して、金属粒子が凝集した接合材110に、図5(A)に示されるように、位置合わせした導電ポスト120の接合面121aを押圧する。   After the bonding material 110 is applied to the upper electrode 107 of the semiconductor chip 106, the ambient temperature is increased to 200 to 250 degrees by heating. As a result, the binder material of the bonding material 110 on the upper electrode 107 of the semiconductor chip 106 is volatilized, the surface protective film is thermally decomposed, the surface of the metal particles is exposed, and the exposed metal particles are aggregated (FIG. 1 ( C)). While maintaining the atmospheric temperature, the bonding surface 121a of the aligned conductive post 120 is pressed against the bonding material 110 in which the metal particles are aggregated, as shown in FIG.

さらに、導電ポスト120の接合面121aで接合材110の金属粒子を押圧すると、図5(B)に示されるように、傾斜接合面122aも接合材110を接合面121aの中心部側に押圧する。   Further, when the metal particles of the bonding material 110 are pressed by the bonding surface 121a of the conductive post 120, the inclined bonding surface 122a also presses the bonding material 110 toward the center of the bonding surface 121a as shown in FIG. .

このような導電ポスト120の押圧により、接合材110中の金属粒子は、接合面121aから上部電極107に対して垂直に圧力を受けると共に、傾斜接合面122aから接合面121aの中心部側に圧力を受ける。このようにして圧力を受けた金属粒子は焼結して、強固な接合層111となる。   By such pressing of the conductive posts 120, the metal particles in the bonding material 110 are subjected to pressure perpendicularly to the upper electrode 107 from the bonding surface 121a, and pressure from the inclined bonding surface 122a toward the center of the bonding surface 121a. Receive. In this way, the metal particles subjected to the pressure are sintered to form a strong bonding layer 111.

なお、上記の一連の押圧は、例えば、単位面積当たり1MPa〜50MPa程度の圧力で約10秒間〜300秒間行われ、押圧後の接合層111の厚さは10μm〜200μm程度となる。   The series of pressing is performed, for example, at a pressure of about 1 MPa to 50 MPa per unit area for about 10 seconds to 300 seconds, and the thickness of the bonding layer 111 after pressing is about 10 μm to 200 μm.

このように、導電ポスト120は、半導体チップ106の上部電極107の主面と対向して上部電極107と接合する接合面121aを備える胴体部121と共に、胴体部121において接合面121aの上部電極107への接合方向に対して上方に、接合面121aの中心部側を向いて傾斜して備えられた傾斜接合面122aを有するようにした。このような導電ポスト120を金属粒子を含む接合材110を介して上部電極107に押圧すると、胴体部121の接合面121aにより金属粒子が垂直方向に押圧されると共に、傾斜接合面122aにより金属粒子が接合面121aの中心部側に押圧されるようになる。これにより、金属粒子が焼結して形成した接合層111は、導電ポスト120の接合面121aのみならず、傾斜接合面122aとも接合することから、導電ポスト120は、接合層111を介して上部電極107に強固に接合するようになる。   As described above, the conductive post 120 has the body portion 121 provided with the joint surface 121a that is joined to the upper electrode 107 so as to face the main surface of the upper electrode 107 of the semiconductor chip 106, and the upper electrode 107 of the joint surface 121a in the body portion 121. An inclined bonding surface 122a provided to be inclined toward the central portion side of the bonding surface 121a is provided above the bonding direction. When such a conductive post 120 is pressed against the upper electrode 107 through the bonding material 110 containing metal particles, the metal particles are pressed in the vertical direction by the bonding surface 121a of the body 121, and the metal particles are pressed by the inclined bonding surface 122a. Is pressed toward the center of the joining surface 121a. Thus, the bonding layer 111 formed by sintering the metal particles is bonded not only to the bonding surface 121a of the conductive post 120 but also to the inclined bonding surface 122a. The electrode 107 is firmly joined.

この結果、導電ポスト120が上部電極107に強固に接合した半導体装置100は、外部から衝撃等を受けても、導電ポスト120の上部電極107からの離脱の発生が防止される。このため、半導体装置100の信頼性が向上するようになる。   As a result, the semiconductor device 100 in which the conductive post 120 is firmly bonded to the upper electrode 107 is prevented from being detached from the upper electrode 107 even when subjected to an impact or the like from the outside. For this reason, the reliability of the semiconductor device 100 is improved.

[第3の実施の形態]
第3の実施の形態では、第2の実施の形態の導電ポストの別の例について図6を用いて説明する。
[Third Embodiment]
In the third embodiment, another example of the conductive post of the second embodiment will be described with reference to FIG.

図6は、第3の実施の形態に係る半導体装置の導電ポストの接合方法を説明するための図である。
導電ポスト220は、第2の実施の形態の導電ポスト120において、傾斜接合面122aを備える傾斜部122に対して、傾斜接合面122aを貫通する貫通孔122bが形成されたものである。貫通孔122bは、胴体部121の周りに沿って形成された傾斜部122の少なくとも1か所に形成される。
FIG. 6 is a view for explaining a method of bonding conductive posts of the semiconductor device according to the third embodiment.
In the conductive post 220 of the second embodiment, a through hole 122b penetrating the inclined joint surface 122a is formed in the inclined portion 122 having the inclined joint surface 122a. The through hole 122 b is formed at least at one place of the inclined portion 122 formed along the periphery of the body portion 121.

このような導電ポスト220による半導体チップ106の上部電極107に対する接合について説明する。
第2の実施の形態と同様に、加熱した雰囲気温度を維持して、導電ポスト220の接合面121aで接合材110を押圧する(図6(A))。
The bonding of the semiconductor chip 106 to the upper electrode 107 by such a conductive post 220 will be described.
As in the second embodiment, the heated atmospheric temperature is maintained, and the bonding material 110 is pressed by the bonding surface 121a of the conductive post 220 (FIG. 6A).

さらに、導電ポスト220の接合面121aで接合材110を押圧すると、図6(B)に示されるように、傾斜接合面122aも接合材110を接合面121aの中心部側に押圧する。   Further, when the bonding material 110 is pressed by the bonding surface 121a of the conductive post 220, as shown in FIG. 6B, the inclined bonding surface 122a also presses the bonding material 110 toward the center of the bonding surface 121a.

この際、雰囲気温度の熱により、接合材110から揮発した有機物等のガスが発生する。第2の実施の形態の導電ポスト120の場合では、傾斜接合面122aと接合材110とで囲まれる空間内部に当該ガスが充満してしまい、導電ポスト120と上部電極107との接合が阻害されてしまう恐れがある。   At this time, a gas such as an organic substance volatilized from the bonding material 110 is generated by the heat of the ambient temperature. In the case of the conductive post 120 of the second embodiment, the gas is filled in the space surrounded by the inclined joint surface 122a and the bonding material 110, and the bonding between the conductive post 120 and the upper electrode 107 is hindered. There is a risk that.

これに対して、第3の実施の形態の導電ポスト220では、貫通孔122bを形成したために、傾斜接合面122aと接合材110とで囲まれる空間内部の当該ガスを外部に排出することができる。これにより、半導体チップ106の上部電極107に対して導電ポスト220を接合しやすくなり、確実に接合するようになり、導電ポスト220は、接合層111を介して上部電極107に強固に接合するようになる。導電ポスト220が上部電極107に強固に接合した半導体装置100は、外部環境から衝撃等を受けても、導電ポスト220の上部電極107からの離脱の発生が防止される。このため、半導体装置100の信頼性が向上するようになる。   On the other hand, in the conductive post 220 of the third embodiment, since the through hole 122b is formed, the gas inside the space surrounded by the inclined joint surface 122a and the joining material 110 can be discharged to the outside. . As a result, the conductive post 220 can be easily bonded to the upper electrode 107 of the semiconductor chip 106, and the conductive post 220 can be securely bonded. The conductive post 220 is firmly bonded to the upper electrode 107 via the bonding layer 111. become. The semiconductor device 100 in which the conductive post 220 is firmly bonded to the upper electrode 107 is prevented from being detached from the upper electrode 107 even if an impact or the like is received from the external environment. For this reason, the reliability of the semiconductor device 100 is improved.

[第4の実施の形態]
第4の実施の形態では、第2の実施の形態の導電ポストの別の例について図7を用いて説明する。
[Fourth Embodiment]
In the fourth embodiment, another example of the conductive post of the second embodiment will be described with reference to FIG.

図7は、第4の実施の形態に係る半導体装置の導電ポストを示す図である。
なお、図7(A)は導電ポスト320の(接合側の)先端部の斜視図、図7(B)は導電ポスト320の底面図をそれぞれ表している。
FIG. 7 is a view showing a conductive post of the semiconductor device according to the fourth embodiment.
7A is a perspective view of the tip end (on the joining side) of the conductive post 320, and FIG. 7B is a bottom view of the conductive post 320.

導電ポスト320は、第2の実施の形態と同様に、半導体チップ106a,106bの上部電極107a,107b並びに回路パターン103aと接合する接合面121aを備える。導電ポスト320は、その直径Lが、例えば、0.1mm〜1.0mmの円柱状をなしている。導電ポスト320の胴体部121の直径は、半導体チップ106a,106bの上部電極107a,107bの面積や、所望の電流容量に応じて選択すればよい。   As in the second embodiment, the conductive post 320 includes a joining surface 121a that joins the upper electrodes 107a and 107b of the semiconductor chips 106a and 106b and the circuit pattern 103a. The conductive post 320 has a cylindrical shape with a diameter L of, for example, 0.1 mm to 1.0 mm. The diameter of the body 121 of the conductive post 320 may be selected according to the area of the upper electrodes 107a and 107b of the semiconductor chips 106a and 106b and a desired current capacity.

また、導電ポスト320は、接合面121aの中心部の開口孔123bから図7中の上部の開口孔123cまで貫通する貫通孔123が形成されている。さらに、導電ポスト320では、貫通孔123の接合面121a側には、接合面121aの中心部側を向いて傾斜した傾斜接合面123aが開口孔123bの周りに沿って形成されている。なお、このような傾斜接合面123aの傾斜角θも、例えば、30度〜60度とすることができ、導電ポスト320は、例えば、銅もしくは銅合金を成型したもの、または、これらの部材の表面に金、銀、ニッケル等のめっき処理を施したものを適用することができる。   In addition, the conductive post 320 is formed with a through hole 123 that penetrates from the opening hole 123b at the center of the joint surface 121a to the opening hole 123c at the top in FIG. Further, in the conductive post 320, an inclined joint surface 123 a that is inclined toward the central portion of the joint surface 121 a is formed around the opening hole 123 b on the joint surface 121 a side of the through hole 123. In addition, the inclination angle θ of the inclined joint surface 123a can also be set to, for example, 30 degrees to 60 degrees, and the conductive post 320 is formed by molding copper or a copper alloy, or these members, for example. The surface can be applied with gold, silver, nickel, or the like.

次に、このような導電ポスト320による半導体チップ106の上部電極107に対する接合(図4のステップS25)について図8を用いて説明する。
図8は、第4の実施の形態に係る半導体装置の導電ポストの接合方法を説明するための図である。
Next, the bonding of the semiconductor chip 106 to the upper electrode 107 by the conductive post 320 (step S25 in FIG. 4) will be described with reference to FIG.
FIG. 8 is a view for explaining a method for bonding conductive posts of the semiconductor device according to the fourth embodiment.

なお、図8(A)は、導電ポスト320の接合面121aで接合材110が押圧された状態、図8(B)は、導電ポスト320の接合面121a及び傾斜接合面123aで接合材110が押圧された状態をそれぞれ表している。   8A shows a state where the bonding material 110 is pressed by the bonding surface 121a of the conductive post 320, and FIG. 8B shows a state where the bonding material 110 is pressed by the bonding surface 121a and the inclined bonding surface 123a of the conductive post 320. Each pressed state is shown.

第2の実施の形態と同様にして、加熱した雰囲気温度を維持して、金属粒子が凝集した接合材110(図1(C)参照)に、図8(A)に示されるように、位置合わせした導電ポスト320の接合面121aを押圧する。   In the same manner as in the second embodiment, the heated atmospheric temperature is maintained, and the bonding material 110 (see FIG. 1C) in which the metal particles are aggregated is positioned as shown in FIG. The joint surface 121a of the combined conductive post 320 is pressed.

さらに、導電ポスト320の接合面121aで押圧すると、図8(B)に示されるように、傾斜接合面123aも接合材110を接合面121aの中心部側に押圧する。
すると、接合材110中の金属粒子は、接合面121aから上部電極107に対して垂直に圧力を受けると共に、傾斜接合面123aから接合面121aの中心部(貫通孔123の中心)側に圧力を受ける。そして、金属粒子は焼結して、強固な接合層111が形成される。また、この際、接合材110から発生するガスは、開口孔123bから貫通孔123を通過して、開口孔123cから外部に排出される。
Further, when pressing is performed on the bonding surface 121a of the conductive post 320, the inclined bonding surface 123a also presses the bonding material 110 toward the center of the bonding surface 121a as shown in FIG. 8B.
Then, the metal particles in the bonding material 110 receive pressure from the bonding surface 121a perpendicular to the upper electrode 107, and pressure is applied from the inclined bonding surface 123a to the center of the bonding surface 121a (center of the through hole 123). receive. Then, the metal particles are sintered to form a strong bonding layer 111. At this time, the gas generated from the bonding material 110 passes through the through hole 123 from the opening hole 123b and is discharged to the outside from the opening hole 123c.

このように、導電ポスト320は、半導体チップ106の上部電極107の主面と対向して上部電極107と接合する接合面121aを備える胴体部121と共に、胴体部121において接合面121aの上部電極107への接合方向に対して上方に、接合面121aの中心部側を向いて傾斜して備えられた傾斜接合面123aを有するようにした。このような導電ポスト320を金属粒子を含む接合材110を介して上部電極107に押圧すると、胴体部121の接合面121aにより金属粒子が垂直方向に押圧されると共に、傾斜接合面123aにより金属粒子が接合面121aの中心部側に押圧されるようになる。これにより、金属粒子が焼結して形成した接合層111は、導電ポスト320の接合面121aのみならず、傾斜接合面123aとも接合することから、導電ポスト320は、接合層111を介して上部電極107に強固に接合するようになる。また、貫通孔123を形成したために、このように傾斜接合面123aと接合材110とで囲まれる空間内部のガスを外部に排出することができる。このため、導電ポスト320と上部電極107とが接合しやすくなり、確実に接合するようになる。   As described above, the conductive post 320 has the body portion 121 provided with the joint surface 121a facing the main surface of the upper electrode 107 of the semiconductor chip 106 and joined to the upper electrode 107, and the upper electrode 107 of the joint surface 121a in the body portion 121. An inclined bonding surface 123a provided to be inclined toward the central portion side of the bonding surface 121a is provided above the bonding direction. When such a conductive post 320 is pressed against the upper electrode 107 through the bonding material 110 containing metal particles, the metal particles are pressed in the vertical direction by the bonding surface 121a of the body 121, and the metal particles are pressed by the inclined bonding surface 123a. Is pressed toward the center of the joining surface 121a. As a result, the bonding layer 111 formed by sintering the metal particles is bonded not only to the bonding surface 121a of the conductive post 320 but also to the inclined bonding surface 123a. The electrode 107 is firmly joined. Further, since the through hole 123 is formed, the gas inside the space surrounded by the inclined joint surface 123a and the joining material 110 can be discharged to the outside. For this reason, it becomes easy to join the conductive post 320 and the upper electrode 107, and it comes to join reliably.

この結果、導電ポスト320が上部電極107に強固に接合した半導体装置100は、外部から衝撃等を受けても、導電ポスト320の上部電極107からの離脱の発生が防止される。このため、半導体装置100の信頼性が向上するようになる。   As a result, the semiconductor device 100 in which the conductive post 320 is firmly bonded to the upper electrode 107 is prevented from being detached from the upper electrode 107 even when subjected to an impact or the like from the outside. For this reason, the reliability of the semiconductor device 100 is improved.

[第5の実施の形態]
第5の実施の形態では、第3の実施の形態及び第4の実施の形態の導電ポストを踏まえた別の導電ポストについて図9を用いて説明する。
[Fifth Embodiment]
In the fifth embodiment, another conductive post based on the conductive posts of the third embodiment and the fourth embodiment will be described with reference to FIG.

図9は、第5の実施の形態に係る半導体装置の導電ポストを示す図である。
導電ポスト420は、第3の実施の形態の導電ポスト220(図6)に対して、第4の実施の形態の導電ポスト320の傾斜接合面123a及び貫通孔123(図7及び図8)を形成したものである。
FIG. 9 is a diagram illustrating a conductive post of a semiconductor device according to the fifth embodiment.
The conductive post 420 has an inclined joint surface 123a and a through hole 123 (FIGS. 7 and 8) of the conductive post 320 of the fourth embodiment, compared to the conductive post 220 (FIG. 6) of the third embodiment. Formed.

このような導電ポスト420でも、導電ポスト420を金属粒子を含む接合材110を介して上部電極107に押圧すると、胴体部121の接合面121aにより金属粒子が垂直方向に押圧されると共に、傾斜接合面122a,123aにより金属粒子が接合面121aの中心部側に押圧されるようになる。これにより、金属粒子が焼結して形成した接合層111は、導電ポスト420の接合面121aのみならず、傾斜接合面122a,123aとも接合することから、導電ポスト420は、接合層111を介して上部電極107に強固に接合するようになる。また、貫通孔122b,123を形成したために、このように傾斜接合面122a,123aと接合材110とで囲まれる空間内部のガスを外部に排出することができる。このため、導電ポスト420と上部電極107とが接合しやすくなり、確実に接合するようになる。   Even in such a conductive post 420, when the conductive post 420 is pressed against the upper electrode 107 through the bonding material 110 containing metal particles, the metal particles are pressed in the vertical direction by the bonding surface 121 a of the body portion 121, and inclined bonding is performed. The metal particles are pressed toward the center of the joining surface 121a by the surfaces 122a and 123a. Thus, the bonding layer 111 formed by sintering the metal particles is bonded not only to the bonding surface 121a of the conductive post 420 but also to the inclined bonding surfaces 122a and 123a. Therefore, the conductive post 420 is interposed via the bonding layer 111. Thus, the upper electrode 107 is firmly bonded. Further, since the through holes 122b and 123 are formed, the gas inside the space surrounded by the inclined joining surfaces 122a and 123a and the joining material 110 can be discharged to the outside. For this reason, it becomes easy to join the conductive post 420 and the upper electrode 107, and it comes to join reliably.

この結果、導電ポスト420が上部電極107に強固に接合した半導体装置100は、外部から衝撃等を受けても、導電ポスト420の上部電極107からの離脱の発生が防止される。このため、半導体装置100の信頼性が向上するようになる。   As a result, the semiconductor device 100 in which the conductive post 420 is firmly bonded to the upper electrode 107 is prevented from being detached from the upper electrode 107 even when subjected to an impact or the like from the outside. For this reason, the reliability of the semiconductor device 100 is improved.

1 電極部材
2 接合材
2a 金属粒子
2b バインダー材
2c 接合層
3 接合部材
3a 胴体部
3b 接合面
3c 傾斜接合面
DESCRIPTION OF SYMBOLS 1 Electrode member 2 Joining material 2a Metal particle 2b Binder material 2c Joining layer 3 Joining member 3a Body part 3b Joining surface 3c Inclined joining surface

Claims (6)

電極部材と、金属粒子を介して接合部材とを接合する接合方法において、
前記接合部材は、前記電極部材の主面と対向して前記電極部材と接合する接合面を備える胴体部と、前記胴体部において前記接合面の前記電極部材への接合方向に対して上方に、前記接合面の中心部側を向いて傾斜して備えられた傾斜接合面と、を有し、
前記金属粒子が主面に配置された前記電極部材に対して前記接合部材を押圧して、前記胴体部の前記接合面で前記金属粒子を押圧し、
前記接合部材をさらに押圧して、前記接合面と共に前記傾斜接合面で前記金属粒子を押圧する、
ことを特徴とする接合方法。
In the joining method of joining the electrode member and the joining member via the metal particles,
The bonding member includes a body portion provided with a bonding surface that is opposed to the main surface of the electrode member and bonded to the electrode member, and upward in a bonding direction of the bonding surface to the electrode member in the body portion. An inclined bonding surface provided to be inclined toward the center side of the bonding surface,
Pressing the joining member against the electrode member on which the metal particles are arranged on the main surface, pressing the metal particles at the joining surface of the body part,
Further pressing the bonding member, pressing the metal particles at the inclined bonding surface together with the bonding surface,
The joining method characterized by the above-mentioned.
前記傾斜接合面は、前記胴体部の側部に備えられ、
前記接合部材をさらに押圧すると、前記傾斜接合面は前記金属粒子を前記胴体部の前記接合面の中心部側に押圧する、
ことを特徴とする請求項1記載の接合方法。
The inclined joint surface is provided on a side portion of the body portion,
When the bonding member is further pressed, the inclined bonding surface presses the metal particles toward the center portion of the bonding surface of the body portion.
The joining method according to claim 1.
前記金属粒子は、加熱されると揮発する揮発性のバインダー材中に分散させて前記電極部材の主面上に塗布されており、
前記金属粒子を含む前記バインダー材を加熱しながら、前記電極部材に対して前記接合部材を押圧して、前記接合面及び前記傾斜接合面が前記金属粒子を押圧して、
押圧された前記金属粒子を焼結させて接合層を形成する、
ことを特徴とする請求項2記載の接合方法。
The metal particles are dispersed in a volatile binder material that volatilizes when heated and applied to the main surface of the electrode member,
While heating the binder material containing the metal particles, the bonding member is pressed against the electrode member, the bonding surface and the inclined bonding surface press the metal particles,
Sintering the pressed metal particles to form a bonding layer;
The joining method according to claim 2.
前記傾斜接合面は、前記電極部材に前記接合部材を押圧した際に、前記傾斜接合面と、前記金属粒子とで囲まれる空間に通じる貫通孔が形成されている、
ことを特徴とする請求項3記載の接合方法。
The inclined bonding surface is formed with a through-hole that leads to a space surrounded by the inclined bonding surface and the metal particles when the bonding member is pressed against the electrode member.
The joining method according to claim 3.
前記傾斜接合面は、前記胴体部の前記接合面の中心部に備えられ、前記胴体部は前記中心部から前記胴体部の中心を通る貫通孔が形成されており、
前記接合部材をさらに押圧すると、前記傾斜接合面は前記電極部材の主面上の前記金属粒子を前記胴体部の前記中心側に押圧する、
ことを特徴とする請求項1記載の接合方法。
The inclined joint surface is provided at a center part of the joint surface of the body part, and the body part is formed with a through hole passing from the center part to the center of the body part,
When the bonding member is further pressed, the inclined bonding surface presses the metal particles on the main surface of the electrode member to the center side of the body part,
The joining method according to claim 1.
電極部材と、金属粒子を介して接合する接合部材において、
前記電極部材の主面と対向して前記電極部材と接合する接合面を備え、前記電極部材の主面上に配置された前記金属粒子を前記接合面で押圧する胴体部と、
前記胴体部において前記接合面の前記電極部材への接合方向に対して上方に、前記接合面の中心部側を向いて傾斜して備えられ、前記接合面と共に前記金属粒子を押圧する傾斜接合面と、
を有することを特徴とする接合部材。
In an electrode member and a bonding member bonded via metal particles,
A body part that includes a bonding surface that is opposed to the main surface of the electrode member and is bonded to the electrode member, and that presses the metal particles disposed on the main surface of the electrode member with the bonding surface;
In the body portion, the inclined bonding surface is provided to be inclined toward the central portion side of the bonding surface above the bonding direction of the bonding surface to the electrode member, and presses the metal particles together with the bonding surface. When,
A joining member comprising:
JP2012138034A 2012-06-19 2012-06-19 Joining method and joining member Active JP6019790B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012138034A JP6019790B2 (en) 2012-06-19 2012-06-19 Joining method and joining member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012138034A JP6019790B2 (en) 2012-06-19 2012-06-19 Joining method and joining member

Publications (2)

Publication Number Publication Date
JP2014003182A true JP2014003182A (en) 2014-01-09
JP6019790B2 JP6019790B2 (en) 2016-11-02

Family

ID=50036077

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012138034A Active JP6019790B2 (en) 2012-06-19 2012-06-19 Joining method and joining member

Country Status (1)

Country Link
JP (1) JP6019790B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018116692A1 (en) * 2016-12-19 2018-06-28 タツタ電線株式会社 Package substrate and method for manufacturing package substrate

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JO3283B1 (en) 2011-04-26 2018-09-16 Sanofi Sa Composition comprising aflibercept, folinic acid, 5-fluorouracil (5-fu) and irinocetan (folfiri)
EA035674B1 (en) 2014-07-18 2020-07-24 Санофи Method of determining whether a patient suspected to suffer from cancer is a candidate for aflibercept therapy

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0837202A (en) * 1994-07-25 1996-02-06 Fujitsu Ten Ltd Metal post structure and method of mounting metal post
JPH11284019A (en) * 1998-03-30 1999-10-15 Toshiba Corp Semiconductor device
JP2012049398A (en) * 2010-08-27 2012-03-08 Fujifilm Corp Conductive joint structure, mounting structure, and conductive joining method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0837202A (en) * 1994-07-25 1996-02-06 Fujitsu Ten Ltd Metal post structure and method of mounting metal post
JPH11284019A (en) * 1998-03-30 1999-10-15 Toshiba Corp Semiconductor device
JP2012049398A (en) * 2010-08-27 2012-03-08 Fujifilm Corp Conductive joint structure, mounting structure, and conductive joining method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018116692A1 (en) * 2016-12-19 2018-06-28 タツタ電線株式会社 Package substrate and method for manufacturing package substrate
CN110036471A (en) * 2016-12-19 2019-07-19 拓自达电线株式会社 The manufacturing method of packaging body substrate and packaging body substrate
JPWO2018116692A1 (en) * 2016-12-19 2019-10-24 タツタ電線株式会社 Package substrate and method for manufacturing package substrate
TWI710071B (en) * 2016-12-19 2020-11-11 日商拓自達電線股份有限公司 Packaging substrate and manufacturing method of packaging substrate
KR20210132237A (en) * 2016-12-19 2021-11-03 타츠타 전선 주식회사 Package substrate and method for manufacturing package substrate
JP7041075B2 (en) 2016-12-19 2022-03-23 タツタ電線株式会社 Package substrate and manufacturing method of package substrate
KR102439010B1 (en) * 2016-12-19 2022-08-31 타츠타 전선 주식회사 Package substrate and method for manufacturing package substrate
CN110036471B (en) * 2016-12-19 2023-10-10 拓自达电线株式会社 Package substrate and method for manufacturing package substrate

Also Published As

Publication number Publication date
JP6019790B2 (en) 2016-11-02

Similar Documents

Publication Publication Date Title
JP6632686B2 (en) Semiconductor device and method of manufacturing semiconductor device
TWI658547B (en) Chip package module and circuit board structure comprising the same
US7880285B2 (en) Semiconductor device comprising a semiconductor chip stack and method for producing the same
US20170018524A1 (en) Semiconductor device and semiconductor device fabrication method
CN104103611B (en) Pressure-heat bonding structure and pressure-heat bonding method
US11088042B2 (en) Semiconductor device and production method therefor
JP2002359345A (en) Semiconductor device and its manufacturing method
CN109168320B (en) Semiconductor device with a plurality of semiconductor chips
TW200913204A (en) Wiring substrate and method for manufacturing the same
US20210398881A1 (en) Semiconductor device and method for manufacturing semiconductor device
JP6643975B2 (en) Method for manufacturing semiconductor device
JP5920077B2 (en) Semiconductor device manufacturing method and semiconductor device
JP2017108192A (en) Semiconductor device
JP6019790B2 (en) Joining method and joining member
JP2017123360A (en) Semiconductor module
JP7215206B2 (en) Semiconductor device manufacturing method
JP2018101685A (en) Semiconductor device and manufacturing method of the same
JP2003289129A (en) Semiconductor device
JP2020024998A (en) Semiconductor device and manufacturing method therefor
JP2020155640A (en) Module and manufacturing method thereof
JP7476540B2 (en) Semiconductor Device
JP2018006492A (en) Semiconductor device and semiconductor device manufacturing method
JP2021150468A (en) Semiconductor device manufacturing method, semiconductor device, and pressing device
WO2023017680A1 (en) Semiconductor device and manufacturing method for same
JP2014053406A (en) Semiconductor device and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150414

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160331

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160906

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160919

R150 Certificate of patent or registration of utility model

Ref document number: 6019790

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250