JP2013537261A - Anode for cathodic protection and method for producing the same - Google Patents
Anode for cathodic protection and method for producing the same Download PDFInfo
- Publication number
- JP2013537261A JP2013537261A JP2013528672A JP2013528672A JP2013537261A JP 2013537261 A JP2013537261 A JP 2013537261A JP 2013528672 A JP2013528672 A JP 2013528672A JP 2013528672 A JP2013528672 A JP 2013528672A JP 2013537261 A JP2013537261 A JP 2013537261A
- Authority
- JP
- Japan
- Prior art keywords
- anode
- ribbon
- metal
- cathodic protection
- anode according
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004210 cathodic protection Methods 0.000 title claims abstract description 19
- 238000004519 manufacturing process Methods 0.000 title claims description 9
- 229910052751 metal Inorganic materials 0.000 claims abstract description 32
- 239000002184 metal Substances 0.000 claims abstract description 32
- 238000000034 method Methods 0.000 claims abstract description 8
- 239000011150 reinforced concrete Substances 0.000 claims description 9
- 239000003054 catalyst Substances 0.000 claims description 5
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 4
- 238000004080 punching Methods 0.000 claims description 4
- 239000010936 titanium Substances 0.000 claims description 4
- 229910052719 titanium Inorganic materials 0.000 claims description 4
- 238000003825 pressing Methods 0.000 claims description 3
- 229910000510 noble metal Inorganic materials 0.000 claims description 2
- 230000003014 reinforcing effect Effects 0.000 claims description 2
- 239000004567 concrete Substances 0.000 description 8
- 229910000831 Steel Inorganic materials 0.000 description 5
- 230000002787 reinforcement Effects 0.000 description 5
- 239000010959 steel Substances 0.000 description 5
- 239000011800 void material Substances 0.000 description 5
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 4
- 238000009434 installation Methods 0.000 description 4
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 3
- 230000007797 corrosion Effects 0.000 description 3
- 238000005260 corrosion Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 229910000019 calcium carbonate Inorganic materials 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 229910003460 diamond Inorganic materials 0.000 description 2
- 239000010432 diamond Substances 0.000 description 2
- 230000003628 erosive effect Effects 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 235000008733 Citrus aurantifolia Nutrition 0.000 description 1
- 229910001294 Reinforcing steel Inorganic materials 0.000 description 1
- 235000011941 Tilia x europaea Nutrition 0.000 description 1
- 238000007792 addition Methods 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 230000002528 anti-freeze Effects 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000032798 delamination Effects 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000004571 lime Substances 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 239000010970 precious metal Substances 0.000 description 1
- 238000004321 preservation Methods 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000012266 salt solution Substances 0.000 description 1
- 239000013535 sea water Substances 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 229910000314 transition metal oxide Inorganic materials 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23F—NON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
- C23F13/00—Inhibiting corrosion of metals by anodic or cathodic protection
- C23F13/02—Inhibiting corrosion of metals by anodic or cathodic protection cathodic; Selection of conditions, parameters or procedures for cathodic protection, e.g. of electrical conditions
- C23F13/06—Constructional parts, or assemblies of cathodic-protection apparatus
- C23F13/08—Electrodes specially adapted for inhibiting corrosion by cathodic protection; Manufacture thereof; Conducting electric current thereto
- C23F13/10—Electrodes characterised by the structure
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D—WORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D31/00—Other methods for working sheet metal, metal tubes, metal profiles
- B21D31/04—Expanding other than provided for in groups B21D1/00 - B21D28/00, e.g. for making expanded metal
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D—WORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D31/00—Other methods for working sheet metal, metal tubes, metal profiles
- B21D31/04—Expanding other than provided for in groups B21D1/00 - B21D28/00, e.g. for making expanded metal
- B21D31/043—Making use of slitting discs or punch cutters
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23F—NON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
- C23F2201/00—Type of materials to be protected by cathodic protection
- C23F2201/02—Concrete, e.g. reinforced
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Prevention Of Electric Corrosion (AREA)
- Cell Electrode Carriers And Collectors (AREA)
- Electrodes For Compound Or Non-Metal Manufacture (AREA)
- Building Environments (AREA)
- Electrolytic Production Of Metals (AREA)
Abstract
穴がひし形のメッシュを有するメッシュリボンの形状のカソード防食のための金属アノードが記載され、このアノードは、それらの穴がリボンの長手方向に沿って配向した主対角線を有するように配置されたひし形の形状を有することと、リボンの長手方向に沿う側縁部に切断された突起が無いことを特徴とする。このようなアノードを得るための方法も記載される。
【選択図】図1BA metal anode for cathodic protection in the form of a mesh ribbon with holes having a rhombus mesh is described, the anode having a rhombus arranged such that the holes have a main diagonal oriented along the length of the ribbon And having no cut protrusions on the side edge along the longitudinal direction of the ribbon. A method for obtaining such an anode is also described.
[Selection] Figure 1B
Description
本発明は鉄筋コンクリート構造物のカソード防食の分野に関し、特に、単位長さ当りの電気抵抗と可撓性の点で特に効率の良いアノード、そして特に取り付けと取扱いについて安全なアノードの設計に関する。本発明はまた、このようなアノードを製造する方法に関する。 The present invention relates to the field of cathodic protection of reinforced concrete structures, and in particular to anode designs that are particularly efficient in terms of electrical resistance and flexibility per unit length, and in particular anode designs that are safe for installation and handling. The invention also relates to a method of manufacturing such an anode.
腐食の現象が影響を及ぼす鉄筋コンクリート構造物は当分野で良く知られている。セメント質の構造物の中に挿入されてこれの機械的性質を向上させる鋼の補強材は、通常、アルカリ性のコンクリート環境によって誘起される不動態化条件において用いられる。しかし、相当な時間が経った後、コンクリートの多孔質な表面を横切ってのイオンの移動により、保護性の不動態化膜に対する局所的な浸蝕が生じる。特に懸念されるのは塩化物による浸蝕であり、これは鉄筋コンクリート構造物が用いられる全ての種類の環境中で事実上存在し、特に大きな程度となるのは、塩水(海洋域に設置される橋、柱、建築物)、不凍液用の塩(寒冷な気候の地域における橋や道路構造物)、さらには、例えば桟橋やドックの場合におけるような海水に晒される環境においてである。塩化物への曝露の臨界値は、コンクリートの1立方メートル当り約0.6kgと考えられていて、これを超えると、補強用の鋼の不動態化状態は保証されない。コンクリートの崩壊の別の形態のものは炭酸化の現象によって示され、これは、セメント質混合物の石灰の大気中二酸化炭素との反応による炭酸カルシウムの形成である。炭酸カルシウムはコンクリート中のアルカリの含有量を(pH13.5からpH9に)低下させ、保護されない状態の鉄を生じさせる。塩化物の存在およびそれと同時の炭酸化は、構造物の補強棒の保存のためには最悪の条件に相当する。鋼の腐食生成物は鋼自体よりも容積が大きく、それらの形成によって生じる機械的応力はコンクリートの離層と破壊の現象を招くかもしれず、それは、安全性以外にも経済性の見地から莫大な損害と解釈される。この理由から、適切な塩濃度の場合であっても、大気中の作用剤に晒される鉄筋コンクリート構造物の寿命を無期限に延長させるための最も有効な方法は、鋼の補強材をカソード分極化させることからなることが、当分野で知られている。この手段において、鋼の補強材は酸素のカソード還元の位置となり、その結果、アノードの腐食と溶解反応が抑制される。鉄筋コンクリートのカソード防食として知られるこのような方式は、様々な種類のアノード構造物をコンクリートと結びつけることによって実行され、この場合、保護されるべき補強材はカソード対極として作用し、これに伴って外部の整流器によって維持される電流は、塩溶液が部分的に浸みこんだ多孔質コンクリートからなる電解質を横切って通る。 Reinforced concrete structures affected by the phenomenon of corrosion are well known in the art. Steel reinforcements that are inserted into cementitious structures to improve their mechanical properties are usually used in passivating conditions induced by an alkaline concrete environment. However, after a considerable amount of time, the migration of ions across the porous surface of the concrete causes local erosion of the protective passivating membrane. Of particular concern is chloride erosion, which is practically present in all types of environments where reinforced concrete structures are used, and is particularly large in salt water (bridges installed in the ocean). , Pillars, buildings), salt for antifreeze (bridges and road structures in cold climate areas), and even in environments exposed to seawater, for example in the case of piers and docks. The critical value for exposure to chloride is considered to be about 0.6 kg per cubic meter of concrete, beyond which the passivating state of the reinforcing steel is not guaranteed. Another form of concrete collapse is indicated by the phenomenon of carbonation, which is the formation of calcium carbonate by the reaction of the cementitious mixture of lime with atmospheric carbon dioxide. Calcium carbonate lowers the alkali content in the concrete (from pH 13.5 to pH 9) and produces unprotected iron. The presence of chloride and the simultaneous carbonation represent the worst conditions for the preservation of the reinforcing bars of the structure. The corrosion products of steel are larger in volume than the steel itself, and the mechanical stress caused by their formation may lead to delamination and fracture phenomena of the concrete, which is enormous from an economic standpoint besides safety. It is interpreted as damage. For this reason, the most effective method for indefinitely extending the life of reinforced concrete structures exposed to agents in the atmosphere, even at appropriate salt concentrations, is the cathodic polarization of steel reinforcements. It is known in the art to consist of In this way, the steel reinforcement becomes the position for the cathodic reduction of oxygen, so that anode corrosion and dissolution reactions are suppressed. Such a scheme, known as reinforced concrete cathodic protection, is carried out by associating various types of anode structures with concrete, in which case the reinforcement to be protected acts as a cathode counter electrode, which is accompanied by external The current maintained by the current rectifier passes across an electrolyte consisting of porous concrete partially impregnated with salt solution.
鉄筋コンクリートのカソード防食のために一般に用いられるアノードは、アノードでの酸素の発生のために遷移金属の酸化物またはその他のタイプの触媒で被覆されたチタンの基材からなる。基材として、他のバルブ金属を(純粋な金属として、または合金として)用いることができるが、しかし、純チタンが費用の点からかなり好ましい選択である。 An anode commonly used for cathodic protection of reinforced concrete consists of a titanium substrate coated with a transition metal oxide or other type of catalyst for the generation of oxygen at the anode. Other valve metals (as pure metal or as alloys) can be used as the substrate, but pure titanium is a fairly preferred choice from a cost standpoint.
欧州特許EP458951は、電極触媒被覆を有する複数の金属リボン(金属の帯状材料)からなるカソード防食のためのグリッド(格子)のタイプの電極構造物を開示していて、その金属リボンは様々な幾何学的形状の空所を有する。 European patent EP 458951 discloses a grid-type electrode structure for cathodic protection consisting of a plurality of metal ribbons (metal strips) with an electrocatalytic coating, the metal ribbons having various geometries. It has a geometrically shaped void.
このタイプのリボンは、一体の金属リボンを押し抜くことによって製造することができ、あるいはもっと一般的には、金属を引き延ばすことによる慣例的な方法によって製造され、この場合、金属シートを加圧して、リボン自体の進行方向に直交するように配置された一連のナイフによって押し抜くことによって金属シートを拡張させる。この最初の工程により、エキスパンデッドメタルのシートを得ることができる。次いで、このシートを、所望の寸法のリボンを得るのに適した切断を行う第二の工程に供する。このエキスパンデッドメタルのリボンは、リボンの長手方向に直交するように配向した主対角線を有するひし形の空所を有するメッシュ形状を呈する。 This type of ribbon can be produced by extruding an integral metal ribbon, or more generally by a conventional method by stretching the metal, in which case the metal sheet is pressed. The metal sheet is expanded by punching through a series of knives arranged perpendicular to the direction of travel of the ribbon itself. By this first step, an expanded metal sheet can be obtained. The sheet is then subjected to a second step in which a suitable cut is made to obtain the desired size ribbon. This expanded metal ribbon has a mesh shape with rhombus voids having a main diagonal oriented perpendicular to the longitudinal direction of the ribbon.
この製造方法は、切断の操作を行う間に自動的に形成される切断側面の突起を伴ったメッシュを有する金属リボンが製造されるという不都合な点を有し、これにより、これらのアノードを取り扱うのが困難となり、従って、据え付けの段階で危険を伴う。 This manufacturing method has the disadvantage that metal ribbons with a mesh with cut side projections that are automatically formed during the cutting operation are manufactured, thereby handling these anodes. Is therefore difficult and therefore dangerous at the stage of installation.
滑らかな側縁部を有する金属リボンが、カナダ特許出願CA2078616(A1)に開示されていて、この文献に記載された方法によれば、得られるリボンは一定の幅を有する連続した長手方向に延びる一体の部分を有し、その部分は製造プロセスにおいて必ず形成され、またその部分はスポット溶接だけのために用いることができる。しかし、今日のカソード防食のシステムにおいては、リボンのアノードを溶接するのは全く好ましくなく、むしろ、間にプラスチックのスペーサーを配置して、補強材の上にリボンを直接重ねるのが好ましい。この場合、長手方向に延びる一体の部分はまさしく材料の損失となり、特に、触媒層を付与する際にこの一体の部分が常に貴金属で被覆される故に、そうである。しかし、そのような触媒層は無孔の構造物の上では適切に機能することができず、そしてアノード構造物に加えられる実際の電流密度の計算に影響を及ぼし、従って、カソード防食システム全体の設計を複雑にする。 A metal ribbon with smooth side edges is disclosed in Canadian Patent Application CA 20786616 (A1), and according to the method described in this document, the resulting ribbon extends in a continuous longitudinal direction having a constant width. It has an integral part that is necessarily formed in the manufacturing process, and that part can be used only for spot welding. However, in today's cathodic protection systems, it is not entirely desirable to weld the ribbon anode, rather it is preferable to place a plastic spacer in between and directly overlay the ribbon on the reinforcement. In this case, the integral part extending in the longitudinal direction is exactly a loss of material, in particular because this integral part is always covered with precious metal when applying the catalyst layer. However, such a catalyst layer cannot function properly on a nonporous structure and affects the calculation of the actual current density applied to the anode structure, and thus the overall cathodic protection system. Complicate design.
本発明の様々な態様が、添付する特許請求の範囲に示されている。 Various aspects of the invention are set out in the accompanying claims.
一つの態様において、本発明はカソード防食(例えば、鉄筋コンクリート構造物のカソード防食)のシステムのためのメッシュ状の(網目状の)リボンの形状のアノードに関し、先行技術の不都合な点を解消するものであり、その縁部には切断した突起の形の不連続部分が実質的に存在せず、その部分は正弦曲線の形状を有する。 In one aspect, the present invention relates to an anode in the form of a mesh (mesh) ribbon for a cathodic protection system (eg, cathodic protection of reinforced concrete structures), which eliminates the disadvantages of the prior art. And there is substantially no discontinuity in the form of a cut projection at the edge, which has a sinusoidal shape.
本明細書の文脈において、平易さを目的として、鉄筋コンクリート構造物のカソード防食について言及するが、本発明は一般的なカソード防食の分野において、例えば金属のタンクの底部のカソード防食を含む分野において実施できることが理解されよう。 In the context of the present specification, for the sake of simplicity, reference will be made to cathodic protection of reinforced concrete structures, although the invention is practiced in the field of general cathodic protection, for example, including cathodic protection at the bottom of a metal tank. It will be understood that it can be done.
別の態様において、本発明はそのアノードを製造するための方法に関する。 In another aspect, the invention relates to a method for manufacturing the anode.
さらなる態様において、本発明は、縁部において切断した突起が実質的に存在しないメッシュ状のリボンの形状の少なくとも一つのアノードを含むカソード防食装置に関する。 In a further aspect, the present invention relates to a cathodic protection device comprising at least one anode in the form of a mesh ribbon that is substantially free of cut protrusions at the edges.
本発明者らによって得られた最も重要な成果の幾つかが以下の説明において提示されるが、その説明は例として提示されるものに過ぎず、本発明を限定するものではない。 Some of the most important results obtained by the inventors are presented in the following description, which is provided by way of example only and is not intended to limit the invention.
本発明に係るアノードはエキスパンデッドメタルのリボンからなり、このリボンは、リボンの長手方向に沿って配向した主対角線を有するひし形の空所を有するメッシュによって特徴づけられる。一つの態様において、リボンの側縁部は正弦曲線の輪郭を有し、そこには切断した突起が存在しない。 The anode according to the invention consists of an expanded metal ribbon, which is characterized by a mesh with rhombus cavities with a main diagonal oriented along the length of the ribbon. In one embodiment, the side edges of the ribbon have a sinusoidal profile, where there are no cut protrusions.
発明者らは、驚くべきことに、ここで説明されるカソード防食のためのアノードは単位長さ当りのオーム抵抗が著しく低く、例えば先行技術のアノードよりも4倍に及ぶほど低いことを認めた。 The inventors have surprisingly found that the anode for cathodic protection described herein has a significantly lower ohmic resistance per unit length, for example four times lower than prior art anodes. .
電気抵抗が低いことによって(例えば、送電線網における)電気接続の数を少なくすることができ、それにより材料と据付け時間のかなりの節約となる。 Low electrical resistance can reduce the number of electrical connections (eg, in the power grid), thereby saving significant material and installation time.
一つの態様において、金属メッシュのリボンはチタンからなる。 In one embodiment, the metal mesh ribbon comprises titanium.
別の態様において、金属メッシュのリボンは貴金属またはそれらの酸化物を含む触媒コーティングで被覆されている。 In another embodiment, the metal mesh ribbon is coated with a catalytic coating comprising a noble metal or oxide thereof.
一つの態様において、リボンの寸法は、3mmから100mmの範囲の幅と0.25mmから2.5mmの厚さと1mから150mの長さを有する。 In one embodiment, the ribbon dimensions have a width in the range of 3 mm to 100 mm, a thickness of 0.25 mm to 2.5 mm, and a length of 1 m to 150 m.
本発明がより良く理解されるように、以下の図面が参照されるが、これらは幾つかの好ましい態様を描写するためのものであり、本発明の範囲を限定するものではない。
詳細には、図1Aは慣用のアノードの上面図を示し、これにおいて特徴的なのは、切断工程を含む製造方法により切断した突起1があることであり、またリボンの幅の方向に配向されたひし形の空所の主対角線3とリボンの長手方向に配向されたひし形の空所の副対角線4とを有するひし形の幾何学的形状である。
Specifically, FIG. 1A shows a top view of a conventional anode, characterized by the presence of protrusions 1 cut by a manufacturing method including a cutting step, and a rhombus oriented in the direction of the ribbon width. A rhombus geometry having a
図1Bは本発明に係るアノードの上面図を示し、これにおいて特徴的なのは、切断されていなくて尖っていない側縁部2があることであり、またリボンの長手方向に配向されたひし形の空所の主対角線3とリボンの幅の方向に配向されたひし形の空所の副対角線4とを有するひし形の幾何学的形状である。
FIG. 1B shows a top view of an anode according to the invention, characterized by the fact that there are
本発明者らによって得られた最も重要な成果の幾つかを表1に報告する。そこでは、本発明の典型的なアノードのオーム抵抗のデータを慣用のアノードと比較している。AおよびBと表示されたアノードは、図1Aに示すものと同様に、リボンの長手方向に直交するように配向したひし形の主対角線を有するひし形の幾何学的形状のアノードであり、これは、一体の金属リボンの移動方向に対して縦に拡張することによって得られた慣用のものである。CおよびDと表示されたアノードは、図1Bに示すものと同様に、本発明の一つの態様に従う幾何学的形状のアノードである。 Some of the most important results obtained by the inventors are reported in Table 1. There, the ohmic resistance data of a typical anode of the present invention is compared to a conventional anode. The anodes labeled A and B are rhombus geometric anodes with rhombus main diagonals oriented perpendicular to the longitudinal direction of the ribbon, similar to that shown in FIG. It is the conventional one obtained by extending vertically with respect to the moving direction of the integral metal ribbon. The anodes labeled C and D are geometrically shaped anodes according to one embodiment of the present invention, similar to that shown in FIG. 1B.
アノードCおよびDは、装置の中でナイフの平行な列に沿って走行させた一体の金属リボンの移動方向に対して直交する方向に引き延ばし、これにより、一体のリボンを直交する方向に加圧して押し抜いて拡張させることによって製造されたものである。このリボンの製造は最後の列のナイフによって完了し、これらのナイフは前のナイフの刃よりも大きな所定の長さの刃を有し、それらの刃の上に、図1Bに示すリボンの側縁部を形成するのに適した圧力を加える。アノードの幾何学的形状による導電性に関してすでに説明した利点以外に、この方法は、長手方向に延びる一体の部分の無いエキスパンデッドメタルのリボンを提供し、これはその後に切断されないので、切断された縁部を全く伴わず、従って、据付けを行う際に取り扱うのにかなり安全かつ容易である、という利点を有する。さらに、この方法は、拡張が完了した直後に所望の長さの金属リボンを有利に得ることを可能にする。さらに、この製造方法は、従来の方法よりも長いリボンを得ることを可能にし、従って、多数のリボンを接続する必要があるためにアノード装置全体の一体性が低くなるような大型の設備の使用を容易にする。 The anodes C and D are stretched in a direction perpendicular to the direction of movement of the unitary metal ribbon that traveled along the parallel rows of knives in the device, thereby pressing the unitary ribbon in the direction orthogonal. It is manufactured by punching out and expanding. The production of this ribbon is completed by the last row of knives, which have blades of a predetermined length that are larger than the blades of the previous knife, on the side of the ribbon shown in FIG. 1B. Appropriate pressure is applied to form the edge. In addition to the advantages already described with respect to conductivity due to the anode geometry, this method provides an expanded metal ribbon without a single piece extending in the longitudinal direction, which is not cut afterwards. It has the advantage that it is not accompanied at all by the edges and is therefore considerably safer and easier to handle during installation. Furthermore, this method advantageously allows to obtain a desired length of metal ribbon immediately after the expansion is completed. Furthermore, this manufacturing method makes it possible to obtain ribbons that are longer than conventional methods, and therefore the use of large equipment such that the overall integrity of the anode device is reduced because a large number of ribbons need to be connected. To make it easier.
表に報告したデータから、所定の幅について、本発明のアノードは約60%低いオーム抵抗を示すことが認められる。 From the data reported in the table, it can be seen that for a given width, the anode of the present invention exhibits about 60% lower ohmic resistance.
以上の説明は本発明を限定することを意図しておらず、本発明はその範囲から逸脱することなく様々な態様に従って用いることができ、本発明の範囲は添付する特許請求の範囲によって一義的に確定される。 The above description is not intended to limit the present invention, and the present invention can be used in accordance with various embodiments without departing from the scope thereof, and the scope of the present invention is unambiguously defined by the appended claims. To be confirmed.
本出願の明細書と特許請求の範囲の全体を通して、「含む」という用語は、他の要素または付加物の存在を排除することを意図していない。 Throughout the specification and claims of this application, the term “comprising” is not intended to exclude the presence of other elements or additions.
文献中の検討事項、法令、資料、デバイス、記事、その他同種類のものは、単に本発明のための背景を提供するという目的のために本明細書に含まれる。
これらの事項の何らかのもの、あるいはそれらの全てが先行技術の基礎の部分を形成していたか、あるいは、それらが、本出願の各々の請求項の優先日の前に、本発明に関連する分野において一般的な共通認識になっていた、ということは示唆されないし、表明されてもいない。
Literature considerations, statutes, materials, devices, articles, and the like are included herein for the purpose of merely providing a background for the present invention.
Some of these matters, or all of them, form part of the prior art basis, or they are in the field relevant to the present invention before the priority date of each claim of this application. It has not been suggested or expressed that it was a general consensus.
1 切断した突起、 2 尖っていない側縁部、 3 ひし形の空所の主対角線、 4 ひし形の空所の副対角線。 1 cut protrusions, 2 non-pointed side edges, 3 main diagonal of rhombus void, 4 sub-diagonal of rhombus void.
Claims (8)
金属リボンが移動する方向に平行に配置させた第一の所定の長さの少なくとも一列のナイフを備えた拡張装置を通して金属リボンを走行させること、
前記の少なくとも一列のナイフの加圧と押し抜きの作用によって金属リボンを拡張させること、
前記の第一の長さよりも大きな第二の所定の長さの刃を有するナイフの最後の列の加圧と押し抜きの作用によって、拡張された金属リボンの側縁部の輪郭を形成すること、
を含む、前記方法。 A method for producing an anode according to any one of claims 1 to 3, comprising the following steps:
Running the metal ribbon through an expansion device comprising a first predetermined length of at least one row of knives arranged parallel to the direction of movement of the metal ribbon;
Expanding the metal ribbon by the action of pressing and punching of the at least one row of knives;
Forming the contour of the side edge of the expanded metal ribbon by the action of pressing and punching on the last row of knives having a second predetermined length blade greater than said first length; ,
Said method.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
IT001689A ITMI20101689A1 (en) | 2010-09-17 | 2010-09-17 | ANODE FOR CATHODIC PROTECTION AND METHOD FOR ITS ACHIEVEMENT |
ITMI2010A001689 | 2010-09-17 | ||
PCT/EP2011/066021 WO2012035107A1 (en) | 2010-09-17 | 2011-09-15 | Anode for cathodic protection and method for manufacturing the same |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2013537261A true JP2013537261A (en) | 2013-09-30 |
JP2013537261A5 JP2013537261A5 (en) | 2016-12-08 |
JP6068343B2 JP6068343B2 (en) | 2017-01-25 |
Family
ID=43738911
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013528672A Active JP6068343B2 (en) | 2010-09-17 | 2011-09-15 | Anode for cathodic protection and method for producing the same |
Country Status (25)
Country | Link |
---|---|
US (2) | US20130168261A1 (en) |
EP (1) | EP2616568B1 (en) |
JP (1) | JP6068343B2 (en) |
KR (1) | KR20140001837A (en) |
CN (1) | CN103119201B (en) |
AR (1) | AR084116A1 (en) |
AU (1) | AU2011303882B2 (en) |
BR (1) | BR112013006334B1 (en) |
CA (1) | CA2808397C (en) |
CO (1) | CO6680713A2 (en) |
DK (1) | DK2616568T3 (en) |
EA (1) | EA024024B1 (en) |
EC (1) | ECSP13012490A (en) |
ES (1) | ES2711605T3 (en) |
HK (1) | HK1185386A1 (en) |
IT (1) | ITMI20101689A1 (en) |
MA (1) | MA34596B1 (en) |
MX (1) | MX2013002844A (en) |
MY (1) | MY159927A (en) |
NZ (1) | NZ606985A (en) |
PE (1) | PE20140396A1 (en) |
PL (1) | PL2616568T3 (en) |
PT (1) | PT2616568T (en) |
SG (1) | SG188189A1 (en) |
WO (1) | WO2012035107A1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104763506A (en) * | 2015-04-09 | 2015-07-08 | 上海天纳克排气系统有限公司 | Gas exhausting system |
US10376946B1 (en) * | 2016-05-25 | 2019-08-13 | James E. Ealer, Sr. | System and method of making an expanded metal gutter cover having a solid edge margin |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR450528A (en) * | 1912-10-24 | 1913-03-27 | The Universal Metal Lath And Patent Company | Metal sheet splitting and pushing machine |
US3162925A (en) * | 1962-04-24 | 1964-12-29 | Robert M Felsenthal | Apparatus for producing expanded metal |
JPS50140359A (en) * | 1974-04-27 | 1975-11-11 | ||
JPS63174735A (en) * | 1986-12-30 | 1988-07-19 | インドュストリエ・マグネティ・マレルリ・エッセ・エルレ・エルレ | Molding equipment for beltlike lattice body |
JPH032387A (en) * | 1989-02-14 | 1991-01-08 | Imperial Chem Ind Plc <Ici> | Valve metal mesh and manufacture thereof |
JP2002050361A (en) * | 2000-08-03 | 2002-02-15 | Matsushita Electric Ind Co Ltd | Manufacturing method of expanded mesh sheet and manufacturing method of lead acid storage battery grid and lead acid storage battery using the same |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2223497A (en) * | 1940-03-01 | 1940-12-03 | Bostwick Steel Lath Company | Expanded metal lath cutting machine |
US3607411A (en) * | 1968-03-21 | 1971-09-21 | Exmet Corp | Prestretched expanded metal and method of making it |
US5421968A (en) * | 1985-05-07 | 1995-06-06 | Eltech Systems Corporation | Cathodic protection system for a steel-reinforced concrete structure |
US4923583A (en) * | 1985-11-04 | 1990-05-08 | Olin Corporation | Electrode elements for filter press membrane electrolytic cells |
CA2018869A1 (en) * | 1989-07-07 | 1991-01-07 | William A. Kovatch | Mesh anode and mesh separator for use with steel-reinforced concrete |
US5062934A (en) | 1989-12-18 | 1991-11-05 | Oronzio Denora S.A. | Method and apparatus for cathodic protection |
CA2078616A1 (en) * | 1991-09-20 | 1993-03-21 | James B. Bushman | Cathodic protection anode and method |
WO1996030561A1 (en) * | 1995-03-24 | 1996-10-03 | Alltrista Corporation | Jacketed sacrificial anode cathodic protection system |
US6139705A (en) * | 1998-05-06 | 2000-10-31 | Eltech Systems Corporation | Lead electrode |
ITMI20080714A1 (en) * | 2008-04-18 | 2009-10-19 | Industrie De Nora S P A | ANODE FOR CATHODIC PROTECTION |
-
2010
- 2010-09-17 IT IT001689A patent/ITMI20101689A1/en unknown
-
2011
- 2011-07-04 AR ARP110102393A patent/AR084116A1/en active IP Right Grant
- 2011-09-15 WO PCT/EP2011/066021 patent/WO2012035107A1/en active Application Filing
- 2011-09-15 US US13/819,643 patent/US20130168261A1/en not_active Abandoned
- 2011-09-15 EA EA201390399A patent/EA024024B1/en not_active IP Right Cessation
- 2011-09-15 KR KR1020137006504A patent/KR20140001837A/en active Search and Examination
- 2011-09-15 PE PE2013000509A patent/PE20140396A1/en active IP Right Grant
- 2011-09-15 NZ NZ606985A patent/NZ606985A/en unknown
- 2011-09-15 DK DK11757856.7T patent/DK2616568T3/en active
- 2011-09-15 PL PL11757856T patent/PL2616568T3/en unknown
- 2011-09-15 JP JP2013528672A patent/JP6068343B2/en active Active
- 2011-09-15 CA CA2808397A patent/CA2808397C/en active Active
- 2011-09-15 MY MYPI2013000543A patent/MY159927A/en unknown
- 2011-09-15 PT PT11757856T patent/PT2616568T/en unknown
- 2011-09-15 AU AU2011303882A patent/AU2011303882B2/en active Active
- 2011-09-15 BR BR112013006334A patent/BR112013006334B1/en active IP Right Grant
- 2011-09-15 SG SG2013007562A patent/SG188189A1/en unknown
- 2011-09-15 MX MX2013002844A patent/MX2013002844A/en active IP Right Grant
- 2011-09-15 EP EP11757856.7A patent/EP2616568B1/en active Active
- 2011-09-15 ES ES11757856T patent/ES2711605T3/en active Active
- 2011-09-15 CN CN201180044409.8A patent/CN103119201B/en active Active
- 2011-09-15 MA MA35798A patent/MA34596B1/en unknown
-
2013
- 2013-03-15 EC ECSP13012490 patent/ECSP13012490A/en unknown
- 2013-03-15 CO CO13052521A patent/CO6680713A2/en unknown
- 2013-11-14 HK HK13112761.7A patent/HK1185386A1/en unknown
-
2015
- 2015-10-21 US US14/919,191 patent/US20160040302A1/en not_active Abandoned
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR450528A (en) * | 1912-10-24 | 1913-03-27 | The Universal Metal Lath And Patent Company | Metal sheet splitting and pushing machine |
US3162925A (en) * | 1962-04-24 | 1964-12-29 | Robert M Felsenthal | Apparatus for producing expanded metal |
JPS50140359A (en) * | 1974-04-27 | 1975-11-11 | ||
JPS63174735A (en) * | 1986-12-30 | 1988-07-19 | インドュストリエ・マグネティ・マレルリ・エッセ・エルレ・エルレ | Molding equipment for beltlike lattice body |
JPH032387A (en) * | 1989-02-14 | 1991-01-08 | Imperial Chem Ind Plc <Ici> | Valve metal mesh and manufacture thereof |
JP2002050361A (en) * | 2000-08-03 | 2002-02-15 | Matsushita Electric Ind Co Ltd | Manufacturing method of expanded mesh sheet and manufacturing method of lead acid storage battery grid and lead acid storage battery using the same |
Also Published As
Publication number | Publication date |
---|---|
PL2616568T3 (en) | 2019-05-31 |
US20130168261A1 (en) | 2013-07-04 |
AU2011303882A1 (en) | 2013-02-28 |
MA34596B1 (en) | 2013-10-02 |
ITMI20101689A1 (en) | 2012-03-18 |
EP2616568B1 (en) | 2018-11-21 |
CN103119201A (en) | 2013-05-22 |
JP6068343B2 (en) | 2017-01-25 |
CN103119201B (en) | 2015-12-16 |
US20160040302A1 (en) | 2016-02-11 |
DK2616568T3 (en) | 2019-02-18 |
MX2013002844A (en) | 2013-06-18 |
PE20140396A1 (en) | 2014-04-23 |
BR112013006334B1 (en) | 2020-01-21 |
AR084116A1 (en) | 2013-04-24 |
HK1185386A1 (en) | 2014-02-14 |
NZ606985A (en) | 2014-12-24 |
SG188189A1 (en) | 2013-04-30 |
MY159927A (en) | 2017-02-15 |
WO2012035107A1 (en) | 2012-03-22 |
EA024024B1 (en) | 2016-08-31 |
CO6680713A2 (en) | 2013-05-31 |
CA2808397C (en) | 2019-12-03 |
ECSP13012490A (en) | 2013-04-30 |
EP2616568A1 (en) | 2013-07-24 |
CA2808397A1 (en) | 2012-03-22 |
PT2616568T (en) | 2019-02-25 |
BR112013006334A2 (en) | 2016-06-21 |
AU2011303882B2 (en) | 2015-01-22 |
KR20140001837A (en) | 2014-01-07 |
ES2711605T3 (en) | 2019-05-06 |
EA201390399A1 (en) | 2013-07-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4900410A (en) | Method of installing a cathodic protection system for a steel-reinforced concrete structure | |
US5759361A (en) | Cathodic protection system for a steel-reinforced concrete structure | |
EP0222829B1 (en) | Cathodic protection system for a steel-reinforced concrete structure and method of installation | |
JP5536918B2 (en) | Separated cathode for cathodic protection of reinforced concrete | |
JP5193287B2 (en) | Electrode for membrane electrolysis cell | |
JP6068343B2 (en) | Anode for cathodic protection and method for producing the same | |
JPH03197691A (en) | Manufacture of open metallic mesh and open metallic mesh | |
FI94431B (en) | Grating electrode for cathodically protecting steel reinforced concrete structures and process for making a protection system | |
EP0407348A1 (en) | Mesh anode and mesh separator for use with steel reinforced concrete | |
CA2236650C (en) | Louvered anode for cathodic protection systems | |
CN1075127C (en) | Modified electrode for film electrolytic bath | |
CA2302966C (en) | Ladder anode for cathodic protection | |
JPH06212814A (en) | Method of recovering concrete | |
JPH0673897A (en) | Reclaiming method of concrete |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20140804 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20150925 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20150930 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20151217 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20160201 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20160229 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160331 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20160331 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20160518 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20160812 |
|
A524 | Written submission of copy of amendment under article 19 pct |
Free format text: JAPANESE INTERMEDIATE CODE: A524 Effective date: 20161018 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20161124 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20161222 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6068343 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |