JP2013534364A - Thin circuit board having induction coil and method for manufacturing the same - Google Patents

Thin circuit board having induction coil and method for manufacturing the same Download PDF

Info

Publication number
JP2013534364A
JP2013534364A JP2013520953A JP2013520953A JP2013534364A JP 2013534364 A JP2013534364 A JP 2013534364A JP 2013520953 A JP2013520953 A JP 2013520953A JP 2013520953 A JP2013520953 A JP 2013520953A JP 2013534364 A JP2013534364 A JP 2013534364A
Authority
JP
Japan
Prior art keywords
magnetic induction
circuit board
thin circuit
induction
induction coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2013520953A
Other languages
Japanese (ja)
Inventor
クンシャン ヤン
チン‐フェン チェン
フェン‐チ シャオ
トゥン‐フ リン
チー‐ウェイ リー
クオ‐ヤン スー
イ‐シュ ヤン
ジャ‐ジュ ソン
Original Assignee
ファイトレックス テクノロジー コーポレーション
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ファイトレックス テクノロジー コーポレーション filed Critical ファイトレックス テクノロジー コーポレーション
Publication of JP2013534364A publication Critical patent/JP2013534364A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/077Constructional details, e.g. mounting of circuits in the carrier
    • G06K19/07749Constructional details, e.g. mounting of circuits in the carrier the record carrier being capable of non-contact communication, e.g. constructional details of the antenna of a non-contact smart card
    • G06K19/07771Constructional details, e.g. mounting of circuits in the carrier the record carrier being capable of non-contact communication, e.g. constructional details of the antenna of a non-contact smart card the record carrier comprising means for minimising adverse effects on the data communication capability of the record carrier, e.g. minimising Eddy currents induced in a proximate metal or otherwise electromagnetically interfering object
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/16Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor
    • H05K1/165Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor incorporating printed inductors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10007Types of components
    • H05K2201/10098Components for radio transmission, e.g. radio frequency identification [RFID] tag, printed or non-printed antennas

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Electromagnetism (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Near-Field Transmission Systems (AREA)

Abstract

本発明は新規の薄型回路基板構造及びその製造方法を提供する。当該回路基板は、有機樹脂と無機粉末から製造された磁気誘導基板と、磁気誘導基板の一側表面に形成された誘導コイルと、磁気誘導基板の一側表面に形成されると共に、誘導コイルと電気的に接続される金属配線層と、を備え、誘導コイルは磁気誘導基板の磁束特性を参照して磁気誘導基板の表面に設置される。当該薄型回路基板の基板は電磁波吸収粉末が混合された有機樹脂材質から製造されて、誘導コイルを設計する時に当該基板に電磁波吸収特性を具備させ、その上に無線周波数認識タグに需要の追加層と回路構造を製造することができる。  The present invention provides a novel thin circuit board structure and a method for manufacturing the same. The circuit board includes a magnetic induction board manufactured from an organic resin and an inorganic powder, an induction coil formed on one side surface of the magnetic induction board, and an induction coil formed on one side surface of the magnetic induction board. And an electrically connected metal wiring layer, and the induction coil is installed on the surface of the magnetic induction substrate with reference to the magnetic flux characteristics of the magnetic induction substrate. The substrate of the thin circuit board is manufactured from an organic resin material mixed with electromagnetic wave absorbing powder, and when the induction coil is designed, the board is provided with an electromagnetic wave absorption characteristic, and an additional layer of demand is added to the radio frequency recognition tag thereon. And the circuit structure can be manufactured.

Description

本発明は誘導コイルを具備する薄型回路基板及びその製造方法に関するものである。具体的に、電磁波吸収特性を考慮して誘導コイルを設計した薄型回路基板及びその製造方法に関するものである。   The present invention relates to a thin circuit board having an induction coil and a method for manufacturing the same. Specifically, the present invention relates to a thin circuit board in which an induction coil is designed in consideration of electromagnetic wave absorption characteristics and a manufacturing method thereof.

無線周波数認識技術(radio frequency identification technology、RFID)は電磁波信号により特定目標を認識し、関連データを読み書く通信技術である。無線周波数認識素子を作動させる原理は、外部の無線周波数認識リーダー(RFID reader)を利用して電磁波を発射するに従って誘導範囲内にある無線周波数認識素子(例えば、無線周波数認識タグRFID tag)をタッチし、当該無線周波数認識素子は電磁気誘導によって電流を生成してその上の無線周波数認識チップを作動させ、続いて電磁波を発射して当該インダクターに応答することで無線周波数認識の効果を達成することである。電磁気誘導方式によって認識するため、無線周波数認識システム(例えば、リーダー(reader))と認識目標(例えば、無線周波数認識タグ)との間に機械的或いは光学的接触を行う必要が全然ない。無線周波数認識は、例えば有効な認識距離が割合に長く、多くの情報を記憶及び伝送可能であり、認識速度が早く、タグにおけるデータをリライト可能であり、安全性がよいなどの多くの長点を有するため、当該分野で既に伝統的な認識バーコード(bar code)を差し替えるのに広く応用されている。現在、無線周波数認識素子は小売り物流供給、財産追跡、及び検証応用などの多くの分野にまで利用されている。   Radio frequency identification technology (RFID) is a communication technology that recognizes a specific target using an electromagnetic wave signal and reads related data. The principle of operating the radio frequency recognition element is to touch the radio frequency recognition element (for example, radio frequency identification tag RFID tag) within the inductive range as the electromagnetic wave is emitted using an external RFID reader. The radio frequency recognition element generates an electric current by electromagnetic induction, operates a radio frequency recognition chip thereon, and then emits an electromagnetic wave to respond to the inductor to achieve the effect of radio frequency recognition. It is. Since recognition is performed by electromagnetic induction, there is no need to make mechanical or optical contact between a radio frequency recognition system (for example, a reader) and a recognition target (for example, a radio frequency recognition tag). Radio frequency recognition has many advantages such as effective recognition distance is relatively long, a large amount of information can be stored and transmitted, recognition speed is fast, data in the tag can be rewritten, and safety is good. Therefore, it has been widely applied to replace the traditional recognition bar code in the field. Currently, radio frequency recognition elements are used in many fields such as retail logistics supply, property tracking, and verification applications.

図1に示されているように、該図は従来技術による誘導コイルを具備する典型的な無線周波数認識素子100の構成構造断面図である。図面に示されているように、典型的な無線周波数認識素子100は主に軟性基板101、誘導コイル103、金属配線層105、及び無線周波数認識チップ107などの四つの部材で構成され、そのうち、従来の軟性基板101は電磁波を吸収する特性を具備しないため、前記誘導コイル103の設計は軟性基板101の磁束特性を考慮しなくてもよい。当該軟性基板101は無線周波数認識素子100の各部材が設置される構造基材であって、常にPET(polyethylene terephthalate、ポリエチレンテレフタラート)などの軟性材質で形成され、材質が軽く、可撓性があり、携帯しやすいなどの長点がある。軟性基板101の上表面に位置する誘導コイル103は外部無線周波数認識リーダーから発射される電磁波を受け入れ、電磁気誘導方式によって電流を生成する。軟性基板101の下表面には金属配線層105が形成されており、該金属配線層105は相互連結構造104によって誘導コイル103に電気的に接続される。当該金属配線層105はさらに無線周波数認識素子100の回路配線領域を含み、無線周波数認識チップ107を誘導コイル103に電気的に接続する。   As shown in FIG. 1, the figure is a structural cross-sectional view of a typical radio frequency recognition element 100 having an induction coil according to the prior art. As shown in the drawing, a typical radio frequency recognition element 100 is mainly composed of four members such as a flexible substrate 101, an induction coil 103, a metal wiring layer 105, and a radio frequency recognition chip 107, of which Since the conventional flexible substrate 101 does not have the property of absorbing electromagnetic waves, the design of the induction coil 103 need not consider the magnetic flux property of the flexible substrate 101. The flexible substrate 101 is a structural base on which each member of the radio frequency recognition element 100 is installed, and is always formed of a soft material such as PET (polyethylene terephthalate), and the material is light and flexible. And has the advantages of being easy to carry. An induction coil 103 located on the upper surface of the flexible substrate 101 receives an electromagnetic wave emitted from an external radio frequency recognition reader and generates a current by an electromagnetic induction method. A metal wiring layer 105 is formed on the lower surface of the flexible substrate 101, and the metal wiring layer 105 is electrically connected to the induction coil 103 by the interconnection structure 104. The metal wiring layer 105 further includes a circuit wiring region of the radio frequency recognition element 100 and electrically connects the radio frequency recognition chip 107 to the induction coil 103.

従来技術によれば、軟性基板101に上表面と下表面を貫通する複数の貫通孔109を形成することで、軟性基板101の下表面にある金属配線層105と軟性基板101の上表面にある無線周波数認識チップ107を電気的に接続する。これにより、誘導コイル103の電磁気誘導により生成された電流は金属配線層105を経由して無線周波数認識チップ107に伝送されてそれを作動させ、且つ電磁波を発射して外部の無線周波数認識リーダーに応答することで、タグ認識又はデータ伝送/書き込みなどの動作を完成する。   According to the prior art, by forming a plurality of through holes 109 penetrating the upper surface and the lower surface in the flexible substrate 101, the metal wiring layer 105 on the lower surface of the flexible substrate 101 and the upper surface of the flexible substrate 101 are present. The radio frequency recognition chip 107 is electrically connected. As a result, the current generated by the electromagnetic induction of the induction coil 103 is transmitted to the radio frequency recognition chip 107 via the metal wiring layer 105 to operate it, and the electromagnetic wave is emitted to the external radio frequency recognition reader. By responding, operations such as tag recognition or data transmission / writing are completed.

電磁波誘導メカニズムを利用することにより、無線周波数認識素子は高周波作動時に金属と液体などの使用環境に非常に敏感であり、特に金属表面或いは液体を含有する容器に粘着される。このような使用環境で、外部リーダーと無線周波数認識素子から発射される電磁波信号は無線周波数認識素子近傍の金属或いは液体の干渉を受けやすいため、誘導信号をよく読み取れないなどの問題を引き起こし、このような問題は受動式無線周波数認識素子の場合非常に厳しい結果を引き起こすことになる。これに対して、一般的な受動式無線周波数認識タグの応用で、図1に示すように、無線周波数認識素子100と金属表面102との間に磁気誘導スティック(ferrite sheet、或いは電磁波吸収スティックとも称される)106をさらに設けることで、受け入れる/発射された電磁波が金属又は液体表面で表面波、キャビティ共振波、反射波、或いは/及び電磁気干渉などの現象を引き起こすのを抑えて、誘導信号をよく読み取れない問題を防止する。   By utilizing the electromagnetic wave induction mechanism, the radio frequency recognition element is very sensitive to the use environment such as metal and liquid during high frequency operation, and is particularly adhered to a metal surface or a container containing liquid. In such an environment, the electromagnetic wave signal emitted from the external reader and the radio frequency recognition element is susceptible to interference with metal or liquid near the radio frequency recognition element, causing problems such as inability to read the induction signal. Such problems can cause very severe consequences for passive radio frequency recognition elements. On the other hand, as shown in FIG. 1, in a general passive radio frequency recognition tag, a magnetic induction stick (ferrite sheet) or an electromagnetic wave absorption stick is provided between the radio frequency recognition element 100 and the metal surface 102. (Referred to as "inducted signal"), which prevents the received / emitted electromagnetic waves from causing phenomena such as surface waves, cavity resonance waves, reflected waves, and / or electromagnetic interference on the metal or liquid surface. To prevent problems that cannot be read well.

しかし、一般的に業界でよく使用される磁気誘導スティックは無線周波数認識素子の制作コストでかなり多くの費用を占めるだけでなく、磁気誘導スティックが一定の厚さを有するため、無線周波数認識素子の薄型化が難しくなり、且つ無線周波数認識素子の異なる誘導コイルの設計に従って、必ず磁気誘導スティックを慎重に選択して使用しないとその作用と効果に影響を及ぼすことになる。ゆえに、本発明者は薄型回路基板の製造工程において、その誘導コイルを設計時、基板に予め設定される磁束特性を考慮することで、後に当該薄型回路基板を金属表面に応用する際に磁気誘導スティックを選択して使用することに関する面倒を無くし、本発明の無線周波数認識素子を薄型化設計に応用可能にして、特に電磁波吸収作用を具備する薄型回路基板構造及びその製造方法を開発した。   However, magnetic induction sticks that are commonly used in the industry not only occupy a considerable amount in the production cost of the radio frequency recognition element, but also because the magnetic induction stick has a certain thickness, It is difficult to reduce the thickness and the magnetic induction stick must be carefully selected according to the induction coil design of the radio frequency recognition element. Therefore, in the process of manufacturing a thin circuit board, the present inventor considers magnetic flux characteristics set in advance on the board when designing the induction coil, so that the magnetic induction is applied when the thin circuit board is applied to the metal surface later. The trouble of selecting and using a stick is eliminated, the radio frequency recognition element of the present invention can be applied to a thin design, and in particular, a thin circuit board structure having an electromagnetic wave absorbing action and a manufacturing method thereof have been developed.

上記従来技術に存在する問題点に鑑み、本発明は薄型回路基板及びその製造方法を開示する。本発明による薄型回路基板の基板は電磁波吸収粉末が混合された有機樹脂材質で製造されることで、電磁波を吸收する特性を具備すると共に一般の軟性回路基板の特性を兼備することにより、薄型回路基板に無線周波数認識素子に要る追加層と回路構造を形成することができる。   In view of the problems existing in the prior art, the present invention discloses a thin circuit board and a method for manufacturing the same. The substrate of the thin circuit board according to the present invention is manufactured from an organic resin material mixed with electromagnetic wave absorbing powder, so that the thin circuit board has the characteristics of absorbing electromagnetic waves and the characteristics of a general flexible circuit board. Additional layers and circuit structures required for the radio frequency recognition element can be formed on the substrate.

本発明の一実施例において、薄型回路基板は磁気誘導基板、誘導コイル及び金属配線層などの構成部材を備える。当該誘導コイルは当該磁気誘導基板の一側表面に形成される。金属配線層は当該磁気誘導基板の一側表面に形成されるとともに、当該誘導コイルに電気的に接続される。無線周波数認識チップは当該磁気誘導基板の一側表面に設置されると共に、当該金属配線層に電気的に接続される。当該誘導コイルを設計時、当該磁気誘導基板の磁束特性を考慮して当該磁気誘導基板の表面に設置し、誘導コイルが電磁気誘導により生成した電流を無線周波数認識チップに提供して無線周波数認識チップを作動させると共に、電磁波を発射して、外部のインダクター(reader)に応答するように構成する。   In one embodiment of the present invention, the thin circuit board includes components such as a magnetic induction board, an induction coil, and a metal wiring layer. The induction coil is formed on one surface of the magnetic induction substrate. The metal wiring layer is formed on one surface of the magnetic induction substrate and is electrically connected to the induction coil. The radio frequency recognition chip is installed on one surface of the magnetic induction substrate and is electrically connected to the metal wiring layer. When designing the induction coil, the magnetic induction board is installed on the surface of the magnetic induction board in consideration of the magnetic flux characteristics of the magnetic induction board, and the current generated by the induction coil by electromagnetic induction is provided to the radio frequency recognition chip to provide the radio frequency recognition chip. And is configured to emit an electromagnetic wave and respond to an external inductor.

本発明の他の実施例において、当該誘導コイルは複数層に囲まれて積層された設計によって当該磁気誘導基板の一側表面に設置され、各層の誘導コイル間に磁気誘導層を挟むことで、磁気誘導性を増加すると共に、電磁波吸収効果を強める。当該磁気誘導層と磁気誘導基板は同じ材質によって構成される。   In another embodiment of the present invention, the induction coil is installed on one side surface of the magnetic induction substrate with a design surrounded by a plurality of layers, and sandwiching the magnetic induction layer between the induction coils of each layer, Increases magnetic inductivity and strengthens electromagnetic wave absorption effect. The magnetic induction layer and the magnetic induction substrate are made of the same material.

本発明の目的は、有機樹脂と無機粉末によって製造される磁気誘導基板と、磁気誘導基板の一側表面に形成される誘導コイルと、及び磁気誘導基板の一側表面に形成されると共に、誘導コイルと電気的に接続される金属配線層を備え、誘導コイルは磁気誘導基板の磁束特性を考慮して磁気誘導基板の表面に設置される新規な薄型回路基板を提供することである。ここに採用された構造支持性基板は電磁波吸收機能を具備するため、当該薄型回路基板は別途の磁気誘導スティック或いは電磁波吸収スティックを設置することなしに良好な無線周波数認識効果を獲得できる。   An object of the present invention is to form a magnetic induction substrate made of an organic resin and an inorganic powder, an induction coil formed on one side surface of the magnetic induction substrate, and an induction coil formed on one side surface of the magnetic induction substrate. An induction coil is provided with a metal wiring layer electrically connected to the coil, and the induction coil provides a novel thin circuit board installed on the surface of the magnetic induction board in consideration of the magnetic flux characteristics of the magnetic induction board. Since the structural support substrate adopted here has an electromagnetic wave absorbing function, the thin circuit board can obtain a good radio frequency recognition effect without installing a separate magnetic induction stick or electromagnetic wave absorbing stick.

本発明の他の目的は、有機樹脂と無機粉末で製造される磁気誘導基板を形成するステップ、磁気誘導基板の一側表面に誘導コイルを形成すると共に、磁気誘導基板の磁束特性を考慮して当該誘導コイルを磁気誘導基板の表面に形成するステップ、及び磁気誘導基板の一側表面に誘導コイルと電気的に接続する金属配線層を形成するステップ、を備える新規の薄膜回路基板の製造方法を提供することである。本発明は誘導コイルと磁気誘導層を交替に設置することで複数層の誘導コイルを設計し、当該誘導コイルの有效な誘導距離を増加する。   Another object of the present invention is to form a magnetic induction substrate manufactured from an organic resin and an inorganic powder, to form an induction coil on one side surface of the magnetic induction substrate, and to consider the magnetic flux characteristics of the magnetic induction substrate. A novel thin film circuit board manufacturing method comprising: forming the induction coil on a surface of a magnetic induction substrate; and forming a metal wiring layer electrically connected to the induction coil on one side surface of the magnetic induction substrate. Is to provide. In the present invention, an induction coil and a magnetic induction layer are alternately installed to design a multi-layer induction coil, and the effective induction distance of the induction coil is increased.

本発明のその他の目的、特徴、及び長点は下記の詳細な実施例と関連図面及び特許請求の範囲を参照することでもっとよく理解できることになる。   Other objects, features and advantages of the present invention will become better understood with reference to the following detailed examples and the associated drawings and claims.

後述の図面と説明を参照すると本発明のシステムと方法をもっとよく理解できることになる。本明細書に詳しく限定されていない実施例については後述の図面を参照することができる。図面に現れた構成素子は比例によって描かれたものではなく、ただ本発明の原理を強調している。図面において、同じ部材について同じ符号を用いている。   The system and method of the present invention can be better understood with reference to the following drawings and description. Reference may be made to the drawings described below for embodiments not specifically limited herein. The components appearing in the drawings are not drawn to scale, but merely emphasize the principles of the invention. In the drawings, the same reference numerals are used for the same members.

図1は従来技術による典型的な無線周波数認識タグの断面図である。FIG. 1 is a cross-sectional view of a typical radio frequency recognition tag according to the prior art. 図2は本発明の実施例による無線周波数認識タグの断面図である。FIG. 2 is a cross-sectional view of a radio frequency recognition tag according to an embodiment of the present invention. 図3は本発明の実施例による他の無線周波数認識タグの断面図である。FIG. 3 is a cross-sectional view of another radio frequency recognition tag according to an embodiment of the present invention.

図2を参照すると、該図は本発明の実施例による無線周波数認識素子200の断面図である。本発明の実施例において、無線周波数認識チップ207を誘導コイルを具備する薄膜回路基板に設置した無線周波数認識素子200を例として示している。無線周波数認識素子200の下方に金属表面202を描いてその使用設置関係を示している。図面に示すように、本発明の無線周波数認識素子200は主に磁気誘導基板201、誘導コイル203、金属配線層205、及び無線周波数認識チップ207などの四つの部材で構成され、そのうちの磁気誘導基板201、誘導コイル203は金属配線層205と薄型回路基板を形成する。本発明において、磁気誘導基板201は良好な電磁波吸収特性を有する板材料であり、これは無線周波数認識素子200の各部材を設置するための構造の基材であるだけでなく、無線周波数認識素子200が高周波(例えば、13.56MHz)或いは超高周波(例えば、900MHz)の環境で金属或いは液体表面に近づく際に表面波、キャビティ共振波、反射波、或いは/及び電磁気干渉などの現象を引き起こすのを効果的に抑えて、誘導信号をよく読み取れない問題を生成するのを未然に防止する。本発明は磁気誘導基板201が固有する電磁波吸收機能により無線周波数認識素子200を従来の無線周波数認識素子(例えば、RFID)が使用できなかった環境に容易に適用できる。例えば、従来用いた高価な電磁波吸収スティックを別途に搭載することなしに、缶詰などの金属表面又は液体が含有された薬瓶に粘着したり、或いは携帯電話などの移動装置の金属ケースに設置できて、かなり多くのタグ制作コストを低減可能である。   Referring to FIG. 2, it is a cross-sectional view of a radio frequency recognition element 200 according to an embodiment of the present invention. In the embodiment of the present invention, a radio frequency recognition element 200 in which a radio frequency recognition chip 207 is installed on a thin film circuit board having an induction coil is shown as an example. The metal surface 202 is drawn below the radio frequency recognition element 200 to show its use and installation relationship. As shown in the drawing, the radio frequency recognition element 200 of the present invention is mainly composed of four members such as a magnetic induction substrate 201, an induction coil 203, a metal wiring layer 205, and a radio frequency recognition chip 207, of which a magnetic induction is included. The substrate 201 and the induction coil 203 form a metal wiring layer 205 and a thin circuit board. In the present invention, the magnetic induction substrate 201 is a plate material having good electromagnetic wave absorption characteristics, and this is not only a base material having a structure for installing each member of the radio frequency recognition element 200 but also a radio frequency recognition element. When the 200 approaches a metal or liquid surface in a high frequency (eg, 13.56 MHz) or ultra high frequency (eg, 900 MHz) environment, it may cause phenomena such as surface waves, cavity resonance waves, reflected waves, and / or electromagnetic interference. Is effectively suppressed, and it is possible to prevent generation of a problem that the induction signal cannot be read well. The present invention can be easily applied to an environment where a conventional radio frequency recognition element (for example, RFID) cannot be used due to the electromagnetic wave absorption function inherent to the magnetic induction substrate 201. For example, it is possible to adhere to a metal surface such as cans or a medicine bottle containing a liquid, or install it in a metal case of a mobile device such as a mobile phone, without separately mounting an expensive electromagnetic wave absorption stick used conventionally. Therefore, a considerable amount of tag production costs can be reduced.

本発明による磁気誘導基板201は有機樹脂と無機粉末の2つの材質を混合して製造され、そのうち、当該有機樹脂は磁気誘導基板201に机械的特性及び製造工程上の可能性を付与し、当該無機粉末は磁気誘導基板201に電磁波吸収機能を付与する。一実施例において、磁気誘導基板201における有機樹脂は軟性印刷回路基板に常に使用されるPI(polyimide、ポリイミド)材質である。この材質により形成された基板は材質が軽く、可撓性があり、携帯しやすく、製造工程が簡単であり、スプール式連続製造工程(roll−to−roll)に適用可能であり、並びに大面積で製造可能などの長点を有するので、継続して製造される無線周波数認識タグ製品の適用性を向上する。しかし、その他の実施例において、磁気誘導基板201の有機樹脂は同一特性を有する他の適当な材料で形成可能であることにご留意すべきである。例えば、ポリエチレンテレフタラート(polyethylene terephthalate、PET)、ポリエチレンナフタレート(polyethylene naphthalate、PEN)、ポリプロピレン(polypropylene、PP)、ポリエーテルサルホン(Polyether sulfone、PES)、ポリフェニルサルフォン(Polyphenylene Sulfone、PPSU)、ポリパラフェニレンベンゾビスオキサゾール(Poly−p−phenylenebenzobisoxazole、PBO)、液晶ポリマー(Liquid Crystal Polymer、LCP)、アクリレート(Acrylate)、ポリウレタン(Polyurethane、PU)、又はエポキシ樹脂(Epoxy)及びこれらの組成物を含むが、これらに限られるものではない。   The magnetic induction substrate 201 according to the present invention is manufactured by mixing two materials of an organic resin and an inorganic powder. Among them, the organic resin gives the magnetic induction substrate 201 mechanical characteristics and possibilities in the manufacturing process, The inorganic powder imparts an electromagnetic wave absorbing function to the magnetic induction substrate 201. In one embodiment, the organic resin in the magnetic induction substrate 201 is a PI (polyimide) material that is always used for a flexible printed circuit board. The substrate made of this material is light, flexible, easy to carry, easy to manufacture, can be applied to a spool-type continuous manufacturing process (roll-to-roll), and has a large area. This improves the applicability of radio frequency recognition tag products that are continuously manufactured. However, it should be noted that in other embodiments, the organic resin of the magnetic induction substrate 201 can be formed of other suitable materials having the same characteristics. For example, polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polypropylene (PP), polyether sulfone (Polysulfene, PES), polyphenylsulfone (PE) , Polyparaphenylene benzobisoxazole (Poly-p-phenylenebenzenebenzoxole, PBO), liquid crystal polymer (Liquid Crystal Polymer, LCP), acrylate (Acrylate), polyurethane (Polyethane, PU), or epoxy resin (Epoxy) Including Narubutsu, the present invention is not limited to these.

一方、磁気誘導基板201の無機粉末材料は良好な電磁波吸収特性を有する材質として、電磁波の信号を効率的に減衰させ、無線周波数認識素子200が金属体又は液体表面で逆方向の電磁波干渉を受けるのを防止する。本発明の実施例において無機粉末の材質は、例えば軟性フェライト、合金材料、金属材料である。そのうち、軟性フェライトとしては、MnZnフェライト、NiZnフェライト、NiCuZnフェライト、MnMgZnフェライト、MnMgAlフェライト、MnCuZnフェライト、コバルトフェライト或いはそれらの混合物を含むが、これらに限られるのではない。合金材料として、ニッケル鉄合金、鉄シリコン合金、及び鉄アルミニウム合金を含むが、これらに限られるのではない。金属材料としては、銅、アルミニウム、鉄、及びニッケルなどの合金を含むが、これらに限られるものではない。本発明において、有機樹脂と無機粉末を混合する比例はそれぞれ略15%〜35%と85%〜65%の間にあり、両者を混合した後電磁波吸収特性を有するスラリー又は塗料を形成でき、これらをさらに構造支持性を有する固体、例えばフィルム、薄膜、板形状、ブロック形状の基材などに固体化することができる。上記比例によって混合配合された磁気誘導基板201は伝統的なPI軟性基板製造工程に完全に適用可能であって、例えば磁気誘導基板201の上でコーティング、エッチ・クリーニング、カービング、及びドリリングなどの動作を行うことができると共に、無線周波数認識チップに要る高温製造工程、例えば表面粘着技術におけるフリップチップ製造工程(flip chip)に適用可能である。   On the other hand, the inorganic powder material of the magnetic induction substrate 201 is a material having good electromagnetic wave absorption characteristics, which effectively attenuates the electromagnetic wave signal and causes the radio frequency recognition element 200 to receive electromagnetic wave interference in the reverse direction on the metal or liquid surface. To prevent. In the embodiment of the present invention, the material of the inorganic powder is, for example, soft ferrite, alloy material, or metal material. Among them, the soft ferrite includes, but is not limited to, MnZn ferrite, NiZn ferrite, NiCuZn ferrite, MnMgZn ferrite, MnMgAl ferrite, MnCuZn ferrite, cobalt ferrite or a mixture thereof. Alloy materials include, but are not limited to, nickel iron alloys, iron silicon alloys, and iron aluminum alloys. Metal materials include, but are not limited to, alloys such as copper, aluminum, iron and nickel. In the present invention, the proportion of mixing the organic resin and the inorganic powder is between about 15% to 35% and 85% to 65%, respectively, and after mixing both, a slurry or paint having electromagnetic wave absorption characteristics can be formed. Can be further solidified into a solid having structural support, for example, a film, a thin film, a plate shape, or a block-shaped base material. The magnetic induction substrate 201 mixed and mixed in the above proportion is completely applicable to the traditional PI soft substrate manufacturing process. For example, operations such as coating, etching / cleaning, carving, and drilling on the magnetic induction substrate 201 are performed. And can be applied to a high-temperature manufacturing process required for a radio frequency recognition chip, for example, a flip chip manufacturing process in surface adhesive technology.

本発明において、磁気誘導基板201は同時に無線周波数認識素子200の構造支持部材及び電磁波吸収部材として作用し、その上に軟性板製造工程により無線周波数認識素子に必要な貫通孔(through hole)、回路配線(trace)、及び相互連結接点(interconnect)などの回路構造を形成できる。例えば、図2に示すように、磁気誘導基板201の上表面に誘導コイル203が形成されており、当該誘導コイル203は複数のコイル数で囲まれて形成された設計であって、このような設置によって外部無線周波数認識リーダー(reader)から発射される異なる分極化方向における電磁波を受け入れ、誘導カップリング(Inductive Coupling)或いは後方散乱カップリング(Back−scatter Coupling)などの電磁気誘導方式によって電流を生成する。本発明において、当該誘導コイル203はエッチング(例えば、銅エッチング及びアルミニウムエッチング)、コロイダルシルバー印刷(スクリーン印刷、レリーフ印刷、グラビア印刷、又はインクジェット方式などを含む)、化学気相成長銅、及び電気めっき銅などの方式によって形成される。誘導コイル203の材質、厚さ、コイル数、Q値(quality factor)、及び設置などは使用する磁気誘導基板201の電磁波吸収性質に対応させて設計するか、或いは僅かに調整して、所要のインピーダンスマッチング(Impedance Matching)を行い、電磁気誘導上限線分極化の要求を維持する。本発明の誘導コイル203の作業周波数はその応用環境によって決められ、125/134KHz(低周波)、13.56MHz(高周波)などの作動周波帯を含むが、これに限られるものではない。   In the present invention, the magnetic induction substrate 201 simultaneously functions as a structure supporting member and an electromagnetic wave absorbing member of the radio frequency recognition element 200, and further, through holes and circuits necessary for the radio frequency recognition element are formed on the flexible plate manufacturing process. Circuit structures such as wiring and interconnecting contacts can be formed. For example, as shown in FIG. 2, an induction coil 203 is formed on the upper surface of the magnetic induction substrate 201, and the induction coil 203 is designed to be surrounded by a plurality of coils. Accepts electromagnetic waves in different polarization directions emitted from an external radio frequency recognition reader by installation, and generates current by electromagnetic induction methods such as Inductive Coupling or Back-scatter Coupling To do. In the present invention, the induction coil 203 is etched (for example, copper etching and aluminum etching), colloidal silver printing (including screen printing, relief printing, gravure printing, or ink jet method), chemical vapor deposition copper, and electroplating. It is formed by a method such as copper. The material, thickness, number of coils, Q value (quality factor), and installation of the induction coil 203 are designed according to the electromagnetic wave absorption property of the magnetic induction substrate 201 to be used, or slightly adjusted, Impedance matching is performed to maintain the requirement for electromagnetic induction upper limit line polarization. The working frequency of the induction coil 203 of the present invention is determined by its application environment and includes operating frequency bands such as 125/134 KHz (low frequency) and 13.56 MHz (high frequency), but is not limited thereto.

一方、磁気誘導基板201の下表面には金属配線層205が形成されており、これは無線周波数認識素子200のコイル膜群の一部である。金属配線層205は貫通孔或いは相互連結構造204a,204bによって両端の誘導コイル203にそれぞれ結合されることで、導電性信号を伝送する。本発明のその他の実施例において、金属配線層205は誘導コイル203の接地平面(ground plane)としても利用可能であって、誘導コイル203が電磁気誘導によって多すぎる渦電流を生成して無線周波数認識素子200の外部へ流されて電磁気干渉を引き起こすことを防止する。本発明において、金属配線層205は同時に無線周波数認識素子200の信号伝達層又は回路配線層としても使用可能である。図2に示すように、磁気誘導基板201の上に上表面と下表面を貫通する複数の貫通孔209が形成されており、当該貫通孔209の内部に導電材質を充填することで磁気誘導基板201下表面の金属配線層205と電気的に接続する。貫通孔209は磁気誘導基板201の上表面の開口位置(即、コイル接点位置)即ち無線周波数認識チップ207の各連結位置(例えば、金バンプ(bump)のある位置)に対応する位置に形成される。フリップチップ製造工程において、当該複数のコイル接点位置に導電性ペースト211、例えば異方性導電性ペースト(ACP)、異方性導電膜(ACF)或いは/及び非導電性ペースト(NCP)などをぬれた後、当該導電性ペースト211によりコイル接点と無線周波数認識チップ207の接合位置を粘着することで、コイル膜群(誘導コイル203及び金属配線層205を含む)と無線周波数認識チップ207を電気的に接続して誘導電流を伝送する。このような工程で、本発明の無線周波数認識素子200の内部インレー(Inlay)の製造を完成する。   On the other hand, a metal wiring layer 205 is formed on the lower surface of the magnetic induction substrate 201, which is a part of the coil film group of the radio frequency recognition element 200. The metal wiring layer 205 is coupled to the induction coils 203 at both ends by through holes or interconnecting structures 204a and 204b, thereby transmitting a conductive signal. In another embodiment of the present invention, the metal wiring layer 205 can be used as a ground plane of the induction coil 203, and the induction coil 203 generates too much eddy current by electromagnetic induction to recognize the radio frequency. It is prevented from flowing to the outside of the element 200 to cause electromagnetic interference. In the present invention, the metal wiring layer 205 can also be used as a signal transmission layer or a circuit wiring layer of the radio frequency recognition element 200 at the same time. As shown in FIG. 2, a plurality of through holes 209 penetrating the upper surface and the lower surface are formed on the magnetic induction substrate 201, and the magnetic induction substrate is filled by filling the through holes 209 with a conductive material. 201 is electrically connected to the metal wiring layer 205 on the lower surface. The through-hole 209 is formed at a position corresponding to an opening position (immediately, a coil contact position) on the upper surface of the magnetic induction substrate 201, that is, each connection position of the radio frequency recognition chip 207 (for example, a position having a gold bump). The In the flip chip manufacturing process, the conductive paste 211, for example, anisotropic conductive paste (ACP), anisotropic conductive film (ACF) or / and non-conductive paste (NCP) is wetted at the plurality of coil contact positions. After that, the coil paste (including the induction coil 203 and the metal wiring layer 205) and the radio frequency recognition chip 207 are electrically connected to each other by adhering the bonding position between the coil contact and the radio frequency recognition chip 207 with the conductive paste 211. Connect to to transmit induced current. Through this process, the manufacture of the internal inlay of the radio frequency recognition element 200 of the present invention is completed.

本発明の実施例において、無線周波数認識チップ207は誘導コイル203から生成した誘導電流を受け入れて電磁波を発射することで外部の無線周波数認識リーダーに応答し、無線周波数素子の認識動作を完成する。無線周波数認識チップ207は複数項の機能性回路が結合して形成され、例えば外部リーダーから伝送された無線周波数信号を直流電源に転換する交流/直流転換回路、無線周波数認識チップ207に安定な電源を提供する電圧安定化回路、搬送波を除去して本当の変調信号を取得する変調回路、外部リーダーから伝送された信号を復号化し、その要求に従って外部リーダーにデータをフィードバックさせるマイクロプロセッサー、無線周波数認識素子200が認識データを記憶する位置であるメモリ、及び前記マイクロプロセッサーから送信された情報を変調して誘導コイルに搭載してカードリーダーに送出する変調回路などを含むが、これに限られるものではない。   In the embodiment of the present invention, the radio frequency recognition chip 207 receives the induced current generated from the induction coil 203 and emits an electromagnetic wave, thereby responding to an external radio frequency recognition reader and completing a radio frequency element recognition operation. The radio frequency recognition chip 207 is formed by combining a plurality of functional circuits. For example, an AC / DC conversion circuit that converts a radio frequency signal transmitted from an external reader into a DC power source, a stable power source for the radio frequency recognition chip 207 A voltage stabilization circuit that provides a modulation circuit that removes the carrier wave to obtain the true modulation signal, a microprocessor that decodes the signal transmitted from the external reader and feeds the data back to the external reader according to its request, radio frequency recognition The element 200 includes a memory where the recognition data is stored, and a modulation circuit that modulates information transmitted from the microprocessor and mounts it on an induction coil and sends it to a card reader. Absent.

無線周波数認識チップ207の接着を完成した後、本発明の無線周波数認識素子200の製造は一応完了する。しかし、その他の実施例において、本発明の無線周波数認識素子200はさらに無線周波数認識タグの内部インレー(誘導コイル、磁気誘導基板、チップなどの部材を含む)として、さらにスティックラミネーションステップ(lamination)を行うことで、最後の無線周波数認識タグ製品を完成できる。タグラミネーションステップはタグが製造される最後の製造工程であり、当該製造工程は無線周波数認識タグの内部インレーを粘着性スティック或いはチケットカードに嵌めて加熱圧縮することで、元々外部環境に露出された誘導コイル203、磁気誘導基板201を無線周波数認識チップ207などと共にスティックパッキングに封止して、クライアントが使用可能なタグ製品を形成する。業界の需要に応じては、製造される無線周波数認識タグの形態も異なる。例えば、粘着性の無線周波数認識タグ、三層のソフトカード式の無線周波数認識タグ、及び五層のハードカード式の無線周波数認識タグなどがある。当該形態の最終製品は電子財布、出入カード、タグスティック、盗難防止チップなどに応用可能である。   After the bonding of the radio frequency recognition chip 207 is completed, the manufacture of the radio frequency recognition element 200 of the present invention is temporarily completed. However, in another embodiment, the radio frequency recognition element 200 of the present invention further includes an internal inlay (including members such as an induction coil, a magnetic induction substrate, and a chip) of the radio frequency recognition tag, and further includes a stick lamination step. By doing so, the last radio frequency recognition tag product can be completed. The tag lamination step is the last manufacturing process in which the tag is manufactured. The manufacturing process was originally exposed to the external environment by fitting the internal inlay of the radio frequency recognition tag into an adhesive stick or a ticket card and compressing it with heat. The induction coil 203 and the magnetic induction substrate 201 are sealed in a stick packing together with the radio frequency recognition chip 207 to form a tag product that can be used by the client. Depending on the demand of the industry, the form of the radio frequency identification tag to be manufactured also differs. For example, there are an adhesive radio frequency recognition tag, a three-layer soft card radio frequency recognition tag, and a five-layer hard card radio frequency recognition tag. The final product in this form can be applied to electronic wallets, access cards, tag sticks, anti-theft chips, and the like.

図2に示すように、無線周波数認識素子200は金属配線層が金属表面202を向かい、誘導コイル部分は外部を向うように設置される。実際の応用において、当該金属表面202としては携帯電話内部のIC回路基板、電池、金属キャリアー或いは缶詰の金属ケースなどである。磁気誘導基板201が誘導コイル203と金属表面202の間に隔てられているため、このような設置方式は誘導コイル203が受け入れ或いは放出の電磁波が当該金属表面202の影響を得られないようにすることができる。しかし、上述設置方式はただ本発明の一つの実施例に過ぎなく、その他の実施例において、本発明の無線周波数認識素子200の誘導コイル203と金属配線層205は磁気誘導基板201の同一側に設置されることもできる。   As shown in FIG. 2, the radio frequency recognition element 200 is installed such that the metal wiring layer faces the metal surface 202 and the induction coil portion faces the outside. In actual applications, the metal surface 202 may be an IC circuit board, a battery, a metal carrier or a canned metal case inside a mobile phone. Since the magnetic induction substrate 201 is separated between the induction coil 203 and the metal surface 202, such an installation method prevents the electromagnetic wave received or emitted by the induction coil 203 from obtaining the influence of the metal surface 202. be able to. However, the above installation method is only one embodiment of the present invention, and in other embodiments, the induction coil 203 and the metal wiring layer 205 of the radio frequency recognition element 200 of the present invention are on the same side of the magnetic induction substrate 201. It can also be installed.

上述した本発明の実施例による無線周波数認識素子の設計において、電磁波吸収材料と基材を整合して、従来技術のように、別途の磁気誘導スティック又は電磁波吸収スティックを設置する必要なしに希望の無線周波数誘導認識効果を達成することができる。スティックに関するコストを節約する以外に、本発明の無線周波数認識素子は元々磁気誘導スティックを設置するために残した空間(略150μm〜200μmの厚さ)を空けることができるため、素子においてもっと多くの収納空間を提供することができる。図3に示すように、これは本発明の他の実施例による無線周波数認識タグの断面図である。当該実施例において、無線周波数認識素子は図2における無線周波数認識素子と設計がほぼ同じであり、ただ無線周波数認識素子で空けた高度空間を利用して誘導コイル203を複数層に重ねるコイル構造に設計した面で相違点を有する。本実施例において、当該各層の誘導コイル203間にさらに磁気誘導層213を設置して層と層間の隔離層として利用することで無線周波数認識素子内部の全体的電磁波吸収効果を強化する。当該磁気誘導層213は磁気誘導基板201と材質が同じであって、良好な電磁波吸收特性を有する。本発明の実施例において、磁気誘導コイル203はまず塗布膜追加層法によってベースの誘導コイル203の上に形成され、続いてその上にその他の層の誘導コイル203を形成する。最上層の誘導コイル203は貫通孔或いは相互連結構造215によって磁気誘導基板201下方の金属配線層205と電気的に接続する。本実施例による複数層誘導コイル設計は、元々磁気誘導或いは電磁波吸収スティックに残しておいた空間を利用して複数層の誘導コイルを設置し、同じ単位面積にコイルの数を増加することで、本発明の無線周波数認識素子の検知距離を著しく増加させるなどの長点を有する。図3における二層誘導コイルはただ例示的な実施例に過ぎなく、その他の実施例において、当該誘導コイル203はその上にもっと多くのコイル構造を形成して、無線周波数認識素子の誘導距離を一層増加できるという点に留意すべきである。   In the design of the radio frequency recognition element according to the above-described embodiment of the present invention, the electromagnetic wave absorbing material and the base material are aligned, and it is not necessary to install a separate magnetic induction stick or electromagnetic wave absorbing stick as in the prior art. A radio frequency induction recognition effect can be achieved. In addition to saving the cost associated with the stick, the radio frequency recognition element of the present invention can free up the space originally reserved for installing the magnetic induction stick (thickness of about 150 μm to 200 μm), so there is much more in the element. A storage space can be provided. As shown in FIG. 3, this is a cross-sectional view of a radio frequency recognition tag according to another embodiment of the present invention. In this embodiment, the radio frequency recognition element is substantially the same in design as the radio frequency recognition element in FIG. 2, and has a coil structure in which induction coils 203 are stacked in a plurality of layers using an altitude space vacated by the radio frequency recognition element. There are differences in design. In this embodiment, a magnetic induction layer 213 is further provided between the induction coils 203 of the respective layers, and is used as an isolation layer between the layers, thereby enhancing the overall electromagnetic wave absorption effect inside the radio frequency recognition element. The magnetic induction layer 213 is made of the same material as the magnetic induction substrate 201 and has good electromagnetic wave absorption characteristics. In an embodiment of the present invention, the magnetic induction coil 203 is first formed on the base induction coil 203 by the coating film additional layer method, and then the other layer induction coil 203 is formed thereon. The uppermost induction coil 203 is electrically connected to the metal wiring layer 205 below the magnetic induction substrate 201 through a through-hole or an interconnection structure 215. The multi-layer induction coil design according to the present embodiment is to install a multi-layer induction coil using the space originally left in the magnetic induction or electromagnetic wave absorption stick, and increase the number of coils in the same unit area. The radio frequency recognition element of the present invention has a long point such as a significant increase in detection distance. The two-layer induction coil in FIG. 3 is merely an exemplary embodiment, and in other embodiments, the induction coil 203 forms more coil structures thereon to reduce the induction distance of the radio frequency recognition element. It should be noted that it can be further increased.

上記の本発明の2つの実施例によると、本発明の設計は、電磁波吸収性質を具備すると共に完全な軟性板製造工程を行える基板によって無線周波数認識素子を製造し、その素子の上に別途の電磁波吸収スティックを配置する必要がなくなるため、かなり多くの製造コストを減少できることを特徴とする。本発明によれば、誘導コイルと磁気誘導層はさらに多層に設計することで、無線周波数認識タグの誘導距離を一層増加することができる。   According to the above two embodiments of the present invention, the design of the present invention is to manufacture a radio frequency recognition element with a substrate that has electromagnetic wave absorption properties and can perform a complete flexible plate manufacturing process. Since there is no need to arrange an electromagnetic wave absorption stick, a considerable amount of manufacturing costs can be reduced. According to the present invention, the induction distance of the radio frequency recognition tag can be further increased by designing the induction coil and the magnetic induction layer to be multi-layered.

以上、本発明による誘導コイルを具備する薄型回路基板の実施例について説明したが、下記実施例において、本発明による誘導コイルを具備する薄型回路基板の製造方法について説明する。本方法において、まず磁気誘導基板を提供し、当該磁気誘導基板は有機樹脂と無機粉末によって製造され、そのうち、当該有機樹脂は当該磁気誘導基板に机械的特性及び製造工程上の可能性を付与し、当該無機粉末は当該磁気誘導基板に電磁波吸収機能を付与する。次に、当該磁気誘導基板の一側表面に誘導コイルを形成し、当該誘導コイルは当該磁気誘導基板の磁束特性を参照して当該磁気誘導基板の表面に設置され、外部無線周波数認識リーダーから発射される電磁波を受け入れて、電磁気誘導方式によって電流を生成し、その後、当該磁気誘導基板の一側表面の上に金属配線層を形成し、当該金属配線層は当該誘導コイルと電気的に接続されることで電気信号を伝送するか、或いは誘導コイルが電磁気誘導によって多すぎる渦電流を生成して薄型回路基板の外部へ流されて電磁気干渉を引き起こすことを防止する。   The embodiment of the thin circuit board having the induction coil according to the present invention has been described above. In the following embodiment, a method for manufacturing the thin circuit board having the induction coil according to the present invention will be described. In this method, first, a magnetic induction substrate is provided, and the magnetic induction substrate is manufactured from an organic resin and an inorganic powder, and the organic resin imparts mechanical characteristics and manufacturing process possibilities to the magnetic induction substrate. The inorganic powder imparts an electromagnetic wave absorbing function to the magnetic induction substrate. Next, an induction coil is formed on one side surface of the magnetic induction substrate, the induction coil is installed on the surface of the magnetic induction substrate with reference to the magnetic flux characteristics of the magnetic induction substrate, and is emitted from an external radio frequency recognition reader. Receiving an electromagnetic wave generated and generating a current by an electromagnetic induction method, and then forming a metal wiring layer on one side surface of the magnetic induction substrate, and the metal wiring layer is electrically connected to the induction coil Thus, an electric signal is transmitted, or an induction coil generates too much eddy current by electromagnetic induction and is prevented from flowing outside the thin circuit board and causing electromagnetic interference.

本方法は更に集積回路を当該磁気誘導基板の一側表面に付着し、前記金属配線層を経由して当該集積回路を当該誘導コイルに電気的に接続する。他の一つの方法実施例において、磁気誘導基板の上に一層以上の誘導コイルを形成し、その各層の誘導コイルの間にさらに層と層間の隔離層として磁気誘導層を形成して、無線周波数認識素子内部の全体的電磁波吸収効果を強化する。   The method further attaches an integrated circuit to one side surface of the magnetic induction substrate and electrically connects the integrated circuit to the induction coil via the metal wiring layer. In another method embodiment, one or more induction coils are formed on a magnetic induction substrate, and a magnetic induction layer is further formed between the induction coils of each layer as a layer-to-layer isolation layer. Strengthens the overall electromagnetic wave absorption effect inside the recognition element.

上記の方法実施例において、当該磁気誘導基板或いは磁気誘導層は有機樹脂と無機粉末から構成され、その有機樹脂と無機粉末はそれぞれ磁気誘導基板と磁気誘導層の約15〜35%と85〜65%の重量パーセントを占める。当該有機樹脂は以下の材質或いはその組成物から選択される:ポリイミド(polyimide、PI)、ポリエチレンテレフタラート(polyethylene terephthalate、PET)、ポリエチレンナフタレート(polyethylene naphthalate、PEN)、ポリプロピレン(polypropylene、PP)、ポリエーテルサルホン(Polyethersulfone、PES)、ポリフェニルサルフォン(Polyphenylene Sulfone、PPSU)、ポリパラフェニレンベンゾビスオキサゾール(Poly−p−phenylene benzobisoxazole、PBO)、液晶ポリマー(Liquid Crystal Polymer、LCP)、アクリレート(Acrylate)、ポリウレタン(Polyurethane、PU)、又はエポキシ樹脂(Epoxy)。当該無機粉末以下の材質或いはその組成物から選択される:MnZnフェライト、NiZnフェライト、NiCuZnフェライト、MnMgZnフェライト、MnMgAlフェライト、MnCuZnフェライト、コバルトフェライト、ニッケル鉄合金、鉄シリコン合金、鉄アルミニウム合金、銅、アルミニウム、鉄、又はニッケル。   In the above method embodiment, the magnetic induction substrate or magnetic induction layer is composed of an organic resin and an inorganic powder, and the organic resin and the inorganic powder are about 15 to 35% and 85 to 65 of the magnetic induction substrate and the magnetic induction layer, respectively. Occupy% weight percent. The organic resin is selected from the following materials or compositions thereof: polyimide (PI), polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polypropylene (PP), Polyethersulfone (Polyethersulfone, PES), Polyphenylsulfone (Polyphenylene Sulfone, PPSU), Polyparaphenylenebenzobisoxazole (Poly-p-phenylenebenzoxazole, PBO), Liquid crystal polymer (Liquid Crystal Ply, LC) Acrylate), Polyurethane (Polyurethane, PU), or an epoxy resin (Epoxy). The inorganic powder is selected from the following materials or compositions thereof: MnZn ferrite, NiZn ferrite, NiCuZn ferrite, MnMgZn ferrite, MnMgAl ferrite, MnCuZn ferrite, cobalt ferrite, nickel iron alloy, iron silicon alloy, iron aluminum alloy, copper, Aluminum, iron, or nickel.

明細書に記載された実施例と図面を参照することで本発明のそれぞれ異なる実施例の構造について全体的に理解できるはずである。当該図面と説明は上記構造または方法を利用した装置とシステムにおける全ての素子及び特徴について完全に記述しようとするのではない。本発明の明細書を参照することで、当業者は本発明のその他の多くの実施例を想到できるはずであり、それも本発明の開示内容に属するのは言うまでもない。本発明の範囲を超えない限り、本発明は構造及び論理上の置換と変形を行うことができる。例えば、本発明において、無線周波数認識素子の誘導コイルと金属配線層は磁気誘導基板の同一側に設置することもでき、無線周波数認識素子の磁気誘導基板は複数層軟性回路基板の設計を採用することができ、無線周波数認識素子が採用又は結合した無線周波数認識チップは無線周波数認識以外のその他の機能、例えば電圧安定化、整流、信号転換などを実行することができる。無線周波数認識素子を製造した後その他の製造工程を行うこともできる。例えばタグラミネーション、標記印刷など。この以外、明細書に示された図面は図示の役割をするだけで比例に従って製作されたものではない。図面における一部は強調の役割を果たすために拡大され、その他の一部は簡略されている。ゆえに、本発明の実施例と図面はただ例示に過ぎなく、本発明を限定するものではなく、本発明の範囲は請求の範囲によって定義されるべきである。   The structure of different embodiments of the present invention can be generally understood with reference to the embodiments and drawings described in the specification. The drawings and description are not intended to be a complete description of all elements and features in apparatus and systems utilizing the structures or methods described above. By referring to the description of the invention, those skilled in the art will be able to conceive of many other embodiments of the invention, which of course belong to the disclosure of the invention. The present invention is capable of structural and logical substitutions and modifications without departing from the scope of the present invention. For example, in the present invention, the induction coil and the metal wiring layer of the radio frequency recognition element can be installed on the same side of the magnetic induction board, and the magnetic induction board of the radio frequency recognition element adopts a multi-layer flexible circuit board design. The radio frequency recognition chip employed or combined with the radio frequency recognition element may perform other functions other than radio frequency recognition, such as voltage stabilization, rectification, and signal conversion. Other manufacturing steps may be performed after the radio frequency recognition element is manufactured. For example, tag lamination and title printing. Other than the above, the drawings shown in the specification serve only as illustrations and are not manufactured in proportion. Some of the drawings are enlarged to serve as an emphasis and others are simplified. Therefore, the embodiments of the present invention and the drawings are merely examples, and do not limit the present invention. The scope of the present invention should be defined by the claims.

Claims (16)

有機樹脂と無機粉末から製造された磁気誘導基板と、
前記磁気誘導基板の一側表面に形成された誘導コイルと、
前記磁気誘導基板の一側表面に形成されると共に、前記誘導コイルと電気的に接続される金属配線層と、
を備え、
前記誘導コイルは前記磁気誘導基板の磁束特性を参照して前記磁気誘導基板の表面に設置されることを特徴とする薄型回路基板。
A magnetic induction substrate manufactured from an organic resin and an inorganic powder;
An induction coil formed on one surface of the magnetic induction substrate;
A metal wiring layer formed on one surface of the magnetic induction substrate and electrically connected to the induction coil;
With
A thin circuit board, wherein the induction coil is installed on a surface of the magnetic induction board with reference to a magnetic flux characteristic of the magnetic induction board.
前記誘導コイルは一層以上のコイルを含み、前記各層の誘導コイル間に磁気誘導層が形成されており、前記磁気誘導層は有機樹脂と無機粉末から製造されることを特徴とする請求項1に記載の薄型回路基板。   2. The induction coil according to claim 1, wherein the induction coil includes one or more coils, a magnetic induction layer is formed between the induction coils of each layer, and the magnetic induction layer is manufactured from an organic resin and an inorganic powder. The thin circuit board as described. 前記磁気誘導基板において、有機樹脂と無機粉末はそれぞれ前記磁気誘導基板の約15〜35%と85〜65%の重量パーセントを占めることを特徴とする請求項1に記載の薄型回路基板。   2. The thin circuit board according to claim 1, wherein the organic resin and the inorganic powder occupy about 15 to 35% and 85 to 65% by weight of the magnetic induction board, respectively. 前記磁気誘導層において、有機樹脂と無機粉末はそれぞれ前記磁気誘導層の約15〜35%と85〜65%の重量パーセントを占めることを特徴とする請求項2に記載の薄型回路基板。   3. The thin circuit board according to claim 2, wherein in the magnetic induction layer, the organic resin and the inorganic powder occupy about 15 to 35% and 85 to 65% by weight of the magnetic induction layer, respectively. 前記有機樹脂はポリイミド、ポリエチレンテレフタラート、ポリエチレンナフタレート、ポリプロピレン、ポリエーテルサルホン、ポリフェニルサルフォン、ポリパラフェニレンベンゾビスオキサゾール、液晶ポリマー、アクリレート、ポリウレタン、又はエポキシ樹脂或いはこれらの組成物から選択されることを特徴とする請求項3又は4に記載の薄型回路基板。   The organic resin is selected from polyimide, polyethylene terephthalate, polyethylene naphthalate, polypropylene, polyethersulfone, polyphenylsulfone, polyparaphenylenebenzobisoxazole, liquid crystal polymer, acrylate, polyurethane, or epoxy resin or a composition thereof. The thin circuit board according to claim 3, wherein the thin circuit board is formed. 前記無機粉末はMnZnフェライト、NiZnフェライト、NiCuZnフェライト、MnMgZnフェライト、MnMgAlフェライト、MnCuZnフェライト、コバルトフェライト、ニッケル鉄合金、鉄シリコン合金、鉄アルミニウム合金、銅、アルミニウム、鉄、又はニッケル或いはこれらの組成物から選択されることを特徴とする請求項3又は4に記載の薄型回路基板。   The inorganic powder is MnZn ferrite, NiZn ferrite, NiCuZn ferrite, MnMgZn ferrite, MnMgAl ferrite, MnCuZn ferrite, cobalt ferrite, nickel iron alloy, iron silicon alloy, iron aluminum alloy, copper, aluminum, iron, nickel, or a composition thereof. The thin circuit board according to claim 3 or 4, wherein the thin circuit board is selected from the following. 前記磁気誘導基板の一側表面に集積回路が付着され、前記集積回路は前記金属配線層と電気的に接続されることを特徴とする請求項1に記載の薄型回路基板。   The thin circuit board according to claim 1, wherein an integrated circuit is attached to one surface of the magnetic induction substrate, and the integrated circuit is electrically connected to the metal wiring layer. 前記集積回路は前記誘導コイルと電気的に接続されることを特徴とする請求項7に記載の薄型回路基板。   The thin circuit board according to claim 7, wherein the integrated circuit is electrically connected to the induction coil. 前記薄型回路基板は無線周波数認識素子であることを特徴とする請求項1に記載の薄型回路基板。   The thin circuit board according to claim 1, wherein the thin circuit board is a radio frequency recognition element. 有機樹脂と無機粉末から製造される磁気誘導基板を形成するステップ、
前記磁気誘導基板の一側表面に誘導コイルを形成し、前記磁気誘導基板の磁束特性を参照して前記誘導コイルを前記磁気誘導基板の表面に形成するステップ、及び
前記磁気誘導基板の一側表面に前記誘導コイルと電気的に接続する金属配線層を形成するステップ、を備えることを特徴とする薄型回路基板の製造方法。
Forming a magnetic induction substrate manufactured from an organic resin and an inorganic powder;
Forming an induction coil on one side surface of the magnetic induction substrate, and forming the induction coil on the surface of the magnetic induction substrate with reference to magnetic flux characteristics of the magnetic induction substrate; and one side surface of the magnetic induction substrate Forming a metal wiring layer electrically connected to the induction coil. A method for manufacturing a thin circuit board, comprising:
前記誘導コイルは一層以上のコイルを含み、前記各層の誘導コイル間に磁気誘導層が形成されており、前記磁気誘導層は有機樹脂と無機粉末によって製造されることを特徴とする請求項10に記載の薄型回路基板の製造方法。   11. The induction coil according to claim 10, wherein the induction coil includes one or more coils, and a magnetic induction layer is formed between the induction coils of each layer, and the magnetic induction layer is made of an organic resin and an inorganic powder. The manufacturing method of the thin circuit board of description. 前記磁気誘導基板において、有機樹脂と無機粉末はそれぞれ前記磁気誘導基板の約15〜35%と約85〜65%の重量パーセントを占めることを特徴とする請求項10に記載の薄型回路基板の製造方法。   11. The thin circuit board according to claim 10, wherein in the magnetic induction substrate, the organic resin and the inorganic powder account for about 15 to 35% and about 85 to 65% by weight of the magnetic induction substrate, respectively. Method. 前記磁気誘導層において、有機樹脂と無機粉末はそれぞれ前記磁気誘導層の約15〜35%と約85〜65%の重量パーセントを占めることを特徴とする請求項11に記載の薄型回路基板の製造方法。   The thin circuit board of claim 11, wherein the organic resin and the inorganic powder account for about 15 to 35% and about 85 to 65% of the magnetic induction layer, respectively, in the magnetic induction layer. Method. 前記有機樹脂はポリイミド、ポリエチレンテレフタラート、ポリエチレンナフタレート、ポリプロピレン、ポリエーテルサルホン、ポリフェニルサルフォン、ポリパラフェニレンベンゾビスオキサゾール、液晶ポリマー、アクリレート、ポリウレタン、又はエポキシ樹脂或いはその組成物から選択されることを特徴とする請求項12又は13に記載の薄型回路基板の製造方法。   The organic resin is selected from polyimide, polyethylene terephthalate, polyethylene naphthalate, polypropylene, polyethersulfone, polyphenylsulfone, polyparaphenylenebenzobisoxazole, liquid crystal polymer, acrylate, polyurethane, or epoxy resin or a composition thereof. 14. The method for manufacturing a thin circuit board according to claim 12, wherein the thin circuit board is manufactured. 前記無機粉末は、MnZnフェライト、NiZnフェライト、NiCuZnフェライト、MnMgZnフェライト、MnMgAlフェライト、MnCuZnフェライト、コバルトフェライト、ニッケル鉄合金、鉄シリコン合金、鉄アルミニウム合金、銅、アルミニウム、鉄、又はニッケル或いはその組成物から選択されることを特徴とする請求項12又は13に記載の薄型回路基板の製造方法。   The inorganic powder is MnZn ferrite, NiZn ferrite, NiCuZn ferrite, MnMgZn ferrite, MnMgAl ferrite, MnCuZn ferrite, cobalt ferrite, nickel iron alloy, iron silicon alloy, iron aluminum alloy, copper, aluminum, iron, nickel or a composition thereof. 14. The method of manufacturing a thin circuit board according to claim 12, wherein the thin circuit board is selected from the following. 前記磁気誘導基板の一側表面に集積回路を付着し、前記集積回路を、前記金属配線層を経由して前記誘導コイルに電気的に接続するステップをさらに備えることを特徴とする請求項10に記載の薄型回路基板の製造方法。   11. The method of claim 10, further comprising attaching an integrated circuit to one surface of the magnetic induction substrate and electrically connecting the integrated circuit to the induction coil through the metal wiring layer. The manufacturing method of the thin circuit board of description.
JP2013520953A 2010-07-27 2011-07-15 Thin circuit board having induction coil and method for manufacturing the same Withdrawn JP2013534364A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN2010102392610A CN102339407A (en) 2010-07-27 2010-07-27 Thin circuit board with induction coil and method for manufacturing circuit board
CN201010239261.0 2010-07-27
PCT/CN2011/077189 WO2012013119A1 (en) 2010-07-27 2011-07-15 Thin pcb having induction coil and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JP2013534364A true JP2013534364A (en) 2013-09-02

Family

ID=45515128

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013520953A Withdrawn JP2013534364A (en) 2010-07-27 2011-07-15 Thin circuit board having induction coil and method for manufacturing the same

Country Status (4)

Country Link
JP (1) JP2013534364A (en)
KR (1) KR20130069739A (en)
CN (1) CN102339407A (en)
WO (1) WO2012013119A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103295049A (en) * 2013-06-27 2013-09-11 中国兵器工业集团第五三研究所 Flexible ultrahigh-frequency anti-metal electronic tag
CN103793743B (en) * 2013-12-13 2017-03-01 上海市信息网络有限公司 Flexible ultra high frequency IC tag
BR102015000943A2 (en) 2014-01-17 2016-06-07 Dow Agrosciences Llc increased protein expression in plant
CN105764029B (en) * 2016-04-19 2021-11-26 福州佳璞辨溯科技有限公司 RFID-based video positioning system and positioning method
CN105875431B (en) * 2016-04-19 2019-03-08 福州市佳璞电子商务有限公司 RFID transceiver, the small-sized livestock and poultry based on RFID transceiver flock together alarm system and alarm method
CN110429072A (en) * 2019-08-15 2019-11-08 广东工业大学 A kind of upside-down mounting radio frequency chip and a kind of radio-frequency devices
CN114048831A (en) * 2021-11-08 2022-02-15 惠州中启宏业电子技术有限公司 Straight-edge anti-theft label

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1243294A (en) * 1998-07-28 2000-02-02 东芝株式会社 Integrated circuit card, data read-write device and radio mark and mfg. method therefor
JP4067858B2 (en) * 2002-04-16 2008-03-26 東京エレクトロン株式会社 ALD film forming apparatus and ALD film forming method
JP2006127424A (en) * 2004-11-01 2006-05-18 Daido Steel Co Ltd Radio tag
US7315248B2 (en) * 2005-05-13 2008-01-01 3M Innovative Properties Company Radio frequency identification tags for use on metal or other conductive objects
CN101390111B (en) * 2006-02-22 2012-01-11 东洋制罐株式会社 Base material for RFID tag adapted to metallic material

Also Published As

Publication number Publication date
WO2012013119A1 (en) 2012-02-02
KR20130069739A (en) 2013-06-26
CN102339407A (en) 2012-02-01

Similar Documents

Publication Publication Date Title
JP2013534364A (en) Thin circuit board having induction coil and method for manufacturing the same
US7158033B2 (en) RFID device with combined reactive coupler
CN104217240B (en) Chip card module, chip card and the method for manufacturing chip card module
JP5041075B2 (en) Wireless IC device and wireless IC module
EP0737935B1 (en) Non-contact IC card and process for its production
CN101346853B (en) Antenna built-in module, card type information device and methods for manufacturing them
US20060044769A1 (en) RFID device with magnetic coupling
JP2017169217A (en) Article
US20070096910A1 (en) Inductively powered transponder device
US20090145971A1 (en) Printed wireless rf identification label structure
JP2010231763A (en) Ic card
US10381720B2 (en) Radio frequency identification (RFID) integrated circuit (IC) and matching network/antenna embedded in surface mount devices (SMD)
US20100067200A1 (en) Data carrier for contactless data transmission and a method for producing such a data carrier
TWI404467B (en) The thin circuit board with induction coil and method of the same
JP4840275B2 (en) Wireless IC device and electronic apparatus
US9336475B2 (en) Radio IC device and radio communication terminal
US8720789B2 (en) Wireless IC device
CN103366215A (en) Data carrier for contactless data transmission and method for producing the same
TWM396454U (en) The thin circuit board with induction coil
JP5746543B2 (en) Non-contact communication medium
JP4867831B2 (en) Wireless IC device
JP2015108933A (en) Noncontact ic card
WO2024142940A1 (en) Light-emitting module
JP5098478B2 (en) Wireless IC device and manufacturing method thereof
JP2009025930A (en) Radio ic device and method for manufacturing the same

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20141007