JP2014003071A - Load-resistant insulation evaluation apparatus for nonwoven fabric separator for electrochemical element and load-resistant insulation evaluation method for unwoven fabric separator for electrochemical element - Google Patents

Load-resistant insulation evaluation apparatus for nonwoven fabric separator for electrochemical element and load-resistant insulation evaluation method for unwoven fabric separator for electrochemical element Download PDF

Info

Publication number
JP2014003071A
JP2014003071A JP2012135908A JP2012135908A JP2014003071A JP 2014003071 A JP2014003071 A JP 2014003071A JP 2012135908 A JP2012135908 A JP 2012135908A JP 2012135908 A JP2012135908 A JP 2012135908A JP 2014003071 A JP2014003071 A JP 2014003071A
Authority
JP
Japan
Prior art keywords
load
separator
elastic plate
nonwoven fabric
electrochemical element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012135908A
Other languages
Japanese (ja)
Inventor
Takako Kasai
誉子 笠井
Makoto Kato
真 加藤
Yasuo Kaneda
安生 金田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Paper Mills Ltd
Original Assignee
Mitsubishi Paper Mills Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Paper Mills Ltd filed Critical Mitsubishi Paper Mills Ltd
Priority to JP2012135908A priority Critical patent/JP2014003071A/en
Publication of JP2014003071A publication Critical patent/JP2014003071A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a load-resistant insulation evaluation apparatus for an unwoven fabric separator for an electrochemical element capable of easily evaluating insulation of an unwoven fabric separator for an electrochemical element in the state approximate to a real system, even without performing complicated work such as assembling the electrochemical element, in load-resistant insulation evaluation for the separator, and a load-resistant insulation evaluation method for an unwoven fabric separator for an electrochemical element employing the apparatus.SOLUTION: The load-resistant insulation evaluation apparatus for an unwoven fabric separator for an electrochemical element comprises: two conductive elastic plate electrodes holding a separator to be tested therebetween; an approximately columnar metallic hard member and a metallic hard member larger than the approximately columnar metallic hard member further holding therebetween the conductive elastic plate electrodes which hold the separator to be tested therebetween; a pressing device for applying a load from both sides of the two metallic hard members; a load measuring device for measuring the load applied to the separator to be tested; and an ammeter for measuring current which flows to the separator to be tested. The evaluation method employs the evaluation apparatus.

Description

本発明は、電気化学素子用不織布セパレータの耐荷重絶縁性評価用装置及び電気化学素子用不織布セパレータの耐荷重絶縁性評価方法に関する。   TECHNICAL FIELD The present invention relates to an apparatus for evaluating load resistance insulation of a nonwoven fabric separator for electrochemical devices and a load resistance insulation evaluation method for nonwoven fabric separators for electrochemical devices.

電池やコンデンサなどに用いられる電気化学素子用セパレータ(以下、「セパレータ」と略記する場合がある)としては、不織布を用いてなる電気化学素子用不織布セパレータ(以下、「不織布セパレータ」と略記する場合がある)、多孔質フィルムを用いてなる電気化学素子用フィルムセパレータ(以下、「フィルムセパレータ」と略記する場合がある)等が挙げられる。セパレータには、加圧下でも電極間が短絡しないレベルの絶縁性が求められる。一方で、セパレータは電極間のイオンや電子の通路でもあるため、絶縁性が高すぎると内部抵抗が上がり、電気化学素子としての性能が落ちるといった問題がある。   As a separator for an electrochemical element used for a battery or a capacitor (hereinafter sometimes abbreviated as “separator”), a nonwoven fabric separator for an electrochemical element using a nonwoven fabric (hereinafter abbreviated as “nonwoven fabric separator”) And a film separator for electrochemical devices using a porous film (hereinafter sometimes abbreviated as “film separator”). The separator is required to have a level of insulation that does not short-circuit between electrodes even under pressure. On the other hand, since the separator is also a path for ions and electrons between the electrodes, if the insulating property is too high, there is a problem that the internal resistance is increased and the performance as an electrochemical element is lowered.

セパレータの絶縁性を評価する際、実際に電気化学素子を組み立てて試験を行う方法があるが、作業が煩雑になる上に多大な時間を要するという問題があった。フィルムセパレータの耐荷重絶縁性を評価する試験方法として、載置台の上にフィルムセパレータを置き、接触端子を上下動させることで荷重をかけながら載置台と接触端子間の抵抗値を測定する方法が開示されている(例えば、特許文献1参照)。しかしながら、荷重をかけるための接触端子が曲率半径0.05mm〜4.00mmと小さいことから、点で荷重をかけていることになり、セパレータ全体に荷重がかかる電気化学素子の中の状態とは異なっているという問題があった。また、導通の際にはフィルムセパレータの破壊を伴うことから、耐荷重絶縁特性というよりも耐穿孔性の試験に近いものであった。このフィルムセパレータにおける耐荷重絶縁性評価方法によって、不織布セパレータを評価した場合、接触端子によって点で荷重をかけることで、不織布セパレータの繊維が動き、目が開くため、電気化学素子という実際の系における絶縁性の評価結果との乖離が、フィルムセパレータの場合よりも大きくなるという問題が発生した。   When evaluating the insulating properties of the separator, there is a method of actually assembling an electrochemical element and performing a test, but there is a problem that the work becomes complicated and a long time is required. As a test method for evaluating the load resistance insulation of the film separator, there is a method of measuring a resistance value between the mounting table and the contact terminal while placing a film separator on the mounting table and applying a load by moving the contact terminal up and down. It is disclosed (for example, see Patent Document 1). However, since the contact terminal for applying a load has a small radius of curvature of 0.05 mm to 4.00 mm, the load is applied at a point. What is the state in the electrochemical element that applies the load to the entire separator? There was a problem of being different. In addition, since the film separator was destroyed during conduction, it was closer to a test for perforation resistance than load-bearing insulation characteristics. When the nonwoven fabric separator is evaluated by the load bearing insulation evaluation method in this film separator, the load of the nonwoven fabric separator is moved by opening the eyes by applying a load with a contact terminal, so that in the actual system called an electrochemical device There arises a problem that the deviation from the evaluation result of the insulating property becomes larger than that of the film separator.

特開2009−243929号公報JP 2009-243929 A

本発明は、上記事情を鑑みたものであって、電気化学素子用不織布セパレータの耐荷重絶縁性評価において、電気化学素子を組み立てるといった煩雑な作業を行わなくても、実際の系に近い状態でセパレータの絶縁性を簡便に評価できる電気化学素子用不織布セパレータの耐荷重絶縁性評価用装置及び該装置を使用した電気化学素子用不織布セパレータの耐荷重絶縁性評価方法を提供することにある。   The present invention has been made in view of the above circumstances, and in a load-proof insulation evaluation of a nonwoven fabric separator for electrochemical elements, it is in a state close to an actual system without performing a complicated operation such as assembling an electrochemical element. An object of the present invention is to provide a load-resistant insulation evaluation apparatus for a non-woven fabric separator for electrochemical elements that can easily evaluate the insulation of the separator, and a load-resistant insulation evaluation method for a non-woven separator for electrochemical elements using the apparatus.

上記課題を解決するために鋭意研究した結果、
(1)電気化学素子用不織布セパレータの耐荷重絶縁性評価用装置であって、
被試験セパレータを挟み込む2枚の導電性弾性板電極、
被試験セパレータを挟み込んだ導電性弾性板電極をさらに挟み込む略円柱状の金属製硬質部材と該略円柱状の金属製硬質部材よりも大きい金属製硬質部材、
2つの金属製硬質部材の両側から荷重をかけるための加圧装置、
被試験セパレータにかかる荷重を測定するための荷重測定装置、
被試験セパレータに流れる電流を測定するための電流計、
を有することを特徴とする電気化学素子用不織布セパレータの耐荷重絶縁性評価用装置、
(2)導電性弾性板電極が厚み1mm以上5mm以下の導電性弾性板電極である上記(1)記載の電気化学素子用不織布セパレータの耐荷重絶縁性評価用装置、
(3)略円柱状の金属製硬質部材の直径が10mm〜50mmである上記(1)又は(2)記載の電気化学素子用不織布セパレータの耐荷重絶縁性評価用装置、
(4)上記(1)〜(3)のいずれか記載の電気化学素子用不織布セパレータの耐荷重絶縁性評価用装置を使用した電気化学素子用不織布セパレータの耐荷重絶縁性評価方法において、2枚の導電性弾性板電極間に被試験セパレータを挟み込み、両導電性弾性板電極に加えられる荷重とセパレータ間に流れる電流の時間変化を同時に測定することを特徴とする電気化学素子用不織布セパレータの耐荷重絶縁性評価方法、
を見出した。
As a result of earnest research to solve the above problems,
(1) A load-resistant insulation evaluation device for an electrochemical device nonwoven fabric separator,
Two conductive elastic plate electrodes sandwiching the separator under test,
A substantially cylindrical metal hard member that further sandwiches a conductive elastic plate electrode that sandwiches a separator under test, and a metal hard member that is larger than the substantially cylindrical metal hard member,
A pressure device for applying a load from both sides of two metal hard members,
A load measuring device for measuring the load applied to the separator under test,
An ammeter for measuring the current flowing through the separator under test,
A load-resistant insulation evaluation apparatus for a nonwoven fabric separator for electrochemical devices, comprising:
(2) The apparatus for evaluating load resistance insulation of the nonwoven fabric separator for electrochemical elements according to (1), wherein the conductive elastic plate electrode is a conductive elastic plate electrode having a thickness of 1 mm or more and 5 mm or less,
(3) The apparatus for evaluating load insulation of the nonwoven fabric separator for electrochemical elements according to (1) or (2), wherein the diameter of the substantially cylindrical metal hard member is 10 mm to 50 mm,
(4) In the load resistance insulation evaluation method for a non-woven fabric separator for electrochemical devices using the device for evaluating the load resistance insulation of the non-woven fabric separator for electrochemical devices according to any one of (1) to (3), two sheets A non-woven fabric separator for electrochemical devices, characterized in that a separator to be tested is sandwiched between two conductive elastic plate electrodes and the time change of the load applied to both conductive elastic plate electrodes and the current flowing between the separators is measured simultaneously. Load insulation evaluation method,
I found.

本発明の電気化学素子用不織布セパレータの耐荷重絶縁性評価用装置及び該評価用装置を使用した電気化学素子用不織布セパレータの耐荷重絶縁性評価方法により、多大な労力や時間を要することなく、簡便な操作で短時間に、荷重に対するセパレータの絶縁性を評価することができる。   With the load-resistant insulation evaluation device for the non-woven fabric separator for electrochemical elements of the present invention and the load-proof insulation evaluation method for the non-woven fabric separator for electrochemical devices using the evaluation device, without much labor and time, It is possible to evaluate the insulation of the separator against the load in a short time with a simple operation.

本発明におけるセパレータの耐荷重絶縁性評価用装置における一部分の一例を示す概略図である。It is the schematic which shows an example of the part in the apparatus for load-proof insulation evaluation of the separator in this invention. 本発明におけるセパレータの耐荷重絶縁性評価用装置の一例を示す概略図である。It is the schematic which shows an example of the apparatus for load-proof insulation evaluation of the separator in this invention. セル組み立てによる耐荷重絶縁性評価(1)における充電後2週間後の電圧降下と、本発明における耐荷重絶縁性評価との相関を示す図である。It is a figure which shows the correlation with the voltage drop two weeks after charge in the load-bearing insulation evaluation (1) by cell assembly, and the load-bearing insulation evaluation in this invention. セル組み立てによる耐荷重絶縁性評価(2)における充電後2週間後の電圧降下と、本発明における耐荷重絶縁性評価との相関を示す図である。It is a figure which shows the correlation with the voltage drop two weeks after charge in the load-bearing insulation evaluation (2) by cell assembly, and the load-bearing insulation evaluation in this invention.

図1は、本発明における電気化学素子用不織布セパレータの耐荷重絶縁性評価用装置(以下、「評価用装置」と記す場合がある)における一部分である電極セットの一例を示す概略図である。本発明において、電極セットは、被試験セパレータ(被試験用の不織布セパレータ)1を挟み込む2枚の導電性弾性板電極2、3と、被試験セパレータ1及び導電性弾性板電極2、3を挟み込む略円柱状の金属製硬質部材4と、略円柱状金属製硬質部材4よりも大きい金属製硬質部材5からなる。   FIG. 1 is a schematic view showing an example of an electrode set which is a part of a load-resistant insulation evaluation apparatus (hereinafter, may be referred to as “evaluation apparatus”) of a nonwoven fabric separator for electrochemical devices in the present invention. In the present invention, the electrode set sandwiches two conductive elastic plate electrodes 2 and 3 sandwiching a separator under test (nonwoven separator for test) 1, and the separator under test 1 and conductive elastic plate electrodes 2 and 3. It consists of a substantially cylindrical metal hard member 4 and a metal hard member 5 larger than the substantially cylindrical metal hard member 4.

図2は、本発明における電気化学素子用不織布セパレータの耐荷重絶縁性評価用装置の概略図である。上記電極セットに加え、被試験セパレータにかかる荷重を測定するための荷重測定装置7、金属製硬質部材4、5の両側から荷重をかけるための加圧装置8、被試験用セパレータに流れる電流を測定するための電流計9を有する。太矢印は評価時の加圧方向を示している。   FIG. 2 is a schematic view of an apparatus for evaluating load resistance insulation of a nonwoven fabric separator for electrochemical elements in the present invention. In addition to the electrode set, a load measuring device 7 for measuring a load applied to the separator to be tested, a pressurizing device 8 for applying a load from both sides of the metal hard members 4 and 5, and a current flowing through the separator to be tested. It has an ammeter 9 for measuring. Thick arrows indicate the direction of pressurization during evaluation.

導電性弾性板電極2、3の厚みは、好ましくは500μm〜10mmであり、より好ましくは1mm〜5mmである。導電性弾性板電極の厚みがこれよりも薄すぎると、機械的強度が低くて試験操作が困難になることがある。   The thickness of the conductive elastic plate electrodes 2 and 3 is preferably 500 μm to 10 mm, and more preferably 1 mm to 5 mm. If the thickness of the conductive elastic plate electrode is too thin, the mechanical strength may be low and test operation may be difficult.

導電性弾性板電極2、3の材質としては各種導電性ゴムを用いることができる。導電性カーボンブラック又は金属粉末を配合した天然ゴムや合成ゴム、シリコンゴム等が挙げられる。弾性板電極を使用することで、荷重によって導電性弾性板電極が被試験セパレータである不織布セパレータの細孔に入り込み、反対側の導電性弾性板電極と接触し、電流値が上がるため、本発明の評価が可能となると考えられる。弾性のない電極を使用した場合、同じ荷重をかけても電流値の上昇は見られない。   Various conductive rubbers can be used as the material of the conductive elastic plate electrodes 2 and 3. Examples thereof include natural rubber, synthetic rubber, silicon rubber and the like in which conductive carbon black or metal powder is blended. By using the elastic plate electrode, the conductive elastic plate electrode enters into the pores of the nonwoven fabric separator, which is the separator to be tested, under load, and comes into contact with the conductive elastic plate electrode on the opposite side, thereby increasing the current value. It is considered possible to evaluate When an inelastic electrode is used, no increase in current value is observed even when the same load is applied.

金属製硬質部材(以下、「硬質部材」と記す場合がある)4、5の材質としては鉄、銅、アルミニウム、ステンレス、砲金、真鍮等が、長期にわたり安定した強度を維持できる点で好ましく用いられる。硬質部材の平坦性が低いと、圧力分布が不均一になり、評価結果が不安定になることがあるため、とりわけ弾性板電極と接触する面は、平坦に研磨してあることが好ましい。かかる研磨の方法としては、ガラス板上に載せた研磨紙で一面を研磨する等の方法を用いることができる。研磨紙は#180よりも細かいものが好ましい。導電性弾性板電極に導電性が高くかつ荷重による寸法変化が小さい金属製硬質部材を貼り合わせて用いることで、導電性弾性電極のみで測定する場合よりも安定した結果を得ることができる。   Metal, hard members (hereinafter sometimes referred to as “hard members”) 4 and 5 are preferably iron, copper, aluminum, stainless steel, gun metal, brass, etc., because they can maintain stable strength over a long period of time. It is done. When the flatness of the hard member is low, the pressure distribution becomes non-uniform and the evaluation result may become unstable. In particular, the surface that contacts the elastic plate electrode is preferably polished flat. As such a polishing method, it is possible to use a method such as polishing one surface with a polishing paper placed on a glass plate. The abrasive paper is preferably finer than # 180. By attaching a metal hard member having high conductivity and small dimensional change due to a load to the conductive elastic plate electrode, a more stable result can be obtained than in the case of measuring only with the conductive elastic electrode.

本発明において、略円柱状の金属製硬質部材4の直径6は、10mm〜50mmであることが好ましい。直径6が小さすぎると、試験操作が困難になり、また、被試験面積が小さすぎて、セパレータ全体を代表した試験結果を与えない場合がある。直径6が大きすぎると、荷重をかけるためにより大きな加圧装置が必要になる場合があり、非効率である。   In the present invention, the diameter 6 of the substantially cylindrical metal hard member 4 is preferably 10 mm to 50 mm. If the diameter 6 is too small, the test operation becomes difficult, and the test area may be too small to give a test result representing the entire separator. If the diameter 6 is too large, a larger pressure device may be required to apply the load, which is inefficient.

本発明において、「略円柱状の硬質部材4よりも硬質部材5が大きい」とは、略円柱状の硬質部材4がはみ出さないように両硬質部材を重ね合わせ可能であることを示す。   In the present invention, “the hard member 5 is larger than the substantially cylindrical hard member 4” indicates that both hard members can be overlapped so that the substantially cylindrical hard member 4 does not protrude.

本発明に用いる荷重測定装置7としては、各種のロードセルを用いることができる。とりわけ、ひずみ抵抗体を用いたロードセルは、被試験セパレータの絶縁性が低下したときの荷重(導通荷重)付近において良好な分解能と応答性を有することから好ましく用いられる。本発明の評価用装置に用いる荷重測定装置の定格荷重(評価用装置を破損又は劣化させることなく加えることのできる最大の荷重を示す)は、1〜5kNであることが好ましい。定格荷重が小さすぎる場合、絶縁性の高いセパレータに関する測定値が得られない場合があり、定格荷重が大きすぎる場合、測定値の分解能が不十分になることがあるためである。   As the load measuring device 7 used in the present invention, various load cells can be used. In particular, a load cell using a strain resistor is preferably used because it has good resolution and responsiveness in the vicinity of a load (conduction load) when the insulation of the separator under test is lowered. The rated load of the load measuring device used in the evaluation device of the present invention (showing the maximum load that can be applied without damaging or degrading the evaluation device) is preferably 1 to 5 kN. This is because if the rated load is too small, a measurement value regarding a highly insulating separator may not be obtained, and if the rated load is too large, the resolution of the measurement value may be insufficient.

本発明の評価用装置に用いる加圧装置8としては、エアシリンダー、油圧シリンダーを用いた荷重装置の他、万力等の器具を用いることもできる。加圧装置が金属等の導電性の材料でなっている場合には、金属製硬質部材4、5間が、加圧装置を通じて短絡することがある。その場合、加圧装置と少なくとも片方の電極の間に、ゴム、樹脂等からなる絶縁部材を挟み込む必要がある。   As the pressurizing device 8 used in the evaluation apparatus of the present invention, a vise and other instruments can be used in addition to a load device using an air cylinder and a hydraulic cylinder. When the pressurizing device is made of a conductive material such as metal, the metal hard members 4 and 5 may be short-circuited through the pressurizing device. In that case, it is necessary to sandwich an insulating member made of rubber, resin or the like between the pressure device and at least one of the electrodes.

本発明の評価用装置を用いた耐荷重絶縁性評価方法は以下による。まず、被試験セパレータ1を、導電性弾性板電極2と3の間に挟む。このとき、導電性弾性板電極2と3が直接接触しないよう、被試験セパレータ1は導電性弾性板電極2と3よりも大きく切り出しておく。これを両側から硬質部材4、5で挟み込んで、電極セットを組み立てる。この組み立てた電極セットを加圧装置8で挟み、硬質部材4、5の、導電性弾性板電極2、3と反対側の面から加圧する。加圧装置8と硬質部材4又は5の間にはロードセルなどの荷重測定装置7を配置する。これにより被試験セパレータに1かかる荷重を測定することができる。さらに、硬質部材4、5に電流計9を接続することで、荷重による被試験セパレータ1の絶縁性の変化を観察することができる。   The load resistance insulation evaluation method using the evaluation apparatus of the present invention is as follows. First, the tested separator 1 is sandwiched between the conductive elastic plate electrodes 2 and 3. At this time, the tested separator 1 is cut out larger than the conductive elastic plate electrodes 2 and 3 so that the conductive elastic plate electrodes 2 and 3 are not in direct contact with each other. This is sandwiched by the hard members 4 and 5 from both sides, and an electrode set is assembled. The assembled electrode set is sandwiched by the pressurizing device 8 and pressed from the surface of the hard members 4 and 5 opposite to the conductive elastic plate electrodes 2 and 3. A load measuring device 7 such as a load cell is disposed between the pressurizing device 8 and the hard member 4 or 5. As a result, the load applied to the separator under test by 1 can be measured. Furthermore, by connecting the ammeter 9 to the hard members 4 and 5, it is possible to observe the change in the insulation of the separator under test 1 due to the load.

以下、本発明を実施例によりさらに詳細に説明するが、本発明は本実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to a present Example.

試験に使用した被試験セパレータ1である不織布セパレータの坪量、厚み、密度、透気度、最大細孔径を表1に示す。セパレータの坪量はJIS P8124に規定された方法により測定された値を意味する。厚み及び密度はJIS P8118に規定された方法により測定した値を意味する。透気度はJIS P8117に準拠し、外径28.6mmの円孔を有するガーレー透気度計を用いて測定した。最大細孔径はJIS K3832に規定されるバブルポイント法に準拠し、コールター製ポロシメーターIIを用いて測定した。   Table 1 shows the basis weight, thickness, density, air permeability, and maximum pore diameter of the nonwoven fabric separator used as the test separator 1 used in the test. The basis weight of the separator means a value measured by a method defined in JIS P8124. Thickness and density mean values measured by the method defined in JIS P8118. The air permeability was measured according to JIS P8117 using a Gurley air permeability meter having a circular hole with an outer diameter of 28.6 mm. The maximum pore size was measured using a Porsimeter II manufactured by Coulter in accordance with the bubble point method defined in JIS K3832.

<本発明による耐荷重絶縁性評価(実施例)>
硬質部材5である直径40mm、高さ25mmのアルミニウム製円柱の上に、導電性弾性板電極3として、50mm角の導電性ゴム(厚み1.0mm、硬度ショアーA50°)を載置した。この導電性弾性板電極3上の略中心に、60mm角の被試験セパレータ1を設置した。さらに、この被試験セパレータ1上に、導電性弾性板電極3と同様の弾性板電極2、略円柱状の硬質部材4として直径30mm、高さ25mmのアルミニウム製円柱を順に載置した。
<Evaluation of Load Insulation According to the Present Invention (Example)>
A 50 mm square conductive rubber (thickness 1.0 mm, hardness Shore A 50 °) was placed as the conductive elastic plate electrode 3 on an aluminum cylinder having a diameter of 40 mm and a height of 25 mm, which is the hard member 5. A 60 mm square separator to be tested 1 was installed at a substantially center on the conductive elastic plate electrode 3. Further, on this separator 1 to be tested, an elastic plate electrode 2 similar to the conductive elastic plate electrode 3, and an aluminum cylinder having a diameter of 30 mm and a height of 25 mm as a substantially cylindrical hard member 4 were placed in order.

万力(加圧装置8)のあご(顎)の表面にガラスエポキシ製の絶縁板を貼り、さらに一方のあごに定格荷重2224Nのロードセル(荷重測定装置7)を固定した。ここに被試験セパレータ1及び導電性弾性板電極2、3及び硬質部材4、5を挟み、図2の構成の評価用装置を組み立てた。両電極間に2.5Vの電圧を加え、両電極間に流れる電流を電流計9で測定しながら、万力のハンドルを締めこんで徐々に加圧した。両電極間に流れる電流が10μA以上になったところでセパレータの絶縁性が低下(導通)したと判断し、そのときの荷重(導通荷重)を測定した。なお、荷重測定装置7及び電流計9の電源には9V直流電源を使用した。試験はN=10で行い、平均値を記録した。   An insulating plate made of glass epoxy was attached to the surface of the jaw (jaw) of the vise (pressurizing device 8), and a load cell (load measuring device 7) having a rated load of 2224N was fixed to the other jaw. The test apparatus 1, the conductive elastic plate electrodes 2, 3 and the hard members 4, 5 were sandwiched between them, and an evaluation apparatus having the configuration shown in FIG. 2 was assembled. While applying a voltage of 2.5 V between both electrodes and measuring the current flowing between both electrodes with an ammeter 9, the handle of the vise was tightened and the pressure was gradually increased. When the current flowing between the two electrodes became 10 μA or more, it was determined that the insulation of the separator was lowered (conduction), and the load (conduction load) at that time was measured. A 9 V DC power source was used as the power source for the load measuring device 7 and the ammeter 9. The test was performed at N = 10 and the average value was recorded.

<セル組み立てによる耐加重絶縁性評価(1)>
正極活物質としてマンガン酸リチウム、負極活物質として人造黒鉛、電解液としてヘキサフルオロリン酸リチウムの炭酸エチレン:炭酸ジエチル混合溶媒(3:7v/v)溶液(1M)を用い、容量100mAhのパウチ型リチウムイオン電池を組み立て、4.2Vで充電した。その後、セル全体を一定圧(1kN若しくは3kN)で加圧した状態又は加圧しない状態で静置し、2週間後の電圧降下をN=10で測定し、平均値を記録した。セパレータの絶縁性が高いほど、2週間後の電圧降下は小さくなり、自己放電特性が良いと言える。
<Weight-proof insulation evaluation by cell assembly (1)>
Lithium manganate as the positive electrode active material, artificial graphite as the negative electrode active material, ethylene carbonate: diethyl carbonate mixed solvent (3: 7 v / v) solution (1M) of lithium hexafluorophosphate as the electrolyte, and pouch type with a capacity of 100 mAh A lithium ion battery was assembled and charged at 4.2V. Thereafter, the whole cell was left standing with or without pressurization at a constant pressure (1 kN or 3 kN), the voltage drop after 2 weeks was measured at N = 10, and the average value was recorded. It can be said that the higher the insulation of the separator, the smaller the voltage drop after 2 weeks and the better the self-discharge characteristics.

<セル組み立てによる耐加重絶縁性評価(2)>
電極活物質として活性炭、電解液としてトリエチルアンモニウムテトラフルオロボレートの炭酸プロピレン溶液(1M)を用い、容量3Fのパウチ型電気二重層コンデンサを組み立て、2.7Vで充電した。その後、セル全体を一定圧(1kN若しくは3kN)で加圧した状態又は加圧しない状態で静置し、24時間後の電圧降下をN=10で測定し、平均値を記録した。セパレータの絶縁性が高いほど、24時間後の電圧降下は小さくなり、自己放電特性が良いと言える。
<Weight-proof insulation evaluation by cell assembly (2)>
Using a activated carbon as the electrode active material and a propylene carbonate solution of triethylammonium tetrafluoroborate (1M) as the electrolyte, a pouch-type electric double layer capacitor having a capacity of 3F was assembled and charged at 2.7V. Then, the whole cell was left still in a state where it was pressurized at a constant pressure (1 kN or 3 kN) or not, a voltage drop after 24 hours was measured at N = 10, and an average value was recorded. It can be said that the higher the insulation of the separator, the smaller the voltage drop after 24 hours and the better the self-discharge characteristics.

各被試験セパレータを上記評価方法により試験した場合の結果を表2に示した。本発明による耐荷重絶縁性評価では両電極間に流れる電流が10μA以上になったときの荷重を、セル組み立てによる耐荷重絶縁性評価(1)では充電2週間後の電圧降下を、セル組み立てによる耐荷重絶縁性評価(2)では充電24時間後の電圧降下を記載している。不織布セパレータDでは、本発明の測定範囲(〜2224N)において電極間電流が10μA以上にならなかったため、数値は記載していない。   Table 2 shows the results when each separator under test was tested by the above evaluation method. In the load-bearing insulation evaluation according to the present invention, the load when the current flowing between both electrodes becomes 10 μA or more, and in the load-bearing insulation evaluation (1) by cell assembly, the voltage drop after 2 weeks of charging is determined by cell assembly. In the load-bearing insulation evaluation (2), the voltage drop after 24 hours of charging is described. In the nonwoven fabric separator D, since the interelectrode current did not become 10 μA or more in the measurement range (˜2224N) of the present invention, no numerical value is described.

図3は本発明による耐荷重絶縁性評価とセル組み立てによる耐加重絶縁性評価(1)の結果の相関図であり、図4は本発明による耐荷重絶縁性評価とセル組み立てによる耐加重絶縁性評価(2)の結果の相関図である。図3及び図4から明らかなように、セル組み立てによる耐加重絶縁性評価におけるセパレータの絶縁性と、本発明による耐加重絶縁性評価におけるセパレータの絶縁性は良好な相関を示した。すなわち、本発明の評価用装置及び評価方法で評価した場合に、より小さな荷重で絶縁性が低下するセパレータは、セルに組み込んで荷重をかけた際の自己放電特性が悪くなると言える。   FIG. 3 is a correlation diagram of the results of the load-bearing insulation evaluation according to the present invention and the results of the load-bearing insulation evaluation (1) by cell assembly, and FIG. 4 is the load-bearing insulation evaluation according to the present invention and the load-bearing insulation by cell assembly. It is a correlation diagram of the result of evaluation (2). As apparent from FIGS. 3 and 4, the separator insulation in the load-resistant insulation evaluation by cell assembly and the separator insulation in the load-proof insulation evaluation according to the present invention showed a good correlation. That is, when evaluated by the evaluation apparatus and evaluation method of the present invention, it can be said that the separator whose insulating property is lowered by a smaller load is deteriorated in self-discharge characteristics when it is incorporated in a cell and applied with the load.

(比較例1)
導電性弾性板電極の替わりに、電極活物質が活性炭であり集電体がアルミニウムである電気二重層コンデンサ用電極を用いた他は、実施例と同じ方法で耐荷重絶縁性試験を行った。不織布セパレータA〜Dいずれの場合でも、電流値は10μA以上になることがなく、耐荷重絶縁性を評価することはできなかった。これは、使用した電極に弾性がないために、荷重によって不織布の細孔に電極の一部が入り込み、電極同士が接触することがないためと思われる。
(Comparative Example 1)
Instead of the conductive elastic plate electrode, a load-resistant insulation test was conducted in the same manner as in the example except that an electrode for an electric double layer capacitor in which the electrode active material was activated carbon and the current collector was aluminum was used. In any case of the nonwoven fabric separators A to D, the current value did not become 10 μA or more, and the load resistance insulation could not be evaluated. This seems to be because the electrodes used do not have elasticity, so that some of the electrodes enter the pores of the nonwoven fabric due to the load and the electrodes do not contact each other.

(比較例2)
金属製硬質部材4に曲率半径2mmの球状のステンレス製先端部を持つ接触端子をつけ、導電性弾性板電極を用いない他は実施例と同じ方法で耐荷重絶縁性試験を行った。電流値が10μA以上になったときの荷重は、不織布セパレータA〜Dいずれの場合でも、値に100%以上のバラツキがあった。ここで言うバラツキとは、N=10で試験した際の最大値と最小値の差を平均値で割って100をかけた値を指す。実施例の方法で測定した場合のバラツキはいずれの不織布セパレータでも20%以内であった。これは、不織布セパレータに対して点で荷重をかけているために、接触点が細孔に当たった場合と繊維に当たった場合とで結果の振れが大きくなるためと考えられる。
(Comparative Example 2)
A load insulation test was conducted in the same manner as in the example except that a contact terminal having a spherical stainless steel tip having a radius of curvature of 2 mm was attached to the metal hard member 4 and the conductive elastic plate electrode was not used. The load when the current value was 10 μA or more had a variation of 100% or more in any of the nonwoven fabric separators A to D. The variation mentioned here refers to a value obtained by dividing the difference between the maximum value and the minimum value when tested at N = 10 by the average value and multiplying by 100. The variation when measured by the method of the examples was within 20% for any nonwoven fabric separator. This is presumably because the load on the nonwoven fabric separator is applied with a point, and the resulting fluctuation increases when the contact point hits the pore and when it hits the fiber.

本発明の活用例としては、電気化学素子用不織布セパレータの生産・開発における耐荷重絶縁性評価が好適である。   As an application example of the present invention, load-resistant insulation evaluation in production / development of a nonwoven fabric separator for electrochemical elements is suitable.

1 被試験セパレータ
2 導電性弾性板電極
3 導電性弾性板電極
4 略円柱状の金属製硬質部材
5 略円柱状の金属製硬質部材よりも大きい金属製硬質部材
6 略円柱状の金属製硬質部材の直径
7 荷重測定装置
8 加圧装置
9 電流計
DESCRIPTION OF SYMBOLS 1 Separator to be tested 2 Conductive elastic plate electrode 3 Conductive elastic plate electrode 4 A substantially cylindrical metal hard member 5 A metal hard member larger than a substantially columnar metal hard member 6 A substantially columnar metal hard member Diameter 7 Load measuring device 8 Pressurizing device 9 Ammeter

Claims (4)

電気化学素子用不織布セパレータの耐荷重絶縁性評価用装置であって、
被試験セパレータを挟み込む2枚の導電性弾性板電極、
被試験セパレータを挟み込んだ導電性弾性板電極をさらに挟み込む略円柱状の金属製硬質部材と該略円柱状の金属製硬質部材よりも大きい金属製硬質部材、
2つの金属製硬質部材の両側から荷重をかけるための加圧装置、
被試験セパレータにかかる荷重を測定するための荷重測定装置、
被試験セパレータに流れる電流を測定するための電流計、
を有することを特徴とする電気化学素子用不織布セパレータの耐荷重絶縁性評価用装置。
A device for evaluating load-bearing insulation of a nonwoven fabric separator for electrochemical devices,
Two conductive elastic plate electrodes sandwiching the separator under test,
A substantially cylindrical metal hard member that further sandwiches a conductive elastic plate electrode that sandwiches a separator under test, and a metal hard member that is larger than the substantially cylindrical metal hard member,
A pressure device for applying a load from both sides of two metal hard members,
A load measuring device for measuring the load applied to the separator under test,
An ammeter for measuring the current flowing through the separator under test,
A load-resistant insulation evaluation apparatus for a nonwoven fabric separator for electrochemical devices, comprising:
導電性弾性板電極が厚み1mm以上5mm以下の導電性弾性板電極である請求項1記載の電気化学素子用不織布セパレータの耐荷重絶縁性評価用装置。   2. The apparatus for evaluating load resistance insulation of a nonwoven fabric separator for an electrochemical element according to claim 1, wherein the conductive elastic plate electrode is a conductive elastic plate electrode having a thickness of 1 mm to 5 mm. 略円柱状の金属製硬質部材の直径が10mm〜50mmである請求項1又は2記載の電気化学素子用不織布セパレータの耐荷重絶縁性評価用装置。   The apparatus for evaluating load resistance insulation of a nonwoven fabric separator for an electrochemical element according to claim 1 or 2, wherein the substantially cylindrical metal hard member has a diameter of 10 mm to 50 mm. 請求項1〜3のいずれか記載の電気化学素子用不織布セパレータの耐荷重絶縁性評価用装置を使用した電気化学素子用不織布セパレータの耐荷重絶縁性評価方法において、2枚の導電性弾性板電極間に被試験セパレータを挟み込み、両導電性弾性板電極に加えられる荷重と被試験セパレータ間に流れる電流の時間変化を同時に測定することを特徴とする電気化学素子用不織布セパレータの耐荷重絶縁性評価方法。   In the method for evaluating the load-bearing insulation of the nonwoven fabric separator for electrochemical devices using the apparatus for evaluating the load-bearing insulation of the nonwoven fabric separator for electrochemical devices according to any one of claims 1 to 3, two conductive elastic plate electrodes Evaluation of load insulation of a non-woven separator for electrochemical devices, characterized by simultaneously measuring the time applied to the load applied to both conductive elastic plate electrodes and the time variation of the current flowing between the separators to be tested by sandwiching the separator to be tested between them. Method.
JP2012135908A 2012-06-15 2012-06-15 Load-resistant insulation evaluation apparatus for nonwoven fabric separator for electrochemical element and load-resistant insulation evaluation method for unwoven fabric separator for electrochemical element Pending JP2014003071A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012135908A JP2014003071A (en) 2012-06-15 2012-06-15 Load-resistant insulation evaluation apparatus for nonwoven fabric separator for electrochemical element and load-resistant insulation evaluation method for unwoven fabric separator for electrochemical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012135908A JP2014003071A (en) 2012-06-15 2012-06-15 Load-resistant insulation evaluation apparatus for nonwoven fabric separator for electrochemical element and load-resistant insulation evaluation method for unwoven fabric separator for electrochemical element

Publications (1)

Publication Number Publication Date
JP2014003071A true JP2014003071A (en) 2014-01-09

Family

ID=50036000

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012135908A Pending JP2014003071A (en) 2012-06-15 2012-06-15 Load-resistant insulation evaluation apparatus for nonwoven fabric separator for electrochemical element and load-resistant insulation evaluation method for unwoven fabric separator for electrochemical element

Country Status (1)

Country Link
JP (1) JP2014003071A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10502792B2 (en) 2018-02-26 2019-12-10 Lg Chem, Ltd. Method for evaluating insulating performance of separator for electrochemical device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10502792B2 (en) 2018-02-26 2019-12-10 Lg Chem, Ltd. Method for evaluating insulating performance of separator for electrochemical device

Similar Documents

Publication Publication Date Title
Wei et al. 3D printing of customized Li‐ion batteries with thick electrodes
Rajagopalan Kannan et al. Analysis of the separator thickness and porosity on the performance of lithium-ion batteries
CN102771007B (en) Power storage device cell, process for producing same, method for storing same, and electricity storage device
JP2018056573A (en) Method for manufacturing separator
CN108107092A (en) A kind of infiltration preparation method of the lithium ion battery with reference electrode
WO2011028613A3 (en) Porous amorphous silicon-carbon nanotube composite based electrodes for battery applications
CN107102041B (en) Laminated three-electrode electrolytic tank for electrochemical test of in-situ lithium battery
KR20130029265A (en) Method for preparing active agent slurry of electrode, and electrochemical capacitors comprising the electrode
MY195773A (en) Multi-Cell Ultracapacitor
JP2013190220A (en) Electrode set for evaluating heat resistance of separator for lithium ion secondary battery, and method for evaluating heat resistance of separator for lithium ion secondary battery
JP2018106984A (en) All-solid-state lithium ion battery
KR20200035594A (en) Non-destructive method for detecting disconnection of battery cell using pressing force
CN112557931A (en) Device and method for detecting health degree of metal lithium battery
JP5289983B2 (en) Electrochemical cell
CN114221055A (en) Flexible stress sensing functional current collector and preparation method and application thereof
CN104485481A (en) Lithium ion battery cell and lithium ion battery with same
KR20100059505A (en) High power electric energy storage device
US20170279166A1 (en) Lithium-Ion Cell
JP2014003071A (en) Load-resistant insulation evaluation apparatus for nonwoven fabric separator for electrochemical element and load-resistant insulation evaluation method for unwoven fabric separator for electrochemical element
US20100015527A1 (en) Electromotive device
JP2009231189A (en) Voltage distribution evaluation method of electric storage device, and its evaluation tool
JP6577249B2 (en) Evaluation cell and evaluation method
JP2013178111A (en) Electrode set for heat resistance evaluation of separator for lithium ion secondary battery, and method for heat resistance evaluation of separator for lithium ion secondary battery
CN203479839U (en) Test clamp for cylindrical lithium ion battery
JP2015191814A (en) Inspection method for power storage device