JP2013541716A - 卵巣癌の患者における予後予測バイオマーカー - Google Patents

卵巣癌の患者における予後予測バイオマーカー Download PDF

Info

Publication number
JP2013541716A
JP2013541716A JP2013535113A JP2013535113A JP2013541716A JP 2013541716 A JP2013541716 A JP 2013541716A JP 2013535113 A JP2013535113 A JP 2013535113A JP 2013535113 A JP2013535113 A JP 2013535113A JP 2013541716 A JP2013541716 A JP 2013541716A
Authority
JP
Japan
Prior art keywords
biomarkers
ovarian cancer
sample
prognosis
subject
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013535113A
Other languages
English (en)
Inventor
エストリッド ホグダル
エリック ティー. ファング
イブ ジャール クリステンセン
クラウス ホグダル
Original Assignee
ヴァーミリオン インコーポレイテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヴァーミリオン インコーポレイテッド filed Critical ヴァーミリオン インコーポレイテッド
Publication of JP2013541716A publication Critical patent/JP2013541716A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • G01N33/57407Specifically defined cancers
    • G01N33/57449Specifically defined cancers of ovaries
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/88Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86
    • G01N2030/8809Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample
    • G01N2030/8813Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample biological materials
    • G01N2030/8831Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample biological materials involving peptides or proteins
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/447Systems using electrophoresis
    • G01N27/44756Apparatus specially adapted therefor
    • G01N27/44773Multi-stage electrophoresis, e.g. two-dimensional electrophoresis
    • G01N27/44778Multi-stage electrophoresis, e.g. two-dimensional electrophoresis on a common gel carrier, i.e. 2D gel electrophoresis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/52Predicting or monitoring the response to treatment, e.g. for selection of therapy based on assay results in personalised medicine; Prognosis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/54Determining the risk of relapse
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/56Staging of a disease; Further complications associated with the disease

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Urology & Nephrology (AREA)
  • Hematology (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Biochemistry (AREA)
  • Cell Biology (AREA)
  • Hospice & Palliative Care (AREA)
  • Biotechnology (AREA)
  • Food Science & Technology (AREA)
  • Oncology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Microbiology (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Peptides Or Proteins (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本発明は、卵巣癌患者の生存状況を評価するための方法を提供する。また、患者の卵巣癌の状態を評価するための方法についても、本明細書で説明する。これらの方法は、生物試料の生物学的パターンの検出、分析および分類を伴う。生物学的パターンは、例えば、質量分析システムおよび他の手法を用いて得られる。

Description

関連出願
本出願は、2010年10月22日に提出された米国特許仮出願第61/406,044号の恩典を主張し、その内容はすべて、参照により本明細書に組み入れられる。
発明の背景
卵巣癌は、先進国において最も致死性の高い婦人科悪性腫瘍の1つである。米国だけでも毎年およそ23,000人の女性が本疾患と診断され、ほぼ14,000人がそれが原因で死亡している(Jamal, A., et al., CA Cancer J. Clin, 2002; 52:23-47(非特許文献1))。癌治療法の進歩にもかかわらず、卵巣癌の死亡率はこの20年間、事実上不変のままである。本疾患が診断される病期に応じて生存性が急激に変化することを考慮すれば、早期発見は依然として、卵巣癌患者の長期生存性を向上させる上で最も重要な因子である。
末期になって診断された卵巣癌の予後が不良なこと、確定診断手順に伴うコストおよび危険性、ならびに一般集団におけるその有病率が比較的低いことは、相伴って、一般集団における卵巣癌に関するスクリーニングに用いられる検査の感度および特異性に対して極めて厳格な要求基準を課している。
癌の早期発見および診断のために適した腫瘍マーカーが同定されることは、患者の臨床転帰を向上させる上で大いに有望である。これは、曖昧な症状を呈するかもしくは症状を全く呈しない患者、または身体的診察を比較的受けつけにくい腫瘍を有する患者にとって特に重要である。早期発見に向けたかなりの取り組みにもかかわらず、女性は診断時に播種性疾患を呈していることが一般的である。
このため、卵巣癌の早期発見のために要求される感度および特異性をかなえる1つまたは複数のバイオマーカー群を同定することには決定的な需要がある。許容されるスクリーニング検査が存在しなければ、早期発見は依然として、卵巣癌の患者の長期生存を向上させる上で最も決定的な因子であり続ける。
疾患の病期は、卵巣癌の患者の生存に関する最も強い予後因子の1つであるが、これらの患者の生存または転帰を予測するためには、疾患病期だけでは不十分である。患者の予後を予測するための改良された方法があれば、例えば、より積極的な治療が正当化されると考えられるか、または個別化された治療を提供しうると考えられる患者を同定することによって、患者管理を向上させることができると考えられる。
したがって、対象の卵巣癌の状況を判定するため、対象の全生存期間(overall survival)を予測するため、または対象の無増悪生存期間(progression free survival)を予測するための、信頼性が高く、かつ精度の高い方法があることが望ましい。そのような方法の結果は、対象の治療を管理する上で有用である。
Jamal, A., et al., CA Cancer J. Clin, 2002; 52:23-47
概要
本発明は、卵巣癌の予後を判定するため(例えば、全生存確率を予測するため、または無増悪生存確率を予測するため)の組成物および方法を提供する。そのような方法は、対象に対する適切な治療レジメンを選択する上で有用である。
有利なこととして、本発明は、1つまたは複数のバイオマーカーを含む組成物、ならびに、生物試料における特定のバイオマーカーのレベルを測定することによって卵巣癌の患者の生存状況を判定するためにキットを用いる高感度かつ迅速な方法を提供する。患者試料におけるこれらのバイオマーカーの検出および測定により、診断医がヒト卵巣癌患者の生存状況または陰性診断(例えば、正常または無病であること)と相関づけることのできる情報が提供される。1つの態様において、マーカーは、質量/電荷比、分子量によって、および/またはそれらの公知のタンパク質識別情報(protein identity)によって特徴づけられる。マーカーは、例えば、クロマトグラフィー分離と質量分析との連結、固定化された抗体を用いるタンパク質捕捉、ビーズ-タンパク質複合体などの種々の分画手法を用いることによって、または従来のイムノアッセイによって、試料中の他のタンパク質から分離することができる。好ましい態様において、分離の方法は、表面増強レーザー脱離/イオン化(「SELDI」)質量分析法またはイムノアッセイを伴う。
1つの局面において、本発明は一般に、卵巣癌を有するかまたは有する疑いのある対象の予後を判定する方法であって、対象由来の試料におけるバイオマーカー、インター-α(グロブリン)インヒビターH4(血漿カリクレイン感受性糖タンパク質)、トランスフェリン(TFR)およびβ-2ミクログロビン(B2M)またはそれらの断片のレベルを、参照基準に存在するレベルと比較する段階を伴い、前記バイオマーカーのレベルが参照基準に比して高いことによって予後不良が指し示される方法を特徴とする。
もう1つの局面において、本発明は一般に、卵巣癌を有するかまたは有する疑いのある対象の予後を判定する方法であって、バイオマーカーB2M、TrFおよびITIH4またはそれらの断片のレベルを比較する段階を伴い、前記バイオマーカーのレベルが参照基準に比して高いことによって予後不良が指し示される方法を特徴とする。
もう1つの局面において、本発明は一般に、卵巣癌を有するかまたは有する疑いのある対象の予後を判定する方法であって、バイオマーカーB2MおよびCTAP3またはそれらの断片のレベルを比較する段階を伴い、前記バイオマーカーのレベルが参照基準に比して高いことによって予後不良が指し示される方法を特徴とする。
1つの局面において、本発明は一般に、卵巣癌を有するかまたは有する疑いのある対象の予後を判定する方法であって、対象由来の試料におけるバイオマーカーCA125、HEPC、B2MおよびCTAP3またはそれらの断片のレベルを、参照基準に存在するレベルと比較する段階を伴い、前記バイオマーカーのレベルが参照基準に比して高いことによって予後不良が指し示される方法を特徴とする。
1つの局面において、本発明は一般に、卵巣癌を有するかまたは有する疑いのある対象の予後を判定する方法であって、対象由来の試料におけるバイオマーカーAPOA1、TT、HEPC、B2M、CTAP3、TrFおよびCA125またはそれらの断片のレベルを、参照基準に存在するレベルと比較する段階を伴い、前記バイオマーカーのレベルが参照基準に比して高いことによって予後不良が指し示される方法を特徴とする。
1つの局面において、本発明は一般に、ヒトにおける卵巣癌の状況を特徴付ける(qualify)方法であって、血液または血液製剤の対象試料を提供する段階;ならびに試料中のタンパク質を陰イオン交換樹脂で分画して、インター-α(グロブリン)インヒビターH4(血漿カリクレイン感受性糖タンパク質)(ITIH4)、トランスフェリン(TFR)およびβ-2ミクログロビン(B2M)を含有する画分を収集する段階を含む方法、を特徴とする。
1つの局面において、本発明は一般に、インター-α(グロブリン)インヒビターH4(血漿カリクレイン感受性糖タンパク質)(ITIH4)、トランスフェリン(TFR)およびβ-2ミクログロビン(B2M)を含むバイオマーカーのパネル(panel)に結合する捕捉試薬;ならびにバイオマーカーのパネルを含む容器、を含むキットを特徴とする。
1つの局面において、本発明は一般に、インター-α(グロブリン)インヒビターH4(血漿カリクレイン感受性糖タンパク質)(ITIH4)、トランスフェリン(TFR)およびβ-2ミクログロビン(B2M)を含むバイオマーカー断片のパネルに結合する捕捉試薬;ならびにバイオマーカーの検出のために捕捉試薬を用いるための説明書、を含むキットを特徴とする。
1つの局面において、本発明は一般に、それぞれにインター-α(グロブリン)インヒビターH4(血漿カリクレイン感受性糖タンパク質)(ITIH4)、トランスフェリン(TFR)、およびβ-2ミクログロビン(B2M)を含む異なるバイオマーカーが結合している複数の捕捉試薬、を含むシステムを特徴とする。
1つの局面において、本発明は一般に、卵巣癌患者の予後を判定する方法であって、インター-α(グロブリン)インヒビターH4(血漿カリクレイン感受性糖タンパク質)(ITIH4)、トランスフェリン(TFR)およびβ-2ミクログロビン(B2M)の濃度または発現レベルまたはピーク強度の値を決定する段階;ならびにその測定値を卵巣癌患者の生存状況と相関づける段階を含む方法を特徴とする。
1つの局面において、本発明は一般に、卵巣癌患者の予後を判定する方法であって、対象由来の試料における2つまたはそれ以上のバイオマーカーの組み合わせの濃度または発現レベルまたはピーク強度値を決定する段階であって、1つまたは複数のバイオマーカーが以下のもの:インター-α(グロブリン)インヒビターH4(血漿カリクレイン感受性糖タンパク質)(ITIH4)、トランスフェリン(TFR)およびβ-2ミクログロビン(B2M)からなる群より選択される段階:ならびにその測定値を卵巣癌患者の生存状況と相関づける段階、を伴う方法を特徴とする。
1つの局面において、本発明は一般に、卵巣癌患者の予後を判定する方法であって、インター-α(グロブリン)インヒビターH4(血漿カリクレイン感受性糖タンパク質)(ITIH4)、トランスフェリン(TFR)およびβ-2ミクログロビン(B2M)の濃度または発現レベルまたはピーク強度値を決定する段階;ならびにその測定値を卵巣癌患者の生存状況と相関づける段階、を伴う方法を特徴とする。
本明細書において描写される本発明の上記の局面のいずれかまたは他の任意の局面のさまざまな態様において、これらの方法は、1つまたは複数の追加的なバイオマーカーのレベルを参照基準に存在するレベルと比較する段階をさらに伴い、ここで追加的なバイオマーカーは、アポリポタンパク質A1、トランスチレチン、インター-αトリプシンインヒビターIV、トランスフェリン、ヘプシジン、結合組織活性化タンパク質3、ならびに血清アミロイドA1およびβ-2ミクログロビンからなる群より選択される。他の態様において、これらの方法は、対象試料におけるCA125のレベルを参照基準に存在するレベルと比較する段階をさらに伴う。もう1つの態様において、本方法は、以下の1つまたは複数を考慮する段階をさらに含む:初回手術の根治性、診断時の年齢、および治療。他の態様において、本方法は、FIGO病期、腫瘍の組織型、およびCA125のうち1つまたは複数を考慮する段階をさらに含む。さらに他の態様において、予後は全生存期間または無増悪生存期間を予測する。さらなる態様において、前記バイオマーカーの1つまたは複数におけるレベルの増大を検出できないことは、良好な予後を指し示す。さらに他の態様において、患者の予後は治療レジメンの選択に用いられる。さらなる態様において、不良な予後はその対象が積極的な治療レジメンを必要とすることを指し示し、良好な予後はその対象がより積極的でない治療レジメンを必要とすることを指し示す。さらに他の態様において、積極的な治療レジメンはネオアジュバント化学療法を含む。
本明細書において描写される本発明の上記の局面のいずれかまたは他の任意の局面のさまざまな態様において、全生存期間または無増悪生存期間は、診断後1〜2年間の生存;診断後2〜5年間の生存;および診断後5年超の生存からなる群より選択される。他の態様においては、バイオマーカーのパネルを、イムノアッセイ、質量分析またはラジオアッセイによって測定する。また別の態様においては、バイオマーカーのパネルを、固定化された抗体を用いて捕捉する。さらに他の態様においては、バイオマーカーのパネルを、固定化された抗体を用いて検出する。ある態様において、相関づけはソフトウェアの分類アルゴリズムによって行われる。さらに他の態様において、試料は、卵巣組織、リンパ節、組織生検試料(例えば、膈膜(diaophram)、腸管、洗浄液、網(omentum)) 卵巣嚢胞液、腹水、胸水、尿、血液、血清および血漿から選択される。
本明細書において描写される本発明の上記の局面のいずれかまたは他の任意の局面のさまざまな態様において、捕捉試薬は抗体である。他の態様には、捕捉試薬が付着されているかまたはそれに付着できるMSプローブが含まれる。他の態様において、捕捉試薬は固定化された金属キレートである。さらに他の態様において、キットは、対象における卵巣癌の状況の検出のためにそのキットを用いるための、書面による説明書を含む。
本明細書において描写される本発明の上記の局面のいずれかまたは他の任意の局面のさまざまな態様において、製造品は、バイオマーカーのパネルまたはそれらの各々のバイオマーカーの断片と結合する捕捉試薬のパネルを含有する。さらに他の態様において、バイオマーカーは、インター-α(グロブリン)インヒビターH4(血漿カリクレイン感受性糖タンパク質)(ITIH4)、トランスフェリン(TFR)およびβ-2ミクログロビン(B2M)である。他の態様において、バイオマーカーは、インター-α(グロブリン)インヒビターH4(血漿カリクレイン感受性糖タンパク質)(ITIH4)、トランスフェリン(TFR)、およびβ-2ミクログロビン(B2M)である。
より具体的には、バイオマーカーの特定の組み合わせを測定することにより、卵巣癌を有する対象に関しておどろくほど精度の高い予後予測が得られることがことが発見された。このバイオマーカーのパネルは、インター-α(グロブリン)インヒビターH4(血漿カリクレイン感受性糖タンパク質)(ITIH4)、トランスフェリン(TRF)およびβ-2ミクログロビン(B2M)からなる。この3種のバイオマーカーのパネルは、本発明者らによって、卵巣癌を有する対象の予後を非常によく指し示すことが示されている。
さらに、このバイオマーカーのパネルは、癌の病期に関係なく生存期間を予測する。
本発明は、対象における卵巣癌患者の生存状況を判定する方法であって、(a)対象由来の試料における3種のバイオマーカーのパネルを測定して、その測定値を卵巣癌患者の生存状況と相関づける段階、を含む方法を提供する。ある方法において、測定の段階は、SELDIを用いて、試料中のマーカーのm/z(質量対電荷比)値を検出する段階を含む。
本発明は、卵巣癌と診断された対象における無増悪生存期間および全生存期間の両方を判定するための方法を提供する。
本発明の好ましい方法はまた、以下の段階を含む、卵巣癌患者の生存状況を判定する段階も含む:
対象由来の試料における3種のバイオマーカーのパネルの濃度または発現レベルを決定する段階であって、3種のバイオマーカーがインター-α(グロブリン)インヒビターH4(血漿カリクレイン感受性糖タンパク質)(ITIH4)、トランスフェリン(TFR)およびβ-2ミクログロビン(B2M)からのものである段階、ならびに対応する濃度または発現レベルを卵巣癌患者の生存状況と相関づける段階。
ある態様において、これらの方法は、対象の治療を、本明細書に開示された方法によって決定される状態に基づいて管理する段階をさらに含む。例えば、本発明の方法の結果が決定的でない場合、または状態の確認が必要になる理由がある場合には、医師がより多くの検査をオーダーしてもよい。または、本発明の方法の結果によって不良な可能性のある予後が指し示される場合には、代替的な、またはより積極的な治療法が正当化されうる。その上、その結果によって良好な可能性のある予後が示される場合には、治療法を行わないこと、またはより積極的でない治療法が正当化されうる。
より積極的な治療法の例には、以下が含まれる:a)医師が手術後に、患者をより強化された、または長期的な化学療法で治療すること。b)追加的な化学療法または生物学的治療を提供すること。c)患者を再発または疾患進行に関してより綿密にモニターすること。d)不良な予後、および画像検査で非根治手術が指し示される広範な疾患の両方が指し示される患者に対して、ネオアジュバント化学療法およびその後の中間期手術を提供すること。e)プロテオミクス指標を、重篤な患者において治療を行うかそれとも姑息的治療を行うかの総合的な臨床判断の要素とすること。f)根治的および正しく病期判定された1期およびグレード1〜2の患者に対してアジュバント治療を提供すること。g)患者を、広範囲の処置を行うことに熟練した婦人科腫瘍外科医による手術に向けて選択しなければならない。より積極的でない治療の例には、以下が含まれる:a)指標を、根治手術に向けた意志決定のための要素とすること。b)根治的と正しく病期判定された1期およびグレード1〜2の患者に対して、有害な可能性のある化学療法を行わないようにすること、c)患者を、より専門化していない婦人科医によって手術すること。
予後指標は将来、患者を、個別化された新たな治療(例えば、抗体または分子に基づくもの)に向けて選択するために用いうる可能性がある。これは、タンパク質または前駆体のいくつかが治療法の標的である場合に特にそうである。
「卵巣癌患者の生存状況」という用語は、患者の生存の状況のことを指す。卵巣癌の生存状況の種類の例には、無病、または診断1年後、診断2年後、診断3年後、診断4年後、および診断から5年後もしくはそれ以上の年数での全生存が非限定的に含まれる。もう1つの種類の状況は、「治療反応性」、すなわち、患者が所与の種類の治療法に対して反応する見込みが高いか、それとも低いかである。第3の種類の状況は、「寛解」、すなわち患者が、疾患を有しない(寛解状態にある)と考えられるか、またはもう1つ(one more)の治療的介入後に癌を有する(再発状態にある)と考えられるかである。その他の状況および各状況の度合いは、当技術分野において公知である。
本明細書で開示されるマーカーの質量値に関して、分光装置の質量精度は、開示される分子量値の約+/-0.15パーセントの範囲内にあるとみなされる。さらに、装置のそのように認知される精度変動に対して、分光学的質量決定は、約400〜1000m/dmの分解能限界の範囲内でばらつく可能性があり、ここでmは質量であり、dmはピーク高さ0.5での質量スペクトルピーク幅である。質量分析装置およびその動作に付随する質量精度および分解能の変動は、7種のバイオマーカーのそれぞれの質量の開示における「約」という用語の使用に反映されている。また、そのような質量精度および分解能の変動、ならびにそれ故に本明細書で開示されるマーカーのそれぞれの質量に関する「約」という用語の意味は、対象の遺伝子型および/または民族性、ならびに特定の癌またはその起源もしくは病期に起因して存在しうるマーカーの変異体も含むことを意図している。
Cox比例ハザードモデルは、時間と、イベントデータならびに説明変数、例えば腫瘍病期、年齢および性別などとの関連を検討するための回帰モデルの1つである。対数スケールでのハザード率(イベントの強度)は、説明変数の線形関数である従属変数である。影響は、相対リスクの概念に似たハザード比によって提示される。1よりも大きいはHRはイベントの強度またはリスクが大きいことを指し示し、それよりも小さい値は強度またはリスクが小さいことを指し示す。例えば、本発明者らの検討において、I期の癌の患者と比較したIII期卵巣癌の患者に関するHR=1.62である。このことは、III期患者が、I期患者と比較して、死亡の強度またはリスクが62%高いことを意味する。この分析では、本発明者らのプロテオミクス指標が最も高いレベルにある患者はRH=2.64を有することも見いだされ、これはプロテオミクス指標が1単位小さい患者と比較して死亡の強度またはリスクが164%高いことに対応する。このことに対応して、1を上回るHRは不良な予後を有し、1未満のHRはより順調な予後を有することを指し示す。
統計検定は帰無仮説を指定し、観測された転帰の確率に基づいて、それを代替的な仮説と比較する。帰無仮説を仮定した上でその転帰が観測される確率が、有意水準として表される事前に指定された閾値を下回る場合には、その帰無仮説を棄却して代替的な仮説を採用する。帰無仮説を誤って棄却する確率、すなわち帰無仮説が正しい確率は、選択された有意水準であり、これはしばしば第1種の誤りとして表される。良い結果は、代替的なものが真となる場合の帰無仮説の棄却であり、この確率は検出力と呼ばれ、帰無仮説と比較した差および選択された有意水準に依存する。
バイオマーカーを測定する方法には、バイオチップアレイの使用が含まれる。本発明において有用なバイオチップアレイには、タンパク質アレイおよび核酸アレイが含まれる。1つまたは複数のマーカーをバイオチップアレイ上に捕捉した上で、マーカーの分子量を検出するためのレーザーイオン化に供する。マーカーの分析は、例えば、総イオン電流に対して標準化された閾値強度に対する1つまたは複数のマーカーの分子量による。ピーク強度範囲を縮小して、検出されるマーカーの数を制限するために、対数変換を用いることが好ましい。
バイオマーカーを測定するもう1つの方法は、2006年7月28日に提出された、"Methods for Reducing the range in Concentrations of Analyte Species in a Sample"と題するUSSN:11/495,842号に記載されたようなビーズ上に合成したコンビナトリアルリガンドライブラリーの使用を含む;それはその全体が参照により本明細書に組み入れられる。
本発明の他の方法において、バイオマーカーの測定値と卵巣癌患者の生存状況との相関づけの段階は、ソフトウェア分類アルゴリズムによって行われる。例えば、バイオチップアレイ上の対象試料に関するデータを、前記バイオチップアレイをレーザーイオン化に供して質量/電荷比に関するシグナルの強度を検出することによって生成させ;そのデータをコンピュータ可読形態に変換し;その上で、卵巣癌患者に存在し、かつ非癌対象対照には存在しないマーカーに相当するシグナルを検出するために、ユーザー入力パラメーターに応じてデータを分類するアルゴリズムを実行する。
バイオチップ表面は、例えば、イオン性、陰イオン性であるか、固定化されたニッケルイオンで構成されるか、陽イオンと陰イオンの混合物で構成されるか、1つまたは複数の抗体、一本鎖もしくは二本鎖核酸、タンパク質、ペプチドもしくはそれらの断片、アミノ酸プローブもしくはファージディスプレイライブラリーで構成される。
他の好ましい方法では、マーカーのうち1つまたは複数をレーザー脱離/イオン化質量分析法を用いて測定するが、これは、付着された吸着剤を含む、質量分析計とともに用いるのに適合するプローブを提供する段階、および対象試料を吸着剤と接触させる段階、ならびに;マーカーをプローブから脱離およびイオン化させて、脱イオン/イオン化マーカーを質量分析計を用いて検出する段階を含む。
好ましくは、レーザー脱離/イオン化質量分析法は以下を含む:付着された吸着剤を含む基質を提供する段階;対象試料を吸着剤と接触させる段階;付着された吸着剤を含む、質量分析計とともに用いるのに適合するプローブ上に基質を置く段階;ならびに、マーカーをプローブから脱離およびイオン化させて、脱離/イオン化されたマーカーを質量分析計を用いて検出する段階。
吸着剤は、例えば、疎水性、親水性、イオン性もしくはニッケルなどの金属キレート性の吸着剤、または抗体、一本鎖もしくは二本鎖オリゴヌクレオチド、アミノ酸、タンパク質、ペプチドもしくはそれらの断片であってよい。
本発明の方法は、そのような方法を適用しうる任意の種類の患者試料、例えば、血液、血清および血漿に対して行うことができる。
本発明はまた、バイオマーカーと結合する捕捉試薬およびバイオマーカーのパネルを含む容器を含むキットも提供する。捕捉試薬は任意の種類の試薬であってよいが、好ましくは試薬はSELDIプローブである。
本発明のあるキットにおいて、捕捉試薬は固定化された金属キレート(「IMAC」)を含む。
本発明のあるキットは、洗浄後に、他のバイオマーカーと比較して、捕捉試薬と結合したバイオマーカーの保持を選択的に可能にする、洗浄液をさらに含む。
本発明はまた、3種のバイオマーカーと結合する捕捉試薬、およびバイオマーカーの測定のために捕捉試薬を用いるための説明書を含むキットも提供する。これらのキットのあるものにおいて、捕捉試薬は抗体を含む。その上、ある種のキットは、捕捉試薬が付着されているかまたはそれに付着できるMSプローブをさらに含む。ある種のキットにおいて、捕捉試薬はIMACを含む。キットはまた、洗浄後に、他のバイオマーカーと比較して、捕捉試薬と結合したバイオマーカーの保持を選択的に可能にする洗浄液を含んでもよい。好ましくは、キットは、キットを卵巣癌の状況の決定のために用いるための書面による説明書、ならびに被検試料を捕捉試薬と接触させて、捕捉試薬によって保持された1つまたは複数のバイオマーカーを測定することを規定する説明書を含む。
本キットはまた、抗体、一本鎖もしくは二本鎖オリゴヌクレオチド、アミノ酸、タンパク質、ペプチドまたはそれらの断片である捕捉試薬も提供する。
本キットを用いる1つまたは複数のタンパク質バイオマーカーの測定は、質量分析、またはELISAなどのイムノアッセイによる。
卵巣癌の検出および/またはさらなる診断アッセイ用の抗体の産生のための精製タンパク質も提供される。
本発明はまた、バイオマーカーのパネルと結合した捕捉試薬を含む製造品も提供する。
本発明のその他の局面については、以下に説明する。
非進行性OC患者(上の2つのスペクトル)および進行性OC患者(下の2つのスペクトル)からの代表的なスペクトルを描写している。A、トランスチレチン(TRF)。 非進行性OC患者(上の2つのスペクトル)および進行性OC患者(下の2つのスペクトル)からの代表的なスペクトルを描写している。B、β2ミクログロブリン(B2M)。 非進行性OC患者(上の2つのスペクトル)および進行性OC患者(下の2つのスペクトル)からの代表的なスペクトルを描写している。C、ITIH4。 非進行性OC患者(上の2つのスペクトル)および進行性OC患者(下の2つのスペクトル)からの代表的なスペクトルを描写している。D、CTAP3。 xb-pro指標と、A.手術後に残存腫瘍を有する患者(N=92)との間、およびB.すべての卵巣癌患者(N=150)との間の関連性を描いたカプラン・マイヤー(Kaplan-Meier)曲線を描写している。xb-pro指標の第1および第2の三分位数をカットポイントとして用いて、患者を3群に分けた。どの2つの患者群についても、xb-pro指標がより上位の三分位数にある患者では、xb-pro指標値の低い患者と比較して、極めて有意に優れる生存性が観察された。 横座標のB2M、ならびにTRFおよびITIH4の第1および第3の四分位数に関して、3種の強度の異なる組み合わせに関するハザード比を示したプロットを描写しており、ここでHRはすべて各ピークの中央値レベルの患者との比較である。
定義
別に定義する場合を除き、本明細書で用いる技術用語および科学用語はすべて、本発明が属する当業者によって一般的に理解されている意味を有する。以下の参考文献は、当業者に対して、本発明で用いられる用語の多くについての一般的な定義を与える:Singleton et al, Dictionary of Microbiology and Molecular Biology (2nd ed. 1994);The Cambridge Dictionary of Science and Technology (Walker ed., 1988);The Glossary of Genetics, 5th Ed., R. Rieger et al. (eds.), Springer Verlag (1991);およびHale & Marham, The Harper Collins Dictionary of Biology (1991)。本明細書で用いる場合、以下の用語は、別に指定する場合を除き、それらに与えられた意味を有する。
「吸着」とは、吸着剤または捕捉試薬に対する分析物の検出可能な非共有結合のことを指す。
「分析物」とは、検出しようとする、試料の任意の構成成分のことを指す。この用語は、試料中の単一の構成成分を指すことも複数の構成成分を指すこともできる。
「抗体」とは、エピトープ(例えば、抗原)と特異的に結合してそれを認識する、免疫グロブリン遺伝子またはそれらの断片によって実質的にコードされるポリペプチドリガンドのことを指す。認知されている免疫グロブリン遺伝子には、κおよびλ軽鎖定常領域遺伝子、α、γ、δ、εおよびμ重鎖定常領域遺伝子、ならびに無数の免疫グロブリン可変領域遺伝子が含まれる。抗体は、例えば、完全な免疫グロブリンとして、またはさまざまなペプチダーゼによる消化によって生じる、詳細に特徴づけられているいくつかの断片などとして存在する。これには、例えば、Fab'断片およびF(ab)'2断片が含まれる。「抗体」という用語には、本明細書で用いる場合、抗体全体の修飾によって生成された抗体断片、または組換えDNA法を用いてデノボ合成されたものも含まれる。これにはまた、ポリクローナル抗体、モノクローナル抗体、キメラ抗体、ヒト化抗体または単鎖抗体も含まれる。抗体の「Fc」部分とは、1つまたは複数の重鎖定常領域ドメイン、CH1、CH2およびCH3を含むが、重鎖可変領域は含まない、免疫グロブリン重鎖の部分のことを指す。
「バイオチップ」とは、吸着剤が付着された、一般に平坦な表面を有する固体基質のことを指す。しばしば、バイオチップの表面は複数のアドレス指定可能な位置を含み、その位置のそれぞれは、そこに結合した吸着剤を有する。バイオチップを、プローブインターフェイスと係合させ、それ故にプローブとして機能させるように適合させることができる。
親和性捕捉プローブの吸着表面に吸着された試料の「複雑度」とは、吸着された異なるタンパク質種の数のことを意味する。
「差次的に存在する」という語句は、対照対象と比較した、癌を有するかまたは癌を発症しやすい性向を有する対象から採取した試料中に存在するマーカーの数量および/または頻度の差異のことを指す。例えば、IAIH4断片は、対照対象からの試料と比較して、卵巣癌患者から入手した生物試料ではより高いレベルで存在する。対照的に、本明細書に記載のApo A1およびトランスチレチンは、対照対象からの試料と比較して、卵巣癌患者から入手した試料ではより低いレベルで存在する。その上、マーカーが、対照対象の試料と比較して、ヒト癌患者の試料において、より高い頻度またはより低い頻度で検出されるポリペプチドであってもよい。マーカーは、レベル、数量および/または頻度の点で、差次的に存在しうる。
1つの試料におけるポリペプチドの量/レベルが、他の試料におけるポリペプチドの量と異なるならば、ポリペプチドは2つの試料の間で差次的に存在する。好ましくは、その差は統計的に有意である。例えば、ポリペプチドは、それが他の試料中に存在するよりも、それが少なくとも約120%、少なくとも約130%、少なくとも約150%、少なくとも約180%、少なくとも約200%、少なくとも約300%、少なくとも約500%、少なくとも約700%、少なくとも約900%もしくは少なくとも約1000%多く存在するならば、またはそれが一方の試料中で検出可能であってもう一方では検出不能であれば、2つの試料の間で差次的に存在する。
代替的または追加的に、ポリペプチドは、卵巣癌患者の試料においてポリペプチドが検出される頻度が、対照試料におけるよりも統計的に有意に高いかまたは低いならば、2つのセットの試料の間で差次的に存在する。例えば、ポリペプチドは、それが、試料の一方のセットにおいて、試料のもう一方のセットで観察されるよりも少なくとも約120%、少なくとも約130%、少なくとも約150%、少なくとも約180%、少なくとも約200%、少なくとも約300%、少なくとも約500%、少なくとも約700%、少なくとも約900%、または少なくとも約1000%高い頻度または低い頻度で検出されるならば、2つのセットの試料の間で差次的に存在する。
「診断的」とは、病態、すなわち卵巣癌の存在または性質を特定することを意味する。診断方法はその感度および特異性の点でさまざまである。診断アッセイの「感度」は、検査陽性である罹患個体のパーセンテージ(「真陽性例」のパーセント)のことである。アッセイによって検出されない罹患個体は「偽陰性例」である。罹患しておらず、かつアッセイにおいて検査陰性である対象は「真陰性例」と呼ばれる。診断アッセイの「特異性」は、1から偽陽性率を差し引いたものであり、ここで「偽陽性」率は、疾患を有しない検査陽性者の割合と定義される。1つの特定の診断方法がある病状の確定診断を与えるとは限らないが、その方法が診断に役立つ実用的な手がかり(positive indication)を与えるならば、それで十分である。
マーカーの「対照量」は、被検マーカー量と比較することになる任意の量または量の範囲であってよい。例えば、マーカーの対照量は、卵巣癌を有しない人におけるマーカーの量であってよい。1つの態様において、対照量は絶対量(例えば、μg/ml)である。もう1つの態様において、対照量は相対レベル(例えば、シグナルの相対強度)である。
マーカーの「診断量」とは、卵巣癌の診断と合致する、対象の試料におけるマーカーの量のことを指す。1つの態様において、診断量は、分析物の絶対量(例えば、μg/ml)である。もう1つの態様において、診断量は相対レベル(例えば、シグナルの相対強度)である。
「溶出剤」または「洗浄液」とは、分析物の吸着剤表面への吸着に影響を及ぼすかもしくはそれを変更する、かつ/または非結合材料を表面から除去する薬剤、典型的には溶液のことを指す。溶出剤の溶出特性は、例えば、pH、イオン強度、疎水性、カオトロピズムの度合い、界面活性剤の強度、および温度に依存しうる。
「気相イオン分光計」とは、気相イオンを検出する器械のことを指す。気相イオン分光計は、気相イオンを供給するイオン源を含む。気相イオン分光計には、例えば、質量分析計、イオン移動度分光計および全イオン流測定器が含まれる。「気相イオン分光法」とは、気相イオンを検出するために気相イオン分光計を用いることを指す。
「イオン源」とは、気相イオンをもたらす、気相イオン分光計の部分組立品(sub-assembly)のことを指す。1つの態様において、イオン源は脱離/イオン化の過程を通じてイオンをもたらす。そのような態様は一般に、プローブをイオン化エネルギーの源(例えば、レーザー脱離/イオン化の源)と照会可能な関係で位置的に係合させ、大気圧または大気圧以下の圧力で気相イオン分光計の検出器と同時通信下にある、プローブインターフェイスを含む。
分析物を固相から脱離/イオン化させるためのイオン化エネルギーの形態には、例えば、以下のものが含まれる:(1)レーザーエネルギー;(2)高速原子(高速原子衝撃法に使用);(3)放射性核種のβ崩壊を介して生じる高エネルギー粒子(プラズマ脱離に使用);および(4)二次イオンを生じる一次イオン(二次イオン質量分析に使用)。固相分析物に対するイオン化エネルギーの好ましい形態は、レーザー(レーザー脱離/イオン化に使用)、特に窒素レーザー、Nd-Yagレーザーおよび他のパルスレーザー源である。「フルエンス」とは、照会画像の単位面積当たりに出力されるエネルギーのことを指す。レーザーなどの高フルエンス源は、約1mJ/mm2〜50mJ/mm2を出力すると考えられる。典型的には、試料をプローブの表面に載せ、プローブをプローブインターフェイスと係合させて、プローブ表面にイオン化エネルギーを衝突させる。エネルギーは分析物分子を表面から気相に脱離させて、それらをイオン化する。
分析物に対するイオン化エネルギーの他の形態には、例えば、以下のものが含まれる:(1)気相中性物質(neutral)をイオン化する電子;(2)気相、固相または液相の中性物質からのイオン化を誘導するための強電場;ならびに(3)固相、気相および液相の中性物質の化学イオン化を誘導するために、イオン化粒子または電場と中性化学物質との組み合わせを適用する源。
「レーザー脱離質量分析計」とは、分析物を脱離させる、揮発させる、およびイオン化する手段としてレーザーエネルギーを用いる質量分析計のことを指す。
「対象の治療を管理すること」とは、対象における卵巣癌の状況の決定に引き続いての、臨床医(例えば、医師)の行為のことを指す。例えば、本発明の方法の結果が決定的でないか、または状態の確認が必要になる理由があるならば、医師がより多くの検査をオーダーしてもよい。または、本発明の方法の結果によって、不良な可能性のある予後が指し示される場合には、代替的な、またはより積極的な治療法が正当化されうる。その上、その結果によって良好な可能性のある予後が示される場合には、治療法を行わないこと、またはより積極的でない治療法が正当化されうる。
より積極的な治療の例には、以下が含まれる:a)医師が手術後に、患者をより強化された、または長期的な化学療法で治療すること。b)追加的な化学療法または生物学的治療を提供すること。c)患者を再発または疾患進行に関してより綿密にモニターすること。d)不良な予後、および画像検査で非根治手術が指し示される広範な疾患の両方が指し示される患者に対して、ネオアジュバント化学療法およびその後の中間期手術を提供すること。e)プロテオミクス指標を、重篤な患者において治療を行うかそれとも姑息的治療を行うかの総合的な臨床判断の要素とすること。f)根治的および正しく病期判定された1期およびグレード1〜2の患者に対してアジュバント治療を提供すること。g)患者を、広範囲の処置を行うことに熟練した婦人科腫瘍外科医による手術に向けて選択すること。より積極的でない治療の例には、以下が含まれる。a)指標を、根治手術に向けた意志決定のための要素とすること。b)根治的と正しく病期判定された1期およびグレード1〜2の患者に対して、有害な可能性のある化学療法を行わないようにすること、c)患者を、より専門化していない婦人科医によって手術すること。
予後指標は将来、患者を、個別化された治療(例えば、抗体または分子に基づくもの)に向けて選択するために用いうる可能性がある。1つの態様において、本発明のタンパク質は治療法の標的である。
本発明の文脈における「マーカー」とは、参照基準と比較して、ヒト癌を有する患者から採取した試料において差次的に存在するポリペプチドのことを指す。1つの態様において、参照基準は、対照対象から採取した同等な試料である。対照対象は、診断が陰性であるか癌が検出不能である人、例えば正常または健常な対象である。「バイオマーカー」という用語は、「マーカー」という用語と互換的に用いられる。
「測定すること」という用語は、試料におけるマーカーの有無を検出すること、試料におけるマーカーの量を定量すること、および/またはバイオマーカーの種類を特徴付けることを含む方法のことを意味する。測定は、当技術分野において公知の方法、および本明細書においてさらに説明するものによって実現することができ、これにはSELDIおよびイムノアッセイが非限定的に含まれる。任意の適した方法を、本明細書に記載のマーカーの1つまたは複数の検出および測定のために用いることができる。これらの方法には、質量分析(例えば、レーザー脱離/イオン化質量分析)、蛍光(例えば、サンドイッチイムノアッセイ)、表面プラズモン共鳴、偏光解析法および原子間力顕微鏡法が非限定的に含まれる。
「質量分析器」とは、気相イオンの質量対電荷比に変換しうるパラメーターを測定するための手段を含む、質量分析計の部分組立品のことを指す。飛行時間型質量分析計において、質量分析器はイオン光学アセンブリ、飛行管およびイオン検出器を含む。
「質量分析器」とは、気相イオンの質量対電荷比に変換しうるパラメーターを測定する気相イオン分光計のことを指す。質量分析器は一般に、イオン源および質量分析器を含む。質量分析計の例には、飛行時間型、磁場型、四重極フィルター型、イオントラップ型、イオンサイクロトロン共鳴型、静電場型(electrostatic sector)分析器、およびこれらの複合型がある。「質量分析法」とは、気相イオンを検出するために質量分析計を用いることを指す。
「タンデム型質量分析計」とは、イオン混合物中のイオンを含むイオンのm/zに基づく識別または測定を2つの連続したステージで行うことが可能な、あらゆる質量分析計のことを指す。この語句には、空間的に縦列しているイオンのm/zに基づく識別または測定を2つの連続したステージで行うことが可能な2つの質量分析器を有する質量分析計が含まれる。この語句にはさらに、時間的に縦列しているイオンのm/zに基づく識別または測定を2つの連続したステージで行うことが可能な単一の質量分析器を有する質量分析計も含まれる。この語句はそれ故に、Qq-TOF型質量分析計、イオントラップ型質量分析計、イオントラップ型-TOF質量分析計、TOF-TOF質量分析計、フーリエ変換イオンサイクロトロン共鳴質量分析計、静電場-磁場型(electrostatic sector-magnetic sector)質量分析計およびそれらの組み合わせを明示的に含む。
本発明の文脈における「プローブ」とは、気相イオン分光計(例えば、質量分析計)のプローブインターフェイスと係合させるため、ならびに分析物をイオン化および質量分析計などの気相イオン分光計への導入のためのイオン化エネルギーに対して提示するために適合化されたデバイスのことを指す。「プローブ」は一般に、イオン化エネルギーの源に対して分析物を提示する試料提示表面を含む、固体基質(柔軟性または剛性)を含むと考えられる。
「固体支持体」とは、捕捉試薬によって誘導体化すること、または他の様式で付着されることができる固体材料のことを指す。例示的な固体支持体には、プローブ、マイクロタイタープレートおよびクロマトグラフィー樹脂が含まれる。
「3種のバイオマーカーのパネル」とは、本明細書において特定されるバイオマーカーのセットのことを指す。1つの態様において、3種のバイオマーカーは、インター-α(グロブリン)インヒビターH4(血漿カリクレイン感受性糖タンパク質)(ITIH4)、トランスフェリン(TFR)およびβ-2ミクログロビン(B2M)である。
「表面増強レーザー脱離/イオン化」または「SELDI」とは、分析物を、気相イオン分光計のプローブインターフェイスと係合するSELDIプローブの表面上に捕捉させる、脱離/イオン化気相イオン分光法(例えば、質量分析)のことを指す。「SELDI MS」では、気相イオン分光計は質量分析計である。SELDI技術は、例えば、米国特許第5,719,060号(Hutchens and Yip)および米国特許第6,225,047号(Hutchens and Yip)に記載されている。
「表面増強親和性捕捉(Surface-Enhanced Affinity Capture)」または「SEAC」は、吸収性表面(「SEACプローブ」)を含むプローブの使用を伴う、SELDIの一種である。「吸着性表面」とは、吸着剤(「捕捉試薬」または「親和性試薬」とも呼ばれる)を結合させた表面のことを指す。吸着剤とは、分析物(例えば、標的ポリペプチドまたは核酸)と結合することのできる任意の材料のことである。「クロマトグラフ吸着剤」とは、クロマトグラフィーに典型的に用いられる材料のことを指す。クロマトグラフ吸着剤には、例えば、イオン交換材料、金属キレート剤(例えば、ニトリロ酢酸またはイミノ二酢酸)、固定化された金属キレート、疎水性相互作用吸着剤、親水性相互作用吸着剤、色素、単純な生体分子(例えば、ヌクレオチド、アミノ酸、単糖および脂肪酸)および混合型吸着剤(例えば、疎水性引力/静電反発力吸着剤)が含まれる。「生体特異的吸着剤」とは、生体分子、例えば、核酸分子(例えば、アプタマー)、ポリペプチド、多糖、脂質、ステロイド、またはこれらの結合物(例えば、糖タンパク質、リポタンパク質、糖脂質、核酸(例えば、DNA)-タンパク質結合物)を含む吸着剤のことを指す。場合によっては、生体特異的吸着剤は、多タンパク質複合体、生体膜またはウイルスのような巨大分子構造であってもよい。生体特異的吸着剤の例には、抗体、受容体タンパク質および核酸がある。生体特異的吸着剤は、典型的には、クロマトグラフ吸着剤よりも、標的分析物に対して高い特異性を有する。SELDIに用いるための吸着剤のさらなる例は、米国特許第6,225,047号(Hutchens and Yip, "Use of retentate chromatography to generate difference maps," May 1, 2001)に記載がある。
いくつかの態様においては、選択した吸着剤をもたらすように修飾しうる、前もって活性化された表面として、SEACプローブが提供される。例えば、ある種のプローブには、生体分子と共有結合を通じて結合しうる反応性モイエティーが与えられる。エポキシドおよびカルボジイミダゾール(carbodiimidizole)は、抗体または細胞受容体などの生体特異的吸着剤と共有結合させるのに有用な反応性モイエティーである。
「表面増強ニート脱離(Surface-Enhanced Neat Desorption)」または「SEND」は、プローブ表面と化学結合したエネルギー吸収性分子を含むプローブ(「SENDプローブ」)の使用を伴う、SELDIの一種である。「エネルギー吸収性分子」(「EAM」)とは、レーザー脱離/イオン化源からエネルギーを吸収することができ、その後にそれと接触している分析物分子の脱離およびイオン化に寄与することのできる分子のことを指す。この語句には、しばしば「マトリックス(matrix)」と称される、MALDIで用いられる分子が含まれ、これには、ケイ皮酸誘導体、シナピン酸(sinapinic acid)(「SPA」)、シアノ-ヒドロキシ-ケイ皮酸(「CHCA」)およびジヒドロキシ安息香酸、フェルラ酸、ヒドロキシアセトフェノン誘導体、ならびに他のものが明示的に含まれる。これにはまた、SELDIに用いられるEAMも含まれる。SENDについては、米国特許第5,719,060号、および2002年9月4日に提出された米国特許出願第60/408,255号(Kitagawa, "Monomers And Polymers Having Energy Absorbing Moieties Of Use In Desorption/Ionization Of Analytes")にさらに記載されている。
「表面増強光解離性付着および放出(Surface-Enhanced Photolabile Attachment and Release)」または「SEPAR」は、分析物と共有結合することができ、続いて、光、例えばレーザー光への曝露後にモイエティー内の光解離性結合が切断されて分析物を放出することができる、表面に結びついたモイエティーを有するプローブの使用を伴う、SELDIの一種である。SEPARについては、米国特許第5,719,060号にさらに記載されている。
「分子結合パートナー」および「特異的結合パートナー」とは、特異的結合を呈する分子の対、典型的には生体分子の対のことを指す。分子結合パートナーには、受容体およびリガンド、抗体および抗原、ビオチンおよびアビジン、ならびにビオチンおよびストレプトアビジンが非限定的に含まれる。
「モニタリング」とは、連続して変化するパラメーターの変化を記録することを指す。
「タンパク質バイオチップ」とは、ポリペプチドの捕捉のために適合化されたバイオチップのことを指す。多くのタンパク質バイオチップが当技術分野において記載されている。これらには、例えば、Ciphergen Biosystem(Fremont, CA)、Packard Bioscience Company(Meriden CT)、Zyomyx(Hayward, CA)およびPhylo(Lexington, MA)によって製造されているタンパク質バイオチップが含まれる。そのようなタンパク質バイオチップの例は、以下の特許または特許出願に記載されている:米国特許第6,225,047号(Hutchens and Yip, "Use of retentate chromatography to generate difference maps," May 1, 2001);国際公開公報第WO 99/51773号(Kuimelis and Wagner, "Addressable protein arrays," October 14, 1999);米国特許第6,329,209号(Wagner et al., "Arrays of protein-capture agents and methods of use thereof," December 11, 2001)および国際公開公報第WO 00/56934号(Englert et al., "Continuous porous matrix arrays," September 28, 2000)が含まれる。
Ciphergen Biosystemsによって製造されているタンパク質バイオチップは、アドレス指定可能な位置に付着されたクロマトグラフ吸着剤または生体特異的吸着剤を有する表面を含む。Ciphergen ProteinChip(登録商標)アレイには、NP20、H4、H50、SAX-2、WCX-2、CM-10、IMAC-3、IMAC-30、LSAX-30、LWCX-30、IMAC-40、PS-10、PS-20およびPG-20が含まれる。これらのタンパク質バイオチップは、小板(strip)の形態にあるアルミニウム基質を含む。小板の表面は二酸化ケイ素でコーティングされている。
NP-20バイオチップの場合には、酸化ケイ素が、親水性タンパク質を捕捉するための親水性吸着剤として機能する。
H4、H50、SAX-2、WCX-2、CM-10、IMAC-3、IMAC-30、PS-10およびPS-20バイオチップは、バイオチップの表面に物理的に付着された、またはシランを経由してバイオチップの表面に共有結合されたヒドロゲルの形態にある、官能基化された架橋ポリマーをさらに含む。H4バイオチップは、疎水性結合のためのイソプロピル官能性を有する。H50バイオチップは、疎水性結合のためのノニルフェノキシ-ポリ(エチレングリコール)メタクリレートを有する。SAX-2バイオチップは、陰イオン交換のための四級アンモニウム官能性を有する。WCX-2およびCM-10バイオチップは、陽イオン交換のためのカルボン酸官能性を有する。IMAC-3およびIMAC-30バイオチップは、キレート化によってCu++およびNi++などの遷移金属イオンを吸着するニトリロ酢酸官能基を有する。これらの固定化された金属イオンは、配位結合によるペプチドおよびタンパク質の吸着を可能にする。PS-10バイオチップは、タンパク質上の基と反応しうるカルボイミダゾール(carboimidizole)官能基を共有結合のために有する。PS-20バイオチップは、エポキシド官能基をタンパク質との共有結合のために有する。PSシリーズのバイオチップは、抗体、受容体、レクチン、ヘパリン、プロテインA、ビオチン/ストレプトアビジンなどの生体特異的吸着剤をチップ表面と結合させ、そこでそれらを、試料由来の分析物を特異的に捕捉するように機能させるのに有用である。PG-20バイオチップは、プロテインGが付着されたPS-20チップである。LSAX-30(陰イオン交換)、LWCX-30(陽イオン交換)およびIMAC-40(金属キレート)バイオチップは、官能基化されたラテックスビーズをその表面に有する。そのようなバイオチップは、以下においてさらに記載されている:WO 00/66265号(Rich et al., "Probes for a Gas Phase Ion Spectrometer," November 9, 2000);WO 00/67293号(Beecher et al., "Sample Holder with Hydrophobic Coating for Gas Phase Mass Spectrometer," November 9, 2000);米国特許出願第US20030032043A1号(Pohl and Papanu, "Latex Based Adsorbent Chip," July 16, 2002)および米国特許出願第60/350,110号(Um et al., "Hydrophobic Surface Chip," November 8, 2001)。
バイオチップ上に捕捉されれば、分析物を、例えば気相イオン分光法、光学的方法、電気化学的方法、原子間力顕微鏡法および高周波法から選択される、種々の検出方法によって検出することができる。気相イオン分光法は本明細書に記載されている。特に関心の対象であるのは、質量分析、特にSELDIの使用である。光学的方法には、例えば、蛍光、発光、化学発光、吸光度、反射率、透過率および複屈折または屈折率の検出が含まれる(例えば、表面プラズモン共鳴、偏光解析法、共振ミラー法、格子カプラー導波管法(grating coupler waveguide method)または干渉分光法)。光学的方法には、顕微鏡法(共焦点型および非共焦点型)、結像法および非結像法が含まれる。さまざまな形式のイムノアッセイ(例えば、ELISA)は、固相上に捕捉された分析物の検出のためによく用いられる方法である。電気化学的方法には、電圧測定法および電流測定法が含まれる。高周波法には、多重極共鳴分光法が含まれる。
マーカーの「被検量」とは、検査される試料中に存在するマーカーの量のことを指す。被検量は、絶対量(例えば、μg/ml)または相対量(例えば、シグナルの相対強度)のいずれであってもよい。
発明の詳細な説明
本発明は、特定のバイオマーカーを検出することによって、卵巣癌を有するかまたは有する疑いのある対象の予後を判定するための組成物および方法を提供する。対象試料におけるこれらのバイオマーカーの検出および測定により、診断医が、診断医が、対象に対する適切な治療レジメンを選択するために、全生存期間および/または無増悪生存期間と相関づけることのできる情報が提供される。
本発明は、少なくとも一部には、以下のバイオマーカーのうち1つまたは複数が、対象における卵巣癌を検出する、および/または特徴づけるために有用であるという発見に基づく:アポリポプロテインA1(APOA1)、トランスチレチン(システイニル化型)(TT)、インター-αトリプシンインヒビターIV(内部断片)(ITIH4)、トランスフェリン(TrF)、ヘプシジン(HEPC)、結合組織活性化タンパク質3(CTAP3)、血清アミロイドA1(SAA)およびβ-2ミクログロビン(B2M)。特定の態様において、これらのバイオマーカーは、対象の予後(例えば、可能性の高い全生存期間および/または無増悪生存期間)を判定するために用いられる。特定の態様において、用いられるバイオマーカーは、インター-α(グロブリン)インヒビターH4(血漿カリクレイン感受性糖タンパク質)(ITIH4)、トランスフェリン(TFR)および/またはβ-2ミクログロビン(B2M)である。
これらのバイオマーカーは、PCT/US2005/010783号(WO 2005/098447号);米国特許出願公開第2005/0059013号;PCT/US03/00531号(WO03/057014号);PCT/US2003/024636号(WO 2004/012588号);およびPCT/US06/08578号に開示されており、これらの文書はすべて、それらの全体が参照により本明細書に組み入れられる。
これらのバイオマーカーは、卵巣癌が発症した後に患者の生存状況を判定することができ、かつ、臨床的判断のための追加的な情報を医師に提供しうる可能性があると考えられる。このことは、Cox多変量分析により、独立した検証で裏づけられている。例えば、いくつかの大規模研究により、婦人科腫瘍専門医が手術する外科的処置を受けた卵巣癌患者は、より優れた長期生存性を有する傾向が示唆されている。しかし、他の諸研究は、米国で現在、婦人科腫瘍専門医による治療を受けるのは、外科的処置を受ける卵巣癌患者の約3分の1に過ぎないと結論づけている。婦人科腫瘍専門医の現在の総人数が得られたとしても、卵巣癌の疑いで手術を受ける全患者が婦人科腫瘍専門医によって手術されることは依然として現実的ではない。バイオマーカーは、卵巣癌を生き延びる確率がより低い患者を特定して、彼らを婦人科腫瘍専門医による治療に向けて推奨するために用いうる可能性がある。
ハイスループットなタンパク質プロファイリングと、バイオインフォマティクスツールの効果的利用との組み合わせは、癌マーカーに関するスクリーニングのための有用なアプローチとなる。手短に述べると、本発明で用いるシステムはSELDI(表面増強レーザー脱離/イオン化)を用いて試料をアッセイするために、クロマトグラフィーProteinChip(登録商標)Arrayを利用する。アレイに結合したタンパク質を、飛行時間型質量分析計の1つであるProteinChip(登録商標)Readerで読み取る。
本発明は、卵巣癌患者および対照対象の試料において差次的に存在するタンパク質マーカーの発見、ならびに卵巣癌の状況を判定するための方法およびキットへの、この発見の適用に基づく。これらのタンパク質マーカーは、卵巣癌患者由来の試料において、ヒト癌が検出不能な女性からの試料におけるレベルとは異なるレベルで見いだされる。したがって、対照と比較して被検試料において見いだされる1つまたは複数のマーカーの量、または被検試料における1つまたは複数のマーカーの有無は、患者の卵巣癌の状況に関する有用な情報を提供する。
末期卵巣癌の予後は惨憺たるものであるため、10%という非常に低い陽性適中度の検査でも医師は受け入れるであろうという一般的な合意がある。これを一般集団に広げると、一般的なスクリーニング検査は70%を上回る感度および99.6%という特異性を必要とすると考えられる。現在、CA125、CA72-4またはM-CSFなどの既存の血清学的マーカーのうち、そのような性能を単独で発揮しているものは皆無である(Bast, R.C., et al., Int J Biol Markers, 1998; 13:179-87)。
最もよく特徴が解明されている腫瘍マーカーであるCA125は、I期卵巣癌のおよそ30〜40%で陰性であり、種々の良性疾患でもそのレベルは上昇する。卵巣癌の早期発見および診断のための、集団ベースのスクリーニングツールとしてのその使用は、その感度および特異性の低さによって妨げられている。骨盤内超音波検査、さらに最近では膣超音波検査が高リスク患者のスクリーニングに用いられているが、いずれの手法も、一般集団に適用するのに十分な感度および/または特異性を有していない。CA125を、別の腫瘍マーカーと組み合わせて(Woolas RP XF, et al., J Natl Cancer Inst, 1993;85(21):1748-51;Woolas RP, et al., Gynecol Oncol, 1995;59(1):111-6;Zhang Z, et al., Gynecol Oncol, 1999;73(1):56-61;Zhang Z, et al., Use of Multiple Markers to Detect Stage I Epithelial Ovarian Cancers: Neural Network Analysis Improves Performance. American Society of Clinical Oncology 2001; Annual Meeting, Abstract)、癌モデルの長期的リスクにおいて(Skates SJ, et al., Cancer, 1995;76(10 Suppl):2004-10)、および第二選択検査としての超音波と並行して(Jacobs I DA, et al., Br Med J, 1993;306(6884): 1030-34;Menon U TA, et al., British Journal of Obstetrics and Gynecology, 2000;107(2):165-69)用いるという最近の取り組みにより、有病率が相対的に低い卵巣癌などの疾患にとって極めて重要な全体的な検査特異性を向上させる上で有望な結果が示されている。
バイオマーカーの説明
ITIH4断片
本発明の方法において有用な他のバイオマーカーには、インター-α-トリプシンインヒビター重鎖H4前駆体の切断断片の密接に関連したセットのうち1つまたは複数があり、これは本明細書で代替的に「ITIH4断片」とも称される。ITIH4断片は、米国特許公開第2005-0059013 A1号、国際特許公開第WO 2005/098447号、およびFung et al., Int. J. Cancer 115:783-789 (2005)において、卵巣癌に関するバイオマーカーとして記載されている。ITIH4断片は、ITIH4断片no.1、ITIH4断片no. 2およびITIH4断片no.3からなる群より選択されうる。
ITIH4断片のアミノ酸配列は、以下であることが明らかになった:
Figure 2013541716
。本発明はまた、ITIHA4の他のすべての公知の断片も含む。
ITIH4前駆体は、930アミノ酸のタンパク質(SwissProt Q 14624)である。ITIH4断片1はヒトITIH4前駆体のアミノ酸658〜687にわたる。ITIH4断片2はITIH4前駆体のアミノ酸662〜687にわたる。ITIH4断片3はITIH4前駆体のアミノ酸663〜687にわたる。
さらに、本発明の好ましい方法は、ITIH4断片の修飾形態の使用も含む。ITIH4断片の修飾には、さまざまな化学基の翻訳後付加、例えば、グリコシル化、脂質化、システイニル化およびグルタチオン化が含まれうる。
トランスフェリン(TRF)
本発明の方法において有用なもう1つのバイオマーカーは、トランスフェリンである。トランスフェリンは、米国特許公開第2005-0214760 A1号において、卵巣癌に関するバイオマーカーとして記載されている。トランスフェリンは、698アミノ酸の前駆体に由来する、679アミノ酸のタンパク質である(GenBankアクセッション番号NP_001054 GI:4557871;SwissProtアクセッション番号P02787)(SEQ ID NO:10)。トランスフェリンは、Dako(カタログ A006)(www.dako.com. Glostrup, Denmark)などから販売されている抗体によって認識される。トランスフェリンはグリコシル化されている。このため、測定される分子量は、グリコシル化を考慮に入れていない理論的重量よりも大きい。
β-2ミクログロビン(B2M)
本発明の方法において有用なもう1つのバイオマーカーは、β2-ミクログロブリンである。β2-ミクログロブリンは、2005年6月24日に提出された米国仮特許公開第60/693,679号(Fung et al.)において、卵巣癌に関するバイオマーカーとして記載されている。β2-ミクログロブリンは、119アミノ酸の前駆体に由来する、99アミノ酸のタンパク質である(GI:179318;SwissProtアクセッション番号P61769)(SEQID NO:11)。β2-ミクログロブリンは、Abcam(カタログ AB759)(www.abcam.com.Cambridge, MA)などから販売されている抗体によって認識される。
1つの態様において、本発明のバイオマーカーは質量対電荷比、結合特性およびスペクトル形状によって特徴づけられるため、その具体的な実体を把握することなしに、それらを質量分析法によって検出することができる。しかし、所望であれば、その実体が決定されていないバイオマーカーを、例えば、そのポリペプチドのアミノ酸配列を決定することによって同定することができる。例えば、バイオマーカーに関して、トリプシンまたはV8プロテアーゼなどのいくつかの酵素によるペプチドマッピングを行い、消化断片の分子量を、さまざまな酵素によって生成された消化断片の分子量に合致する配列に関してデータベースを検索するために用いることができる。または、タンデムMS技術を用いて、タンパク質バイオマーカーのシークエンシングを行うこともできる。この方法では、タンパク質を、例えばゲル電気泳動によって単離する。バイオマーカーを含有するバンドを切り出して、タンパク質をプロテアーゼ消化に供する。個々のタンパク質断片を第1の質量分析計によって分離する。続いてこれらの断片を、ペプチドを断片化してポリペプチドラダーを生成させる衝突誘導型冷却(collision-induced cooling)に供する。続いてポリペプチドラダーを、タンデムMSの第2の質量分析計によって分析する。ポリペプチドラダーの要素の質量の差により、配列中のアミノ酸が同定される。タンパク質全体をこのようにしてシークエンシングすることもでき、または、実体の候補を見いだすために、配列断片をデータベースマイニングに供することもできる。
2006年3月10日に提出された米国特許出願第11/373,833号は、その全体が参照により本明細書に組み入れられる。
タンパク質はしばしば、試料中に、検出可能な程度に異なる質量によって特徴づけられる複数の異なる形態で存在することが見いだされている。これらの形態は、翻訳前修飾および翻訳後修飾のいずれかまたは両方によって生じうる。翻訳前修飾形態には、対立遺伝子変異体、スプライス(slice)変異体およびRNA編集形態が含まれる。翻訳後修飾形態には、タンパク分解切断(例えば、親タンパク質の断片)、グリコシル化、リン酸化、脂質化、酸化、メチル化、シスチニル化、スルホン化およびアセチル化に起因する形態が含まれる。ある特定のタンパク質およびそのあらゆる修飾形態を含むタンパク質の集成物を、本明細書では「タンパク質クラスター」と称する。ある特定のタンパク質の、その特定のタンパク質自体を除外したあらゆる修飾形態の集成物を、本明細書では「修飾タンパク質クラスター」と称する。また、本発明のバイオマーカーの修飾形態を、それ自体でバイオマーカーとして用いることもできる。場合によっては、修飾形態が、本明細書で述べる特定の形態よりも優れた識別能力を示す可能性もある。
バイオマーカーの修飾形態は、バイオマーカーから修飾形態を検出して識別することのできる任意の方法によってまず検出することができる。初期検出のための好ましい方法は、バイオマーカーおよびその修飾形態を、例えば生体特異的捕捉試薬によってまず捕捉し、続いて、捕捉されたタンパク質を質量分析法によって検出することを伴う。より具体的には、タンパク質を、バイオマーカーおよびその修飾形態を認識する生体特異的な捕捉試薬、抗体、アプタマーまたはアフィボディ(Affibody)を用いて捕捉する。この方法はまた、タンパク質と結合しているか、または抗体によって別の様式で認識され、それ自体がバイオマーカーでありうるタンパク質相互作用物の捕捉ももたらすと考えられる。ある態様において、生体特異的捕捉試薬は固相に結合されている。続いて、捕捉されたタンパク質をSELDI質量分析法によって検出すること、またはタンパク質を捕捉試薬から溶出させて、溶出したタンパク質を従来のMALDIによって、もしくはSELDIによって検出することができる。質量分析法の使用は特に魅力的であるが、これはそれが、タンパク質の修飾形態を、標識を必要とせずに質量に基づいて識別することおよび特徴付けることができるためである。
好ましくは、生体特異的捕捉試薬は、ビーズ、プレート、膜またはチップなどの固相に結合される。抗体などの生体分子を固相に連結させる方法は、当技術分野において周知である。それらは例えば、二官能性連結剤を用いてもよく、または固相を、その分子と接触したら結合すると考えられるエポキシドまたはイミダゾールなどの反応性基によって誘導体化することもできる。種々の標的タンパク質に対する生体特異的捕捉試薬を同じ場所で混合することもでき、またはそれらを異なる物理的もしくはアドレス指定可能な位置で固相に付着されてもよい。例えば、各カラムが単一のタンパク質クラスターを捕捉することのできる複数のカラムに、誘導体化されたビーズを装入してもよい。または、種々のタンパク質クラスターに対する捕捉試薬によって誘導体化された複数の異なるビーズを単一のカラムに充填し、それによってすべての分析物を単一の場所で捕獲することもできる。このように、抗体で誘導体化されたビーズに基づく技術、例えば、Luminex(Austin, TX)のxMAP技術を用いることで、タンパク質クラスターを検出することができる。しかし、生体特異的捕捉試薬がクラスターの要素を識別するためには、それらを特異的に指向しなければならない。
なおもう1つの態様において、バイオチップの表面を、同じ位置または物理的に異なるアドレス指定可能な位置のいずれかにあるタンパク質クラスターを指向する捕捉試薬によって誘導体化することもできる。異なるアドレス指定可能な位置にある異なるクラスターを捕捉することの1つの利点は、分析がより単純になることである。
タンパク質の修飾形態の同定および関心対象の臨床パラメーターとの相関づけの後に、その修飾形態を、本発明の方法のいずれかにおいてバイオマーカーとして用いることができる。この時点で、修飾形態の検出を、親和性捕捉の後に質量分析法を行うこと、またはその修飾形態を特異的に指向する従来のイムノアッセイを含む、任意の特異的検出方法によって実現することができる。イムノアッセイは、分析物を捕捉するために、抗体などの生体特異的捕捉試薬を必要とする。その上、タンパク質とタンパク質の修飾形態とを特異的に識別するようにアッセイを設計しなければならない場合には。これは例えば、一方の抗体が複数の形態を捕捉し、異なる標識が施された第2の抗体がその種々の形態と特異的に結合して明瞭な検出をもたらす、サンドイッチアッセイを採用することによって行うことができる。抗体は、動物に生体分子による免疫処置を行うことによって産生させることができる。本発明は、例えば、ELISAまたは蛍光ベースのイムノアッセイを含むサンドイッチイムノアッセイ、ならびに他の酵素イムノアッセイを含む、従来のイムノアッセイを想定している。
II.被検試料
A)対象の種類
卵巣癌と診断され、検査を利用してその予後を決定しようとする女性から、試料を収集する。卵巣癌と診断され、癌を排除するために治療を受けたか、またはおそらく寛解状態にあると考えられる女性から試料を収集してもよい。1つの好ましい態様において、対象は、卵巣癌を有すると以前に診断された女性である。
B)試料の種類および試料の調製
マーカーは、さまざまな種類の生物試料において測定することができる。試料は好ましくは生体液試料である。本発明において有用な生体液試料には、血液、血清、血漿、膣分泌液、尿、卵巣嚢胞液、涙液、唾液などが含まれる。マーカーはいずれも血清中に認められるため、血清は、本発明の態様にとって好ましい試料源である。
所望であれば、試料を、マーカーの検出能を向上させるために調製することができる。例えば、マーカーの検出能を高めるために、対象由来の血清試料を、好ましくは、例えば、Cibacronブルーアガロースクロマトグラフィーおよび一本鎖DNAアフィニティークロマトグラフィー、陰イオン交換クロマトグラフィー、アフィニティークロマトグラフィー(例えば、抗体による)などによって分画することができる。分画の方法は、用いる検出方法の種類に依存する。関心対象のタンパク質を濃縮させる任意の方法を用いることができる。前分画プロトコールなどの試料調製は必須ではなく、用いる検出方法によっては、マーカーの検出能を向上させるのに必要ではない。例えば、試料中のマーカーの存在を検出するために、マーカーと特異的に結合する抗体を用いる場合には、試料調製は必要でないと考えられる。
典型的には、試料調製は、試料の分画、およびバイオマーカーを含有すると判定された画分の収集を伴う。前分画の方法には、例えば、サイズ排除クロマトグラフィー、イオン交換クロマトグラフィー、ヘパリンクロマトグラフィー、アフィニティークロマトグラフィー、逐次抽出、ゲル電気泳動および液体クロマトグラフィーが含まれる。分析物を検出の前に修飾してもよい。これらの方法は、試料を以後の分析のために単純化するのに有用である。例えば、アルブミンなどの存在量の多いタンパク質を分析前に血液から除去することは有用な可能性がある。分画方法の例は、PCT/US03/00531号(その全体が本明細書に組み入れられる)に記載されている。
好ましくは、試料を陰イオン交換クロマトグラフィーによって前分画する。陰イオン交換クロマトグラフィーは、タンパク質の、それらの荷電特性に概ね応じた前分画を可能にする。例えば、Q陰イオン交換樹脂を用いることができ(例えば、Q HyperD F, Biosepra)、異なるpHを有する溶出剤によって試料を逐次的に溶出させることができる。陰イオン交換クロマトグラフィーは、他の種類の生体分子よりも負に荷電した、試料中の生体分子の分離を可能にする。高いpHを有する溶出剤によって溶出されるタンパク質は、弱く負に荷電している可能性が高く、低いpHを有する溶出剤によって溶出される画分は強く負に荷電している可能性が高い。したがって、陰イオン交換クロマトグラフィーは、試料の複雑さを減じさせることに加えて、タンパク質をその結合特性に応じて分離させる。
好ましい態様において、血清試料は陰イオン交換クロマトグラフィーを介して分画される。存在量の多いタンパク質による、より存在量の少ないタンパク質のシグナル抑制は、SELDI質量分析法の重大な課題となっている。試料の分画により、各画分の構成要素の複雑さは減少する。この方法はまた、存在量の多いタンパク質を含む1つの画分中に単離させ、それによって、より存在量の少ないタンパク質に対するそのシグナル抑制効果を低下させることを狙って用いることもできる。陰イオン交換分画により、タンパク質はそれらの等電点(pI)に従って分離される。タンパク質はアミノ酸で構成され、アミノ酸はそれらが曝露される環境のpHに基づいて電荷が両極性に変化する。タンパク質のpIは、タンパク質が正味電荷を有しないpHである。タンパク質は、環境のpHがそのタンパク質のpIと等しい場合、中性電荷を帯びる。pHがタンパク質のpIよりも高くなると、タンパク質は負の正味電荷を帯びる。同様に、環境のpHがタンパク質のpIよりも低いと、そのタンパク質は正の正味電荷を有する。本明細書に記載のマーカーを得るために、血清試料を、以下の実施例に述べるプロトコールに従って分画した。
陰イオン交換による捕捉後に、タンパク質を、pH 9、pH 7、pH 5、pH 4およびpH 3での一連の段階的洗浄で溶出させた。3つの画分(pH 9/流出液、pH 4、および有機溶媒)のプロファイリングデータのUMSA分析によって、見込みのある3種のバイオマーカーのパネルが発見された。ピークのうち2つは画分pH 4からのm/zが12828および28043のものであり、両方とも癌の群においてダウンレギュレートされ、第3のものは画分pH 9/流出液からのm/zが3272のものであり、これは癌の群においてアップレギュレートされていた。これらはすべて、銅イオンによって荷電させた固定化金属アフィニティークロマトグラフィーアレイ(IMAC3-Cu)に結合した。
試料中の生体分子を、高分解能電気泳動、例えば、一次元または二次元ゲル電気泳動によって分離することもできる。マーカーを含有する画分を単離して、気相イオン分光法によってさらに分析することができる。好ましくは、二次元ゲル電気泳動を用いて、1つまたは複数のマーカーを含む生体分子のスポットの二次元アレイを作製する。例えば、Jungblut and Thiede, Mass Spectr. Rev. 16:145-162 (1997)を参照。
二次元ゲル電気泳動は、当技術分野において公知の方法を用いて行うことができる。例えば、Deutscher ed., Methods In Enzymology vol. 182を参照。典型的には、試料中の生体分子を、例えば、試料中の生体分子を、それらの正味電荷がゼロとなるスポット(すなわち、等電点)に到達するまでpH勾配中で分離させる、等電点分離法によって分離する。この最初の分離段階により、生体分子の一次元アレイがもたらされる。一次元アレイの中の生体分子を、最初の分離段階とは一般に異なる手法を用いて、さらに分離する。例えば、第2の次元では、等電点分離法によって分離された生体分子を、ポリアクリルアミドゲル、例えばドデシル硫酸ナトリウムの存在下におけるポリアクリルアミドゲル電気泳動(SDS-PAGE)などを用いて、さらに分離する。SDS-PAGEゲルは、生体分子の分子質量に基づくさらなる分離を可能にする。典型的には、二次元ゲル電気泳動は、複合混合物内の1000〜200,000Daの範囲の分子質量にある化学的に異なる生体分子を分離することができる。これらのゲルのpI範囲は約3〜10(広範囲ゲル)である。
二次元アレイの中の生体分子は、当技術分野において公知の任意の適した方法を用いて検出することができる。例えば、ゲル中の生体分子を標識または染色することができる(例えば、クーマシーブルーまたは銀染色)。ゲル電気泳動によって、本発明の1つまたは複数のマーカーの分子量に対応するスポットが生じた場合には、そのスポットを気相イオン分光法によってさらに分析することができる。例えば、スポットをゲルから切り出して、気相イオン分光法によって分析することができる。または、電場を印加することによって、生体分子を含有するゲルを不活性膜に移行させることもできる。続いて、マーカーの分子量におおよそ対応する膜上のスポットを、気相イオン分光法によって分析することができる。気相イオン分光法において、スポットは、本明細書に記載したように、MALDIまたはSELDIなどの任意の適した手法を用いて(例えば、ProteinChip(登録商標)アレイを用いて)、分析することができる。
気相イオン分光法分析に先立って、スポット内の生体分子を、プロテアーゼ(例えば、トリプシン)などの切断試薬を用いて、より小さな断片に切断することが望ましいことも考えられる。生体分子を小さな断片に消化することにより、スポット内の生体分子の質量フィンガープリントが得られ、それを必要に応じて、マーカーの実体を決定するために用いることができる。
試料中の生体分子の混合物を、それらの種々の物理的特性、例えば極性、電荷およびサイズなどに基づいて分離するために、高速液体クロマトグラフィー(HPLC)を用いることもできる。HPLC装置は、典型的には、移動相のリザーバー、ポンプ、インジェクター、分離カラムおよび検出器からなる。試料中の生体分子は、試料のアリコートをカラム上に注入することによって分離される。混合物中の種々の生体分子は、移動液相と固定相との間の分配挙動の違いが原因で、カラムを異なる速度で通過する。1つまたは複数のマーカーの分子量および/または物理的特性に対応する画分を収集することができる。続いて、この画分を、マーカーを検出するために気相イオン分光法によって分析することができる。例えば、スポットを、本明細書に記載したように、MALDIまたはSELDIのいずれかを用いて(例えば、ProteinChip(登録商標)アレイを用いて)、分析することができる。
任意で、マーカーを、その分解能を向上させるため、またはその実体を決定するために、分析の前に修飾することができる。例えば、マーカーを、分析の前にタンパク分解消化に供してもよい。任意のプロテアーゼを用いることができる。マーカーを離散的ないくつかの断片へと切断する可能性が高い、トリプシンなどのプロテアーゼが特に有用である。消化によって生じる断片は、マーカーのフィンガープリントとして機能し、それによって、間接的にそれらの検出を可能にする。これは、当該のマーカーと混同される恐れのある、類似の分子量を有するマーカーが存在する場合に特に有用である。また、タンパク質分解による断片化は高分子量マーカーに対しても有用であるが、これは小さいマーカーほど質量分析法によって分解分析することが容易なためである。もう1つの例では、検出分解能を改良するために生体分子を修飾することができる。例えば、陰イオン性吸着剤(例えば、陽イオン交換ProteinChip(登録商標)アレイ)に対する結合性を向上させるため、および検出分解能を向上させるために、ノイラミニダーゼを用いて、糖タンパク質から末端シアル酸残基を除去することができる。もう1つの例では、分子マーカーと特異的に結合する特定の分子量のタグの付着によってマーカーを修飾して、それらをさらに識別することができる。任意で、そのような修飾マーカーを検出した後に、タンパク質データベース(例えば、SwissProt)において、修飾マーカーの物理的および化学的特性をマッチングさせることによって、マーカーの実体をさらに決定することもできる。
III.マーカーの捕捉
バイオマーカーは、固体支持体、例えば、本明細書に記載の任意のバイオチップ、マルチウェルマイクロタイタープレートまたは樹脂などに固定化された捕捉試薬によって捕捉することができる。特に、本発明のバイオマーカーをSELDIタンパク質バイオチップ上に捕捉することが好ましい。捕捉は、クロマトグラフ表面または生体特異的表面上であってよい。反応性表面を含むSELDIタンパク質バイオチップの任意のものを、本発明のバイオマーカーを捕捉および検出するために用いることができる。しかし、本発明のバイオマーカーは、固定化された金属キレートともよく結合する。キレート化によってCu++およびNi++などの遷移金属イオンを吸着するニトリロ酢酸官能性を有する、IMAC-3およびIMAC 30バイオチップは、本発明のバイオマーカーを捕捉するための好ましいSELDIバイオチップである。反応性表面を含むSELDIタンパク質バイオチップの任意のものを、本発明のバイオマーカーを捕捉および検出するために用いることができる。これらのバイオチップは、バイオマーカーを特異的に捕捉する抗体によって誘導体化することができ、またはそれらを、免疫グロブリンと結合するプロテインAもしくはプロテインGなどの捕捉試薬によって誘導体化することもできる。続いて、バイオマーカーを特異的抗体を用いて溶液中で捕捉し、捕捉されたマーカーを捕捉試薬を経由してチップ上に単離することができる。
一般に、バイオマーカーを含有する試料、例えば血清などを、バイオチップの活性表面上に、結合が起こるのに十分な時間にわたって載せる。続いて、リン酸緩衝食塩水などの適した溶出剤を用いて、非結合分子を表面から洗い流す。一般に、溶出剤のストリンジェンシーが高くなるほど、タンパク質は、洗浄後に保持されるには、より強固に結合していなければならない。保持されたタンパク質バイオマーカーを、この時点で、適切な手段によって検出することができる。
IV.マーカーの検出および測定
バイオチップまたは抗体などの基質上にひとたび捕捉されれば、任意の適した方法を、試料中のマーカーを測定するために用いることができる。例えば、マーカーを、例えば、気相イオン分光法、光学的方法、電気化学的方法、原子間力顕微鏡法および高周波法を含む、種々の検出方法によって検出および/または測定することができる。これらの方法を用いて、1つまたは複数のマーカーを検出することができる。
A)SELDI
バイオマーカーの好ましい検出および/または測定の方法の1つでは、質量分析法、特に「表面増強レーザー脱離/イオン化」すなわち「SELDI」を用いる。SELDIとは、分析物を、プローブインターフェイスと係合するSELDIプローブの表面上に捕捉させる、脱離/イオン化気相イオン分光法(例えば、質量分析)のことを指す。「SELDI MS」では、気相イオン分光計は質量分析計である。SELDI技術については、上記でさらに詳述している。
B)イムノアッセイ
もう1つの態様においては、イムノアッセイを、試料中のマーカーの検出および分析のために用いることができる。この方法は以下を含む:(a)マーカーと特異的に結合する抗体を提供する段階;(b)試料を抗体と接触させる段階;および(c)試料中のマーカーと結合した抗体の複合体を検出する段階。
イムノアッセイとは、抗原(例えば、マーカー)と特異的に結合する抗体を用いるアッセイのことである。イムノアッセイは、抗原を単離するため、標的化するため、および/または定量するために、特定の抗体の特異的結合特性を利用することを特徴とする。抗体と「特異的に(または選択的に)結合する」、またはタンパク質もしくはペプチドに言及する際の「に対して特異的に(または選択的に)免疫反応性を有する」という用語は、タンパク質および他の生体物質の異種混交的な集団におけるそのタンパク質の存在を決定づける結合反応のことを指す。すなわち、指定されたイムノアッセイ条件において、指定の抗体は特定のタンパク質とバックグラウンドの少なくとも2倍結合し、試料中に存在する他のタンパク質とは有意な量では実質的に結合しない。そのような条件における抗体との特異的結合には、特定のタンパク質に対するその特異性に関して選択された抗体が必要と考えられる。例えば、ラット、マウスまたはヒトなどの特定の種から、マーカーに対して産生されたポリクローナル抗体を、そのマーカーに対して特異的に免疫反応性を有し、かつ、マーカーの多型変異体および対立遺伝子を除く他のタンパク質に対してはそうでないポリクローナル抗体のみを得るように選択することができる。この選択は、他の種由来のマーカー分子と交差反応する抗体を取り除くことによって実現することができる。
精製されたマーカーまたはそれらの核酸配列を用いることで、マーカーと特異的に結合する抗体を、当技術分野において公知の任意の適した方法を用いて調製することができる。例えば、Coligan, Current Protocols in Immunology (1991);Harlow & Lane, Antibodies: A Laboratory Manual (1988);Goding, Monoclonal Antibodies: Principles and Practice (2d ed. 1986);およびKohler & Milstein, Nature 256:495-497 (1975)を参照。そのような手法には、ファージベクターまたは類似のベクター中の組換え抗体のライブラリーからの抗体の選択による抗体調製、ならびにウサギまたはマウスへの免疫処置によるポリクローナル抗体およびモノクローナル抗体の調製が非限定的に含まれる(例えば、Huse et al., Science 246:1275-1281 (1989);Ward et al., Nature 341:544-546 (1989)を参照)。典型的には、特異的または選択的な反応はバックグラウンドのシグナルまたはノイズの少なくとも2倍であると考えられ、より典型的にはバックグラウンドの10〜100倍を上回ると考えられる。
一般に、対象から入手した試料を、マーカーと特異的に結合する抗体と接触させることができる。任意で、試料と接触させる前に、複合体の洗浄およびそれに引き続いての単離を容易にするために、抗体を固体支持体に固定してもよい。固体支持体の例には、マイクロタイタープレート、スティック、ビーズまたはマイクロビーズなどの形態にあるガラスまたはプラスチックが含まれる。抗体を、上記のプローブ基質またはProteinChip(登録商標)アレイと付着させることもできる。試料は好ましくは、対象から採取した生体液試料である。生体液試料の例には、血液、血清、血漿、乳頭吸引液、尿、涙液、唾液などが含まれる。1つの好ましい態様において、生体液は血清を含む。試料を抗体と接触させる前に、試料を適した溶出剤で希釈してもよい。
試料を抗体とともにインキュベートした後に、混合物を洗浄し、形成された抗体-マーカー複合体を検出することができる。これは、洗浄した混合物を検出試薬とともにインキュベートすることによって実現することができる。この検出試薬は、例えば、検出可能な標識で標識された二次抗体であってもよい。例示的な検出可能な標識には、磁気ビーズ(例えば、DYNABEADS(商標))、蛍光色素、放射性標識、酵素(例えば、西洋ワサビペルオキシダーゼ、アルカリホスファターゼ、およびELISAにおいて一般的に用いられる他のもの)、ならびに金コロイドまたは着色されたガラスもしくはプラスチックのビーズなどの比色標識が含まれる。または、試料中のマーカーを、例えば、結合したマーカー特異的抗体を検出するために第2の標識抗体を用いる間接アッセイを用いて、および/または、例えば、マーカーの特異なエピトープと結合するモノクローナル抗体を混合物ととともに同時にインキュベートする、競合もしくは阻害アッセイにおいて、検出することもできる。
抗体-マーカー複合体の量または存在を測定するための方法には、例えば、蛍光、発光、化学発光、吸光度、反射率、透過率、複屈折または屈折率の検出が含まれる(例えば、表面プラズモン共鳴、表面プラズモン共鳴、偏光解析法、共振ミラー法、格子カプラー導波管法または干渉分光法)。光学的方法には、顕微鏡法(共焦点型および非共焦点型)、結像法および非結像法が含まれる。電気化学的方法には、電圧測定法および電流測定法が含まれる。高周波法には、多重極共鳴分光法が含まれる。これらのアッセイを行うための方法は、当技術分野において容易に公知である。有用なアッセイには、例えば、酵素結合免疫吸着アッセイ(ELISA)、放射性免疫アッセイ(RIA)、ウエスタンブロットアッセイまたはスロットブロットアッセイなどの酵素免疫アッセイ(EIA)が含まれる。また、これらの方法は、例えば、Methods in Cell Biology: Antibodies in Cell Biology, volume 37 (Asai, ed. 1993);Basic and Clinical Immunology (Stites & Terr, eds., 7th ed. 1991);およびHarlow & Lane、前記にも記載されている。
アッセイ全体を通じて、試薬の各配合後に、インキュベーションおよび/または洗浄の段階が必要になる可能性がある。インキュベーション段階は、約5秒間から数時間まで、好ましくは約5分間から約24時間までの間でさまざまでありうる。しかし、インキュベーション時間は、アッセイ形式、マーカー、溶液の容積、濃度などに依存すると考えられる。通常、アッセイは周囲温度で行われるものの、それらを10℃〜40℃などの温度で実施することもできる。
免疫アッセイを用いて、試料中のマーカーの有無、ならびに試料中のマーカーの数量を決定することができる。抗体-マーカー複合体の量は、標準物質と比較することによって決定することができる。標準物質は、例えば、公知の化合物、または試料中に存在することが判明している別のタンパク質であってよい。上述したように、測定の単位を対照と比較することができる限り、マーカーの被検量を絶対単位で測定する必要はない。
試料中のこれらのマーカーを検出するための方法には、多くの用途がある。例えば、ヒト癌の診断または予後予測に役立てるために、1つまたは複数のマーカーを測定することができる。もう1つの例では、マーカーの検出のための方法を、癌治療に対する対象の反応をモニターするために用いることができる。もう1つの例では、マーカーを検出するための方法を、これらのマーカーの発現をインビボまたはインビトロで調節する化合物をアッセイするため、および同定するために用いることができる。1つの好ましい例において、バイオマーカーは、腫瘍進行の異なる病期を識別し、そうすることで適切な治療および腫瘍の転移の程度を判定するのに役立てるために用いることができる。
C)コンビナトリアルリガンドライブラリービーズ
バイオマーカーを測定するもう1つの方法は、2006年7月28日に提出された、"Methods for Reducing the range in Concentrations of Analyte Species in a Sample"と題するUSSN:11/495,842号に記載されたようなビーズ上に合成したコンビナトリアルリガンドライブラリーの使用を含む;それはその全体が参照により本明細書に組み入れられる。
V.データ分析
試料を測定して、データが生成された上で、そのデータをコンピュータソフトウェアプログラムによって分析する。一般に、ソフトウェアは、質量分析計からのシグナルをコンピュータ可読形態に変換するコードを含みうる。ソフトウェアはまた、シグナルが、本発明のマーカーまたは他の有用なマーカーに対応するシグナルにおける「ピーク」を表すか否かを判定するためのシグナルの分析のためにアルゴリズムを適用するコードを含んでもよい。ソフトウェアはまた、被検試料からのシグナルを「正常」およびヒト癌に特徴的な典型的なシグナルと比較して、2つのシグナル間の一致度の高さ(closeness of fit)を判定するアルゴリズムを実行するコードを含んでもよい。ソフトウェアはまた、被検試料がどの診断に最も近いかを指し示し、それによって確度の高い診断を与えるコードを含んでもよい。
本発明の好ましい方法においては、複数のバイオマーカーを測定する。複数のバイオマーカーの使用により、検査の適中度が高まり、診断、毒性評価(toxicology)、患者層別化および患者モニタリングにおいて、より高い有用性がもたらされる。「パターン認識」と呼ばれる過程は、複数のバイオマーカーによって形成されるパターンを検出し、予測医療(predictive medicine)のための臨床的プロテオミクスの感度および特異性を大きく改善する。例えばSELDIを用いて得られる、臨床試料からのデータのわずかな変動により、タンパク質発現のある種のパターンが、ある種の疾患の有無、癌進行の特定の病期、または薬物治療に対する好反応もしくは有害反応などの表現型を予測しうることが指し示される。
質量分析法におけるデータ生成は、上記のように、イオン検出器によるイオンの検出から始まる。検出器に衝突するイオンによって電位が生じ、それを、アナログシグナルをデジタル方式で捕捉する高速タイムアレイ記録デバイスによってデジタル化する。CiphergenのProteinChip(登録商標)システムは、これを実現するためにアナログ-デジタル変換器(ADC)を採用している。ADCは検出器の出力を、一定の時間間隔で、時間依存的な値域(bin)として積算する。時間間隔は典型的には、1〜4ナノ秒長である。その上、最終的に分析された飛行時間スペクトルは、典型的には、試料に対するイオン化エネルギーの単一パルス由来のシグナルを表すのではなく、多数のパルスからのシグナルの合計を表す。これにより、ノイズが低減され、ダイナミックレンジが拡大される。続いて、この飛行時間データをデータ処理に供する。CiphergenのProteinChip(登録商標)ソフトウェアにおいて、データ処理は典型的には、TOFからM/Zへの変換、ベースライン減算、高周波ノイズフィルタリングを含む。
TOFからM/Zへの変換は、飛行時間を質量対電荷比(M/Z)に変換するアルゴリズムの適用を伴う。この段階で、シグナルは時間ドメインから質量ドメインに変換される。すなわち、各飛行時間が質量対電荷比またはM/Zに変換される。較正は内部的または外部的に行うことができる。内部較正では、分析される試料は、M/Zが公知である1つまたは複数の分析物を含む。質量分析を受ける(massed)これらの分析物に相当する飛行時間でのシグナルピークを、その公知のM/Zに割り当てる。割り当てられたこれらのM/Z比に基づいて、飛行時間をM/Zに変換する数学関数のためのパラメーターが計算される。外部較正では、飛行時間をM/Zに変換する関数、例えば事前の内部較正によって生成されたものなどを、内部較正を用いずに飛行時間スペクトルに対して適用する。
ベースライン減算は、スペクトルを乱す、再現性のある人為的な装置オフセットを除去することによって、データの定量化を改善する。これは、ピーク幅などのパラメータを取り入れたアルゴリズムを用いてスペクトルベースラインを計算する段階、および続いて質量分析スペクトルからベースラインを減算する段階を伴う。
高周波ノイズシグナルは、平滑化関数の適用によって除去される。典型的な平滑化関数は、それぞれの時間依存的な値域に対して移動平均関数を適用する。改良された1つのバージョンでは、移動平均フィルターは、例えば、ピークバンド幅の関数としてフィルターのバンド幅が変動し、一般に飛行時間の増加とともに幅が広くなる可変幅デジタルフィルターである。例えば、WO 00/70648号、2000年11月23日(Gavin et al., "Variable Width Digital Filter for Time-of-flight Mass Spectrometry")を参照。
分析は一般に、分析物からのシグナルに相当するスペクトル中のピークの同定を伴う。当然ながら、ピークの選択は肉眼によって行うことができる。しかし、ピークの検出を自動化しうるCiphergenのProteinChip(登録商標)ソフトウェアの一部として、ソフトウェアを利用することもできる。一般に、このソフトウェアは、選択された閾値を上回るシグナル対ノイズ比を有するシグナルを同定して、ピークシグナルの重心でのピークの質量を表示することによって機能する。1つの有用なアプリケーションでは、質量スペクトルのある選択されたパーセンテージ内に存在する同一のピークを同定するために、多数のスペクトルを比較する。このソフトウェアの1つのバージョンでは、種々のスペクトル中に規定された質量範囲内で現れたすべてのピークをクラスター化して、質量(M/Z)クラスターの中心点の近くにあるすべてのピークに対して質量(M/Z)を割り当てる。
1つまたは複数のスペクトルからのピークデータを、例えば、各行が特定の質量スペクトルを表し、各列が質量により規定されるスペクトル中のピークを表し、各セルが特定のスペクトルにおけるピーク強度を含むスプレッドシート(spreadsheet)を作成することによって、さらなる分析に供することができる。種々の統計的アプローチまたはパターン認識アプローチを、そのデータに適用することができる。
1つの例では、CiphergenのBiomarker Patterns(商標)ソフトウェアを用いて、生成されたスペクトル中のパターンを検出する。そのデータを、分類モデルを用いるパターン認識プロセスを用いて分類する。一般に、スペクトルは、分類アルゴリズムが求められる少なくとも2つの異なる群からの試料に相当すると考えられる。例えば、それらの群は、病的 対 非病的(例えば、癌 対 非癌)、薬物反応例 対 薬物非反応例、毒性反応 対 毒性反応なし、疾患状態への進行例 対 疾患状態への非進行例、表現型病状(phenotypic condition)が存在する 対 表現型病状が存在しない、であってよい。
本発明の諸態様において生成されたスペクトルを、分類モデルを用いるパターン認識過程によって分類することができる。いくつかの態様においては、「公知の試料」などの試料を用いて生成されたスペクトル(例えば、質量スペクトルまたは飛行時間スペクトル)から導き出されたデータを、続いて、分類モデルを「訓練する」ために用いることができる。「公知の試料」とは、事前に分類されている試料(例えば、癌または非癌)のことである。「公知の試料」などの試料を用いて生成されたスペクトル(例えば、質量スペクトルまたは飛行時間スペクトル)から導き出されたデータを、続いて、分類モデルを「訓練する」ために用いることができる。「公知の試料」とは、事前に分類されている試料のことである。スペクトルから導き出されて、分類モデルを形作るために用いられるデータは、「訓練データセット」と称することができる。ひとたび訓練されれば、分類モデルは、未知の試料を用いて生成されたスペクトルから導き出されるデータにおけるパターンを認識することができる。続いて、この分類モデルを、未知の試料をクラスに分類するために用いることができる。これは例えば、特定の生体試料がある種の生物学的状態(例えば、罹患 対 非罹患)を伴うか否かを予測する上で有用な可能性がある。
分類モデルを形作るために用いられるこの訓練データセットは、生データまたは前処理データを含みうる。いくつかの態様において、生データは飛行時間スペクトルまたは質量スペクトルから直接得ることができ、続いてそれを任意の適した様式で、任意に「前処理」してもよい。例えば、スペクトル中のすべてのピークを選択するのではなく、スペクトル中のピークのサブセットが選択されるように、所定のシグナル対ノイズ比を上回るシグナルを選択することができる。もう1つの例では、共通の値(例えば、特定の飛行時間値または質量対電荷比の値)での、所定の数のピーク「クラスター」を利用して、ピークを選択することができる。実例を挙げると、ある一群の質量スペクトルにおいて、所与の質量対電荷比でのピークが質量スペクトルの50%未満であるならば、その質量対電荷比のピークを訓練データセットから省くことができる。これらのような前処理の段階を用いて、分類モデルを訓練するために用いられるデータの量を減らすことができる。
分類モデルは、大量のデータを、そのデータ中に存在する客観的パラメーターに基づいて複数のクラスに分離しようとする任意の適した統計学的分類(または「学習」)法を用いて形作ることができる。分類方法は、教師あり、または教師なしのいずれであってもよい。教師ありおよび教師なしの分類過程の例は、Jain, "Statistical Pattern Recognition: A Review", IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 22, No.1, January 2000に記載されており、これはその全体が参照により本明細書に組み入れられる。
教師あり分類では、公知のカテゴリーの例を含む訓練データを学習機構に対して提示して、その機構に、その公知のクラスのそれぞれを規定する関連性のセットをさらに1つ学習させる。続いて、新たなデータを学習機構に対して適用して、学習された関連性を用いてその新たなデータを分類させる。教師あり分類過程の例には、線形回帰過程(例えば、多重線形回帰(MLR)、部分最小二乗(PLS)回帰および主成分回帰(PCR))、二分決定ツリー(例えば、CART‐分類および回帰ツリーなどの再帰分割過程)、逆伝搬網などの人工神経網、判別分析(例えば、ベイズ識別器またはフィッシャー分析)、ロジスティック識別器およびサポートベクター識別器(サポートベクターマシン)が含まれる。
好ましい教師あり分類法の1つは、再帰分割過程である。再帰分割過程では、再帰分割ツリーを用いて、未知の試料から導き出されたスペクトルを分類する。再帰分割過程に関するさらなる詳細は、U.S. 2002 0138208 A1号(Paulse et all., "Method for analyzing mass spectra," September 26, 2002に提示されている。
他の態様においては、作成される分類モデルを、教師なしの学習方法を用いて形作ることができる。教師なしの分類では、訓練データセットを導き出すスペクトルを事前に分類することなしに、訓練データセットの類似性に基づいて分類を学習させようとする。教師なしの学習方法にはクラスター分析が含まれる。クラスター分析では、データを、理想的には互いに非常に類似した要素を有するが、他のクラスターの要素とは非常に異なっているべきである「クラスター」または群に分割しようとする。続いて、データ項目間の距離を測定する距離メトリックを用いて類似度を計測し、互いに近いデータ項目を一緒にクラスターとする。クラスター化の手法には、MacQueenのK平均アルゴリズムおよびKohonenの自己組織化マップアルゴリズムが含まれる。
生体情報を分類するのに用いることが主張されている学習アルゴリズムは、例えば、WO 01/31580号(Barnhill et al., "Methods and devices for identifying patterns in biological systems and methods of use thereof," May 3, 2001);U.S. 2002/0193950 A1号(Gavin et al., "Method or analyzing mass spectra," December 19, 2002);U.S. 2003/0004402 A1号(Hitt et al., "Process for discriminating between biological states based on hidden patterns from biological data," January 2, 2003);および米国特許第7,113,896 A1号(Zhang and Zhang, "Systems and methods for processing biological expression data" March 20,2003)に記載されている。
より具体的には、バイオマーカーを得るために、癌患者および健常対照からの試料のピーク強度データを「発見セット(discovery set)」として用いた。このデータをまとめた上で、多変量予測モデルの構築および検討のために、訓練セットおよび試験セットに無作為に分けた。
一般に、上記のセクションIVから生成されたデータを、診断アルゴリズム(すなわち、上記のような分類アルゴリズム)に入力する。続いて分類アルゴリズムが、学習アルゴリズムに基づいて生成される。この過程は、分類アルゴリズムを生成することのできるアルゴリズムを開発することを伴う。本発明の方法は、いくつかの卵巣癌試料、および統計学的サンプル計算に基づく十分な数の正常試料を評価することによって、より精度の高い分類アルゴリズムを生成する。これらの試料を、学習アルゴリズムに対するデータの訓練セットとして用いる。
分類アルゴリズム、すなわち診断アルゴリズムの生成は、上記のセクションIVで得られた、試料を分析するため、およびデータを生成するためのアッセイプロトコールに依存する。マーカーの検出および/または測定(例えば、段階IVにおける)のためのプロトコールは、分類アルゴリズムを開発するために用いるデータを得るために用いるものと同じでなければならないことが必須である。訓練システムおよび分類システムの全体を通じて維持されなければならないアッセイ条件には、チップの種類および質量分析計のパラメーター、ならびに試料の調製および検査のための一般的なプロトコールが含まれる。マーカーの検出および/または測定(段階IV)のためのプロトコールが変更されれば、学習アルゴリズムおよび分類アルゴリズムも変化しなければならない。同様に、学習アルゴリズムおよび分類アルゴリズムが変化するならば、マーカーの検出および/または測定(段階IV)のためのプロトコールも、分類アルゴリズムを生成するために用いられるものに相応するように変化しなければならない。新たな分類モデルの開発は、十分な数の卵巣癌試料および正常試料を評価すること、新たな検出プロトコールに基づいて新たな訓練データセットを開発すること、そのデータを用いて新たな分類アルゴリズムを生成させること、ならびに最後に、分類アルゴリズムを多施設研究によって検証することを必要とすると考えられる。
分類モデルは、任意の適したデジタルコンピュータ上で形作り、用いることができる。適したデジタルコンピュータには、Unix、Windows(商標)またはLinux(商標)をベースとするオペレーティングシステムなどの任意の標準的または特化したオペレーティングシステムを用いるマイクロコンピュータ、ミニコンピュータ、または大型コンピュータが含まれる。用いられるデジタルコンピュータは、関心対象のスペクトルを作り出すに用いられる質量分析計から物理的に隔たっていてもよく、質量分析計と連結されていてもよい。それが質量分析計から隔たっている場合には、データを、手作業によるか自動化されているかを問わない何らかの他の手段によってコンピュータに入力しなければならない。
本発明の諸態様による訓練データセットおよび分類モデルは、デジタルコンピュータによって実行されるかまたは用いられるコンピュータコードによって具現化することができる。コンピュータコードは、光学ディスクまたは磁気ディスク、スティック、テープなどを含む任意の適したコンピュータ可読媒体に保存することができ、C、C++、ビジュアルベーシックなどを含む任意の適したコンピュータプログラム言語で記述することができる。
VI.さまざまな態様
1つの態様においては、血清試料を患者から収集し、続いて、上記のような陰イオン交換樹脂を用いて分画する。1つの態様においては、試料中のバイオマーカーを、IMAC copperタンパク質チップアレイを用いて捕捉する。続いて、マーカーをSELDIを用いて検出することができる。そのような検査において、インター-α(グロブリン)インヒビターH4(血漿カリクレイン感受性糖タンパク質)(ITIH4)、トランスフェリン(TFR)およびβ-2ミクログロビン(B2M)を検出することができる。続いてその結果を、最初にバイオマーカーを決定するための学習アルゴリズムおよび分類アルゴリズムに用いたのと同じパラメーターを用いて設計されたアルゴリズムを含むコンピュータシステムに入力する。このアルゴリズムは、各バイオマーカーに関して受け取ったデータに基づいて診断を出力する。例えば、アルゴリズムは、無増悪生存期間(PFS)または全生存期間(OS)の見込みを判定することができる。
例えば、SELDI検査によって生じたデータを、バイオマーカーを用いて開発された分類アルゴリズムによって検討することによって、診断が決定される。分類アルゴリズムは、バイオマーカーを検出するために用いた検査プロトコールの細目に依存する。これらの細目には、例えば、試料の調製、チップの種類、質量分析計のパラメーター、および/またはイムノアッセイ条件が含まれる。検査パラメーターが変化するならば、アルゴリズムも変化しなければならない。同様に、アルゴリズムが変化するならば、検査プロトコールも変化しなければならない。
さらに他の態様において、マーカーは、SELDIではない形式を用いて捕捉され、検査される。1つの例では、試料を患者から収集する。他の公知の手段、例えばマーカーに対する抗体などを用いて、バイオマーカーを基質上に捕捉する。マーカーは、当技術分野において公知の方法、例えば、光学的方法および屈折率を用いて検出される。光学的方法の例には、蛍光の検出、例えばELISAが含まれる。屈折率の例には、表面プラズモン共鳴が含まれる。続いて、マーカーに関する結果をアルゴリズムに供するが、それは人工知能を必要としてもよく、または必要としなくてもよい。アルゴリズムは、各バイオマーカーに関して受け取ったデータに基づいて診断を出力する。
上記の方法の任意のものにおいて、試料からのデータは、検出手段から、診断アルゴリズムを含むコンピュータに直接的に送り込むことができる。または、得られたデータを、診断アルゴリズムを含む別個のコンピュータに、手作業で、または自動化された手段を介して送り込んでもよい。
VII.対象の診断、および卵巣癌生存状況の判定
インター-α(グロブリン)インヒビターH4(血漿カリクレイン感受性糖タンパク質)(ITIH4)、トランスフェリン(TFR)およびβ-2ミクログロビン(B2M)を比較する、バイオマーカーのこのパネルは、卵巣癌の状況の決定に役立てる上で有用である。第1に、選択されたバイオマーカーを、対象試料において、本明細書に記載の方法、例えば、SELDIバイオチップ上での捕捉およびそれに続いての質量分析法による検出を用いて測定する。続いて、測定値を、対象の予後の判定を可能にする参照基準量または対照と比較する。このように、この予後予測量(prognostic amount)と比較した被検量により、卵巣癌の予後が指し示される。
個々のバイオマーカーは有用な診断マーカーであるものの、本明細書において提供されるバイオマーカーの特定の組み合わせは、単一のマーカーのみ、または当技術分野において以前に開示されているマーカーの他の組み合わせよりも、驚くほど高い適中度をもたらすことが見いだされている。具体的には、試料におけるマーカーのこの群の検出は、真陽性および真陰性の診断のパーセンテージを高めており、かつ偽陽性または偽陰性の診断のパーセンテージを低下させると考えられる。したがって、本発明の方法は、複数のバイオマーカーの測定を含む。
相関づけには、試料中のマーカーの量を、マーカーの対照量(マーカーのアップレギュレーションまたはダウンレギュレーション)(例えば、ヒト癌が検出不能である正常対象において)と比較して考慮することができる。対照は、例えば、その予後が判明している対象の同等な試料中に存在するマーカーの平均量または中央値量であってよい。対照量は、被検量の測定におけるものと同じまたは実質的に同様な実験条件下で測定する。
卵巣癌の状況を特徴付ける方法のある態様において、これらの方法は、対象の治療をその状況に基づいて管理する段階をさらに含む。前述のように、そのような管理は、卵巣癌の状況の決定に引き続いての、医師または臨床医の行為を記述している。例えば、本発明の方法の結果が決定的でない場合、または状況の確認が必要になる理由がある場合には、医師がより多くの検査をオーダーしてもよい。または、その状況により、手術が適切であることが指し示される場合には、医師はその患者に手術を計画することができる。また別の場合には、患者は、手術の代わりに、または手術に加えて、化学療法を受けることができる。同様に、結果が陰性である場合、例えば、状況によって末期卵巣癌が指し示される場合、または状況が他の様式で急性である場合には、それ以上の行為は正当化されないと考えられる。その上、結果によって治療が奏効したことが示される場合には、それ以上の管理は必要ないと考えられる。
本発明はまた、バイオマーカー(またはバイオマーカーの特定の組み合わせ)を対象の管理後に再び測定する、そのような方法も提供する。これらの場合に、これらの方法は、癌の状況、例えば、癌治療に対する反応、疾患の寛解または疾患の進行をモニターするために用いられる。これらの方法の使用が容易であること、およびこれらの方法に侵襲性がないことから、これらの方法は、患者が各治療を受けた後に繰り返すことができる。このことは、医師が治療コースの有効性を追跡することを可能にする。結果によって治療が無効であることが示される場合には、治療コースをそれに応じて変更することができる。このことは、医師を、治療選択肢に関して融通性があるようにすることができる。
もう1つの例では、マーカーを検出するための方法を、これらのマーカーの発現をインビボまたはインビトロで調節する化合物をアッセイするため、および同定するために用いることができる。
VIII.キット
さらにもう1つの局面において、本発明は、卵巣癌の状況を特徴付けるため、例えば、対象の予後を判定するためのキットであって、本発明のマーカーを測定するために用いうるキットを提供する。例えば、本キットは、卵巣癌を有する対象の予後を判定する上で有用な、本明細書に記載のマーカーのパネルを測定するために用いることができる。本キットはまた、治療コースに対する患者の反応をモニターして、検査の結果に基づいて医師が治療を修正することを可能にするために用いることもできる。もう1つの例では、本キットは、卵巣癌のインビトロまたはインビボの動物モデルにおいて、1つまたは複数のofマーカーの発現を調節する化合物を同定するために用いることができる。
本発明はしたがって、(a)3種のバイオマーカーのパネルと結合する捕捉試薬;および(b)バイオマーカーの少なくとも1つを含む容器、を含むキットを提供する。捕捉試薬が、少なくとも1つの公知のバイオマーカーであるマーカー4、例えばCA125と結合してもよい。
捕捉試薬は任意の種類の試薬であってよいが、好ましくは、試薬はSELDIプローブである。本発明のあるキットにおいて、捕捉試薬はIMACを含む。他の態様において、試薬は抗体である。
本発明のあるキットは、洗浄後に、他のバイオマーカーと比較して、捕捉試薬と結合したバイオマーカーの保持を選択的に可能にする、洗浄液または溶出剤をさらに含む。または、本キットは、吸着剤と洗浄液との組み合わせが、気相イオン分光法を用いたマーカーの検出を可能にするような、洗浄液を作製するための説明書も含みうる。
好ましくは、本キットは、本明細書に述べた3種のバイオマーカーの検出のためにキットを用いるための書面による説明書を含み、これらの説明書は、被検試料を捕捉試薬と接触させて、捕捉試薬によって保持されるバイオマーカーのパネルを検出することを規定する。例えば、本キットは、血清の試料が捕捉試薬と接触した後に、捕捉試薬(例えば、プローブ)をどのようにして洗浄するかを消費者に知らせる標準的な説明書を有しうる。もう1つの例では、本キットは、試料におけるタンパク質の複雑さを減じさせるために試料を前分画するための説明書を有しうる。もう1つの例では、本キットは、分画過程または他の過程を自動化するための説明書を有しうる。
そのようなキットは上記の材料から調製することができ、これらの材料(例えば、プローブ基質、捕捉試薬、吸着剤、洗浄液など)に関する前出の考察はこのセクションにもすべて適用可能であり、繰り返すことはしない。
もう1つの態様において、キットは、(a)バイオマーカーのパネルと特異的に結合する抗体;および(b)検出試薬、を含む。そのようなキットは上記の材料から調製することができ、これらの材料(例えば、抗体、検出試薬、固定化された支持体など)に関する前出の考察はこのセクションにもすべて適用可能であり、繰り返すことはしない。任意で、本キットが、前分画用スピンカラムをさらに含んでもよい。いくつかの態様において、本キットは、ラベルまたは別個の挿入物の形態にある、適した操作パラメーターに関する説明書をさらに含んでもよい。
任意で、本キットは、試料において検出されたマーカーの被検量が、卵巣癌を有する対象に関する良好な予後または不良な予後に相応する診断量であるか否かを判定するために、被検試料を対照情報標準物質と比較することができるように、標準物質または対照の情報をさらに含んでもよい。
本発明はまた、本明細書において提供されるバイオマーカーのパネルと結合した少なくとも1つの捕捉試薬を含む製造品も提供する。本発明の製造品の例には、ProteinChip(登録商標)アレイ、プローブ、マイクロタイタープレート、ビーズ、試験管、マイクロチューブ、および捕捉試薬をその上に組み込ませることのできる他の任意の固相が非限定的に含まれる。
以下の実施例は、限定のためではなく、説明のために提供するものである。具体的な例を提示しているが、上記の説明は説明のためのものであり、限定的なものではない。前述の態様の任意の1つまたは複数の特徴を、本発明における他の任意の態様の1つまたは複数の特徴と、任意の様式で組み合わせることができる。さらに、本明細書を吟味すれば、本発明の多数の変形物が当業者には明らかとなるであろう。したがって、本発明の範囲は、上記の説明を参照して決まるのではなく、添付の特許請求の範囲をその同等物の全範囲とともに参照することで決まるものとする。
本出願において引用した刊行物および特許文書は、あらゆる目的について、個々の各出版物または特許文書が個別に記載されているとの同じ程度に、その全体が参照により組み入れられる。本文書におけるさまざまな参考文献の引用によって、本出願人らは、いかなる特定の参考文献も本発明に対する「先行技術」であると認めるものではない。
実施例1:プロテオミクス手法は、ヒト卵巣癌対象の予後についての洞察を与える。
卵巣上皮癌(OC)は、世界的に、婦人科癌による死亡の主因の1つである。全国規模のDanish Gynecologic Cancer Database(DGCD)によれば、デンマークでは毎年、平均で470件の新たなOC症例および140件の低悪性度(LMP)卵巣腫瘍が発生することが知られている[1]。DGCDによれば、I〜IV期のOC患者の3年全生存率は53%であることが示されている。III期のOC患者に関して、全生存率は41%であり、I期のOC患者に関する89%という3年全生存率よりもはるかに低い[1]。DGCDは2005年に開始されたため、病期に関連した3年生存率しか得られていない。
早期疾患が比較的無症候性であること、および妥当なスクリーニング検査がないことが、症例の70%超が末期疾患(International Federation of Gynecology and Obstetrics(FIGO)のIII期またはIV期)を呈する主な理由となっている。末期疾患を有すると診断された女性の5年全生存率は20%未満であり、一方、早期疾患((FIGO I期およびII期)を有する女性に関する対応する5年生存率はおよそ90%である[2,3]。最近の研究では、婦人科腫瘍専門医によって治療されたOC患者は、一般婦人科医または一般外科医によって治療された患者よりも優れた転帰を有することが結論づけられている[4〜7]。したがって、減量率(debulking rate)の選択は、1つの予後因子とみなすことができる。
病期、組織学的グレード、残存腫瘍および年齢といった、OCにおける予後に関する従来の臨床病理学的変数は、非常に有用ではあるものの、疾患の異種混交性のために、個々の患者の転帰を予測する上では依然として限界がある[8〜11]。このため、全生存期間および無増悪生存期間を指し示す、追加的な、およびより優れた因子が必要とされている。
OCに対する有望な新たな生物学的治療および細胞傷害性治療が、最近数多く登場している。これらの新たな治療様式は、OC治療を個別化しうる予測マーカーおよび予後マーカーへの圧倒的な関心をもたらしている。OCにおける予測因子は数多く見いだされているが、個別化された治療に向けて患者を選択するための信頼性の高い方法は、今までのところ記載されていない。明らかに、OCと診断された患者の治療を最適化するための有用な予後因子の必要性が強調される必要がある。
プロテオミクスアプローチは、バイオマーカーの発見および適用への新たな洞察をもたらしうる。表面増強レーザー脱離/イオン化飛行時間型質量分析法(SELDI-TOF-MS、SELDI)などの手法は、単一の試料において多数のタンパク質を測定しうる潜在能力を有する[12]。Petricoinら[13]は、OC患者の血液中に認められるタンパク質のパターンを発見し、調べた血清試料のセットに関して、100%の感度および95%の特異性を報告している。残念ながら、同じレベルの感度および特異性を有する他のOCデータは報告されていない[14]。Zhangら[15]は、多変量モデルを用いて、503人の患者からのアポリポタンパク質A1(APOA1)、トランスチレチン(システイニル化型)(TT)およびインター-αトリプシンインヒビターIV(内部断片)(ITIH4)の値を組み合わせた。血清CA125と組み合わせて分析したところ、これらのマーカーはOCの検出に関して74%の感度および94%の特異性を有し、CA125のみの場合を上回る改善がみられた。大規模多施設研究で、OCの検出のために、7種のバイオマーカーのセット(ITIH4、TT、APOA1、トランスフェリン(TrF)、ヘプシジン(HEPC)、結合組織活性化タンパク質3(CTAP3)および血清アミロイドA1(SAA)が評価された。5件の研究による合計607件の血清が、この7種のバイオマーカーに対して最適化されたSELDI-MSプロトコールを用いて分析された。7種のバイオマーカーはすべて個々に、鑑別のために識別する統計的に有意な能力を示した[16]。しかし、これらの参考文献の中で、適した治療レジメンを選択する上で重要な全生存期間または無増悪生存期間を判定するための、インター-α(グロブリン)インヒビターH4(血漿カリクレイン感受性糖タンパク質)、トランスフェリン(TFR)およびβ-2ミクログロビン(B2M)の組み合わせについて記載したものは皆無であった。
プロテオミクス手法は、バイオマーカーおよび治療標的の発見に加えて、患者の予後についての洞察も与える可能性が高いと考えられる。疾患負荷量がほぼ類似している患者が同じ予後を有するわけではないため、腫瘍微小環境の差異が、全く異なる転帰の原因である可能性が高い。このことを明確にする上で、プロテオミクスは、潜在的交絡変数に関する追加的な情報を与えることができる。
Danish Pelvic Mass研究からの女性の前向き収集の研究に着手した。その全例が、骨盤腔内腫瘤の疑いがあるため手術の候補であった。目的は、血清プロテオミクスバイオマーカー(APOA1、TT、HEPC、ITIH4、TrF、CTAP3およびB2M(β-2ミクログロブリン))が、単独でまたは組み合わせて、OCと診断された女性の全生存期間および/または無増悪生存期間を指し示すか否かを判定することであった。これらの7種のバイオマーカーは、OCの上記の予後局面について以前に評価されたことはなかった。
患者収集
2004年9月から2008年1月までの間に、骨盤腔内腫瘤を理由とする手術のためにGynecologic Clinic, Rigshospitalet, Denmarkに入院した838人の女性を「Pelvic Mass」研究に組み入れた。これらの患者のうち、150人がOCと診断された(表1)。骨盤腔内腫瘤の疑いのある18歳以上の適格患者全員に対して、書面および口頭の両方によって告知を行い、研究への参加について書面による同意を得た後に勧誘した。患者を腹部および膣の超音波検査によって診察し、血清CA-125について分析した。除外基準は、妊娠、癌または境界型腫瘍の既往、情報の理解のなさ、またはさらなる診察後に骨盤腔内疾患の疑いがなくなったことによる手術の取り止めとした。
(表1)研究対象(N=150)における臨床病理学的特性およびバイオマーカーのレベル
Figure 2013541716
* p値、スピアマン相関係数
超音波スコア(U)、閉経期スコア(M)および血清CA125値に基づいて、悪性リスク指標(Risk Malignancy Index)(RMI)を計算した。多胞性(二胞性以上)、充実部面積(solid area)、内部乳頭(internal papilla)、両側性、腹水および卵巣外腫瘍について、それぞれ1点ずつのスコアを与えた。合計2点またはそれ以上の点数であればU=3を与えた;2点未満であればU=1を与えた。閉経後状況は、1年を上回る無月経または子宮摘出術の既往があり、かつ50歳以上と定義した。閉経前状況にはM=1、閉経後にはM=3のスコアを与えた。血清CA125は、式:RMI=U×M×CA125に直接入力した。RMIが200を上回る場合には、ポジトロン放出断層撮影/コンピュータ断層撮影法(PET/CT)を実施し、婦人科腫瘍学の専門医によって患者を手術した。RMIが200未満であれば、患者を一般婦人科医によって手術しうるとした。本研究では、6人の患者が200未満のRMIを有し、144人の患者が200を上回るRMIを有した。150人の患者全員が婦人科腫瘍学の専門医によって手術された。手術は、根治手術を意図して正中切開によって行った。必要であれば、大根治手術およびPET/CT陽性腫瘍のすべての除去を実現するために、広範囲の手術を行った。
組織標本はすべて、婦人科癌を専門とする病理医によって検査された。患者は全員、参加必須の研究(compulsory research)であって高品質オンラインデータベースを有するDGCDに登録された。FIGO病期の分布は、I期患者22人、II期患者14人、III期患者80人、およびIV期患者34人であった。合計116人の患者は漿液性腺癌(serous adenocarcinama)を有し、7人の患者は粘液性腺癌を有し、27人の患者は他の組織型の腫瘍を有した。
その上、各患者について、術前の一般状態をDGCDから入手した。スコア0:疾患の活動の徴候なし(N=64)、スコア1:疾患の活動の比較的小さな徴候(N=57)、スコア2:患者は昼間の50%超で移動できる(N=27)、およびスコア4:患者は臥床しており、移動できない(N=2)。
本研究における全症例をDanish Central Population Register(CPR)で追跡し、死亡日と2009年1月8日までの移住のいずれかのうち、最初に起こったものを登録した。加えて、全女性についてDGCDに接続し、治療(手術および化学療法)ならびに死因に関する情報を確かめた。経過観察の終了時点で、合計62人のOC患者がOCが原因で死亡し(経過観察時間の中央値:11カ月、範囲:1〜39)、88人の患者は依然として生存していた(経過観察時間の中央値:40カ月、範囲:13〜52)。
手術後に129人の患者は白金-パクリタキセルをベースとする化学療法によって治療され、1人の患者はシクロホスファミドによって治療され、1人の患者はアドリアマイシン治療を受けた。合計19人の患者は化学療法を受けなかった(6人の患者はFIGO IA期の高分化型であり、1人の患者はIC期であり、7人の患者はIIIC期であり、5人の患者はIV期であった)。19人の患者のうち12人は、化学療法治療を受けるには病状が重すぎた。
その上、進行に関する情報も腫瘍患者ファイルから入手した。反応の検証には、標準的なWHO反応基準を用いた。手短に述べると、完全寛解は、第一選択化学療法の完了後の評価で、すべての臨床症状の消失かつ血清CA125レベルが35U/ml未満、または術前の血清CA125値が35U/mlよりも高い場合と定義した。無増悪生存期間は、手術日から、疾患進行が文書に記録された日(臨床、超音波、CTまたはPET/CT)および/もしくは生化学)、または研究の終了日である2008年1月までとして計算した。進行データの収集は、登録事項からの生存情報の収集よりも時間のかかる過程である。進行データは、生存データよりも最長で1年間古い。経過観察の終了時点で、合計80人のOC患者は進行の臨床症状を有さず(無増悪生存期間の中央値:15カ月、範囲:1〜41)、70人の患者は進行を有した(無増悪生存期間の中央値:4カ月、範囲:0〜31)。
Danish Ethical Committeeは、International Conference on Harmonisation/Good Clinical Practice(ICH/GCP)の勧告、ならびにヘルシンキ条約および東京修正(Helsinki and Tokyo conventions)(KF01-227/03およびKF01-143/04)に従ったプロトコールを承認した。
血液試料の分析
血液試料はすべて、手術前2週間未満に収集した。試料を専用自動車で検査施設に搬送し、室温にて2000gで10分間遠心分離して、およそ0.5mlの血清アリコートとして分画した上で、収集日に-80℃で貯蔵した。時間スケジュールを保証する目的で、試料採取から凍結までの血液試料の取り扱いに関して打刻し、データベースに記録した。プロテオミクス研究のために用いるアリコートを解凍させるのは、その実試験のみを目的とした。
CA125
血清CA125は、市販のイムノアッセイであるCA125IIアッセイ(BRAHMS Kryptor, Immunodiagnostic systemsのKryptor試薬を用い、エネルギーの非放射性伝達に基づくTRACE(時間分解増幅クリプテート放出(Time Resolved Amplified Cryptate Emission))技術を用いて測定した。30U/mlの対照試料でのアッセイ内変動係数(CV)は6.6%(n=60)であり、一方、アッセイ間CVは6.2%(n=10)であった。
プロテオミクス
APOA1、TT、HEPC、ITIH4、B2M、CTAP3およびTrFの測定は、各分析物を結合させた最適なProteinChipアレイの化学的性質に応じて、4種のアッセイで実現することができた。誤差を防ぐため、およびプロトコールの一貫性を維持するために、試料および参照基準の希釈ならびにアレイ処理の段階はすべて、市販の自動ワークステーションの組み合わせ、Tecan MCA-150 Freedom EVO(Tecan, Durham, NC)およびBioMek 2000(Beckman Coulter, Fullereton, CA)を用いて自動化した。
データの収集および分析
最終的に30分間の乾燥を行った後に、すべてのアレイを、ProteinChip Data Managementソフトウェアv3.0を用いて、ProteinChip SELDIシステム(Enterprise Edition, Bio-Rad Laboratories)で処理した。データ取得の設定は、個々の分析物に関して、最良の成績が得られるように最適化した。すべてのスペクトルを収集した後に、データをアーカイブ化し、続いてOvaCalc Software v3.1(Vermillion Inc)に取り込んだ。このソフトウェアパッケージは、アッセイ成績QCのすべての計算、およびこの7種の分析物のそれぞれに関する定量的または半定量的決定を遂行した。
統計分析
記述統計量は中央値および範囲によって提示している。スピアマン順位相関を、定量的変数の間の関連性の尺度として用いた。カテゴリー変数間の独立性に関する検定はカイ二乗検定を用いて行い、および連続変数に関する位置についての検定は、ウィルコクソン順位和検定を用いて行った。全生存に関する単変量生存確率曲線は研究集団全体(N=150)および手術後に残存腫瘍を有する患者(N=92)に対して実施した。この7種のプロテオミクスバイオマーカーおよびCA125のレベルには、実測値のlog(底2)によるスコアを与えた。全生存に対するプロテオミクス予後指標(xb-pro)の影響は、有意でなかったプロテオミクス変数を除去する多変量Cox比例ハザードモデル[17]を用いて推定した。続いて、プロテオミクス指標を、推定された回帰係数を用いる選択された変数の線形結合として構築した。選択したモデルを、交差検証手法[18]によって評価した。指標値は平均値および標準偏差によって標準化されている。生存確率のカプラン・マイヤー推定値は、指標の三分位数をカットポイントとして用いて、患者をグループ分けすることによって算出した。層の同等性はログランク検定を用いて検定した。
比例性および線形性に関する仮定をシェーンフィールド残差およびマルチンゲール残差、ならびに図示法を用いて評価したところ、これらの仮定は棄却されなかった。プロテオミクスxb-pro指標を含め、かつInternational Federation of Gynaecology and Obstetrics'(FIGO)病期(I、II、IllおよびIV)、初回手術後の残存腫瘍(あり/なし)、一般状態(1、2、3、4)、診断時の年齢(線形的)、腫瘍の組織型(漿液性、粘液性、他の型)、血清CA125レベルおよび化学療法(あり/なし)に関して調整する、多変量Cox比例ハザード回帰法を行った。各変数に関する結果は、ハザード比(HR)およびその95%信頼区間(95% CI)として提示されている。同じ分析をエンドポイントPFSに対しても行った。5%未満のP値を有意とみなした。統計学的計算はすべて、市販のソフトウェアパッケージ、SAS(v9.1、SAS Institute, Cary, N.C., USA)を用いて行った。
実施例2:7種のマーカー:APO1、TT、HEPC、ITIH4、B2M、CTAP3およびTrFの説明
本研究に含めた患者は、OCと診断されたデンマーク人患者の年齢中央値(60歳)[1]よりも幾分高齢であった(65歳、範囲:30〜87)。病期および組織学に関してと同様に、本研究は、全員がUniversity Hospitalで治療を受けたこの女性の群を反映している可能性がある。全OC患者に関して、ピーク強度の中央値は、APOA1については6.97(範囲:4.65〜8.20)、TTについては4.25(範囲:1.66〜5.69)、HEPCについては7.36(範囲:6.64〜10.28)、ITIH4については3.32(範囲:3.32〜8.32)、B2Mについては2.90(範囲:1.53〜5.56)、CTAP3については2.48(範囲:0.97〜4.10)、および、TrFについては1.15(範囲:0.32〜2.21)であった。血清CA125レベルの中央値は、558.5U/ml(範囲:6〜17275)であった。非進行性OC患者から、および進行性OC患者からの代表的なスペクトルを、図1A〜1Dに示している。
血清CA125と、HEPC(r=0.18、p=0.031)、B2M(r=0.27、p=0.0009)およびCTAP3(r=0.26、p=0.001)のピーク強度との間には、有意な正の相関が見いだされた。血清CA125レベルと、APOA1(r=-0.24、p=0.003)、TT(r=-0.36、p<0.0001)、TrF(r=-0.29、p=0.0003)のピーク強度との間には、有意な負の相関が見いだされた。ITIH4を除くマーカーはすべて、互いに相関した(観察された最も強い相関は0.61であった(絶対値))。
APOA1、TT、HEPC、B2MおよびTrFはすべて、FIGO病期と関連性があった(APOA1:p=0.039、TT:p=0.024、HEPC:p=0.003、B2M:p=0.018およびTrF:p=0.001、ウィルコクソン順位和検定)。CTAP3を加えた同じマーカーは、一般状態(APOA1:p=0.013、TT:p=0.009、HEPC:p=0.018、B2M:p<0.0001、TrF:p<0.0001、CTAP3:p=0.017、ウィルコクソン順位和検定)および手術後の残存腫瘍(APOA1:p=0.012、TT:p=0.0004、HEPC:p=0.000l、B2M:p<0.0001、Trf:p<0.0001、CTAP3:p=0.027、ウィルコクソン順位和検定)と関連性があった。ITIH4およびB2Mは、腫瘍の組織型と関連性があった(ITIH4:p=0.0005、B2M:p=0.0006、ウィルコクソン順位和検定)(表1)。
全生存および無増悪生存に関する血清プロテオミクスxb-pro指標およびxb-pfs指標
全生存‐150人のOC患者のうち合計62人(41%)は、経過観察中に死亡した(I期の2人、II期の4人、III期の37人およびIV期の19人)。全OC患者および7種のバイオマーカーならびにCA125を含めた単変量分析により、Cox比例ハザードモデルを用いて、APOA1、TT、HEPC、B2M、CTAP3、TrFおよびCA125については生存との有意な関連性が実証されたが、一方、ITIH4は有意ではなかった(表2)。xb-pro指標の第1および第2の三分位数をカットポイントとして用いて3つの群に分けて、xb-pro指標と手術後に残存腫瘍を有する患者(N=92)との間の関連性を実証しているカプラン・マイヤー曲線を、図2Aに示している。同様に、xb-pro指標と全OC患者(N=150)との間の関連性を図2Bに示している。両方の患者群について、xb-pro指標がより上位の三分位数にある患者では、xb-pro指標値の低い患者と比較して、極めて有意に優れる生存性が観察された。
有望な予後指標を形成する、プロテオミクスマーカーの可能性のある組み合わせを選択する目的で、後退消去を用いながら、7種のプロテオミクスバイオマーカーすべてを含めた多変量Cox生存分析を行ったところ、以下のバイオマーカー:ITIH4(HR=0.67、95% CI:0.45〜0.99,p=0.042)、B2M(HR=3.07、95% CI:2.19〜4.31、p<0.0001)およびTrF(HR=0.13、95% CI:0.06-0.28、p<0.O001)が含められたが、一方、APOA1(p=0.32)、TT(p=0.41)、HEPC(p=0.32)、CTAP3(p=0.18)は予後予測上の重要性を有しないことが見いだされた。B2Mは適合度に最も貢献する変数であった。この変数を分析から除外したところ、ITIH4およびTrFのみがモデルに含められることが見いだされた。TrFを除外した場合、CTAP3およびHEPCは保たれた(それぞれp=0.003およびp=0.002)。どちらの変数もTRFとの関連性は中程度であり、このことはこれらの変数がTrFと置き換わりうることを示唆する。ITIH4を除外しても、他の変数が含められることはなかった。このモデルの交差検証により、推定値は頑健であることが実証された(B2M:HR=3.09,(95% CI:2.70〜3.54);TrF:HR=0.12,(95% CI:0.09〜0.17);ITIH4:HR=0.66,(95% CI:0.56〜0.78))。他の変数はいずれも、モデルの適合度に実質的に寄与しなかった。
(表2)150人のI〜IV期の卵巣癌患者における生存の決定要因
Figure 2013541716
*HR:ハザード比
* イベント数が非常に少ないため、分析には含めなかった。** XB-PFS指標
xb-pro指標(ITIH4、B2MおよびTrF)を線形予測因子として含め、臨床的共変量に関して調整する多変量Cox生存分析により、xb-pro(p<0.0001、HR=2.50、95% CI:1.65〜3.79、初回手術後の残存腫瘍(p=0.0005、HR=0.13、95% CI:0.04〜0.41)、診断時の年齢(p=0.01、HR=1.04、95% CI:1.01〜1.07)および化学療法(p=0.0002、HR=0.22、95% CI:0.10〜0.49)はすべて、独立した予後予測上の価値を有することが示された。FIGO病期、一般状態、腫瘍の組織型およびCA125は、有意に独立した予後予測能力を有しなかった(表2)。III型検定により、カイ二乗値が最大であったのはxb-pro指標(18.49)であり、以下、化学療法(13.66)、初回手術後の根治性(12.02)、診断時の年齢(6.39)、FIGO病期(4.96)、腫瘍の組織型(4.23)、一般状態(3.02)およびCA125(0.56)であることが示されている。xb-pro指標、および独立した予後予測上の価値を有する臨床的共変量を含めたCox生存分析では、結果は変わらなかった。
無増悪生存期間
120人のOC患者(進行の臨床症状を有しない80人の患者、および初回手術から1カ月以上の後に進行を生じた40人の患者)に限定した単変量Cox回帰分析により、Xb-pro指標が、無増悪期間について独立した価値を有するものとして提示された(p<0.0001、HR=2.19、95% CI:1.50〜3.20)。
B2M(p=0.001、HR=2.82、95% CI:1.52〜5.23)およびCTAP3(p=0.002、HR=4.09、95% CI:1.67〜10.07)に基づく回帰係数を用いて、プロテオミクス予測指標(xb-pfs)を構築した。他の5種の血清プロテオミクスマーカーは無増悪生存期間を予測する価値を有しないことが見いだされた。交差検証により、線形予測因子の推定値の頑健性が示唆された。
プロテオミクスxb-pfs指標を線形予測因子として含め、臨床的共変量に関して調整する多変量Cox回帰分析により、xb-pfsが示された(p=0.017、HR=1.84、95% CI:1.12〜3.03)。この結果は表2に示されている。FIGOIII期患者に限定した上で、プロテオミクス指標xb-pfs、初回手術の根治性、年齢および化学療法治療を含めた最後のCox分析では、初回手術の根治性、診断時の年齢および治療をモデルに含めた場合に、プロテオミクスxb-pfsの独立した臨床的な予測的価値が示された(xb-pfs:p=0.008、HR=1.77、95% CI:1.17〜2.70、根治性:p=0.02、HR=0.09、95% CI:0.01〜0.64、診断時の年齢:p=0.04、HR=1.04、95% CI:1.00〜1.08、化学療法:p=0.0006、HR=0.18、95% CI:0.07〜0.48)。
プロテオミクス手法を用いたタンパク質発現プロファイリングを用いることで、タンパク質の新規な修飾形態を発見すること、ならびに、タンパク質のどの組み合わせが患者の適中度および予後といった臨床的状態と最も特異的に関連しているかを判定することができる。OCは、その高い死亡率が理由で、プロテオミクス分析による大きな注目を集めている[13〜16]。プロテオミクスは、個別化された患者治療法および疾患モニタリングの開発を可能にすることが期待される。多数のマーカーが有用であることは、個々の研究では実証されている。しかし、異なる他の集団に適用した場合にも有用なことが実証されているものはほとんどない。このことは、バイオマーカー候補の臨床的妥当性を判定する上での1つの要因である。ApoA1、TTおよびTrFは、他の試験でも首尾良く再現されたバイオマーカーのいくつかである[15, 19〜21]。
今までのところ、本明細書において詳細に描写された7種のバイオマーカーの特定の組み合わせまたはサブセットを、全生存および無増悪生存の分類に関して、またはそれらに対する影響を判定するために評価した研究はない。Zhangらによって、7種のマーカー指標が診断的利用に関して評価されているが、それらのマーカーのうち6種は、本研究で調べたバイオマーカーと同じである。Zhangは、OCを有する患者と良性腫瘍と有する患者とを識別することができた。しかし、彼らはそれらのバイオマーカーの予後予測上の価値については調べていない[16]。予想外のことに、3種のバイオマーカーITIH4、B2MおよびTrFは、個別に検討した場合、およびxb-pro指標について検討した場合のいずれも、独立した有意な予後予測上の価値を有していた。指標(xb-pro)として、独立した高い予後予測的価値を有することが見いだされたこの3種のバイオマーカーは、OCにおいて以前にはこの点に関して調べられておらず、良性患者と悪性患者との識別のための単独のバイオマーカーとして調べられているのみである[22]。OC患者由来の血清では、対照において認められる血清レベルと比較してITIH4レベルが上昇している[23]。TTおよびB2Mは、それぞれ、ホジキン病およびII期の結腸直腸癌を有する患者において予後予測上の価値を有することが報告されている[24, 25]。この研究により、プロテオミクス予後指標(xb-pro)に用いた3種のバイオマーカーが癌と相関する可能性が指し示されている。この3種のバイオマーカーに基づく指標は、FIGO病期および一般状態よりもさらに強力であり、これは生化学的指標に関して極めて特異である。これらのマーカーはいずれも個別的には卵巣癌に対して特異的ではないものの、予後を判定するという限られた状況では、特異性は比較的重要ではない。それどころか、これらの指標が他の癌において予後予測上の価値を有するか否かを判定することは興味深いと考えられる。
選択手順の交差検証により、B2MおよびTrFは試験の98%超で含められることが実証され、ITIH4は試験の50%超で選択された。B2M、TrFおよびITIH4を含む、選択したモデルの交差検証により、推定されたハザード比は、推定値の頑健性を示唆する最後のモデルで見いだされたものとほぼ同じであることが示された。
バイオマーカーB2Mは、OCを有する患者において予測的であることが見いだされている[26]。B2Mはプロテオミクスxb-pro指標に含まれていることから、無増悪生存に対するこの指標の影響について分析した。最適なプロテオミクス指標(xb-pfs)は2種のバイオマーカー、B2MおよびCTAP3で構成され、B2Mによる影響が最も強かった。したがって、これらの知見は、OCの独立した予測マーカーとしてのB2Mの以前の観察所見を裏づけるものである。
これらの女性群の間でのシグナル伝達カスケードの差異を解き明かす、さらなるプロテオミクス研究により、再発のリスクが非常に高い患者を診断時点で予測するという臨床医の能力を向上させることができる。これは、早期疾患を有する患者に対して有害な恐れのある化学療法を行うことを防ぐ、合理的な治療法の決定を促すと考えられる。結論としては、7種の血清バイオマーカーを単独および組み合わせとして評価した。プロテオミクス指標(xb-pro)および転帰を予測するその能力を調べ、かつ、プロテオミクス指標(xb-pfs)およびOC患者に関する無増悪生存を予測するその能力も調べた。プロテオミクス指標は、全生存に関して、極めて強力な独立した予後予測上の価値を有していた‐これは以前に報告されたFIGO病期およびB2Mよりもさらに強力であった。
3種のバイオマーカーのパネルは、癌の病期にかかわらず、生存に関して、驚くほど精度の高い予測的結果をもたらす。
実施例2:バイオマーカーの予後予測的なパネルを有効性に関して分析した。
7つのピークについて検討した。計算はすべて対数スケール(底2)で行った。選択したパネルは以下の通りである:B2M_B、Trf_PRおよびITH4_D。これら3つを、記載したように検証した。他のもの(TT_D、HEPC_D、APOA1_DおよびCTAP_D)を含めることに関するp値は、0.66、0.56、0.33および0.35である(OSに関して)。以下の表は、無増悪生存(PFS)および全生存(OS)に関する、これらのピークの単変量分析を提示している。
(表3)
Figure 2013541716
すべてのピークが、OSに関して有意である(ITIH4_dは0.05をわずかに上回るのに過ぎないことに注目されたい)。この多変量分析について解釈するために、これらの変数間の相関を分析している(スピアマン順位相関)。表4を参照。
(表4)
Figure 2013541716
高度に相関する共変量からは、多変量分析において選択されたものだけが得られると考えられる。
最も有意なピークを分析から除外した場合(B2M_B、OS)、これはTrf_PRのみが保たれることを招いた(HR=0.14、95% CI:0.06〜0.35、p<0.0001)。このモデルには、ITIH4_Dは含まれていない(p=0.12)。次の段階はTrf_PRを取り除くことであり、以下の結果が得られた:HEPC_D(HR=1.59、95% CI:1.16〜2.19、p=0.004)およびITIH4_D(HR=0.52、0.27〜0.98、p=0.044)、ここではITIH4_Dが再びモデルに入っている。このことは、かなり複雑な共変量構造に反映される。さらに、HEPC_Dを含めずに分析を行ったところ、これはTT_Dが保たれることを招いた(HR=0.56、95% CI:0.39〜0.79、p=0.001)。次の段階(TT_Dを除去した後)では、APOA1_Dが含められることが示されている(HR=0.51、95% CI:0.30〜0.85、p=0.01)。最後の段階では、CTAP_Dが含められ(HR=1.76、95% CI:1.02〜3.05、p=0.044、ITIH4_Dは含められていない(含めることに関するp値は0.06)。これらの結果は、このデータは非常に相関性が高く、ほぼすべての変数に関して予測的価値が導かれるが、選択したパネルは残りのものよりも有意に優れることを実証している。ITIH4_Dの役割は、他のピークと明らかに関連性がある。このことは、交差検証分析によっても確かめられた。
選択したパネルを分析から除外すると、TT_Dのみが保たれるようになる(HR=0.56、95% CI:0.39〜0.79、p=0.001)。モデル適合度に関するカイ二乗値は366.72であり、最良モデルに関する適合度の統計量は329.44である。この後者は最初のものよりも実質的に優れており、最良モデルの適合度がはるかに優れることを指し示している。
ほぼすべてのピークが予後に関する情報に寄与するものの、B2M_B、Trf_PRおよびITIH4_dのピークは、選択しなかったピークよりもかなり優れたデータを記述している。ITIH4_Dは適合度を有意に向上させるが、それを除去しても、B2M_BおよびTrf_PRを含まないものよりも実質的に優れたモデルが依然としてもたらされる。この検証手順の結果は、選択したパネル(B2M_B、Trf_PRおよびITH4_D)がこのデータセットにおいて頑健であったこと、すなわち、他の共変量のいずれによってもこれらを適切に置き換えることはできなかったことを実証している。
実施例3:B2M_B、Trf_PRおよびITH4_Dを含むパネルは、予後予測上の価値を有していた。
選択された3種のバイオマーカーはすべて、統計的に有意である(p<0.05)。最も弱い共変量はITIH4Dである。B2M_BおよびTRF_PRのみを含むモデルにおいて、TRF_PRに関するハザード比は0.116であり、これは選択したモデルで認められた結果と非常に類似している(HR=0.126)が、一方、ITIH4_Dを含めた場合のB2M_Bに関するHRは3.074に増大する(これに比して、ITIH4_Dを有しないモデルでは2.690)。このことは、B2M_Bの影響はITIH4Dを含めることによって媒介されること、すなわち、より強くなることを示唆する。内部検証手順により、B2M_BおよびTRF_PRが極めて頑健な推定値であること、ならびにITIH4はそれらには及ばないものの、依然として適切な程度に強力であることが示唆された。図3を参照。
CA125は単変量分析および多変量分析に含めており、これについては表を参照されたい。CA125は多変量の状況において有意ではない。
参考文献
Figure 2013541716
Figure 2013541716
本発明を、その好ましい態様を含めて、詳細に説明してきた。しかし、当業者には、本開示を検討することで、本発明に改変および/または改良を加えることができ、それでも依然として、以下の特許請求の範囲に述べられた本発明の範囲および趣旨の範囲内にあることが理解されるであろう。
本出願において引用した刊行物および特許文書は、あらゆる目的について、個々の各出版物または特許文書が個別に記載されているとの同じ程度に、その全体が参照により組み入れられる。本文書におけるさまざまな参考文献の引用によって、本出願人らは、いかなる特定の参考文献も本発明に対する「先行技術」であると認めるものではない。

Claims (34)

  1. 卵巣癌を有するかまたは有する疑いのある対象の予後を判定する方法であって、該対象由来の試料におけるバイオマーカー、インター-α(グロブリン)インヒビターH4(血漿カリクレイン感受性糖タンパク質)、トランスフェリン(TFR)およびβ-2ミクログロビン(B2M)またはそれらの断片のレベルを、参照基準に存在するレベルと比較する段階を含み、該バイオマーカーのレベルが参照基準に比して高いことによって予後不良が指し示される、方法。
  2. 卵巣癌を有するかまたは有する疑いのある対象の予後を判定する方法であって、バイオマーカーB2M、TrFおよびITIH4またはそれらの断片のレベルを比較する段階を含み、該バイオマーカーのレベルが参照基準に比して高いことによって予後不良が指し示される、方法。
  3. 卵巣癌を有するかまたは有する疑いのある対象の予後を判定する方法であって、バイオマーカーB2MおよびCTAP3またはそれらの断片のレベルを比較する段階を含み、該バイオマーカーのレベルが参照基準に比して高いことによって予後不良が指し示される、方法。
  4. 卵巣癌を有するかまたは有する疑いのある対象の予後を判定する方法であって、該対象由来の試料におけるバイオマーカーCA125、HEPC、B2MおよびCTAP3またはそれらの断片のレベルを、参照基準に存在するレベルと比較する段階を含み、該バイオマーカーのレベルが参照基準に比して高いことによって予後不良が指し示される、方法。
  5. 卵巣癌を有するかまたは有する疑いのある対象の予後を判定する方法であって、該対象由来の試料におけるバイオマーカーAPOA1、TT、HEPC、B2M、CTAP3、TrFおよびCA125またはそれらの断片のレベルを、参照基準に存在するレベルと比較する段階を含み、該バイオマーカーのレベルが参照基準に比して高いことによって予後不良が指し示される、方法。
  6. 1つまたは複数の追加的なバイオマーカーのレベルを参照基準に存在するレベルと比較する段階をさらに含み、該追加的なバイオマーカーが、アポリポタンパク質A1、トランスチレチン、インター-αトリプシンインヒビターIV、トランスフェリン、ヘプシジン、結合組織活性化タンパク質3、ならびに血清アミロイドA1およびβ-2ミクログロビンからなる群より選択される、請求項1〜5のいずれか一項記載の方法。
  7. 対象試料におけるCA125のレベルを参照基準に存在するレベルと比較する段階をさらに含む、請求項1または2記載の方法。
  8. 初回手術の根治性、診断時の年齢、および治療のうち1つまたは複数を考慮する段階をさらに含む、請求項1〜7のいずれか一項記載の方法。
  9. FIGO病期、腫瘍の組織型、およびCA125のうち1つまたは複数を考慮する段階をさらに含む、請求項1〜7のいずれか一項記載の方法。
  10. 予後が全生存期間または無増悪生存期間の予測である、請求項1〜9のいずれか一項記載の方法。
  11. 1つまたは複数の前記バイオマーカーにおけるレベルの増大を検出できないことによって、良好な予後が指し示される、請求項1〜9のいずれか一項記載の方法。
  12. 対象の予後を治療レジメンの選択に用いる、請求項1〜9のいずれか一項記載の方法。
  13. 不良な予後は対象が積極的な治療レジメンを必要とすることを指し示し、かつ良好な予後は対象がより積極的でない治療レジメンを必要とすることを指し示す、請求項12記載の方法。
  14. 積極的な治療レジメンがネオアジュバント化学療法を含む、請求項13記載の方法。
  15. 全生存期間または無増悪生存期間が、診断後1〜2年間の生存;診断後2〜5年間の生存;および診断後5年超の生存からなる群より選択される、請求項1〜14のいずれか一項記載の方法。
  16. 対象における卵巣癌の状況を特徴付ける(qualifying)方法であって:
    (a)血液または血液製剤の対象試料を提供する段階;
    (b)試料中のタンパク質を陰イオン交換樹脂で分画し、かつインター-α(グロブリン)インヒビターH4(血漿カリクレイン感受性糖タンパク質)(ITIH4)、トランスフェリン(TFR)およびβ-2ミクログロビン(B2M)を含有する画分を収集する段階
    を含む、方法。
  17. バイオマーカーのパネル(panel)を、イムノアッセイ、質量分析またはラジオアッセイによって測定する、請求項1から16までのいずれか一項記載の方法。
  18. バイオマーカーのパネルを、固定化された抗体を用いて捕捉する、請求項1から16までのいずれか一項記載の方法。
  19. バイオマーカーのパネルを、固定化された抗体を用いて検出する、請求項1から16までのいずれか一項記載の方法。
  20. 相関づけがソフトウェア分類アルゴリズムによって行われる、請求項1から16までのいずれか一項記載の方法。
  21. 前記試料が、卵巣組織、リンパ節、組織生検試料(例えば、膈膜(diaophram)、腸管、洗浄液、網(omentum)) 卵巣嚢胞液、腹水、胸水、尿、血液、血清および血漿から選択される、請求項1から16までのいずれか一項記載の方法。
  22. (a)インター-α(グロブリン)インヒビターH4(血漿カリクレイン感受性糖タンパク質)(ITIH4)、トランスフェリン(TFR)およびβ-2ミクログロビン(B2M)を含むバイオマーカーのパネルと結合する捕捉試薬;ならびに
    (b)バイオマーカーのパネルを含む容器
    を含むキット。
  23. (a)インター-α(グロブリン)インヒビターH4(血漿カリクレイン感受性糖タンパク質)(ITIH4)、トランスフェリン(TFR)およびβ-2ミクログロビン(B2M)を含むバイオマーカー断片のパネルと結合する捕捉試薬;ならびに
    (b)バイオマーカーの検出のために捕捉試薬を用いるための説明書
    を含むキット。
  24. 前記捕捉試薬が抗体である、請求項23記載のキット。
  25. 前記捕捉試薬が付着されているかまたはそれに付着できるMSプローブをさらに含む、請求項23記載のキット。
  26. 前記捕捉試薬が、固定化された金属キレートである、請求項22または23記載のキット。
  27. 対象における卵巣癌の状況の検出のためにキットを用いるための、書面による説明書をさらに含む、請求項22または23記載のキット。
  28. 請求項1記載のバイオマーカーのパネルまたはそれらの各々のバイオマーカーの断片と結合する捕捉試薬のパネルを含む製造品。
  29. 前記バイオマーカーが、インター-α(グロブリン)インヒビターH4(血漿カリクレイン感受性糖タンパク質)(ITIH4)、トランスフェリン(TFR)およびβ-2ミクログロビン(B2M)である、請求項28記載の製造品。
  30. 前記バイオマーカーが、インター-α(グロブリン)インヒビターH4(血漿カリクレイン感受性糖タンパク質)(ITIH4)、トランスフェリン(TFR)およびβ-2ミクログロビン(B2M)である、請求項28記載の製造品。
  31. インター-α(グロブリン)インヒビターH4(血漿カリクレイン感受性糖タンパク質)(ITIH4)、トランスフェリン(TFR)およびβ-2ミクログロビン(B2M)を含む異なるバイオマーカーがそのそれぞれに結合している複数の捕捉試薬を含むシステム。
  32. 卵巣癌患者の予後を判定する方法であって、インター-α(グロブリン)インヒビターH4(血漿カリクレイン感受性糖タンパク質)(ITIH4)、トランスフェリン(TFR)およびβ-2ミクログロビン(B2M)の濃度または発現レベルまたはピーク強度の値を決定する段階;ならびに
    その測定値を卵巣癌患者の生存状況と相関づける段階
    を含む、方法。
  33. 卵巣癌患者の予後を判定する方法であって:
    対象由来の試料における2つまたはそれ以上のバイオマーカーの組み合わせの濃度または発現レベルまたはピーク強度の値を決定する段階であって、1つまたは複数のバイオマーカーが、インター-α(グロブリン)インヒビターH4(血漿カリクレイン感受性糖タンパク質)(ITIH4)、トランスフェリン(TFR)およびβ-2ミクログロビン(B2M)からなる群より選択される段階、ならびに
    その測定値を卵巣癌患者の生存状況と相関づける段階
    を含む、方法。
  34. 卵巣癌患者の予後を判定する方法であって:
    インター-α(グロブリン)インヒビターH4(血漿カリクレイン感受性糖タンパク質)(ITIH4)、トランスフェリン(TFR)およびβ-2ミクログロビン(B2M)の濃度または発現レベルまたはピーク強度の値を決定する段階;ならびにその測定値を卵巣癌患者の生存状況と相関づける段階
    を含む、方法。
JP2013535113A 2010-10-22 2011-10-21 卵巣癌の患者における予後予測バイオマーカー Pending JP2013541716A (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US40604410P 2010-10-22 2010-10-22
US61/406,044 2010-10-22
PCT/US2011/057271 WO2012054824A2 (en) 2010-10-22 2011-10-21 Prognostic biomarkers in patients with ovarian cancer

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2016153332A Division JP2016212116A (ja) 2010-10-22 2016-08-04 卵巣癌の患者における予後予測バイオマーカー

Publications (1)

Publication Number Publication Date
JP2013541716A true JP2013541716A (ja) 2013-11-14

Family

ID=45975910

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2013535113A Pending JP2013541716A (ja) 2010-10-22 2011-10-21 卵巣癌の患者における予後予測バイオマーカー
JP2016153332A Pending JP2016212116A (ja) 2010-10-22 2016-08-04 卵巣癌の患者における予後予測バイオマーカー

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2016153332A Pending JP2016212116A (ja) 2010-10-22 2016-08-04 卵巣癌の患者における予後予測バイオマーカー

Country Status (5)

Country Link
EP (1) EP2630498A4 (ja)
JP (2) JP2013541716A (ja)
AU (1) AU2011316844A1 (ja)
CA (1) CA2818593A1 (ja)
WO (1) WO2012054824A2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017026631A (ja) * 2014-04-23 2017-02-02 株式会社ニチレイバイオサイエンス 標的マーカー検出用組合せ物
JP2020118563A (ja) * 2019-01-24 2020-08-06 公立大学法人和歌山県立医科大学 卵巣腫瘍の評価用バイオマーカー

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA3210220A1 (en) * 2013-05-10 2014-11-13 Johns Hopkins University Compositions for ovarian cancer assessment having improved specificity
EP3435379A1 (en) * 2017-07-27 2019-01-30 Roche Diagnostics GmbH Augmenting measurement values of biological samples
WO2019088709A2 (ko) * 2017-10-31 2019-05-09 국립암센터 Nc886 유전자를 이용한 난소암 예후 예측을 위한 정보제공방법

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008048508A2 (en) * 2006-10-13 2008-04-24 Vermillion, Inc. Prognostic biomarkers in patients with ovarian cancer
JP2008533471A (ja) * 2005-03-11 2008-08-21 ヴァーミリオン インコーポレイテッド 卵巣癌及び子宮内膜癌のバイオマーカー:ヘプシジン
WO2009058331A2 (en) * 2007-10-29 2009-05-07 Vermilllion, Inc. Biomarkers for the detection of early stage ovarian cancer
JP2009100737A (ja) * 2007-10-01 2009-05-14 Japan Health Science Foundation α−アクチニン−4遺伝子のコピー数または発現レベルを指標とした癌の診断法
US20100197561A1 (en) * 2005-06-24 2010-08-05 Ciphergen Biosystems, Inc. Biomarkers for Ovarian Cancer: B2 Microglobulin
WO2010091763A1 (en) * 2009-02-16 2010-08-19 Atlas Antibodies Ab Rbm3 as a marker for malignant melanoma prognosis

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7605003B2 (en) * 2002-08-06 2009-10-20 The Johns Hopkins University Use of biomarkers for detecting ovarian cancer
EP1789805B1 (en) * 2004-07-14 2010-09-15 The Regents of The University of California Biomarker for early detection of ovarian cancer
WO2008060376A2 (en) * 2006-10-04 2008-05-22 The Johns Hopkins University Algorithims for multivariant models to combine a panel of biomarkers for assessing the risk of developing ovarian cancer
SG182976A1 (en) * 2007-06-29 2012-08-30 Ahngook Pharmaceutical Co Ltd Predictive markers for ovarian cancer

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008533471A (ja) * 2005-03-11 2008-08-21 ヴァーミリオン インコーポレイテッド 卵巣癌及び子宮内膜癌のバイオマーカー:ヘプシジン
US20100197561A1 (en) * 2005-06-24 2010-08-05 Ciphergen Biosystems, Inc. Biomarkers for Ovarian Cancer: B2 Microglobulin
WO2008048508A2 (en) * 2006-10-13 2008-04-24 Vermillion, Inc. Prognostic biomarkers in patients with ovarian cancer
JP2009100737A (ja) * 2007-10-01 2009-05-14 Japan Health Science Foundation α−アクチニン−4遺伝子のコピー数または発現レベルを指標とした癌の診断法
WO2009058331A2 (en) * 2007-10-29 2009-05-07 Vermilllion, Inc. Biomarkers for the detection of early stage ovarian cancer
WO2010091763A1 (en) * 2009-02-16 2010-08-19 Atlas Antibodies Ab Rbm3 as a marker for malignant melanoma prognosis

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017026631A (ja) * 2014-04-23 2017-02-02 株式会社ニチレイバイオサイエンス 標的マーカー検出用組合せ物
US10324084B2 (en) 2014-04-23 2019-06-18 Nichirei Biosciences Inc. Combination product for detecting target marker
US11156602B2 (en) 2014-04-23 2021-10-26 Nichirei Biosciences Inc. Combination product for detecting target marker
JP2020118563A (ja) * 2019-01-24 2020-08-06 公立大学法人和歌山県立医科大学 卵巣腫瘍の評価用バイオマーカー
JP7272627B2 (ja) 2019-01-24 2023-05-12 公立大学法人和歌山県立医科大学 卵巣腫瘍の評価用バイオマーカー

Also Published As

Publication number Publication date
JP2016212116A (ja) 2016-12-15
CA2818593A1 (en) 2012-04-26
EP2630498A2 (en) 2013-08-28
AU2011316844A1 (en) 2013-06-06
WO2012054824A3 (en) 2012-07-19
EP2630498A4 (en) 2014-10-01
WO2012054824A2 (en) 2012-04-26

Similar Documents

Publication Publication Date Title
AU2005230445B2 (en) Biomarkers for ovarian cancer
KR101107765B1 (ko) 난소암의 검출을 위한 생물 마커의 용도
US7811772B2 (en) Apolipoprotein A-II isoform as a biomarker for prostate cancer
US7951529B2 (en) Biomarkers for breast cancer
US20100055690A1 (en) Prognostic biomarkers in patients with ovarian cancer
JP2016212116A (ja) 卵巣癌の患者における予後予測バイオマーカー
US20090142332A1 (en) Identification of Biomarkers by Serum Protein Profiling
US20140038837A1 (en) Biomarkers for the detection of early stage ovarian cancer
CA2914918C (en) Compositions and methods for ovarian cancer assessment having improved specificity
US20100068818A1 (en) Algorithms for multivariant models to combine a panel of biomarkers for assessing the risk of developing ovarian cancer
US20120046185A1 (en) Panel of biomarkers for ovarian cancer
JP2010522882A (ja) 卵巣癌のバイオマーカー
US20150126384A1 (en) Prognostic Biomarkers in Patients with Ovarian Cancer
US20210215701A1 (en) Compositions for ovarian cancer assessment
WO2006071843A2 (en) Biomarkers for breast cancer
US20150153348A1 (en) BIOMARKERS FOR OVARIAN CANCER: Beta 2 MICROGLOBULIN

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131129

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141020

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20150330

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150710

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150715

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20151013

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160404