JP2013510990A - Use of powder coated nickel foam as a resistor to increase the temperature of a catalytic converter device by using electricity - Google Patents

Use of powder coated nickel foam as a resistor to increase the temperature of a catalytic converter device by using electricity Download PDF

Info

Publication number
JP2013510990A
JP2013510990A JP2012538964A JP2012538964A JP2013510990A JP 2013510990 A JP2013510990 A JP 2013510990A JP 2012538964 A JP2012538964 A JP 2012538964A JP 2012538964 A JP2012538964 A JP 2012538964A JP 2013510990 A JP2013510990 A JP 2013510990A
Authority
JP
Japan
Prior art keywords
catalyst
material comprises
substrate
temperature
titanium dioxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2012538964A
Other languages
Japanese (ja)
Inventor
ロバーツ,トーマス・リチャード
Original Assignee
エアーフロー・カタリスト・システムズ,インコーポレーテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エアーフロー・カタリスト・システムズ,インコーポレーテッド filed Critical エアーフロー・カタリスト・システムズ,インコーポレーテッド
Publication of JP2013510990A publication Critical patent/JP2013510990A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2006Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating
    • F01N3/2013Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating using electric or magnetic heating means
    • F01N3/2026Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating using electric or magnetic heating means directly electrifying the catalyst substrate, i.e. heating the electrically conductive catalyst substrate by joule effect
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • F01N13/0093Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series the purifying devices are of the same type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • F01N13/0097Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series the purifying devices are arranged in a single housing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • F01N3/027Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using electric or magnetic heating means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/033Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices
    • F01N3/035Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices with catalytic reactors, e.g. catalysed diesel particulate filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N9/00Electrical control of exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2330/00Structure of catalyst support or particle filter
    • F01N2330/22Metal foam
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

開示されている発明は、ディーゼルエンジンの触媒反応の最適化に関する。粉末被覆されたニッケル又は他の金属系発泡体が、触媒変換器の基板兼抵抗器として使用されている。開示されている方法は、電流を用いて金属系発泡体を加熱してディーゼル排気を昇温させ、それにより触媒反応の起こる温度を最適化する閉ループシステムを使用している。開示されている装備は、触媒被覆を備える金属系発泡体基板を備えている。基板は、触媒反応を最適化するべく電流を用いて加熱される。金属系発泡体基板を被覆するのに各種ウォシュコート及び/又は触媒を使用することができ、最適温度は、使用される触媒によって決まる。
【選択図】図1
The disclosed invention relates to optimizing the catalytic reaction of a diesel engine. Powder coated nickel or other metal foam is used as a substrate and resistor for catalytic converters. The disclosed method uses a closed loop system that uses a current to heat the metallic foam to raise the temperature of the diesel exhaust, thereby optimizing the temperature at which the catalytic reaction occurs. The disclosed equipment comprises a metal foam substrate with a catalyst coating. The substrate is heated using an electric current to optimize the catalytic reaction. Various washcoats and / or catalysts can be used to coat the metal foam substrate, and the optimum temperature depends on the catalyst used.
[Selection] Figure 1

Description

本開示は、触媒変換器の反応の最適化に関する。より厳密には、本開示は、粉末被覆されたニッケル発泡体を、触媒変換器装置の温度を増加させそれにより装置の効率を上げるための抵抗器として使用することに関する。   The present disclosure relates to optimization of catalytic converter reactions. More precisely, the present disclosure relates to the use of powder coated nickel foam as a resistor to increase the temperature of the catalytic converter device and thereby increase the efficiency of the device.

触媒変換器の温度は、触媒変換器の効率に影響を及ぼす最も重大な要因の1つである。高い温度でも低い温度でも効率は急速に落下するものであり、効率が最大となる動作温度の帯域は比較的狭い帯域に限定される。最も重要なこととして、自動車やトラックのエンジンが動作を開始するとき、触媒変換器は、排気中の汚染物質を減らすのに必要な反応を発生させるには低すぎる温度にある。エンジンが始動したとき、触媒変換器は排気中の汚染物質を減らすために全くと言っていいほど何もしていない。   The temperature of the catalytic converter is one of the most important factors affecting the efficiency of the catalytic converter. The efficiency drops rapidly at both high and low temperatures, and the operating temperature band where the efficiency is maximum is limited to a relatively narrow band. Most importantly, when an automobile or truck engine begins to operate, the catalytic converter is at a temperature that is too low to produce the reaction necessary to reduce pollutants in the exhaust. When the engine starts, the catalytic converter does nothing at all to reduce pollutants in the exhaust.

これまで、多くの触媒変換器は、触媒反応を起して有害な排気ガスである主として一酸化炭素(CO)と窒素酸化物(NO)を有害性の低いガスである主として二酸化炭素と窒素(N)と酸素(O)に変換して大気中に吐き出させるのに必要な温度を発生させるために、車両の排気流中に存在する熱を使用してきた。触媒変換器を加熱するのに使用されている1つの解決手法は、触媒変換器をエンジンのより近くへ移し、より高温の排気ガスが変換器に到達できるようにすることである。この配置の仕方は、触媒変換器がより速やかに昇温することを可能にしはするが、変換器を極めて高い温度に曝すことにより変換器の寿命を縮めてしまう可能性がある。 To date, many catalytic converters have catalyzed a harmful exhaust gas, mainly carbon monoxide (CO) and nitrogen oxide (NO), which are less harmful gases, mainly carbon dioxide and nitrogen ( The heat present in the exhaust stream of a vehicle has been used to generate the temperature necessary to convert it into N 2 ) and oxygen (O 2 ) and exhale it into the atmosphere. One solution that has been used to heat the catalytic converter is to move the catalytic converter closer to the engine so that hotter exhaust gases can reach the converter. This arrangement allows the catalytic converter to warm up more quickly, but exposing the converter to very high temperatures can shorten the life of the converter.

触媒変換器を予熱するというのが、効率を上げ排出物を減らすためのもう1つのやり方である。変換器を予熱する場合の最もよく普及しているやり方の1つは、電気抵抗ヒーターを使用することである。殆どの乗用車及びトラックに載っている12ボルトの電気系統では、触媒変換器を十分に速やかに加熱するのに十分なエネルギー又はパワーを提供するのは無理である。高電圧バッテリーパックを備えるハイブリッド車は、触媒変換器を非常に速やかに昇温させるのに十分なパワーを提供できる場合もある。   Preheating the catalytic converter is another way to increase efficiency and reduce emissions. One of the most popular ways to preheat the transducer is to use an electrical resistance heater. In the 12-volt electrical system on most passenger cars and trucks, it is impossible to provide enough energy or power to heat the catalytic converter quickly enough. A hybrid vehicle with a high voltage battery pack may be able to provide enough power to raise the temperature of the catalytic converter very quickly.

標準エンジンに比べ、ディーゼルエンジンの触媒変換器は、より低い温度で作動しているため、なおいっそう効率が低い。この問題に対する1つの解決手法は、変換器に到達するより手前の排気管に尿素溶液(炭素、窒素、酸素、及び水素で作られている有機化合物)を注入するシステムである。尿素は蒸発し、排気と混ざり合って、窒素酸化物(NO)を減らす化学反応を引き起こす。尿素はNOと反応して窒素と水蒸気を発生させるので、排気ガス中の窒素酸化物が減る。もう1つの方法は、ディーゼル微粒子トラップを、排気流中の可溶性有機分が凝縮する結果としてトラップの中に形成される煤を焼却できるほどに加熱することである。この加熱は、排気ガスを用いて熱的に達成されている。 Compared to standard engines, diesel engine catalytic converters are even less efficient because they operate at lower temperatures. One solution to this problem is a system that injects a urea solution (an organic compound made of carbon, nitrogen, oxygen, and hydrogen) into the exhaust pipe before it reaches the converter. Urea was evaporated and mixed with the exhaust, causing a chemical reaction to reduce nitrogen oxides (NO X). Urea reacts with NO X to generate nitrogen and water vapor, so that nitrogen oxides in the exhaust gas are reduced. Another method is to heat the diesel particulate trap to such an extent that the soot formed in the trap as a result of the condensation of soluble organics in the exhaust stream can be incinerated. This heating is achieved thermally using exhaust gas.

本発明は、金属系発泡体を、(単数又は複数の)触媒用の支持体として使用すると共に、閉ループサーモスタット調節式制御装置に取り付けて抵抗器そのものとしても使用している。本発明は、エンジンによって生成される残存電気エネルギーを、車両のラジオの様な他の電子装置と同じ要領で使用して、触媒変換器を、直接、触媒反応を実施するのにより効率的な温度へ加熱する。開示されている発明は、ディーゼルエンジン排気の温度を最適化する方法において、金属発泡体から成る基板を提供する段階と、基板を触媒材料で被覆する段階と、電流を用いて、基板を、触媒反応を最適化するように設計された温度範囲へ加熱する段階と、ディーゼルエンジン排気を基板の上方へ流して触媒材料に前記排気と相互作用させる段階と、を備える方法から成るものである。本発明の全ての実施形態では、基板は、ニッケル発泡体又は金属発泡体の形態をとるものとされている。触媒材料は、更に、ウォッシュコートを備えていてもよい。触媒材料は、鉄マンガン触媒、二酸化チタン触媒、選択的触媒還元(「SCR」)触媒、又は白金触媒を含め、各種触媒で構成することができるであろう。   The present invention uses the metal foam as a support for the catalyst (s) and is also attached to the closed loop thermostat adjustable control device and used as the resistor itself. The present invention uses the residual electrical energy produced by the engine in the same manner as other electronic devices such as vehicle radios, allowing the catalytic converter to perform a more efficient temperature directly to carry out the catalytic reaction. To heat. The disclosed invention provides a method for optimizing diesel engine exhaust temperature by providing a substrate comprising a metal foam, coating the substrate with a catalytic material, and using an electric current to catalyze the substrate. Heating to a temperature range designed to optimize the reaction and flowing a diesel engine exhaust over the substrate to cause the catalytic material to interact with the exhaust. In all embodiments of the invention, the substrate is assumed to be in the form of a nickel foam or a metal foam. The catalyst material may further comprise a washcoat. The catalyst material could be composed of various catalysts, including iron manganese catalysts, titanium dioxide catalysts, selective catalytic reduction (“SCR”) catalysts, or platinum catalysts.

開示されている発明は、更に、ディーゼルエンジン排気システムにおいて、ディーゼル排気を受け取るための入口を有するハウジングと、ハウジング内に在って触媒被覆を有している金属系発泡体基板と、前記基板を加熱するための電気系統と、ディーゼルエンジン排気を排出するための出口と、を備えているディーゼルエンジン排気システムから成るものである。システムの全ての実施形態では、基板は、ニッケル発泡体又は他の金属発泡体の形態をとるものとされている。触媒被覆は、更に、ウォッシュコートを備えていてもよい。触媒被覆は、鉄マンガン触媒、二酸化チタン触媒、SCR触媒、又は白金触媒を含め、各種触媒で構成することができるであろう。   The disclosed invention further includes, in a diesel engine exhaust system, a housing having an inlet for receiving diesel exhaust, a metallic foam substrate having a catalyst coating in the housing, and the substrate. It comprises a diesel engine exhaust system comprising an electrical system for heating and an outlet for exhausting diesel engine exhaust. In all embodiments of the system, the substrate is assumed to be in the form of a nickel foam or other metal foam. The catalyst coating may further comprise a washcoat. The catalyst coating could be composed of various catalysts including iron manganese catalyst, titanium dioxide catalyst, SCR catalyst, or platinum catalyst.

特許請求の対象である金属系発泡体基板兼抵抗器の概略図であり、電流源1、DC制御装置2、金属発泡体シート3、母線4、サーモカプル又は他の高温測定装置5を示している。1 is a schematic diagram of a metal foam substrate / resistor that is the subject of a claim, showing a current source 1, a DC control device 2, a metal foam sheet 3, a bus bar 4, a thermocouple or other high temperature measuring device 5. . 触媒変換器装置の概略図であり、排気1の流れ、通電させる触媒2並びに含まれている発泡体基板3、制御ユニット4、ディーゼル微粒子フィルタ5、第2の触媒6、及びハウジング7を示している。1 is a schematic diagram of a catalytic converter device, showing the flow of exhaust 1, a catalyst 2 to be energized, and a foam substrate 3 included, a control unit 4, a diesel particulate filter 5, a second catalyst 6 and a housing 7. Yes.

開示されている発明は、粉末被覆されたニッケル発泡体を、触媒変換器装置の温度を増加させそれにより装置の効率を上げるための抵抗器として使用することを記載している。従来、触媒変換器は、幾つかの構成要素、即ち、(1)基板であって、殆どの場合がセラミックハニカム又はステンレス鋼箔ハニカムである基板、(2)ウォッシュコートであって、多くの場合がシリコンとアルミニウムと他の元素の混合物であり、基板表面より遥かに大きい表面積を有する粗く凸凹した表面を形成するウォッシュコート、及び(3)触媒そのものであって、多くの場合が白金やパラジウムの様な貴金属である触媒、から成っている。触媒は、基板へ塗工される前にウォッシュコート(懸濁液)へ添加される。   The disclosed invention describes the use of powder coated nickel foam as a resistor to increase the temperature of the catalytic converter device and thereby increase the efficiency of the device. Traditionally, catalytic converters have several components: (1) substrates, most often ceramic honeycombs or stainless steel foil honeycombs, (2) washcoats, often Is a mixture of silicon, aluminum, and other elements, a washcoat that forms a rough, uneven surface having a surface area much larger than the substrate surface, and (3) the catalyst itself, often in the form of platinum or palladium. It consists of a catalyst that is a noble metal. The catalyst is added to the washcoat (suspension) before being applied to the substrate.

開示されている方法及び装備では、基盤は、粉末被覆されたニッケル発泡体であり、同発泡体は、Inco Limitedに保持されている、2006年2月20日付けの「開放細孔金属発泡体を備えるディーゼル粒子フィルタ」という名称のドイツ特許第DE1025006009164A1号に開示されているプロセスに従って製造されている。100%開放細孔材料の優れた延性と高い可撓性のおかげで、基板設計を自由に決められる。異なった孔隙率により、システムの深層濾過のレベルを定めることが可能になる。発泡体は、その高い温度耐性及び腐食耐性と非常に優れた煤蓄積能力とが相まって、有効な基板としての役目を果たす。製造プロセス時、ニッケル金属発泡体は、特定の用途及び設計に特注仕立てされている高合金粉末で被覆され、熱処理が施される。溶融が起こり、軽金属発泡体の比表面積を拡大させる。同時に、熱伝導性合金発泡体の温度耐性は1000℃まで上がり、ピークは1200℃にもなる。発泡体は、可撓性且つ延性であり、どの長さで切断することもできる。材料は、焼結され、シートとして製造することもできる。当技術では他の型式の金属系抵抗製品も知られており、それらも開示されている方法及び装備で使用することができるであろう。   In the disclosed method and equipment, the base is a powder-coated nickel foam, which is held by Inco Limited, “open pore metal foam, dated 20 February 2006. It is manufactured according to the process disclosed in German Patent DE 1025000060091A1 entitled "Diesel particulate filter with". Thanks to the excellent ductility and high flexibility of the 100% open pore material, the substrate design can be freely determined. Different porosity makes it possible to define the level of depth filtration of the system. The foam, combined with its high temperature and corrosion resistance and very good soot storage capacity, serves as an effective substrate. During the manufacturing process, the nickel metal foam is coated with a high alloy powder tailored to a specific application and design and subjected to a heat treatment. Melting occurs and enlarges the specific surface area of the light metal foam. At the same time, the temperature resistance of the thermally conductive alloy foam increases to 1000 ° C., and the peak reaches 1200 ° C. The foam is flexible and ductile and can be cut at any length. The material can also be sintered and manufactured as a sheet. Other types of metal resistance products are also known in the art and could be used with the disclosed methods and equipment.

発泡体を触媒変換器として使えるようにするために、発泡体には数多くの異なったウォッシュコート及び/又は触媒を塗工することができる。塗工されている触媒は、二酸化窒素(NO)の量を増加させ、窒素酸化物(NO)の量を減少させ、一酸化炭素(CO)の含有量を減らし、炭化水素の含有量を減らす。更に、発泡体は、受動的に再生するDPFとして機能することができる。ドイツ特許第DE102006009164A1号に開示されている様に、ニッケル発泡体に塗工されている粉末被覆は、鉄とクロムの組合せである。粉末が塗工された後、材料は焼結されて、より広い表面積を持つ材料となる。 Many different washcoats and / or catalysts can be applied to the foam to make it usable as a catalytic converter. The catalyst being applied increases the amount of nitrogen dioxide (NO 2 ), decreases the amount of nitrogen oxides (NO x ), decreases the content of carbon monoxide (CO), and the content of hydrocarbons Reduce. Further, the foam can function as a passively regenerating DPF. As disclosed in German Patent DE 102006009164A1, the powder coating applied to the nickel foam is a combination of iron and chromium. After the powder is applied, the material is sintered into a material with a larger surface area.

粉末被覆されたニッケル発泡体は、それ自体は触媒としての性質を持たないが、適切なウォッシュコート及び/又は触媒を含んでいる触媒材料のための優良な支持体である。発泡体には、少なくとも4つの異なった触媒被覆、即ち(1)COを二酸化炭素(CO)に変換する鉄マンガン触媒、(2)COをCOに変換し、炭化水素をCOと水蒸気に変換する、触媒ウォッシュコート及び白金触媒、(3)NOを一酸化窒素(NO)に変換する、二酸化チタン(TO)から作られている触媒、及び(4)NOを窒素ガス(N)と水に変換する触媒、が塗工されている。NOを窒素ガス(N)と水に変換する触媒は、基材金属(バナジウムとタングステンなど)の酸化物とゼオライトを含め、何れの型式のSCR触媒であってもよい。他の触媒被覆が商業的に又は現在の技術に存在しており、それらをニッケル発泡体に塗工することもできる。 Powder coated nickel foam is not a catalyst itself, but is a good support for a catalyst material containing a suitable washcoat and / or catalyst. The foam has at least four different catalyst coatings: (1) an iron-manganese catalyst that converts CO to carbon dioxide (CO 2 ), (2) converts CO to CO 2, and converts hydrocarbons to CO 2 and water vapor A catalyst washcoat and platinum catalyst that converts to (3) a catalyst made from titanium dioxide (TO 2 ) that converts NO 2 to nitric oxide (NO), and (4) NO X to nitrogen gas ( N 2 ) and a catalyst that converts to water are applied. The catalyst for converting NO X into nitrogen gas (N 2 ) and water may be any type of SCR catalyst, including base metal (such as vanadium and tungsten) oxides and zeolite. Other catalyst coatings exist commercially or in current technology, and they can also be applied to nickel foam.

触媒材料毎に触媒が最も効果を発揮する温度があることはよく知られている。多くのディーゼルシステムでは、排気排出物は、触媒が最も効果を発揮する温度には決して達しないか、或いはゆっくりとしか到達しない。開示されている実施形態では、触媒支持体として使用されている金属発泡体は、少量の電流を用いて触媒を最も効率的な温度に制御するべく電流が送り込まれる。電流は、エンジン活動の副産物として生成されるものであり、よって、エンジン系統へ追加のエネルギーを導入することは無用である。システムは、排気流の温度を測定し次いで電流の量を調節して事前に選択されている温度を維持させるサーモカプルを使用している閉ループシステムである。システムのための回路構成は、電子技術の分野における当業者であれば必要以上の実験をせずとも設計することができるであろう。   It is well known that for each catalyst material there is a temperature at which the catalyst is most effective. In many diesel systems, exhaust emissions never reach the temperature at which the catalyst is most effective or only slowly. In the disclosed embodiment, the metal foam being used as the catalyst support is fed with current to control the catalyst to the most efficient temperature using a small amount of current. Current is generated as a by-product of engine activity, so it is not necessary to introduce additional energy into the engine system. The system is a closed loop system using a thermocouple that measures the temperature of the exhaust stream and then adjusts the amount of current to maintain a preselected temperature. The circuit configuration for the system could be designed without undue experimentation by those skilled in the electronic arts.

開示されている装備は、金属発泡体の温度を増加させるために適度な電流を供給することのできるバッテリー又は発電源の何れかに取り付けられている回路を備える調節可能な直流電気源から成る。電流源は、サーモカプルからの、又は限定するわけではないが抵抗温度計、充満式温度計、バイメタル温度計、又は放射高温計を含む他の型式の温度センサーからの、温度入力を受信する比例制御装置によってサーモスタット式に制御されている。システムは、更に、化学技術者ハンドブック(Chemical Engineer's Handbook)の第22章に記載されている装置に従って構築することができるとされる制御装置を含んでいる。電流は、シート又は他の形態をとっている金属発泡体の互いに反対の側に接続されている母線に接続された配線によって運ばれる。発泡体は、エンジンからの排出物を受け入れる容器で、触媒変換器支持体を収容するのに典型的に使用されている様な容器の中に搭載されている。但し、開示されている発明では、触媒支持体は触媒及び周囲の排気を最適温度へ加熱するヒーターとしての役目も果たしている。   The disclosed equipment consists of an adjustable DC electrical source with a circuit attached to either a battery or a power source that can supply a moderate current to increase the temperature of the metal foam. The current source is a proportional control that receives temperature input from a thermocouple or from other types of temperature sensors including, but not limited to, resistance thermometers, filled thermometers, bimetal thermometers, or radiation pyrometers. It is controlled in a thermostatic manner by the device. The system further includes a controller that can be constructed in accordance with the apparatus described in Chapter 22 of the Chemical Engineer's Handbook. The current is carried by wiring connected to buses connected to opposite sides of the sheet or other form of metal foam. The foam is a container that receives the exhaust from the engine and is mounted in a container such as is typically used to contain the catalytic converter support. However, in the disclosed invention, the catalyst support also serves as a heater that heats the catalyst and surrounding exhaust to an optimum temperature.

(図1)
1 金属系発泡体基板兼抵抗器の電流源
2 金属系発泡体基板兼抵抗器のDC制御装置
3 金属系発泡体基板兼抵抗器の金属発泡体シート
4 金属系発泡体基板兼抵抗器の母線
5 金属系発泡体基板兼抵抗器のサーモカプル又は他の高温測定装置
(図2)
1 触媒変換器装置の排気
2 触媒変換器装置の触媒
3 触媒変換器装置の発泡体基板
4 触媒変換器装置の制御ユニット
5 触媒変換器装置のディーゼル微粒子フィルタ
6 触媒変換器装置の第2の触媒
7 触媒変換器装置のハウジング
(Figure 1)
1 Metal foam substrate / resistor current source 2 Metal foam substrate / resistor DC control device 3 Metal foam substrate / resistor metal foam sheet 4 Metal foam substrate / resistor bus 5 Thermocouple or other high-temperature measuring device for metal foam substrate and resistor (Figure 2)
DESCRIPTION OF SYMBOLS 1 Exhaust of catalyst converter device 2 Catalyst of catalyst converter device 3 Foam substrate of catalyst converter device 4 Control unit of catalyst converter device 5 Diesel particulate filter of catalyst converter device 6 Second catalyst of catalyst converter device 7 Housing for catalyst converter

Claims (36)

ディーゼルエンジン排気の温度を最適化する方法において、
触媒材料で被覆されている金属発泡体から成る基板を提供する段階と、
電流を前記基板に通すことによって、当該基板を、触媒反応を最適化するように設計されている温度範囲へ加熱する段階と、
前記ディーゼルエンジン排気を前記基板の上方へ流して前記触媒材料に当該排気と相互作用させる段階と、を備えている方法。
In a method of optimizing the temperature of diesel engine exhaust,
Providing a substrate comprising a metal foam coated with a catalytic material;
Heating the substrate to a temperature range designed to optimize the catalytic reaction by passing a current through the substrate;
Flowing the diesel engine exhaust above the substrate to cause the catalyst material to interact with the exhaust.
前記基板は、ニッケル発泡体の形態をとっている、請求項1に記載の方法。   The method of claim 1, wherein the substrate is in the form of a nickel foam. ウォッシュコートが触媒と組み合わされて前記触媒材料を形成している、請求項1に記載の方法。   The method of claim 1, wherein a washcoat is combined with a catalyst to form the catalyst material. 前記触媒材料は、鉄マンガン触媒を備えている、請求項1に記載の方法。   The method of claim 1, wherein the catalyst material comprises an iron manganese catalyst. 前記触媒材料は、二酸化チタンから成る触媒を備えている、請求項1に記載の方法。   The method of claim 1, wherein the catalyst material comprises a catalyst comprising titanium dioxide. 前記触媒材料は、SCR触媒を備えている、請求項1に記載の方法。   The method of claim 1, wherein the catalyst material comprises an SCR catalyst. ウォッシュコートが触媒と組み合わされて前記触媒材料を形成している、請求項2に記載の方法。   The method of claim 2, wherein a washcoat is combined with a catalyst to form the catalyst material. 前記触媒材料は、鉄マンガン触媒を備えている、請求項2に記載の方法。   The method of claim 2, wherein the catalyst material comprises an iron manganese catalyst. 前記触媒材料は、二酸化チタンから成る触媒を備えている、請求項2に記載の方法。   The method of claim 2, wherein the catalyst material comprises a catalyst comprising titanium dioxide. 前記触媒材料は、SCR触媒から成る触媒を備えている、請求項2に記載の方法。   The method of claim 2, wherein the catalyst material comprises a catalyst comprising an SCR catalyst. 前記触媒材料は、鉄マンガン触媒を備えている、請求項3に記載の方法。   The method of claim 3, wherein the catalyst material comprises an iron manganese catalyst. 前記触媒材料は、二酸化チタンから成る触媒を備えている、請求項3に記載の方法。   The method of claim 3, wherein the catalyst material comprises a catalyst comprising titanium dioxide. 前記触媒材料は、SCR触媒から成る触媒を備えている、請求項3に記載の方法。   4. The method of claim 3, wherein the catalyst material comprises a catalyst comprising an SCR catalyst. 前記触媒材料は、白金から成る触媒を備えている、請求項3に記載の方法。   The method of claim 3, wherein the catalyst material comprises a catalyst comprising platinum. 前記触媒材料は、鉄マンガン触媒を備えている、請求項7に記載の方法。   The method of claim 7, wherein the catalyst material comprises an iron manganese catalyst. 前記触媒材料は、二酸化チタンから成る触媒を備えている、請求項7に記載の方法。   The method of claim 7, wherein the catalyst material comprises a catalyst comprising titanium dioxide. 前記触媒材料は、SCR触媒から成る触媒を備えている、請求項7に記載の方法。   The method of claim 7, wherein the catalyst material comprises a catalyst comprising an SCR catalyst. 前記触媒材料は、白金から成る触媒を備えている、請求項7に記載の方法。   The method of claim 7, wherein the catalyst material comprises a catalyst comprising platinum. ディーゼルエンジン排気システムにおいて、ディーゼル排気を受け取るための入口を有するハウジングと、前記ハウジング内に在って触媒被覆を有している金属系発泡体基板と、前記基板を加熱するための電気系統と、ディーゼルエンジン排気を排出するための出口と、を備えている、ディーゼルエンジン排気システム。   In a diesel engine exhaust system, a housing having an inlet for receiving diesel exhaust, a metal foam substrate within the housing having a catalyst coating, and an electrical system for heating the substrate; A diesel engine exhaust system comprising: an outlet for exhausting diesel engine exhaust; 前記基板は、ニッケル発泡体の形態をとっている、請求項19に記載のシステム。   The system of claim 19, wherein the substrate is in the form of a nickel foam. 前記触媒被覆は、更に、ウォッシュコートを備えている、請求項19に記載のシステム。   The system of claim 19, wherein the catalyst coating further comprises a washcoat. 前記触媒被覆は、鉄マンガン触媒を備えている、請求項19に記載のシステム。   The system of claim 19, wherein the catalyst coating comprises an iron manganese catalyst. 前記触媒被覆は、二酸化チタンから成る触媒を備えている、請求項19に記載のシステム。   The system of claim 19, wherein the catalyst coating comprises a catalyst comprising titanium dioxide. 前記触媒被覆は、SCR触媒から成る触媒を備えている、請求項19に記載のシステム。   The system of claim 19, wherein the catalyst coating comprises a catalyst comprising an SCR catalyst. 前記触媒被覆は、更に、ウォッシュコートを備えている、請求項20に記載のシステム。   21. The system of claim 20, wherein the catalyst coating further comprises a washcoat. 前記触媒被覆は、鉄マンガン触媒を備えている、請求項20に記載のシステム。   21. The system of claim 20, wherein the catalyst coating comprises an iron manganese catalyst. 前記触媒被覆は、二酸化チタンから成る触媒を備えている、請求項20に記載のシステム。   21. The system of claim 20, wherein the catalyst coating comprises a catalyst comprising titanium dioxide. 前記触媒被覆は、SCR触媒から成る触媒を備えている、請求項20に記載のシステム。   21. The system of claim 20, wherein the catalyst coating comprises a catalyst comprising an SCR catalyst. 前記触媒被覆は、鉄マンガン触媒を備えている、請求項21に記載のシステム。   The system of claim 21, wherein the catalyst coating comprises an iron manganese catalyst. 前記触媒被覆は、二酸化チタンから成る触媒を備えている、請求項21に記載の方法。   The method of claim 21, wherein the catalyst coating comprises a catalyst comprising titanium dioxide. 前記触媒被覆は、SCR触媒から成る触媒を備えている、請求項21に記載のシステム。   The system of claim 21, wherein the catalyst coating comprises a catalyst comprising an SCR catalyst. 前記触媒材料は、白金から成る触媒を備えている、請求項21に記載のシステム。   The system of claim 21, wherein the catalyst material comprises a catalyst comprising platinum. 前記触媒材料は、鉄マンガン触媒を備えている、請求項25に記載のシステム。   26. The system of claim 25, wherein the catalyst material comprises an iron manganese catalyst. 前記触媒材料は、二酸化チタンから成る触媒を備えている、請求項25に記載のシステム。   26. The system of claim 25, wherein the catalyst material comprises a catalyst comprising titanium dioxide. 前記触媒材料は、SCR触媒から成る触媒を備えている、請求項25に記載のシステム。   26. The system of claim 25, wherein the catalyst material comprises a catalyst comprising an SCR catalyst. 前記触媒材料は、白金から成る触媒を備えている、請求項25に記載のシステム。   26. The system of claim 25, wherein the catalyst material comprises a catalyst comprising platinum.
JP2012538964A 2009-11-16 2010-11-11 Use of powder coated nickel foam as a resistor to increase the temperature of a catalytic converter device by using electricity Withdrawn JP2013510990A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US12/619,295 US20110113762A1 (en) 2009-11-16 2009-11-16 Use Of Powder Coated Nickel Foam As A Resistor To Increase The Temperature of Catalytic Converter Devices With The Use Of Electricity
US12/619,295 2009-11-16
PCT/US2010/056306 WO2011060117A2 (en) 2009-11-16 2010-11-11 Use of powder-coated nickel foam as a resistor to increase the temperature of catalytic converter devices with the use of electricity

Publications (1)

Publication Number Publication Date
JP2013510990A true JP2013510990A (en) 2013-03-28

Family

ID=43992389

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012538964A Withdrawn JP2013510990A (en) 2009-11-16 2010-11-11 Use of powder coated nickel foam as a resistor to increase the temperature of a catalytic converter device by using electricity

Country Status (6)

Country Link
US (1) US20110113762A1 (en)
EP (1) EP2501908A2 (en)
JP (1) JP2013510990A (en)
AU (1) AU2010319484A1 (en)
CA (1) CA2779686A1 (en)
WO (1) WO2011060117A2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103155434B (en) 2010-06-18 2016-08-24 康普技术有限责任公司 Method and the end points element of numerical data is transmitted between the end points of distributed antenna system

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0418914A (en) * 1990-05-15 1992-01-23 Mitsubishi Motors Corp Catalytic converter
US5145825A (en) * 1991-04-08 1992-09-08 Engelhard Corporation Oxidation catalyst resistant to sulfation
EP0628706A2 (en) * 1993-06-10 1994-12-14 Inco Limited Catalytic conversion of internal combustion engine exhaust gases
US5512789A (en) * 1994-07-05 1996-04-30 Ford Motor Company Electrically heated catalyst control
JP3632319B2 (en) * 1996-09-19 2005-03-23 トヨタ自動車株式会社 Control device for power supply changeover switch
DE19816482C2 (en) * 1998-04-14 2001-11-29 Siemens Ag Plate catalyst
US6381955B1 (en) * 2001-02-07 2002-05-07 Visteon Global Technologies, Inc. Method and system for providing electricity from an integrated starter-alternator to an electrically heated catalyst
EP1289035A2 (en) * 2001-08-29 2003-03-05 Matsushita Electric Industrial Co., Ltd. Composite electrode for reducing oxygen
DE10150948C1 (en) * 2001-10-11 2003-05-28 Fraunhofer Ges Forschung Process for the production of sintered porous bodies
EP1693099B1 (en) * 2003-11-25 2010-03-17 Babcock-Hitachi Kabushiki Kaisha Filter for exhaust gas from diesel engine
EP1791621A4 (en) * 2004-07-27 2010-09-22 Univ California Catalyst and method for reduction of nitrogen oxides
US7389638B2 (en) * 2005-07-12 2008-06-24 Exxonmobil Research And Engineering Company Sulfur oxide/nitrogen oxide trap system and method for the protection of nitrogen oxide storage reduction catalyst from sulfur poisoning
DE102006009164B4 (en) * 2006-02-20 2011-06-09 Alantum Corporation, Seongnam Device for the separation of particles contained in exhaust gases of internal combustion engines

Also Published As

Publication number Publication date
AU2010319484A1 (en) 2012-05-17
CA2779686A1 (en) 2011-05-19
US20110113762A1 (en) 2011-05-19
WO2011060117A2 (en) 2011-05-19
EP2501908A2 (en) 2012-09-26
WO2011060117A3 (en) 2011-09-09

Similar Documents

Publication Publication Date Title
JP4540283B2 (en) Exhaust gas purification device with heating element
JP6045034B2 (en) Operation method of exhaust gas treatment device
US20080295493A1 (en) Catalyst temperature control system for a hybrid engine
CN103155695B (en) Electrode, electrically heated catalytic converter using same and process for producing electrically heated catalytic converter
CN103170242A (en) Organic waste gas purifying method
JP3334898B2 (en) Exhaust gas purification device
JP2002089246A (en) Exhaust emission control method and exhaust emission control device for internal combustion engine
US5680503A (en) Honeycomb heater having a portion that is locally quickly heated
JPH04241715A (en) Resistance adjusting type heater
CN107159261B (en) Method for catalytic oxidation of NO by using integral type electric heating wire mesh catalyst
JP2013510990A (en) Use of powder coated nickel foam as a resistor to increase the temperature of a catalytic converter device by using electricity
JPH05285387A (en) Catalyst for purification of exhaust gas and purification method
JP2011530674A (en) Method for controlled supply of reducing agent
CN109424401B (en) Apparatus and method for gaseous emission treatment using induction heating with movable thermal profile
Choudhury et al. An innovative approach for emission control using copper plate catalytic converter
JP4296844B2 (en) Electric heating type catalyst equipment
US10392982B2 (en) Emissions control substrate
WO1999013270A1 (en) Deodorizing apparatus and deodorizing method
US10228195B2 (en) Chemical heat storage device
JP2870376B2 (en) High frequency heating element with catalytic function
JP2830562B2 (en) High frequency heating element
JPH10325314A (en) Heater of resistance adjusting type and catalytic converter
JP7462730B2 (en) Device and method for exhaust gas aftertreatment and use thereof
KR20070046437A (en) Catalytic converter using electrothermal wire catalyst support
JP2900758B2 (en) High frequency heating element with catalytic function

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140204