JP2013506894A - 非構造化情報のインテリジェント・イベント・ベース・データ・マイニング - Google Patents

非構造化情報のインテリジェント・イベント・ベース・データ・マイニング Download PDF

Info

Publication number
JP2013506894A
JP2013506894A JP2012531308A JP2012531308A JP2013506894A JP 2013506894 A JP2013506894 A JP 2013506894A JP 2012531308 A JP2012531308 A JP 2012531308A JP 2012531308 A JP2012531308 A JP 2012531308A JP 2013506894 A JP2013506894 A JP 2013506894A
Authority
JP
Japan
Prior art keywords
query
results
search
property
search engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012531308A
Other languages
English (en)
Other versions
JP5497185B2 (ja
Inventor
シェッティ、ロヒット
シャストリー、クリシュナ
ラマクリシュナン、アルン
ナラヤナン、ハリハラン、ラスクミ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
International Business Machines Corp
Original Assignee
International Business Machines Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by International Business Machines Corp filed Critical International Business Machines Corp
Publication of JP2013506894A publication Critical patent/JP2013506894A/ja
Application granted granted Critical
Publication of JP5497185B2 publication Critical patent/JP5497185B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/90Details of database functions independent of the retrieved data types
    • G06F16/95Retrieval from the web
    • G06F16/951Indexing; Web crawling techniques

Landscapes

  • Engineering & Computer Science (AREA)
  • Databases & Information Systems (AREA)
  • Theoretical Computer Science (AREA)
  • Data Mining & Analysis (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Information Retrieval, Db Structures And Fs Structures Therefor (AREA)

Abstract

【課題】インテリジェント・データ・マイニングの方法、システム、及びコンピュータ・プログラム製品を提供する。
【解決手段】本方法は、アプリケーションからイベントを受け取るステップと、プロパティ加重をイベントのプロパティに付与するステップと、これらのプロパティからプロパティ加重に基づきクエリを構築するステップとを含む。本方法はさらに、検索エンジンのグループに検索エンジン加重を付与するステップと、検索エンジン加重に基づき検索エンジンのうちの少なくともいくつかを選択するステップと、選択された検索エンジンに構築されたクエリを送るステップとをさらに含む。選択された検索エンジンからの結果は、知識リポジトリに記憶され、プロパティ加重及び検索エンジン加重を調節するために使用される。本発明は、問題についての情報を用いた分析を提供するため、及び問題判別に使用可能なソリューション・データベースを管理するために使用されるとよい。本発明は、オンライン・ソースから関連情報を収集するための低コスト・ソリューションを提供する。
【選択図】図2

Description

本発明は、インテリジェント・イベント・ベース・データ・マイニング(intelligent event−based data mining)に関し、特に、非構造化ソースから情報を収集して、迅速な問題判別及び解決においてユーザを支援する知識リポジトリを作成及び維持することに関する。
問題判別は、環境内で生じるイベントの分析を使用して問題を診断し、ユーザに適切なソリューションを提供すること、又は自動ソリューションを提供することを含む。これらのタスク、すなわち、ソリューション又は自動回復の提供のいずれにも、システム及びその仕組みをよく理解することが必須要件である。これは一般に、問題の原因及びそのソリューションに関する症状データベース又はその他のストレージ・ソースを使用して行われ、問題が生じるたびにこのソースと対照して分析が実行されて、ソリューションが決定される。
しかし、実際のシナリオを考慮すると、実時間環境は、ともに稼働する多数の異なるベンダからの多数の異なるアプリケーションを含むと考えられる。例えば、顧客は、IBM Websphere Application Server上にビジネス・パートナーのウェブ・アプリケーションを展開させると同時に、データベースとしてOracle(R)を使用することもあるであろう(IBM及びWebSphereは、インターナショナル・ビジネス・マシーンズ・コーポレーションの登録商標である)。このシナリオは、異なる3つのベンダからの異なる3つのコンポーネント(アプリケーション)を有する:Websphere Application Server(IBM)、ウェブ・アプリケーション(IBMビジネス・パートナー)、及びデータベース(Oracle)。
このシナリオを考慮すると、そのようなシステムの完全な問題判別分析には、3つのコンポーネントすべての深い理解が必要であることが分かる。実際には、任意のベンダが、他のベンダ(例えばOracle)のアプリケーションについてソリューション及びインテリジェンスを提供及び維持することは、当該アプリケーションがこのベンダの製品とともに使用されていても、不可能であろう。これは、環境内で実行される一部のアプリケーションについてサポート・エンジニアが十分な情報又は知識を有しない、情報の「ブラック・ボックス」につながる。
上記の例から、ビジネス・パートナーはそのアプリケーションの情報及び症状/ソリューションの詳細を提供するであろうことを考えると、IBMが、Oracleデータベースに関連する問題のソリューションを提供したい場合に必要となる作業を想像することは容易であろう。これは、Oracle用にソリューション・データベースを作成及び維持するために、エキスパートのチームを持つことを必要とするであろう。これが行われなければ、この環境に関して実行される問題判別分析におけるブラック・ボックスにつながると考えられる。すなわち、システム内で生じる任意の問題は、それがデータベースに関係ないとき且つそのときに限り、診断可能であると考えられ、データベースに関係する任意の問題は、SMEの/専門のアドミニストレータの助けによって解決されなければならないことになる。
一実施形態では、本開示は、インテリジェント・イベント・ベース・データ・マイニングのための方法、システム、及びコンピュータ・プログラム・プロダクトを提供する。本方法は、一組のプロパティを有するイベントをアプリケーションから受け取るステップと、前記プロパティのそれぞれに、個別のプロパティ加重(property weight)を付与するステップと、プロパティ加重に基づき前記プロパティからクエリを構築するステップと、一組の検索エンジンのそれぞれに、個別の検索エンジン加重(search engine weight)を付与するステップとを含む。本方法は、検索エンジン加重に基づき検索エンジンのうちの少なくともいくつかを選択するステップと、選択された検索エンジンにクエリを送るステップと、選択された検索エンジンからクエリ結果を受け取るステップと、クエリ結果を知識リポジトリに記憶するステップと、クエリ結果に基づきプロパティ加重及び検索エンジン加重を調節するステップとをさらに含む。
本発明の実施形態は、問題判別分析における上述のブラック・ボックスをなくすために使用されるとよく、問題についての何らかの情報を用いて分析を提供し、問題判別に使用可能なソリューション情報データベースを管理する。これは、実行時にオンライン・ソースから任意の時点で最新且つ有効な情報である関連情報を収集する、低コスト・ソリューションである。
インターネットは、最も大きく最も包括的な情報ソースの1つである。本発明は、インターネット上で入手可能な情報を活用して、問題判別ソリューションをユーザに提供する。本発明は、ブログ、フォーラムなどの非構造化ソースから情報を収集することによって、迅速な問題判別及び解決においてユーザを支援する知識リポジトリを作成及び維持できる。
理想的な問題判別/解決シナリオでは、各サポート・エンジニアが、様々なアプリケーションの問題の解決法を、経験から知っている。しかし、ソリューションはすぐに利用可能でないことが非常に多い。エキスパートに相談すること、又は問題を上位レベルの処理事項とすること、又は問題追跡ウェブサイト若しくはフォーラムなどの既知の場所を手動で検索することも必要となることもある。
本発明で採用される戦略は、非構造化情報についての分析を実行し、ユーザからの介入をほとんど又は全く伴わずに、ソリューションを発見する。イベントの形式の問題が発生すると、イベントの様々なフィールド(メッセージid、メッセージ・テキスト、コンポーネント名など)を使用して検索が実行される。検索は、例えば一般的なインターネット検索、ブログ、ウィキページ、又はフォーラムなど、任意の情報ソースに対するものとすることができる。検索結果は、関連性に関して処理され、フォーマットされ、ユーザに対して表示される。システムは、関連性値及び使用されたクエリを使用して、どのクエリ及びどの検索ソースが、最善且つ最も関連性のある情報ソースを返すかを学習することができる。その後の実行では、システムには、どのプロパティ及び検索ソースが、種々の製品の最善の情報を提供するかが分かる。
上記で説明した問題に対処するもう1つの方法は、ベンダ・アプリケーションを扱うよう、対象のエキスパート又は専門アドミニストレータを採用することである。この手法に関連する問題の1つは、専門家の採用に伴うコストである。専門家であるという性質により、専門家は、環境内の特定のコンポーネントのサポートを提供できると考えられる(この例ではOracleデータベース)。その結果、専門家は、関連性のある問題が発生するまで、すなわち、その専門家が専門に扱う問題が発生したときしか、作業をしないということになる。この状況での重大問題は、専門家が組織を去るときに失われる知識である。専門家が、経験から有し、使用するソリューション及び知識は、すべて失われる。対照的に、本発明の自律ソリューション(autonomic solution)を使用すると、新たな問題のソリューションが発見されるたびに、ソリューションが知識リポジトリに記憶される。これは、知識が組織内に保持されることを意味し、新たなサポート・エンジニアが、ソリューションを提供できるようにし、専門家を採用する必要性をなくす可能性もある。これにより、サポート・エンジニアは、より広い範囲の問題を扱うことができるようになる。
本発明の好適な実施形態を詳細に記述して示す添付の図面を参照して以下の詳細な説明について考慮することで、本発明のさらなる利益及び利点が明らかになる。
本発明による、インテリジェント・イベント・ベース・データ・マイニング・システムのための例示のアーキテクチャを示す。 図1のシステムの全般的な動作を示す。 図1のシステムにおいて取得された検索結果をランク付けする例示の手順を示す。 データ・マイニング・システムの知識バンクを更新する例示の手順を示す。 図1のシステムにおいて使用されるプロパティ及び検索エンジン加重を更新する例示の手順を示す。 本発明を実践するために使用され得る例示のコンピューティング・システムを示す。
当業者であれば当然のことであるが、本発明は、システム、方法又はコンピュータ・プログラム製品として具現化され得る。したがって、本発明は、完全にハードウェアの実施形態、完全にソフトウェアの実施形態(ファームウェア、常駐ソフトウェア、マイクロコードなどを含む)、又は本願明細書においてすべて概して「回路」、「モジュール」若しくは「システム」と呼ばれることもある、ソフトウェア及びハードウェアの側面を兼ね備えた実施形態の形態をとり得る。さらに、本発明は、任意の有形の表現媒体において具現化されたコンピュータ使用可能プログラム・コードを有する該媒体において具現化されたコンピュータ・プログラム製品の形態をとることもできる。
1つ以上のコンピュータ使用可能又はコンピュータ可読媒体(単数又は複数)の任意の組み合わせが利用され得る。コンピュータ使用可能又はコンピュータ可読媒体は、例えば、限定はされないが、電子、磁気、光学、電磁気、赤外線、又は半導体システム、装置、デバイス、又は伝播媒体とすることもできる。コンピュータ可読媒体のより具体的な例(包括的でないリスト)には、1つ以上のワイヤを有する電気的接続、ポータブル・コンピュータ・ディスケット、ハード・ディスク、ランダム・アクセス・メモリ(RAM:random access memory)、読み取り専用メモリ(ROM:read−only memory)、消去可能プログラム可能読み取り専用メモリ(EPROM(erasable programmable read−only memory)若しくはフラッシュ・メモリ)、光ファイバ、ポータブル・コンパクト・ディスク読み取り専用メモリ(CDROM:compact disc read−only memory)、光学式記憶デバイス、インターネット若しくはイントラネットをサポートするものなどの伝送媒体、又は磁気記憶デバイスがあると考えられる。なお、プログラムは、例えば紙又は他の媒体の光学式走査により電子的に獲得され、続いて必要に応じコンパイル、解釈、又は適切な方法により別の形で処理され、続いてコンピュータ・メモリに記憶されることが可能なため、コンピュータ使用可能又はコンピュータ可読媒体は、プログラムが印刷される紙又は別の適切な媒体とすることさえもできる。この文書の文脈では、コンピュータ使用可能又はコンピュータ可読媒体は、命令実行システム、装置若しくはデバイスによって、又はそれに関連して使用されるプログラムを含むこと、記憶すること、伝達すること、伝播させること、又は搬送することができる任意の媒体であればよい。コンピュータ使用可能媒体は、ベースバンドにおいて、又は搬送波の一部として伝播データ信号を用いて具現化されたコンピュータ使用可能プログラム・コードを備える該伝播データ信号を含むこともできる。コンピュータ使用可能プログラム・コードは、次に限定はされないが、ワイヤレス、有線、光ファイバ・ケーブル、RFなどを含め、任意の適切な媒体を使用して伝送されることもできる。
本発明の動作を実行するコンピュータ・プログラム・コードは、Java(R)、Smalltalk(R)、C++又は同様のものなどのオブジェクト指向プログラミング言語、及び「C」プログラミング言語若しくは同様のプログラミング言語などの従来の手続きプログラミング言語を含む、1つ以上のプログラミング言語の任意の組み合わせで書かれていてよい。プログラム・コードは、スタンド・アロン・ソフトウェア・パッケージとして、完全にユーザのコンピュータ上で実行されること、部分的にユーザのコンピュータ上で実行されること、又は部分的にユーザのコンピュータ上で、且つ部分的にリモート・コンピュータ上で実行されること、又は完全にリモート・コンピュータ若しくはサーバ上で実行されることもできる。後者のシナリオでは、ローカル・エリア・ネットワーク(LAN:local area network)若しくは広域ネットワーク(WAN:wide area network)を含む任意の種類のネットワークを介してリモート・コンピュータがユーザのコンピュータに接続されてもよく、又は、外部コンピュータに接続されてもよい(例えば、インターネット・サービス・プロバイダを使用しインターネットを介して)。
本発明は、本発明の実施形態による方法、装置(システム)及びコンピュータ・プログラム製品のフローチャート図若しくはブロック図又はその両方を参照して、以下に記載される。当然のことながら、フローチャート図若しくはブロック図又はその両方の各ブロック、及びフローチャート図若しくはブロック図又はその両方の複数ブロックの組み合わせは、コンピュータ・プログラム命令により実装可能である。マシンを生じるよう、当該コンピュータ・プログラム命令が、汎用コンピュータ、専用コンピュータ、又はその他のプログラム可能データ処理装置のプロセッサに提供されて、この命令が、コンピュータ又はその他のプログラム可能データ処理装置のプロセッサにより実行されて、フローチャート若しくはブロック図又はその両方のブロック若しくは複数ブロックにおいて指定された機能/動作を実装する手段を作り出すようにすることもできる。さらに、特定の形で機能するようコンピュータ又はその他のプログラム可能データ処理装置に指示することができる当該コンピュータ・プログラム命令は、コンピュータ可読媒体に記憶されて、コンピュータ可読媒体に記憶されたこの命令が、フローチャート若しくはブロック図又はその両方のブロック若しくは複数ブロックにおいて指定された機能/動作を実装する命令手段を含む製品を生じるようにすることもできる。
さらに、コンピュータ・プログラム命令は、コンピュータ又はその他のプログラム可能データ処理装置にロードされて、コンピュータ又はその他のプログラム可能装置上で一連の動作ステップが実行されるようにしてコンピュータに実装されるプロセスを生じさせ、コンピュータ又はその他のプログラム可能装置上で実行される命令が、フローチャート若しくはブロック図又はその両方のブロック若しくは複数ブロックにおいて指定された機能/動作を実装するためのプロセスを提供するようにすることもできる。
図1及び2を参照する。ステップ202にて、検索マネージャ102がCBEイベントをアプリケーションから受け取り、その処理を開始する。CBEの様々なプロパティを使用して、検索のためのクエリが構築される。これらのクエリは、特定の製品のプロパティに付与された重要性又は加重に従い構築される。例えば、DB2(IBM社の登録商標)の問題に関しては、メッセージidを用いた検索の方が、メッセージ・テキストを用いた検索よりも良い結果を生じさせることもあると考えられ、Oracleに関しては逆が当てはまることもあると考えられる。このプロパティに配慮するために、加重が製品毎に記憶される必要がある。最初に、第1の実行より前に、デフォルトの加重がプロパティに付与される。問題判別におけるいくらかの経験、すなわち、重要なプロパティ(例えばメッセージid)には大きな加重を、重要でないプロパティ(例えば作成時間)には小さな加重又はゼロの加重を付与するのに十分な経験があるユーザ又はサポート・エンジニアが、こうした加重を付与する。
以下は、見本の製品−プロパティ加重である。
DB2_messageId=90
DB2_messageText=50
DB2_severity=10
DB2_creationTime=0
このような加重は、重要性のランキングを提供し、より大きな値を備えるプロパティが、それを用いて検索されるとより良い結果を返すことを意味する。この例では、メッセージIdを用いた検索が最善の結果を与え、(CBEイベントの)作成時間は、問題のソリューションを検索する間、決して使用されるべきではない。
まず、検索エンジンのクエリを構築するために使用されるプロパティを表す組Pが作成される。検索のクエリを作成する間、どのプロパティが考慮に入れられるかの選択は、加重に従ったランキング及びプロパティのパーセンタイルの計算によって行われる。特定のパーセンタイル(例えば第50パーセンタイル)以上のプロパティが、ステップ202において、クエリで使用されるよう選ばれる。上記のDB2の例では、第50パーセンタイルの使用により、「メッセージId」及び「メッセージ・テキスト」プロパティが与えられる。このように、最も関連性のあるプロパティが選択され、クエリが構築される。各クエリは、プロパティ値及びコンポーネント名(例えば、DB2 Universal Database(IBM社の商標)には「DB2 UDB」)を含む。ステップ206にて、検索クエリは、同様の形で選択された検索エンジン104に送られる。
利用可能な検索エンジン104には、特定の製品についての情報を検索するときにどの検索エンジンが最善の結果を返すかを(順番に)効果的に示す製品毎のランキングが与えられる。最初は、すべての検索エンジンに、100の「製品対検索エンジン」加重が付与され、その結果、すべての検索エンジンが検索の実行に使用される。この値は、後の実行にわたって、特定の製品についてその検索エンジンが関連性のある結果を返す見込みを反映するよう更新される。製品プロパティ加重と同じように、ステップ204にて、使用される一組の検索エンジンSが、所与のパーセンタイル以上のものを選ぶことによって選択される。
以下は、見本の製品−検索エンジン加重である。
DB2_ibmDB2InformationCenter=90
DB2_google=50
DB2_yahoo=10
DB2_ask.com=0
検索エンジン加重の上記の例に関して、パーセンタイル・カットオフが5であれば、クエリは、最初の3つの検索エンジン(IBM DB2情報センタ、Google、及びYahoo)に送られる。クエリは、準備が整うと、製品−検索エンジン加重の大きい順に検索エンジンに送られることが可能である。検索は、例えば一般的なインターネット検索、ブログ、ウィキページ、又はフォーラムなど、106で表されている任意の情報ソースに対するものとすることができる。検索結果は、関連性エンジン112によって関連性に関して処理され、フォーマットされて、114で表されているようにユーザに表示される。さらに、各検索エンジンから受け取られた結果は、ステップ210にて、P内のイベントのプロパティとの関連性に従ってランク付けされ、スコアを付与される。
クエリに対する検索結果の関連性の計算
図3は、検索結果をランク付けする手順を示す。検索結果と、それを生成するために使用されたクエリとの関連性を計算するために、検索結果のテキスト・コンテンツが取得され、ステップ310において、それとクエリ・テキストとの間の最長共通サブストリング(longest common substring)が発見される。このプロセスは繰り返し実行され、一致が発見されなくなるまで、クエリから一致したサブストリングが削除される。
例えば、検索結果のテキスト・コンテンツが、以下であるとする。
Figure 2013506894
さらに、クエリ(メッセージ・テキスト・プロパティから作成された)は以下の通りである。
Exception occurred in the JNDI NamingManager while processing a javax.naming.Reference object
その結果、最長共通サブストリングを繰り返し実行することで、次が与えられるはずである。
processing a javax.naming.Reference object
the JNDI NamingManager
Exception occurred
while
これらのサブストリングを使用して、ステップ320にて、プロパティに対する結果の関連性を計算可能である。まず、製品又は問題に関係のない一般的な英語のワードが、一致したストリング及びクエリから除去される。上記の例から、最後の一致(while)は、現在の文脈において実際にはまったく無関係であるため削除されるべきである。このようなワード(例えばthe、at、in、is、for)は、すべての一致したストリング及びクエリから削除される。
例えば、クエリ及び一致したストリングからワード{“in”,“the”,“while”,“a”}を削除すると、次が残る。
クエリ:
Exception occurred JNDI NamingManager processing javax.naming.Reference object
一致したストリング:
processing javax.naming.Reference object
JNDI NamingManager
Exception occurred
ここで、このトリミング(trim)されたクエリ及び一致したストリングを使用して、関連性が計算される。M={“processing javax.naming.Reference object”,“Exception occurred”,“JNDI NamingManager”}を一組の一致するサブストリングとして取得し、次式を用いて結果の関連性が計算される。
Figure 2013506894
式中、
mnは、第nの一致内のワードの数である
Nは、クエリ内のワードの数である
nは、一致した部分列の数である
上記の例から、結果の関連性は57.14%である。
同様に、ステップ324及び328にて表されているように、各結果に関して、P内のすべてのプロパティに対する関連性が計算されて、受け取られたCBEイベントに対する検索結果の全般的な関連性が得られる。
ステップ330にて、これらの関連性値に対応するプロパティの加重を乗じ、0〜10000の値が与えられ、合計されて検索結果の総スコアSが与えられる。(50の加重を備えるメッセージ・テキストを使用する上記のクエリの例から、メッセージ・テキスト・プロパティは、Sに2857.14[57.14*50]寄与する)。
ステップ332において、最大スコアSmが計算されるが、これは、プロパティそれぞれに関して100%の関連性を想定することによるということを除いては、同じ方法による。(同じ例では、メッセージ・テキスト・プロパティは、Smに5000[100*50]寄与する)。
ステップ334において計算される、結果の総関連性は、結果をランク付けするために使用され、Smと比べたSの割合である。
Figure 2013506894
続いて検索結果は、図2のステップ212において、フォーマットされて、結果の総関連性値とともにユーザに提示される。
収集された情報及び関連性値を使用して、ステップ214及び216において知識バンク110及び加重が更新され、サイクルの検索部分からの学習が反映される。結果情報は、ローカルに記憶されるよう知識バンクに送られるため、将来の実行では、外部検索を行わずに結果を発見可能である。知識バンクは、将来のイベントを照合するためのルールを構築して、関連性値とともに結果を提供できる必要がある。
知識バンクを更新する手順は、図4に示されている。ステップ402、404、406、410、412、及び414によって表されているように、各検索結果に関して、結果URL、結果の関連性、各プロパティに関する一致したサブストリングの順序付けられた(出現によって)リストを伴う寄与しているプロパティのリストが知識バンクに送られる。この例では、メッセージ・テキスト・プロパティが、次のサブストリングのリストとともに送られる:{“Exception occurred”,“while”,“processing a javax.naming.Reference object”,“the JNDI NamingManager”}。これらのサブストリングは、クエリにおいて発見されるとおりの完全なものであり、無関係なワードの削除後ではない。削除されると、知識バンクは、プロパティに関して似た値を備える将来のイベントを照合するためのルールを構築できない。
続いて知識バンクは、供給されたプロパティ及び値を使用してイベントを照合するためのルールを構築した後に、結果URL及び関連性を記憶できる。これは、この情報を知識バンクがどのように記憶するかに応じ、例えば、正規表現又はXpathなどのルール構文を使用して行われることが可能であろう。
図2のステップ216において、プロパティ及び検索エンジン加重が更新される。図5は、これを行う手順を示す。
製品プロパティ加重は、ステップ502、504、510、512、514、516、及び518において、製品毎に、どのプロパティが最善の結果を与えるかを示すよう調節される。加重を調節するために、まずステップ510において、結果の関連性に対するプロパティの寄与が計算される。
Figure 2013506894
式中、
Rpは、プロパティに対する結果の関連性である
Wpは、プロパティの現在の加重である
Sは、検索結果の総スコアである
上記の式がステップ512において使用されて、プロパティの加重モディファイア(weight modifier)が計算される。
新たな加重が、下記の平均化式を使用して計算される。平均を計算するために実行のサイクルの数を維持するのではなく、「過去N回の平均」がステップ514にて得られる。
Nは、新たな加重が既存の関連性に有することになる影響を決定することになる自然数であり、1から任意の数の範囲とされ得る。これは、加重が、使用されるべき最新の情報ソース及び最も関連性の高いクエリに反応して、それを反映することを保証する。例えば、特定のプロパティが、特定の製品に関する検索の間に有用でなくなる場合、加重は、この変化に迅速に適応できるべきである。標準の平均法では、時間がたつにつれて、変化に対する加重の反応が徐々に弱まると考えられる。
Figure 2013506894
式中、
W’pは、プロパティの新たな加重である
Wpは、プロパティの現在の加重である
は、プロパティの加重モディファイアである
Nは、加重影響係数(weight impact factor)である
製品−検索エンジン加重が、ステップ522、524、及び526において、当該検索エンジンに関する最も関連性の高い結果の加重を、特定のエンジンから結果が返されない場合は0を含めて使用して、更新される。現在の加重に対する更新は、同じ「過去N回の平均」を使用して行われる。
Figure 2013506894
式中、
W’sは、検索エンジンの新たな加重である
Wsは、検索エンジンの現在の加重である
は、最も関連性の高い結果の関連性である
Nは、加重影響係数である
加重検索のこのプロセスによって、システムは、時間がたつにつれて、後のサイクルにわたり学習することができる。システムは、加重を自己更新することによって、どのプロパティ/検索エンジンが無視される必要があるかを学習し、総合的で関連性のある結果を一貫して出すプロパティ/検索エンジンの重要性を高める。検索は、時間がたつにつれて、次第に焦点が合うようになり正確になる。システムは、ユーザを、独立して自動的に効果的な問題ソリューションへ誘導することができ、したがって、手動プロセスが大幅に削減又は最小化される。
このシステムは、例えば、IBMのWebsphere Application Server、IBMビジネス・パートナーのウェブ・アプリケーション、及びOracle(サード・パーティ・ベンダ)のOracleデータベースなどを有するソフトウェア・インフラストラクチャのシナリオに組み入れることができる。
最初に、サポート・エンジニアがOracleのようなサード・パーティ製品を扱うための経験を有しない「ブラック・ボックス」問題を、Oracleデータベースがもたらす。サード・パーティ製品が環境に持ち込まれると、新たな製品を扱うよう本発明のシステムが設定される必要がある。製品−プロパティ/検索エンジン加重が、初期の推定値にセットされる必要がある。システムは、受け取ったイベントのソリューションの検索を開始し、後のサイクルにわたって成熟状態に達する。この成熟状態では、システムは、どのプロパティ及びどの検索エンジンが、Oracleデータベースに関して最善の検索結果を提供するかを知っている。
非構造化データからマイニングされた情報を知識バンクに維持することによって、システムは、それ自体をユーザの経験から独立させる。これは、この知識が組織内に維持され、問題が効率的且つ費用効果の高い形で解決されることを保証する。
各図面のフローチャート及びブロック図は、本発明の様々な実施形態によるシステム、方法及びコンピュータ・プログラム製品の考えられる実装のアーキテクチャ、機能性及び動作を示す。この関連で、フローチャート又はブロック図内の各ブロックは、指定の論理機能(単数又は複数)を実装する1つ以上の実行可能命令を含むモジュール、セグメント、又はコードの一部を表すこともできる。なお、さらに、いくつかの代わりの実装では、ブロック内に示されている機能が、図面に示されているのとは異なる順序で生じてもよいであろう。例えば、関連する機能性次第で、連続して示されている2つのブロックが実際には事実上同時に実行されてもよく、又は、各ブロックが逆順で実行されることがあってもよい。なお、さらに、ブロック図若しくはフローチャート図又はその両方の各ブロック、及びブロック図若しくはフローチャート図又はその両方の複数ブロックの組み合わせは、指定の機能若しくは動作を実行する専用ハードウェア・ベース・システム、又は専用ハードウェア及びコンピュータ命令の組み合わせにより実装することができる。
本発明の方法の実施形態が実行され得るコンピュータ・ベースのシステム600が、図6に示されている。コンピュータ・ベースのシステム600は、処理ユニット602を含み、これは、プロセッサ、メモリ、及びその他、汎用処理システム、すなわちコンピュータ・プログラム製品を実行するとよいコンピュータを実装するシステム・コンポーネント(図面には明確に示されていない)を格納している。コンピュータ・プログラム製品は、例えばコンパクト・ディスクなどのコンパクト記憶媒体などの媒体を含んでもよく、これは、ディスク・ドライブ604を介して処理ユニット602によって、又は汎用処理システムによる実行のためにコンピュータ・プログラム製品を汎用処理システムに提供するための当業者に既知の任意の手段によって、読み取られるとよい。
コンピュータ・プログラム製品は、本願明細書に記載された本発明の方法の実装を可能にする個別の特徴すべてを含んでもよく、これは、コンピュータ・システムにロードされると本方法を実行できる。コンピュータ・プログラム、ソフトウェア・プログラム、プログラム、又はソフトウェアは、現在の文脈では、情報処理能力を有するシステムに、直接、又は(a)別の言語、コード若しくは表記法への変換、若しくは(b)異なる有形形態での複製のうちのいずれか又は両方の後に、特定の機能を実行させることを目的とした、一組の命令の任意の言語、コード若しくは表記法での任意の表現を意味する。
言及したように、コンピュータ・プログラム製品は、処理ユニット602内のハード・ディスク・ドライブに記憶されてもよく、又はイーサネット(R)インターフェイスなどのネットワーク・インターフェイスを介して処理ユニット602に結合されたサーバ614などのリモート・システム上に位置してもよい。モニタ606、マウス614、及びキーボード608が、処理ユニット602に結合されて、ユーザ対話を提供する。スキャナ624及びプリンタ622が、文書の入出力のために提供される。プリンタ622は、ネットワーク接続を介して処理ユニット602に結合されるよう示されているが、処理ユニットに直接結合されてもよい。スキャナ624は、処理ユニット602に直接結合されるよう示されているが、当然のことながら、周辺機器は、本発明の方法を実行する処理ユニット602の能力に影響することなく、ネットワーク結合されることも、又は直接結合されることもあるであろう。
本願明細書に開示された本発明が、上記に記載した目的を実現するよう十分に計画されていることは明らかであるが、当然のことながら、当業者によって、多数の変更及び実施形態が考案され得、添付の特許請求の範囲は、本発明の範囲内に入るそのような変更及び実施形態すべてを対象とするものとする。

Claims (21)

  1. インテリジェント・イベント・ベース・データ・マイニングの方法であって、
    アプリケーションから、一組のプロパティを有するイベントを受け取るステップと、
    前記プロパティのそれぞれに、個別のプロパティ加重を付与するステップと、
    前記プロパティ加重に基づき、前記プロパティからクエリを構築するステップと、
    一組の検索エンジンのそれぞれに、個別の検索エンジン加重を付与するステップと、
    前記検索エンジン加重に基づき、前記検索エンジンのうちの少なくともいくつかを選択するステップと、
    前記選択された検索エンジンに前記クエリを送るステップと、
    前記選択された検索エンジンからクエリ結果を受け取るステップと、
    前記クエリ結果を知識リポジトリに記憶するステップと、
    前記クエリ結果に基づき前記プロパティ加重及び前記検索エンジン加重を調節するステップと、
    を含む方法。
  2. 前記プロパティ加重に基づき、前記プロパティからクエリを構築するステップは、
    定義されている値を超えるプロパティ加重を有する前記プロパティのそれぞれを選択するステップと、
    前記選択されたプロパティから前記クエリを構築するステップと、
    を含む、請求項1に記載の方法。
  3. 前記検索エンジン加重に基づき、前記検索エンジンのうちの少なくともいくつかを選択するステップは、定義されている値を超える検索エンジン加重を有する前記検索エンジンのそれぞれを選択するステップを含む、請求項1又は請求項2に記載の方法。
  4. 前記プロパティ加重及び前記検索エンジン加重を調節するステップは、
    個別のクエリ結果に関して検索結果の関連性を計算するステップと、
    前記検索結果の関連性を使用して、前記プロパティ加重及び前記検索エンジン加重を調節するステップと、
    を含む、先行するいずれかの請求項に記載の方法。
  5. 個別のクエリ結果に関して検索結果の関連性を計算するステップは、前記クエリ結果のそれぞれに関して、
    前記クエリ及び前記個別のクエリ結果の両方において出現する共通テキスト・サブストリングの数を特定するステップと、
    共通テキスト・サブストリングの前記数を使用して、前記個別のクエリ結果に関して前記検索結果の関連性を計算するステップと、
    を含む、請求項4に記載の方法。
  6. 前記クエリ及び前記個別のクエリ結果の両方において出現する共通テキスト・サブストリングの前記数を特定するステップは、
    前記クエリ及び前記個別のクエリ結果の両方における最長共通サブストリングを特定するステップと、
    変更されたクエリを得るために、前記最長共通サブストリングを前記クエリから削除するステップと、
    前記変更されたクエリ及び前記クエリ結果の両方における最長共通サブストリングを特定するステップと、
    を含む、請求項5に記載の方法。
  7. 前記クエリ及び前記個別のクエリ結果の両方において出現する共通テキスト・サブストリングの前記数を特定するステップは、
    一組の前記共通テキスト・サブストリングを形成するステップと、
    特定組のテキスト・サブストリングのうちのいずれかの出現それぞれを、前記一組から削除するステップであって、トリミングされた一組の共通サブストリングを形成する、前記ステップと、
    を含む、請求項6に記載の方法。
  8. 共通テキスト・サブストリングの前記数を使用して、前記個別のクエリ結果に関して前記検索結果の関連性を計算するステップは、次式:
    Figure 2013506894
    を使用して、前記結果の関連性を計算するステップを含み、
    式中、
    mnは、第nの一致内のワードの数であり、
    Nは、前記クエリ内のワードの数であり、
    nは、一致した部分列の数である、請求項7に記載の方法。
  9. 前記プロパティ加重及び前記検索エンジン加重を調節するステップは、総関連性スコアを得るために、前記クエリのそれぞれの前記検索結果の関連性を合計するステップを含む、請求項5に記載の方法。
  10. 前記プロパティ加重及び前記検索エンジン加重を調節するステップは、前記クエリ結果のそれぞれに対する、前記選択されたプロパティのそれぞれの寄与を計算するステップを含む、請求項5に記載の方法。
  11. インテリジェント・イベント・ベース・データ・マイニングの装置であって、
    アプリケーションから、一組のプロパティを有するイベントを受け取る手段と、
    前記プロパティのそれぞれに、個別のプロパティ加重を付与する手段と、
    前記プロパティ加重に基づき、前記プロパティからクエリを構築する手段と、
    一組の検索エンジンのそれぞれに、個別の検索エンジン加重を付与する手段と、
    前記検索エンジン加重に基づき、前記検索エンジンのうちの少なくともいくつかを選択する手段と、
    前記選択された検索エンジンに前記クエリを送る手段と、
    前記選択された検索エンジンからクエリ結果を受け取る手段と、
    前記クエリ結果を知識リポジトリに記憶する手段と、
    前記クエリ結果に基づき前記プロパティ加重及び前記検索エンジン加重を調節する手段と、
    を含む装置。
  12. クエリを構築する前記手段は、
    定義されている値を超えるプロパティ加重を有する前記プロパティのそれぞれを選択する手段と、
    前記選択されたプロパティから前記クエリを構築する手段と、
    を含む、請求項11に記載の装置。
  13. 前記検索エンジンのうちの少なくともいくつかを選択する前記手段は、
    定義されている値を超える検索エンジン加重を有する前記検索エンジンのそれぞれを選択する手段
    を含む、請求項11又は請求項12に記載の装置。
  14. 前記プロパティ加重及び前記検索エンジン加重を調節する前記手段は、
    個別のクエリ結果に関して検索結果の関連性を計算する手段と、
    前記検索結果の関連性を使用して、前記プロパティ加重及び前記検索エンジン加重を調節する手段と、
    を含む、請求項11〜13のいずれかに記載の装置。
  15. 個別のクエリ結果に関して検索結果の関連性を計算する前記手段は、前記クエリ結果のそれぞれに関して、
    前記クエリ及び前記個別のクエリ結果の両方において出現する共通テキスト・サブストリングの数を特定する手段と、
    共通テキスト・サブストリングの前記数を使用して、前記個別のクエリ結果に関して前記検索結果の関連性を計算する手段と、
    を含む、請求項14に記載の装置。
  16. 前記クエリ及び前記個別のクエリ結果の両方において出現する共通テキスト・サブストリングの前記数を特定する前記手段は、
    前記クエリ及び前記個別のクエリ結果の両方における最長共通サブストリングを特定する手段と、
    変更されたクエリを得るために、前記最長共通サブストリングを前記クエリから削除する手段と、
    前記変更されたクエリ及び前記クエリ結果の両方における最長共通サブストリングを特定する手段と、
    を含む、請求項15に記載の装置。
  17. 前記クエリ及び前記個別のクエリ結果の両方において出現する共通テキスト・サブストリングの前記数を特定する前記手段は、
    一組の前記共通テキスト・サブストリングを形成する手段と、
    特定組のテキスト・サブストリングのうちのいずれかの出現それぞれを、前記一組から削除する手段であって、トリミングされた一組の共通サブストリングを形成する、前記手段と、
    を含む、請求項16に記載の装置。
  18. 共通テキスト・サブストリングの前記数を使用して、前記個別のクエリ結果に関して前記検索結果の関連性を計算する前記手段は、次式:
    Figure 2013506894
    を使用して、前記結果の関連性を計算する手段を含み、
    式中、
    mnは、第nの一致内のワードの数であり、
    Nは、前記クエリ内のワードの数であり、
    nは、一致した部分列の数である、請求項17に記載の装置。
  19. 前記プロパティ加重及び前記検索エンジン加重を調節する前記手段は、
    総関連性スコアを得るために、前記クエリのそれぞれの前記検索結果の関連性を合計する手段
    を含む、請求項15に記載の装置。
  20. 前記プロパティ加重及び前記検索エンジン加重を調節する前記手段は、
    前記クエリ結果のそれぞれに対する、前記選択されたプロパティのそれぞれの寄与を計算する手段
    を含む、請求項15に記載の装置。
  21. コンピュータ可読媒体上に記憶されたコンピュータ・プログラム・コードを含むコンピュータ・プログラムであって、前記コンピュータ・プログラム・コードは、コンピュータ・システムにロードされ前記コンピュータ・システム上で実行されると、前記コンピュータ・システムに、請求項1〜10のいずれかに記載の方法の前記ステップすべてを実行させる、コンピュータ・プログラム。
JP2012531308A 2009-10-01 2010-08-31 非構造化情報のインテリジェント・イベント・ベース・データ・マイニング Expired - Fee Related JP5497185B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US12/571,782 US8356047B2 (en) 2009-10-01 2009-10-01 Intelligent event-based data mining of unstructured information
US12/571,782 2009-10-01
PCT/EP2010/062694 WO2011039021A1 (en) 2009-10-01 2010-08-31 Aggregation of search results from a set of search engines

Publications (2)

Publication Number Publication Date
JP2013506894A true JP2013506894A (ja) 2013-02-28
JP5497185B2 JP5497185B2 (ja) 2014-05-21

Family

ID=42797607

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012531308A Expired - Fee Related JP5497185B2 (ja) 2009-10-01 2010-08-31 非構造化情報のインテリジェント・イベント・ベース・データ・マイニング

Country Status (4)

Country Link
US (1) US8356047B2 (ja)
JP (1) JP5497185B2 (ja)
CN (1) CN102576364B (ja)
WO (1) WO2011039021A1 (ja)

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8706854B2 (en) * 2010-06-30 2014-04-22 Raytheon Company System and method for organizing, managing and running enterprise-wide scans
US9298826B2 (en) 2012-01-05 2016-03-29 International Business Machines Corporation Goal-oriented user matching among social networking environments
US20140258043A1 (en) * 2013-03-11 2014-09-11 Bby Solutions, Inc. Comparable product matching: system and method
US9189539B2 (en) 2013-03-15 2015-11-17 International Business Machines Corporation Electronic content curating mechanisms
CN104978359B (zh) * 2014-04-11 2018-07-17 Tcl集团股份有限公司 一种信息聚合方法及系统
US10193775B2 (en) * 2014-10-09 2019-01-29 Splunk Inc. Automatic event group action interface
US9760240B2 (en) 2014-10-09 2017-09-12 Splunk Inc. Graphical user interface for static and adaptive thresholds
US9210056B1 (en) 2014-10-09 2015-12-08 Splunk Inc. Service monitoring interface
US10235638B2 (en) 2014-10-09 2019-03-19 Splunk Inc. Adaptive key performance indicator thresholds
US10505825B1 (en) * 2014-10-09 2019-12-10 Splunk Inc. Automatic creation of related event groups for IT service monitoring
US11671312B2 (en) 2014-10-09 2023-06-06 Splunk Inc. Service detail monitoring console
US10417225B2 (en) 2015-09-18 2019-09-17 Splunk Inc. Entity detail monitoring console
US10474680B2 (en) 2014-10-09 2019-11-12 Splunk Inc. Automatic entity definitions
US11755559B1 (en) 2014-10-09 2023-09-12 Splunk Inc. Automatic entity control in a machine data driven service monitoring system
US9491059B2 (en) 2014-10-09 2016-11-08 Splunk Inc. Topology navigator for IT services
US11200130B2 (en) 2015-09-18 2021-12-14 Splunk Inc. Automatic entity control in a machine data driven service monitoring system
US11455590B2 (en) 2014-10-09 2022-09-27 Splunk Inc. Service monitoring adaptation for maintenance downtime
US9130832B1 (en) 2014-10-09 2015-09-08 Splunk, Inc. Creating entity definition from a file
US11087263B2 (en) 2014-10-09 2021-08-10 Splunk Inc. System monitoring with key performance indicators from shared base search of machine data
US10417108B2 (en) 2015-09-18 2019-09-17 Splunk Inc. Portable control modules in a machine data driven service monitoring system
US9146954B1 (en) 2014-10-09 2015-09-29 Splunk, Inc. Creating entity definition from a search result set
US10536353B2 (en) 2014-10-09 2020-01-14 Splunk Inc. Control interface for dynamic substitution of service monitoring dashboard source data
US11501238B2 (en) 2014-10-09 2022-11-15 Splunk Inc. Per-entity breakdown of key performance indicators
US9146962B1 (en) 2014-10-09 2015-09-29 Splunk, Inc. Identifying events using informational fields
US10305758B1 (en) 2014-10-09 2019-05-28 Splunk Inc. Service monitoring interface reflecting by-service mode
US9245057B1 (en) 2014-10-09 2016-01-26 Splunk Inc. Presenting a graphical visualization along a time-based graph lane using key performance indicators derived from machine data
US9158811B1 (en) 2014-10-09 2015-10-13 Splunk, Inc. Incident review interface
US10209956B2 (en) * 2014-10-09 2019-02-19 Splunk Inc. Automatic event group actions
US9967351B2 (en) 2015-01-31 2018-05-08 Splunk Inc. Automated service discovery in I.T. environments
US10198155B2 (en) * 2015-01-31 2019-02-05 Splunk Inc. Interface for automated service discovery in I.T. environments
CN105824971A (zh) * 2016-04-14 2016-08-03 四川神琥科技有限公司 一种社工信息综合搜索方法
US10942960B2 (en) 2016-09-26 2021-03-09 Splunk Inc. Automatic triage model execution in machine data driven monitoring automation apparatus with visualization
US10942946B2 (en) 2016-09-26 2021-03-09 Splunk, Inc. Automatic triage model execution in machine data driven monitoring automation apparatus
US11106442B1 (en) 2017-09-23 2021-08-31 Splunk Inc. Information technology networked entity monitoring with metric selection prior to deployment
US11093518B1 (en) 2017-09-23 2021-08-17 Splunk Inc. Information technology networked entity monitoring with dynamic metric and threshold selection
US11159397B2 (en) 2017-09-25 2021-10-26 Splunk Inc. Lower-tier application deployment for higher-tier system data monitoring
US11093512B2 (en) * 2018-04-30 2021-08-17 International Business Machines Corporation Automated selection of search ranker
WO2021155205A1 (en) * 2020-01-30 2021-08-05 Wentong Li Method and apparatus of automatic business intelligent marketing contents/creatives curation
US11676072B1 (en) 2021-01-29 2023-06-13 Splunk Inc. Interface for incorporating user feedback into training of clustering model

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09245051A (ja) * 1996-03-05 1997-09-19 Mitsubishi Electric Corp 自然言語事例検索装置及び自然言語事例検索方法
JPH11203294A (ja) * 1998-01-08 1999-07-30 Nec Corp 情報検索システム、装置、方法及び記録媒体
JP2000222418A (ja) * 1999-01-29 2000-08-11 Hitachi Ltd データベース検索方法および装置
JP2006285820A (ja) * 2005-04-04 2006-10-19 Sky Kk サポートデータ表示システム

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11184943A (ja) * 1997-12-19 1999-07-09 Fujitsu Ltd 電子取引システム及び方法並びに電子取引でフォーマット変換を実行する制御プログラムを格納した記憶媒体
US20050120009A1 (en) * 2003-11-21 2005-06-02 Aker J. B. System, method and computer program application for transforming unstructured text
US20060224571A1 (en) * 2005-03-30 2006-10-05 Jean-Michel Leon Methods and systems to facilitate searching a data resource
US20070088827A1 (en) * 2005-10-14 2007-04-19 Microsoft Corporation Messages with forum assistance
US7657585B2 (en) * 2005-10-25 2010-02-02 Innternational Business Machines Corporation Automated process for identifying and delivering domain specific unstructured content for advanced business analysis
US7805455B2 (en) * 2005-11-14 2010-09-28 Invention Machine Corporation System and method for problem analysis
KR100837749B1 (ko) * 2006-04-18 2008-06-13 엔에이치엔(주) 온라인 상에서 제공되는 뉴스 기사에 가중치를 부여하는방법 및 상기 방법을 수행하는 시스템
US7424488B2 (en) * 2006-06-27 2008-09-09 International Business Machines Corporation Context-aware, adaptive approach to information selection for interactive information analysis
US7685199B2 (en) * 2006-07-31 2010-03-23 Microsoft Corporation Presenting information related to topics extracted from event classes
US7840522B2 (en) * 2007-03-07 2010-11-23 Microsoft Corporation Supervised rank aggregation based on rankings
US7668823B2 (en) * 2007-04-03 2010-02-23 Google Inc. Identifying inadequate search content
US7720870B2 (en) * 2007-12-18 2010-05-18 Yahoo! Inc. Method and system for quantifying the quality of search results based on cohesion

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09245051A (ja) * 1996-03-05 1997-09-19 Mitsubishi Electric Corp 自然言語事例検索装置及び自然言語事例検索方法
JPH11203294A (ja) * 1998-01-08 1999-07-30 Nec Corp 情報検索システム、装置、方法及び記録媒体
JP2000222418A (ja) * 1999-01-29 2000-08-11 Hitachi Ltd データベース検索方法および装置
JP2006285820A (ja) * 2005-04-04 2006-10-19 Sky Kk サポートデータ表示システム

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CSNG199800548005; 角田達彦: 'キャプションと記事テキストの文字列照合による報道番組と新聞記事との対応付けの自動化' 情報処理学会論文誌 第38巻 第6号, 19970615, P.P.1149-1162, 社団法人情報処理学会 *
CSNH199700088003; 今村 誠: 'SGML文書管理と文書情報アクセス技術' 三菱電機技報 第71巻,第2号, 19970225, page10-13, 三菱電機技報社 *
JPN6013058917; 角田達彦: 'キャプションと記事テキストの文字列照合による報道番組と新聞記事との対応付けの自動化' 情報処理学会論文誌 第38巻 第6号, 19970615, P.P.1149-1162, 社団法人情報処理学会 *
JPN6013058919; 今村 誠: 'SGML文書管理と文書情報アクセス技術' 三菱電機技報 第71巻,第2号, 19970225, page10-13, 三菱電機技報社 *

Also Published As

Publication number Publication date
JP5497185B2 (ja) 2014-05-21
US20110082883A1 (en) 2011-04-07
CN102576364B (zh) 2014-08-13
WO2011039021A1 (en) 2011-04-07
US8356047B2 (en) 2013-01-15
CN102576364A (zh) 2012-07-11

Similar Documents

Publication Publication Date Title
JP5497185B2 (ja) 非構造化情報のインテリジェント・イベント・ベース・データ・マイニング
US9703860B2 (en) Returning related previously answered questions based on question affinity
JP4750456B2 (ja) エンハンストドキュメント取り出しのためのコンテンツ伝播
JP5620913B2 (ja) 検索結果のランク付けのための静的な関連性の特性としてのドキュメント長
US20160042275A1 (en) Debugging Code Using a Question and Answer System Based on Documentation and Code Change Records
JP7413392B2 (ja) トレーニング・データと性能トレンドとの相関付けに基づいたコンピュータ・モデル機械学習
US20160098444A1 (en) Corpus Management Based on Question Affinity
US20100262610A1 (en) Identifying Subject Matter Experts
US20080244428A1 (en) Visually Emphasizing Query Results Based on Relevance Feedback
US7516131B2 (en) Method and apparatus for ranking-based information processing
US20120023127A1 (en) Method and system for processing a uniform resource locator
US9411878B2 (en) NLP duration and duration range comparison methodology using similarity weighting
JP2016521398A (ja) ナリッジ取込および発見システム
US20090132515A1 (en) Method and Apparatus for Performing Multi-Phase Ranking of Web Search Results by Re-Ranking Results Using Feature and Label Calibration
US10430713B2 (en) Predicting and enhancing document ingestion time
JP2012528406A (ja) 検索結果のマージ
US9251245B2 (en) Generating mappings between a plurality of taxonomies
US20140108901A1 (en) Web Browser Bookmark Reconciliation
US20150356456A1 (en) Real-Time or Frequent Ingestion by Running Pipeline in Order of Effectiveness
JP5504595B2 (ja) 情報処理装置、情報検索システム、情報処理方法およびプログラム
CN105550206B (zh) 结构化查询语句的版本控制方法及装置
US11893351B2 (en) Modified machine learning model and method for coherent key phrase extraction
JP2009122807A (ja) 連想検索システム
JP2010282241A (ja) ファイル管理装置、ファイル管理システム、ファイル管理方法、および、プログラム
Moin et al. Assisting bug triage in large open source projects using approximate string matching

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130509

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131217

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20131217

RD12 Notification of acceptance of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7432

Effective date: 20131217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20131220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140217

RD14 Notification of resignation of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7434

Effective date: 20140217

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140305

R150 Certificate of patent or registration of utility model

Ref document number: 5497185

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees