JP2013258274A - エックス線用固体撮像素子 - Google Patents

エックス線用固体撮像素子 Download PDF

Info

Publication number
JP2013258274A
JP2013258274A JP2012133142A JP2012133142A JP2013258274A JP 2013258274 A JP2013258274 A JP 2013258274A JP 2012133142 A JP2012133142 A JP 2012133142A JP 2012133142 A JP2012133142 A JP 2012133142A JP 2013258274 A JP2013258274 A JP 2013258274A
Authority
JP
Japan
Prior art keywords
solid
imaging device
state imaging
rays
electrode layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012133142A
Other languages
English (en)
Inventor
Takuji Maekawa
拓滋 前川
Osamu Matsushima
理 松島
Toshihisa Maeda
利久 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rohm Co Ltd
Original Assignee
Rohm Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohm Co Ltd filed Critical Rohm Co Ltd
Priority to JP2012133142A priority Critical patent/JP2013258274A/ja
Publication of JP2013258274A publication Critical patent/JP2013258274A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Light Receiving Elements (AREA)

Abstract

【課題】エックス線の検出効率を向上でき、画素サイズを微細化することができるエックス線用固体撮像素子を提供すること。
【解決手段】基板2と、基板2上に配置された下部電極層9と、下部電極層9を覆うように下部電極層9上に配置されたカルコパイライト構造の化合物半導体層12と、化合物半導体層12上に配置された透明電極層4とを含む固体撮像素子1を、エックス線の検出に用いる。
【選択図】図2

Description

本発明は、カルコパイライト構造の化合物半導体層を有するエックス線用固体撮像素子に関する。
カルコパイライト型半導体を用いた固体撮像素子が公知である。たとえば、特許文献1は、紫外光帯域から可視光帯域、さらには近赤外帯域までの光を感知する固体撮像素子を開示している。
特開2011−151271号公報
ところで、特許文献1の素子の検出対象外であるエックス線の検出素子としては、従来、シリコン(Si)を用いたものが知られている。
しかしながら、シリコンに対するエックス線の透過性が高いので、シリコン膜で十分な検出効率を得るためには、シリコン膜を厚膜化および/または大面積化する必要があった。そのため、素子の画素サイズを微細化することができず、高い解像度を得ることが困難であった。
本発明の目的は、エックス線の検出効率を向上でき、画素サイズを微細化することができるエックス線用固体撮像素子を提供することである。
本発明の一の局面に係るエックス線用固体撮像素子は、基板と、前記基板上に配置された下部電極層と、前記下部電極層を覆うように前記下部電極層上に配置されたカルコパイライト構造の化合物半導体層と、前記化合物半導体層上に配置された透明電極層とを含む(請求項1)。
この構成によれば、エックス線の検出層として、カルコパイライト構造の化合物半導体層が設けられているので、シリコンを検出層として用いる場合に比べて、エックス線の検出効率を向上させることができる。そのため、化合物半導体層の薄膜化および小面積化を図ることができる。その結果、画素サイズを微細化することができるので、高い解像度を得ることができる。たとえば、100μm〜10000μm厚さのシリコンと同等の検出効率を得るにあたって、前記化合物半導体層では、厚さを10μm〜1000μmにすることができる(請求項2)。
また、検出効率の向上によって、素子による評価時間を短縮することができるので、エックス線検査の対象物の被曝線量を低減することができ、さらには素子の長寿命化を図ることができる。
前記化合物半導体層は、Cu(InGa1−X)Se(0≦Y≦1、0≦X≦1)からなることが好ましい(請求項3)。
前記エックス線用固体撮像素子は、前記基板と前記下部電極層との間に配置された回路部を含むことが好ましい(請求項4)。
回路部と化合物半導体層とを積層配置することによって、基板上の領域のほとんどをエックス線の検出面として有効利用することができる。そのため、検出面積を十分に確保可能なエックス線用固体撮像素子を設計することができるので、素子の感度を向上させることができる。
前記回路部は、CMOS電界効果トランジスタを含んでいてもよい(請求項5)。
前記CMOS電界効果トランジスタは、前記基板の表面部に選択的に形成されたソース層およびドレイン層と、前記ソース層と前記ドレイン層との間に配置されたゲート電極とを含んでいてもよい(請求項6)。
前記下部電極層は、モリブデン(Mo)、ニオブ(Nb)、タンタル(Ta)またはタングステン(W)からなっていてもよい(請求項7)。
前記透明電極層は、酸化亜鉛(ZnO)、酸化インジウムスズ(ITO)からなっていてもよい(請求項8)。
前記エックス線用固体撮像素子は、前記化合物半導体層と前記透明電極層との間に配置されたバッファ層を含んでいてもよい(請求項9)。
前記バッファ層は、CdS、ZnS、ZnO、(ZnMg1-Z)O(0≦Z≦1)、ZnSeまたはInからなっていてもよい(請求項10)。
本発明の他の局面に係るエックス線用固体撮像素子は、基板と、前記基板上に配置された下部電極層と、前記下部電極層を覆うように前記下部電極層上に配置されたカルコパイライト構造の化合物半導体層と、前記化合物半導体層上に配置された透明電極層と、前記透明電極層上に配置され、エックス線を光に波長変換するシンチレータとを含む(請求項11)。
この構成によれば、化合物半導体層上にシンチレータが配置されているので、素子に入射したエックス線を、シンチレータで光に波長変換することによって、化合物半導体層へ光として入射させることができる。カルコパイライト構造の化合物半導体およびシリコンの光吸収係数を比べると、カルコパイライト構造の化合物半導体の方がはるかに高い。そのため、光の検出層(光吸収層)として、カルコパイライト構造の化合物半導体層を設けることによって、シリコンを光吸収層として用いる場合に比べて、エックス線の検出効率を向上させることができる。そのため、化合物半導体層の薄膜化および小面積化を図ることができる。その結果、画素サイズを微細化することができるので、高い解像度を得ることができる。たとえば、1μm〜100μm厚さのシリコン(シンチレータあり)と同等の検出効率を得るにあたって、前記化合物半導体層では、厚さを0.1μm〜10μmにすることができる(請求項12)。
また、検出効率の向上によって、素子による評価時間を短縮することができるので、エックス線検査の対象物の被曝線量を低減することができ、さらには素子の長寿命化を図ることができる。
また、カルコパイライト構造の化合物半導体は、シリコンに比べて広い帯域の波長を検出することができる。そのため、X線によりシンチレータで発生した励起光の波長の自由度を広げることができるので、シンチレータの選択自由度を広げることができる。
前記エックス線用固体撮像素子は、前記シンチレータ上に配置され、入射されたエックス線を平行なエックス線束に変換するコリメータを含むことが好ましい(請求項13)。
この構成により、化合物半導体層へ平行光を均等に入射させることができるので、各画素面内における検出のバラツキを減らすことができる。
図1は、本発明の第1実施形態に係る固体撮像素子の模式的な平面図である。 図2は、図1の切断面線II−IIから見た断面図である。 図3は、各種半導体の量子効率の波長特性を示すグラフである。 図4は、各種半導体の光吸収特性を示すグラフである。 図5は、各種電磁波の波長範囲を説明するための図である。 図6は、CIGS系半導体およびSiについて、相対変換効率と波長との関係を示す図である。 図7は、CIGS系半導体およびSiについて、相対変換効率とエネルギとの関係を示す図である。 図8は、本発明の第2実施形態に係る固体撮像素子の模式的な断面図である。 図9は、本発明の第3実施形態に係る固体撮像素子の模式的な断面図である。 図10は、本発明の第4実施形態に係る固体撮像素子の模式的な断面図である。
以下では、本発明の実施の形態を、添付図面を参照して詳細に説明する。
図1は、本発明の第1実施形態に係る固体撮像素子の模式的な平面図である。
固体撮像素子1は、入射されたエックスを検出し、エックス線のエネルギを電気信号に変換する。
固体撮像素子1は、基板2と、複数の画素3と、透明電極層4と、金属電極層5と、複数のパッド6とを含む。
基板2は、たとえば、シリコン(Si)からなる。基板2は、たとえば、5mm〜10mm角のサイズを有している。基板2の中央部には受光領域7が形成され、受光領域7を取り囲むように周辺領域8が形成されている。基板2は、たとえば、400μm〜1000μmの厚さを有している。
複数の画素3は、この実施形態では、受光領域7にマトリクス状(行列状)に配列されている。各画素3には、下部電極層9が1つずつ配置されている。そして、マトリクス状の画素3を一括して覆うように、透明電極層4が画素3上に配置されている。
金属電極層5は、たとえば、アルミニウム(Al)からなる。金属電極層5は、周辺領域8において透明電極層4を取り囲む環状に形成されており、透明電極層4の周縁部を覆っている。これにより、金属電極層5は、透明電極層4の周縁部に接続されている。
複数のパッド6は、金属電極層5に対して間隔を隔てた領域に互いに間隔を空けて配列されている。この実施形態では、複数のパッド6は、基板2の各辺に沿って直線状に配列されている。複数のパッド6のうちの幾つか(1つであっても、複数であってもよい)は、パッド接続部10を介して金属電極層5に接続されている。パッド接続部10は、当該パッド6と金属電極層5との間に跨って形成されている。
次に、固体撮像素子1の断面構造を説明する。図2は、図1の切断面線II−IIから見た断面図である。
固体撮像素子1は、基板2上に順に積層された、回路部11、下部電極層9、化合物半導体層12、バッファ層13、透明電極層4および表面保護膜14を含む。
回路部11は、たとえば、CMOS電界効果トランジスタを含む。図2において、回路部11には、CMOS電界効果トランジスタの一部を構成するnチャネルMOSトランジスタを示している。当該nチャネルMOSトランジスタは、基板2の表面部に選択的に形成されたソース層15およびドレイン層16と、ソース層15とドレイン層16との間に配置されたゲート電極17と、基板2上にゲート電極17を覆うように形成された層間膜18と、層間膜18を貫通するビア電極19とを含む。ビア電極19は、下部電極層9とゲート電極17とを接続している。ゲート電極17に下部電極層9(アノード)が接続されるので、化合物半導体層12で検出されたエックス線情報(電気信号)は、当該nチャネルMOSトランジスタによって増幅される。なお、図2に示した回路部11の構成は、一例に過ぎない。たとえば回路部11は、例えば、ガラス基板上の薄膜上に形成されたCMOS構成の薄膜トランジスタであってもよい。また、図2では、明瞭化のために、ゲート電極17と基板2との間に配置されたゲート絶縁膜の図示を省略している。
下部電極層9は、たとえば、モリブデン(Mo)、ニオブ(Nb)、タンタル(Ta)またはタングステン(W)からなる。下部電極層9は、層間膜18上に、マトリクス状に複数配列されている。
化合物半導体層12は、複数の下部電極層9を一括して覆うように形成されている。化合物半導体層は、10μm〜1000μmの厚さTを有していることが好ましく、具体的には、100μm程度の厚さTを有していることが好ましい。化合物半導体層12は、カルコパイライト構造の化合物半導体からなる。
カルコパイライト構造の化合物半導体は、黄銅鉱(chalcopyrite)と同じ結晶構造であり、たとえば、組成式I−III−VI、II−IV−Vで示される。ただし、組成式中のローマ数字は、周期表の族番号を示している。たとえば、ローマ数字のIは、IB族元素であり、IIは、IIB族元素である。組成式中、IB族元素は、たとえば、Cu、Ag等を含み、IIIB族元素は、たとえば、Al、Ga、In等を含み、VIB族元素は、たとえば、S、Se、Te等を含む。また、IIB族元素は、たとえば、Zn、Cd等を含み、IVB族元素は、たとえば、Si、Ge、Sn等を含み、VB族元素は、たとえば、P、As、Sb等を含む。とりわけ、カルコパイライト構造の化合物半導体は、I−III−VI型カルコパイライト構造のものが好ましく、Cu(InGa1−X)Se(0≦Y≦1、0≦X≦1)で示されるCIGS系半導体のものがさらに好ましい。
バッファ層13は、化合物半導体層12の上面の全域を覆うように形成されている。バッファ層13は、たとえば、100Å〜10000Åの厚さを有している。バッファ層13は、CdS、ZnS、ZnO、(ZnMg1-Z)O(0≦Z≦1)、ZnSeまたはInからなることが好ましい。
透明電極層4は、バッファ層13の上面の全域を覆うように形成されている。透明電極層4は、たとえば、100Å〜10000Åの厚さを有している。透明電極層4は、酸化亜鉛(ZnO)からなることが好ましく、たとえば、化合物半導体層12に近い側から順に、ノンドープのZnO膜(i−ZnO)およびn型のZnO膜(n−ZnO)が積層されたものであってもよい。
表面保護膜14は、たとえば、窒化シリコン(Si)等の絶縁材料からなる。
図3は、各種半導体の量子効率の波長特性を示すグラフである。図4は、各種半導体の光吸収特性を示すグラフである。図5は、各種電磁波の波長範囲を説明するための図である。
固体撮像素子1の化合物半導体層12で使用されるカルコパイライト構造の化合物半導体は、シリコンに比べて、はるかに高い量子効率および光吸収特性を発現する。
具体的には、図3に示すように、CIGS系半導体(Cu(InGa1−X)Se(0≦Y≦1、0≦X≦1)およびCuInSe(0≦Y≦1))は、近紫外帯域(波長範囲:300nm〜380nm程度)から可視光帯域(波長範囲:380nm〜780nm程度)を経て近赤外帯域(波長範囲:780nm〜1300nm程度)まで、幅広い波長帯域において、単結晶Si(シリコン)およびa−Si(アモルファスシリコン)に比べて、高い量子効率を示している。とりわけ、Siの場合の量子効率に比べて倍以上である。また、CuInSe(0≦Y≦1)とCuGaSe(0≦Y≦1)の混晶では、可視光帯域において、最高の量子効率の値が得られる。
また、図4に示すように、CIGS系半導体(Cu(InGa1−X)Se(0≦Y≦1、0≦X≦1)およびCuInSe(0≦Y≦1))は、可視光帯域から近赤外帯域まで幅広い波長帯域において、強い吸収性能を示している。たとえば、可視光帯域において、CIGS系半導体の光吸収係数は、Siの光吸収係数の約100倍である。
一方、300nmや1300nmの付近の波長の光に対する、CIGS系半導体およびSiの量子効率および光吸収係数を比べると、CIGS系半導体がSiと同程度かそれ未満となっている。つまり、図3および図4によると、300nm未満の波長帯域では、CIGS系半導体の感度は、いっそうゼロに近づくと予測される。そのため、従来では、図5に示すように、0.001nm〜10nmの波長帯域に含まれるエックス線の検出素子としては、比較的安価なシリコンが利用されていた。
しかしながら、本願発明者らは、シリコンに代わるエックス線用固体撮像素子について鋭意検討したところ、図3および図4から導かれる予測に反して、カルコパイライト構造の化合物半導体が、エックス線用固体撮像素子として好適に使用できることを見出した。
図6は、CIGS系半導体およびSiについて、相対変換効率と波長との関係を示す図である。図7は、CIGS系半導体およびSiについて、相対変換効率とエネルギとの関係を示す図である。
図6に示すように、波長0.01nmのエックス線に対するバルクのCIGS系半導体の変換効率(量子効率)を1とし、1μm厚のCIGS系半導体および10μm厚のSiそれぞれの相対変換効率とエックス線の波長との関係を調べた。そうすると、CIGS系半導体は、エックス線の波長帯域(0.001nm〜10nm)において0.1%〜100%の相対変換効率を発現できたのに対し、Siは、同波長帯域において0.0001%〜0.1%の相対変換効率に留まった。つまり、エックス線の波長帯域において、CIGS系半導体の量子効率が、シリコン(Si)の量子効率の10倍〜1000倍であることが分かった。
図7では、エネルギの観点からエックス線に対するCIGS系半導体およびSiの相対変換効率を調べた。図7に示すように、エネルギ100keVのエックス線に対するバルクのCIGS系半導体の変換効率(量子効率)を1とし、1μm厚のCIGS系半導体および10μm厚のSiそれぞれの相対変換効率とエックス線の波長との関係を調べた。そうすると、CIGS系半導体は、エックス線が持つエネルギ帯域の一部(1000keV〜0.1keV)において0.1%〜100%の相対変換効率を発現できたのに対し、Siは、同エネルギ帯域において0.0001%〜0.1%の相対変換効率に留まった。つまり、エックス線の持つエネルギ帯域において、CIGS系半導体の量子効率が、Siの量子効率の10倍〜1000倍であることが分かった。
以上より、固体撮像素子1によれば、エックス線の検出層として、CIGS系半導体等のカルコパイライト構造の化合物半導体層12が設けられている。そのため、図6および図7から明らかなように、シリコンを検出層として用いる場合に比べて、エックス線の検出効率を向上させることができる。そのため、化合物半導体層12の薄膜化および小面積化を図ることができる。その結果、画素3のサイズを微細化することができるので、高い解像度を得ることができる。たとえば、100μm〜1000μm厚さのシリコンと同等の検出効率を得るにあたって、化合物半導体層12では、厚さTを10μm〜10000μmにすることができる。
また、カルコパイライト構造の化合物半導体は、単位面積当たりではシリコンに比べて高価であるが、この実施形態では、シリコンを用いる場合に比べて使用量を減らすことができるので、トータルコストを安価にできる場合もある。
また、検出効率の向上によって、固体撮像素子1による評価時間を短縮することができるので、エックス線検査の対象物の被曝線量を低減することができ、さらには固体撮像素子1の長寿命化を図ることができる。
また、回路部11と化合物半導体層12とを積層配置することによって、基板2上の領域のほとんどをエックス線の検出面として有効利用することができる。そのため、検出面積を十分に確保可能なエックス線用固体撮像素子1を設計することができるので、固体撮像素子1の感度を向上させることができる。
図8は、本発明の第2実施形態に係る固体撮像素子の模式的な断面図である。図8において、前述の図2に示された各部と対応する部分には同一の参照符号を付して示す。
前述の第1の実施形態では、表面保護膜14が固体撮像素子1の最表面を形成していた。これに対し、第2の実施形態の固体撮像素子21は、透明電極層4を覆う表面保護膜14上に順に積層された、シンチレータ22およびコリメータ23をさらに含む。
シンチレータ22は、入射したエックス線を光に波長変換する。たとえば、0.001nm〜10nmの波長帯域のエックス線を、300nm〜1300nmの波長帯域の可視光線および近赤外光に変換する。また、コリメータ23は、入射したエックス線を平行なエックス線束に変換する。これにより、固体撮像素子21では、入射したエックス線がコリメータ23で平行なエックス線束に変換された後、シンチレータ22で可視光線に変換される。その結果、表面保護膜14および透明電極層4を通過して、平行な可視光線束を化合物半導体層12に入射させることができる。
図3および図4に示したように、CIGS系半導体およびシリコンの光の量子効率および光吸収係数を比べると、CIGS系半導体の方がはるかに高い。そのため、エックス線をシンチレータ22で光に変換し、化合物半導体層12において光として検出する場合でも、シリコンを光吸収層として用いる場合に比べて、エックス線の検出効率を向上させることができる。そのため、化合物半導体層12の薄膜化および小面積化を図ることができる。その結果、画素3のサイズを微細化することができるので、高い解像度を得ることができる。たとえば、1μm〜100μm厚さのシリコン(シンチレータあり)と同等の検出効率を得るにあたって、化合物半導体層12では、厚さTを0.1μm〜10μm(具体的には、1μm程度)にすることができる。
また、カルコパイライト構造の化合物半導体は、単位面積当たりではシリコンに比べて高価であるが、この実施形態では、シリコンを用いる場合に比べて使用量を減らすことができるので、トータルコストを安価にできる場合もある。
また、検出効率の向上によって、固体撮像素子21による評価時間を短縮することができるので、エックス線検査の対象物の被曝線量を低減することができ、さらには固体撮像素子21の長寿命化を図ることができる。
また、カルコパイライト構造の化合物半導体は、シリコンに比べて広い帯域の波長を検出することができる。たとえば図3に示すように、光に関して、CIGS系半導体の検出帯域は300nm〜1300nm程度であり、300nm〜1100nm程度であるシリコンに比べて十分広い。そのため、シンチレータ22からの励起光の波長の自由度を広げることができるので、シンチレータ22の選択自由度を広げることができる。
また、コリメータ23により、化合物半導体層12へ平行光を均等に入射させることができるので、各画素3の面内における検出のバラツキを減らすことができる。
図9は、本発明の第3実施形態に係る固体撮像素子の模式的な断面図である。図10は、本発明の第4実施形態に係る固体撮像素子の模式的な断面図である。図9および図10において、前述の図2および図8に示された各部と対応する部分には同一の参照符号を付して示す。
前述の第1および第2の実施形態では、化合物半導体層12は、複数の下部電極層9を一括して覆うように形成されていた。これに対し、第3の実施形態の固体撮像素子31および第4の実施形態の固体撮像素子41は、各下部電極層9に1つずつ配置された複数の化合物半導体層32,42を含む。互いに隣り合う化合物半導体層32,42の間には隙間33,43が設けられている。この隙間33,43を埋め戻すように、絶縁層34,44が層間膜18上に配置されている。絶縁層34,44は、二酸化ケイ素(SiO)等の絶縁材料からなる。
以上、本発明の実施形態を説明したが、本発明は、他の形態で実施することもできる。
たとえば、基板2上には、CMOS電界効果トランジスタの他、キャパシタ、レジスタ等の各種回路素子が形成されていてもよい。また、これらの回路素子によって、SSI(Small Scale Integration)、MSI(Medium Scale Integration)、LSI(Large Scale Integration)、VLSI(Very Large Scale Integration)、ULSI(Ultra-Very Large Scale Integration)等の集積回路を構成していてもよい。
また、前述の固体撮像素子1,21,31,41は、たとえば、一次元に複数配列することによってラインイメージセンサとして使用してもよいし、二次元に複数配列することによってエリアイメージセンサとして使用してもよい。
その他、特許請求の範囲に記載された事項の範囲で種々の設計変更を施すことが可能である。
1 固体撮像素子
2 基板
4 透明電極層
9 下部電極層
11 回路部
12 化合物半導体層
13 バッファ層
15 ソース層
16 ドレイン層
17 ゲート電極
21 固体撮像素子
22 シンチレータ
23 コリメータ
31 固体撮像素子
32 化合物半導体層
41 固体撮像素子
42 化合物半導体層

Claims (13)

  1. 基板と、
    前記基板上に配置された下部電極層と、
    前記下部電極層を覆うように前記下部電極層上に配置されたカルコパイライト構造の化合物半導体層と、
    前記化合物半導体層上に配置された透明電極層とを含む、エックス線用固体撮像素子。
  2. 前記化合物半導体層は、10μm〜1000μmの厚さを有している、請求項1に記載のエックス線用固体撮像素子。
  3. 前記化合物半導体層は、Cu(InGa1−X)Se(0≦Y≦1、0≦X≦1)からなる、請求項1または2に記載のエックス線用固体撮像素子。
  4. 前記エックス線用固体撮像素子は、前記基板と前記下部電極層との間に配置された回路部を含む、請求項1〜3のいずれか一項に記載のエックス線用固体撮像素子。
  5. 前記回路部は、CMOS電界効果トランジスタを含む、請求項4に記載のエックス線用固体撮像素子。
  6. 前記CMOS電界効果トランジスタは、前記基板の表面部に選択的に形成されたソース層およびドレイン層と、前記ソース層と前記ドレイン層との間に配置されたゲート電極とを含む、請求項5に記載のエックス線用固体撮像素子。
  7. 前記下部電極層は、モリブデン(Mo)、ニオブ(Nb)、タンタル(Ta)またはタングステン(W)からなる、請求項1〜6のいずれか一項に記載のエックス線用固体撮像素子。
  8. 前記透明電極層は、酸化亜鉛(ZnO)、酸化インジウムスズ(ITO)からなる、請求項1〜7のいずれか一項に記載のエックス線用固体撮像素子。
  9. 前記エックス線用固体撮像素子は、前記化合物半導体層と前記透明電極層との間に配置されたバッファ層を含む、請求項1〜8のいずれか一項に記載のエックス線用固体撮像素子。
  10. 前記バッファ層は、CdS、ZnS、ZnO、(ZnMg1-Z)O(0≦Z≦1)、ZnSeまたはInからなる、請求項9に記載のエックス線用固体撮像素子。
  11. 基板と、
    前記基板上に配置された下部電極層と、
    前記下部電極層を覆うように前記下部電極層上に配置されたカルコパイライト構造の化合物半導体層と、
    前記化合物半導体層上に配置された透明電極層と、
    前記透明電極層上に配置され、エックス線を光に波長変換するシンチレータとを含む、エックス線用固体撮像素子。
  12. 前記化合物半導体層は、0.1μm〜10μmの厚さを有している、請求項11に記載のエックス線用固体撮像素子。
  13. 前記エックス線用固体撮像素子は、前記シンチレータ上に配置され、入射されたエックス線を平行なエックス線束に変換するコリメータを含む、請求項11または12に記載のエックス線用固体撮像素子。
JP2012133142A 2012-06-12 2012-06-12 エックス線用固体撮像素子 Pending JP2013258274A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012133142A JP2013258274A (ja) 2012-06-12 2012-06-12 エックス線用固体撮像素子

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012133142A JP2013258274A (ja) 2012-06-12 2012-06-12 エックス線用固体撮像素子

Publications (1)

Publication Number Publication Date
JP2013258274A true JP2013258274A (ja) 2013-12-26

Family

ID=49954462

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012133142A Pending JP2013258274A (ja) 2012-06-12 2012-06-12 エックス線用固体撮像素子

Country Status (1)

Country Link
JP (1) JP2013258274A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150134816A (ko) * 2014-05-23 2015-12-02 엘지전자 주식회사 전이금속 디칼코게나이드를 포함하는 광 반도체 소자
KR101687526B1 (ko) * 2015-07-07 2016-12-19 한국원자력연구원 방사선 검출기 및 이의 제조 방법
KR20160148372A (ko) * 2015-06-16 2016-12-26 한국원자력연구원 방사선 검출기 및 그 제조 방법
CN107946334A (zh) * 2017-12-22 2018-04-20 成都先锋材料有限公司 影像传感器芯片、影像传感器芯片的制备方法、影像传感器以及生物活体影像监控系统

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150134816A (ko) * 2014-05-23 2015-12-02 엘지전자 주식회사 전이금속 디칼코게나이드를 포함하는 광 반도체 소자
KR101595429B1 (ko) 2014-05-23 2016-02-26 엘지전자 주식회사 전이금속 디칼코게나이드를 포함하는 광 반도체 소자
KR20160148372A (ko) * 2015-06-16 2016-12-26 한국원자력연구원 방사선 검출기 및 그 제조 방법
KR101723438B1 (ko) 2015-06-16 2017-04-06 한국원자력연구원 방사선 검출기 및 그 제조 방법
KR101687526B1 (ko) * 2015-07-07 2016-12-19 한국원자력연구원 방사선 검출기 및 이의 제조 방법
US10408948B2 (en) 2015-07-07 2019-09-10 Korea Atomic Energy Research Institute Radiation detector and method for manufacturing same
CN107946334A (zh) * 2017-12-22 2018-04-20 成都先锋材料有限公司 影像传感器芯片、影像传感器芯片的制备方法、影像传感器以及生物活体影像监控系统

Similar Documents

Publication Publication Date Title
US7629564B2 (en) Conversion apparatus, radiation detecting apparatus, and radiation detecting system
US7812313B2 (en) Conversion apparatus, radiation detecting apparatus, and radiation detecting system
US20100054418A1 (en) X-ray detecting element
US7875856B2 (en) Radiation detector
US8803210B2 (en) X-ray detector
US20100051820A1 (en) X-ray detecting element
US7105829B2 (en) Radiation detector having radiation sensitive semiconductor
JP5739359B2 (ja) 撮像装置およびその製造方法ならびに撮像表示システム
JP2014060380A (ja) 光電変換装置
US11296139B2 (en) Array substrate for digital X-ray detector and X-ray detector including the same
CN103456753A (zh) 摄像装置和摄像显示系统
WO2015186657A1 (ja) 半導体装置およびその製造方法
JP2013161810A (ja) 撮像装置およびその製造方法ならびに撮像表示システム
US10795034B2 (en) Digital X-ray detector panel and X-ray system including the same
CN110034134B (zh) 用于x射线探测器的阵列基板以及包括其的x射线探测器
CN111129045A (zh) 数字x射线检测器和用于其的薄膜晶体管阵列衬底
US8071980B2 (en) Radiation detector
JP2013258274A (ja) エックス線用固体撮像素子
KR102670831B1 (ko) 광차단층을 구비한 디지털 엑스레이 검출장치 및 그 제조방법
WO2016111192A1 (ja) 撮像パネル及びx線撮像装置
CN112068178B (zh) 放射线感测装置
US10879304B2 (en) Active matrix substrate, x-ray imaging panel including same and producing method thereof
JP2005101193A (ja) 放射線検出器
US20120248318A1 (en) Radiographic image-pickup device and radiographic image-pickup display system
US9348037B2 (en) X-ray pixels including double photoconductors and X-ray detectors including the X-ray pixels