JP2013253486A - Scroll compressor - Google Patents

Scroll compressor Download PDF

Info

Publication number
JP2013253486A
JP2013253486A JP2012127758A JP2012127758A JP2013253486A JP 2013253486 A JP2013253486 A JP 2013253486A JP 2012127758 A JP2012127758 A JP 2012127758A JP 2012127758 A JP2012127758 A JP 2012127758A JP 2013253486 A JP2013253486 A JP 2013253486A
Authority
JP
Japan
Prior art keywords
pressure
scroll
movable scroll
shaft seal
back pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012127758A
Other languages
Japanese (ja)
Inventor
Tatsuhisa Taguchi
辰久 田口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2012127758A priority Critical patent/JP2013253486A/en
Publication of JP2013253486A publication Critical patent/JP2013253486A/en
Pending legal-status Critical Current

Links

Landscapes

  • Rotary Pumps (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a scroll compressor with less sliding losses, high efficiency, and less abrasion.SOLUTION: In a scroll compressor, the thrust load of a movable scroll 2 is supported by the pressure of center and outer peripheral back pressure units 9, 19 on a back surface of the movable scroll 2. The maximum reduction effect of the thrust load for supporting the movable scroll in the axial direction is defined to be 100%. In this condition, the parameter M for setting the thrust load reduction effect to be substantially ≥10% is set to be in a range of 0.36≤M≤1.8 in a range of 0.56≤D2/D1≤0.65, 1≤εm2≤2.33 (wherein, D1: the diameter of an end plate of the movable scroll, D2: the diameter of an annular shaft seal member, εm2: the average pressure ratio to the suction pressure of the outer peripheral back pressure unit). Thus, the thrust load to be applied to the movable scroll can be set smaller than that of a conventional configuration in an area of the higher discharge pressure, and thus, there is provided the scroll compressor with less sliding losses and high efficiency.

Description

本発明は自動車空調用装置等に使用されるスクロール圧縮機に関するものである。   The present invention relates to a scroll compressor used in an automobile air conditioning apparatus or the like.

従来、この種のスクロール圧縮機は可動スクロールを固定スクロール側に付勢して旋回運動をさせるにあたり、可動スクロールの背面に隣接した軸受けホルダに環状のシール溝を設け、その中に環状軸シール部材を軸方向に移動可能に挿入して、環状軸シール部材の内部にオイルポンプによりオイルの供給をするとともに吐出圧力を加圧した高圧を導入している(例えば、特許文献1参照)。   Conventionally, this type of scroll compressor is provided with an annular seal groove in a bearing holder adjacent to the back surface of the movable scroll, in order to urge the movable scroll toward the fixed scroll to make a turning motion. Is inserted so as to be movable in the axial direction, and oil is supplied into the annular shaft seal member by an oil pump and a high pressure in which the discharge pressure is increased is introduced (for example, see Patent Document 1).

図10は、従来のスクロール圧縮機の断面を示すものである。図に示すように、渦巻き状のハネを有する固定スクロール101と、前記固定スクロール101と対のハネを有し偏芯して旋回運動する可動スクロール102と、可動スクロール102を駆動するシャフト103と、前記シャフト103を軸受け支持し、可動スクロール102を背部から旋回可能に閉塞する軸受けホルダ104と、前記軸受けホルダ104内で可動スクロール102の背面と隣接する面に設置された環状軸シール溝105と、その中に軸方向に移動可能で外周部と可動スクロール102の背面との接触部でシールするように配置された環状軸シール部材106から構成されている。   FIG. 10 shows a cross section of a conventional scroll compressor. As shown in the figure, a fixed scroll 101 having spiral wings, a movable scroll 102 having a pair of honey with the fixed scroll 101 and rotating eccentrically, a shaft 103 for driving the movable scroll 102, A bearing holder 104 that supports the shaft 103 and closes the movable scroll 102 so as to be turnable from the back; an annular shaft seal groove 105 installed on a surface adjacent to the back surface of the movable scroll 102 in the bearing holder 104; It is composed of an annular shaft seal member 106 that is movable in the axial direction and is arranged to seal at a contact portion between the outer peripheral portion and the back surface of the movable scroll 102.

前述シャフト103の反スクロール側の先端にはオイルポンプ107が配置され、シャフト103の回転によってコンプケース108の下部に貯油されたオイルを吸い上げ、前記シャフト103の中のオイル通路を通り前記環状軸シール部材106内に吐出圧より加圧され、冷媒ガスが溶融したオイルが供給される。前述したオイルは前記シャフト103を支持するメインベアリング109と可動スクロール102を駆動支持するドライブベアリング110等を潤滑するとともに、前記可動スクロール102を固定スクロール101側に付勢した際の金属同士の接触面の潤滑と微少隙間のシールを行い、確実な圧縮作用を行わせる構造としている。   An oil pump 107 is disposed at the tip of the shaft 103 on the side opposite to the scroll, and the oil stored in the lower portion of the compressor case 108 is sucked up by the rotation of the shaft 103 and passes through the oil passage in the shaft 103 and the annular shaft seal. Oil in which the refrigerant gas is melted by being pressurized by the discharge pressure into the member 106 is supplied. The oil described above lubricates the main bearing 109 that supports the shaft 103, the drive bearing 110 that drives and supports the movable scroll 102, and the like, and the contact surface between the metals when the movable scroll 102 is urged toward the fixed scroll 101 side. The structure is designed to perform a reliable compression action by lubricating the material and sealing a minute gap.

特開平1−178785号公報JP-A-1-178785

しかしながら、前記従来の構成では、図11に示すように圧縮ガス力の軸方向の内圧ガス力Fiに加え、可動スクロール102に作用する圧縮ガスの接線方向力Ftが、可動スクロール102を固定スクロール101から離脱、あるいは、いわゆる転覆させる方向のモーメントとして作用する。このため、前記可動スクロール102の背面には環状軸シール部材106の内部に高圧を作用させた中央背圧部ガス力Fm1を、また前記環状軸シール部材106の外側は低中間圧にして外周背圧部ガス力Fm2を作用させている。この場合、均圧起動時等の低圧縮比運転領域では環状軸シール部材106の径を大きくする等によりその合力を大きくして付勢する必要がある。その結果、固定スクロール101と可動スクロール102の軸方向支持反力(スラスト荷重)Fth1,Fth2は高負荷運転条件で大きな値となり、摩擦損失の増加によるエネルギ効率の低下や、摩耗の原因となるという課題を有していた。   However, in the conventional configuration, the tangential force Ft of the compressed gas acting on the movable scroll 102 in addition to the internal pressure gas force Fi in the axial direction of the compressed gas force as shown in FIG. It acts as a moment in the direction of detachment from the head or so-called capsize. Therefore, the back surface of the movable scroll 102 is provided with a central back pressure portion gas force Fm1 in which a high pressure is applied to the inside of the annular shaft seal member 106, and the outer periphery of the annular shaft seal member 106 is set at a low intermediate pressure. The pressure part gas force Fm2 is applied. In this case, in the low compression ratio operation region such as when pressure equalization is activated, it is necessary to increase the resultant force by enlarging the diameter of the annular shaft seal member 106 or the like. As a result, the axial support reaction forces (thrust loads) Fth1 and Fth2 of the fixed scroll 101 and the movable scroll 102 become large values under high-load operation conditions, which causes a decrease in energy efficiency due to an increase in friction loss and causes wear. Had problems.

本発明は前記従来の課題を解決するもので、可動スクロールの離脱(または転覆)現象
を解消しつつ、吐出圧力が高い高負荷運転条件においては過剰な軸方向支持反力(スラスト荷重)にならないようにしたスクロール圧縮機を提供する。
The present invention solves the above-mentioned conventional problems, and eliminates the phenomenon of movable scroll disengagement (or rollover), and does not result in excessive axial support reaction force (thrust load) under high load operation conditions with high discharge pressure. A scroll compressor is provided.

前記従来の課題を解決するために、発明のスクロール圧縮機は、渦巻き状のハネを有する固定スクロールと、前記固定スクロールと対となり圧縮室を形成しながら旋回運動する可動スクロールと、前記可動スクロールを駆動するシャフトと、前記シャフトを支持するとともに前記可動スクロールの背面に隣接した面に環状軸シール溝を有する軸受けホルダと、前記環状軸シール溝内に軸方向に移動可能に配置して中央背圧部を形成した環状軸シール部材と、運転中は吐出圧力により加圧供給されるオイルを減圧して前記中央背圧部に供給する流入側減圧部と、前記中央背圧部から前記環状軸シール部材外周の外周背圧部へとつながる流出通路に設けた流出側減圧部とを備え、前記環状軸シール部材の外周背圧部を吸入圧力ないし吸入圧力より高い中間圧力とした差圧給油方式のスクロール圧縮機であって、前記可動スクロールの鏡板直径をD1、環状軸シール部材の直径をD2、環状軸シール部材の外周背圧部の吸入圧力に対する平均圧力比をεm2、差圧給油における流入側減圧部の最小断面積をA1、流出側減圧部の最小断面積をA2とし、パラメータM=(D2/D1)^m*εm2^n*A1/A2と定義し、m=2+(D2/D1−0.5)*3、n=0.4とした時、可動スクロールの離脱(または転覆)現象の発生がない範囲で、前記中央背圧部を吐出圧力から中間圧力とした場合の前記固定スクロールが可動スクロールを軸方向に支持するスラスト荷重の最大低減効果を100%としたとき、上記スラスト荷重低減効果を概ね10%以上にするパラメータMを、0.56≦D2/D1≦0.65、1≦εm2≦2.33の範囲において0.36≦M≦1.8の範囲となるようにしたものである。   In order to solve the conventional problem, a scroll compressor according to the invention includes a fixed scroll having a spiral hood, a movable scroll that forms a compression chamber in pairs with the fixed scroll, and the movable scroll. A shaft to be driven; a bearing holder that supports the shaft and has an annular shaft seal groove on a surface adjacent to the back surface of the movable scroll; and a central back pressure disposed in the annular shaft seal groove so as to be movable in the axial direction. An annular shaft seal member formed with a portion, an inflow side pressure reducing portion for reducing pressure of oil supplied under pressure during operation and supplying the oil to the central back pressure portion, and the annular shaft seal from the central back pressure portion An outflow side pressure reducing portion provided in an outflow passage connected to an outer peripheral back pressure portion on the outer periphery of the member, and the outer peripheral back pressure portion of the annular shaft seal member is set to a suction pressure or a suction pressure. A differential pressure oil supply type scroll compressor having an intermediate pressure, wherein the movable scroll end plate diameter is D1, the annular shaft seal member diameter is D2, and the average pressure with respect to the suction pressure of the outer peripheral back pressure portion of the annular shaft seal member The ratio M is εm2, the minimum cross-sectional area of the inflow side pressure reducing part in differential pressure oiling is A1, the minimum cross-sectional area of the outflow side pressure reducing part is A2, and the parameter M = (D2 / D1) ^ m * εm2 ^ n * A1 / A2 When the definition is m = 2 + (D2 / D1-0.5) * 3 and n = 0.4, the central back pressure part is discharged within a range in which the movable scroll is not detached (or overturned). When the maximum reduction effect of the thrust load in which the fixed scroll supports the movable scroll in the axial direction when the pressure is changed to the intermediate pressure is 100%, the parameter M that makes the thrust load reduction effect approximately 10% or more is set to 0. . It is obtained as a range of 0.36 ≦ M ≦ 1.8 in the range of 6 ≦ D2 / D1 ≦ 0.65,1 ≦ εm2 ≦ 2.33.

これにより、吐出圧力が大きな高負荷運転領域において固定スクロールと可動スクロールのスラスト荷重(軸方向支持反力)を従来に比べ過剰に大きくならないようにすることができる。   Thereby, it is possible to prevent the thrust load (axial support reaction force) of the fixed scroll and the movable scroll from becoming excessively large as compared with the conventional case in a high load operation region where the discharge pressure is large.

本発明のスクロール圧縮機は、吐出圧力が大きな高負荷運転領域において固定スクロールと可動スクロールのスラスト荷重(軸方向支持反力)を従来に比べ過剰に大きくならないようにすることができる為、摺動損失が少なくなり高効率で摩耗の少ない構造にすることができる。   The scroll compressor of the present invention can prevent the thrust load (axial reaction force) of the fixed scroll and the movable scroll from becoming excessively large compared to the conventional case in a high load operation region where the discharge pressure is large. Loss is reduced, and a structure with high efficiency and low wear can be obtained.

本発明の実施の形態1におけるスクロール圧縮機の断面図Sectional drawing of the scroll compressor in Embodiment 1 of this invention 同スクロール圧縮機における可動スクロールの背圧部構造の説明図Explanatory drawing of back pressure part structure of movable scroll in the scroll compressor 従来例におけるスラスト荷重分布の説明図Explanatory drawing of thrust load distribution in the conventional example 転覆限界状態におけるスラスト荷重分布の説明図Explanatory drawing of thrust load distribution in overturn limit state 実施の形態1における中央背圧部圧力による総スラスト荷重の変化を示す説明図Explanatory drawing which shows the change of the total thrust load by the center back pressure part pressure in Embodiment 1. FIG. 同実施の形態1におけるスクロール圧縮機の差圧給油による中央背圧部の圧力変化の説明図Explanatory drawing of the pressure change of the center back pressure part by the differential pressure oil supply of the scroll compressor in Embodiment 1 同実施の形態1におけるスクロール圧縮機の転覆限界因子群の説明図Explanatory drawing of the rollover limit factor group of the scroll compressor in the first embodiment 同実施の形態1における背圧構造に影響する諸因子を使用したパラメータMの変化の説明図Explanatory drawing of the change of the parameter M using the factors influencing the back pressure structure in the first embodiment 同実施の形態1における背圧構造決定因子であるパラメータMの範囲と値の説明図Explanatory drawing of the range and value of parameter M, which is the back pressure structure determining factor in the first embodiment 従来のスクロール圧縮機の断面図Sectional view of a conventional scroll compressor 従来のスクロール圧縮機の可動スクロールに作用する力を説明する圧縮部の断面図Sectional drawing of the compression part explaining the force which acts on the movable scroll of the conventional scroll compressor

第1の発明は、渦巻き状のハネを有する固定スクロールと、前記固定スクロールと対になり圧縮室を形成しながら旋回運動する可動スクロールと、前記可動スクロールを駆動するシャフトと、前記シャフトを支持するとともに前記可動スクロールの背面に隣接した面に環状軸シール溝を有する軸受けホルダと、前記環状軸シール溝内に軸方向に移動可能に配置して中央背圧部を形成した環状軸シール部材と、運転中は吐出圧力により加圧供給されるオイルを減圧して前記中央背圧部に供給する流入側減圧部と、前記中央背圧部から前記環状軸シール部材外周の外周背圧部へとつながる流出通路に設けた流出側減圧部とを備え、前記環状軸シール部材の外周背圧部を吸入圧力ないし吸入圧力より高い中間圧力とした差圧給油方式のスクロール圧縮機であって、前記可動スクロールの鏡板直径をD1、環状軸シール部材の直径をD2、環状軸シール部材の外周背圧部の吸入圧力に対する平均圧力比をεm2、差圧給油における流入側減圧部の最小断面積をA1、流出側減圧部の最小断面積をA2とし、パラメータM=(D2/D1)^m*εm2^n*A1/A2と定義し、m=2+(D2/D1−0.5)*3、n=0.4とした時、可動スクロールの離脱(または転覆)現象の発生がない範囲で、前記中央背圧部を吐出圧力から中間圧力とした場合の前記固定スクロールが可動スクロールを軸方向に支持するスラスト荷重の最大低減効果を100%としたとき、上記スラスト荷重低減効果を概ね10%以上にするパラメータMを、0.56≦D2/D1≦0.65、1≦εm2≦2.33の範囲において0.36≦M≦1.8の範囲となるようにしたものである。   1st invention supports the fixed scroll which has spiral spiral, the movable scroll which carries out a turning motion paired with the fixed scroll, and forms a compression chamber, the shaft which drives the movable scroll, and the shaft And a bearing holder having an annular shaft seal groove on a surface adjacent to the back surface of the movable scroll, and an annular shaft seal member that is arranged so as to be movable in the axial direction in the annular shaft seal groove to form a central back pressure portion, During operation, the oil supplied under pressure by the discharge pressure is reduced and supplied to the central back pressure portion. The inflow side pressure reducing portion is connected to the outer peripheral back pressure portion around the annular shaft seal member from the central back pressure portion. A differential pressure lubrication type scroll pressure having an outflow side pressure reducing portion provided in the outflow passage, wherein the outer peripheral back pressure portion of the annular shaft seal member is an intermediate pressure higher than the suction pressure or the suction pressure. The diameter of the end plate of the movable scroll is D1, the diameter of the annular shaft seal member is D2, the average pressure ratio to the suction pressure of the outer peripheral back pressure portion of the annular shaft seal member is εm2, and the inflow side pressure reducing portion in the differential pressure oil supply The minimum cross-sectional area of A1 is A1, the minimum cross-sectional area of the outflow side decompression section is A2, and the parameter M = (D2 / D1) ^ m * εm2 ^ n * A1 / A2 is defined, and m = 2 + (D2 / D1-0 .5) * 3, when n = 0.4, the fixed scroll when the central back pressure portion is changed from the discharge pressure to the intermediate pressure within a range where the movable scroll is not detached (or overturned) occurs. Assuming that the maximum reduction effect of the thrust load for supporting the movable scroll in the axial direction is 100%, the parameter M that makes the above-mentioned thrust load reduction effect approximately 10% or more is 0.56 ≦ D2 / D1 ≦ 0.65, ≦ εm2 ≦ 2. In 3 of the range in which was set to be a range of 0.36 ≦ M ≦ 1.8.

これにより、吐出圧力が大きな高負荷運転領域において固定スクロールと可動スクロールのスラスト荷重(軸方向支持反力)を従来に比べ過剰に大きくならないようにすることができる。   Thereby, it is possible to prevent the thrust load (axial support reaction force) of the fixed scroll and the movable scroll from becoming excessively large as compared with the conventional case in a high load operation region where the discharge pressure is large.

第2の発明は、第1の発明のスクロール圧縮機構造において、可動スクロールの離脱(または転覆)現象の発生がない範囲で、前記中央背圧部を吐出圧力から中間圧力とした場合のスラスト荷重の最大低減効果を100%としたとき、スラスト荷重を概ね50%以上の低減効果が得られるようにするパラメータMを、0.56≦D2/D1≦0.65、1≦εm2≦2.33の範囲において0.36≦M≦0.7の範囲としたものであり、前記第1の発明と同様吐出圧力が大きな高負荷運転領域において固定スクロールと可動スクロールのスラスト荷重(軸方向支持反力)を従来に比べ過剰に大きくならないようにすることができる。   According to a second aspect of the present invention, in the scroll compressor structure of the first aspect, a thrust load when the central back pressure portion is changed from a discharge pressure to an intermediate pressure within a range in which the movable scroll is not detached (or overturned). When the maximum reduction effect of 100% is taken as 100%, the parameter M for obtaining a reduction effect of approximately 50% or more of the thrust load is set to 0.56 ≦ D2 / D1 ≦ 0.65, 1 ≦ εm2 ≦ 2.33. In the range of 0.36 ≦ M ≦ 0.7, the thrust load (axial support reaction force of the fixed scroll and the movable scroll in the high load operation region where the discharge pressure is large as in the first aspect of the invention. ) Can be prevented from becoming excessively large as compared with the conventional case.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。なお、本実施の形態ではモータを内蔵した横型構造の電動スクロール圧縮機を例にして説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments. In the present embodiment, a horizontal structure type electric scroll compressor incorporating a motor will be described as an example.

(実施の形態1)
図1は本発明の実施の形態1におけるスクロール圧縮機の断面図を示すものである。
(Embodiment 1)
1 is a sectional view of a scroll compressor according to Embodiment 1 of the present invention.

図1において、このスクロール圧縮機は、渦巻き状のハネを有する固定スクロール1と、前記固定スクロール1と対のハネを有し偏芯して旋回運動する可動スクロール2と、前記可動スクロール2を駆動するシャフト3と、前記シャフト3を径方向に軸受け支持し、可動スクロール2を旋回自在に背部から閉塞する軸受けホルダ4と、前記軸受けホルダ4の可動スクロール2の背面に隣接する面に設置された環状軸シール溝5と、その中に前記環状軸シール溝内の外径部及び前記可動スクロール2の背面と接触させて漏れを防止するために軸方向に移動可能に配置された環状軸シール部材6から構成されている。   In FIG. 1, this scroll compressor has a fixed scroll 1 having a spiral wing, a movable scroll 2 having a pair of hoods and a pair of hoods, and an eccentric orbiting motion, and driving the movable scroll 2. The shaft 3 is mounted on the surface adjacent to the back of the movable scroll 2 of the bearing holder 4 and the bearing holder 4 that supports the shaft 3 in the radial direction and closes the movable scroll 2 from the back so as to be rotatable. Annular shaft seal groove 5 and an annular shaft seal member disposed therein so as to be movable in the axial direction in order to prevent leakage by contacting the outer diameter portion in the annular shaft seal groove and the back surface of the movable scroll 2. It is comprised from 6.

前記軸受けホルダ4には前記シャフト3を軸受支持するメインベアリング8と前記シャフト3の外周部と摺動接触しシールするシャフトシール7が配備され、ベアリング室9が形成されている。このベアリング室9は前記環状軸シール部材6によって囲まれていて中央背圧部となるものである。前記可動スクロール2の渦巻き状ハネの反対側にはドライブベアリング10が配置され、前記シャフト3に対し偏芯した偏芯ブッシュ3aを介し前記可動スクロール2を駆動している。また、前記軸受けホルダ4と可動スクロール2の間にはオルダムリングが配備され、前記可動スクロール2の自転を防止しつつ可動スクロール2を旋回運動させている。   The bearing holder 4 is provided with a main bearing 8 that supports the shaft 3 and a shaft seal 7 that is in sliding contact with the outer periphery of the shaft 3 to form a bearing chamber 9. The bearing chamber 9 is surrounded by the annular shaft seal member 6 and serves as a central back pressure portion. A drive bearing 10 is arranged on the opposite side of the spiral scroll of the movable scroll 2, and drives the movable scroll 2 via an eccentric bush 3 a that is eccentric with respect to the shaft 3. Further, an Oldham ring is provided between the bearing holder 4 and the movable scroll 2, and the movable scroll 2 is swung while preventing the movable scroll 2 from rotating.

なお、前記シャフト3はモータ11によって回転駆動されるようになっており、このモータ11はコンプケース12内に設けてある。上記コンブケース12内には吐出圧力が作用したモータ室の下部にオイル溜め部13が形成してある。   The shaft 3 is rotationally driven by a motor 11, and the motor 11 is provided in a comp case 12. An oil reservoir 13 is formed in the comb case 12 at the lower part of the motor chamber where the discharge pressure is applied.

この実施の形態では前記一対の渦巻き状ハネによって吸入・圧縮・吐出された冷媒ガスは図中に示した矢印の方向に流れ、前記モータ11を冷却しながら図中右端のコンプケース12の内壁に衝突し、冷媒ガスはコンプケース12の上部に配置された吐出配管から流出する。一方、冷媒中のオイルミストは前述したコンプケース12の内壁への衝突により凝縮され、重力によりコンプケース12の下方に移動し、前記オイル溜め部13に溜まる。   In this embodiment, the refrigerant gas sucked, compressed and discharged by the pair of spiral ridges flows in the direction of the arrow shown in the figure, and cools the motor 11 on the inner wall of the compcase 12 at the right end in the figure. The refrigerant gas flows out of the discharge pipe arranged at the upper part of the comp case 12 by collision. On the other hand, the oil mist in the refrigerant is condensed by the above-mentioned collision with the inner wall of the comp case 12, moves below the comp case 12 by gravity, and accumulates in the oil reservoir 13.

前記軸受けホルダ4の下部には前述したオイルの流入口14が設けられ、流入口14から前記中央背圧部となるベアリング室9に連通した流入通路15が形成されている。そして、前記流入通路15の中途には流入通路の最小断面積を規定する流入側減圧部16が形成されている。   The above-described oil inlet 14 is provided in the lower part of the bearing holder 4, and an inflow passage 15 communicating from the inlet 14 to the bearing chamber 9 serving as the central back pressure portion is formed. An inflow side pressure reducing portion 16 that defines a minimum cross-sectional area of the inflow passage is formed in the middle of the inflow passage 15.

一方、前記可動スクロール2に装備されて中央背圧室内に位置するドライブベアリング10の奥部空間から可動スクロール2の鏡板2a内で半径方向に流出通路17が形成され、前記環状軸シール部材6を旋回運動により横切る位置の鏡板2aに流出側減圧部18となる小孔が前記流出通路17に直交して形成され、運転中は間欠的に前記環状軸シール部材6の外側の外周背圧部19に連通し流出させる。また、運転停止時には前記環状軸シール部材6の内部空間に前記小孔が存在するタイミングで完全停止する為運転停止後のオイルの低圧側への流出を防止することが出来る構成としている。   On the other hand, an outflow passage 17 is formed in the end plate 2a of the movable scroll 2 in the radial direction from the inner space of the drive bearing 10 that is mounted on the movable scroll 2 and is located in the central back pressure chamber. A small hole serving as the outflow side pressure reducing portion 18 is formed in the end plate 2a at a position crossed by the swivel motion so as to be orthogonal to the outflow passage 17, and the outer peripheral back pressure portion 19 outside the annular shaft seal member 6 is intermittently provided during operation. To let it flow out. In addition, when the operation is stopped, the oil is completely stopped at the timing when the small hole is present in the internal space of the annular shaft seal member 6, so that the oil can be prevented from flowing out to the low pressure side after the operation is stopped.

以上説明した構成が本実施例の差圧給油方式のスクロール圧縮機の基本構造であり、以下に本発明の内容について説明する。   The configuration described above is the basic structure of the differential pressure oil supply type scroll compressor of the present embodiment, and the contents of the present invention will be described below.

従来例で少し説明したように可動スクロールの背面にガス圧力を作用させて可動スクロールを固定スクロール側に付勢する構造については種々考案されているが、環状軸シール部材を設けて、中央に吐出圧力または吐出圧力に準じる高圧を導入した場合、吐出圧力がR134a冷媒で3MPa程度なると過剰な付勢力となる。そのため、本発明では流入側減圧部16と流出側減圧部18の通路断面積を適切に設計して前記付勢力が過大になることを防止し、かつスクロール圧縮機の低圧縮比における転覆現象を極力回避でき、更には差圧方式潤滑方式の注意点である過剰な供給量によるコンプレッサ効率の低下防止、運転停止時の差圧によるオイル・高圧ガスの低圧側への流出防止を盛り込んだ構成と、流入と流出通路の最小断面積の設計上の適切比率範囲を提供する。   Various structures have been devised for biasing the movable scroll toward the fixed scroll by applying gas pressure to the back of the movable scroll as described in the conventional example. However, an annular shaft seal member is provided to discharge in the center. When a high pressure according to the pressure or the discharge pressure is introduced, if the discharge pressure becomes about 3 MPa with the R134a refrigerant, an excessive biasing force is obtained. Therefore, in the present invention, the passage cross-sectional area of the inflow side decompression unit 16 and the outflow side decompression unit 18 is appropriately designed to prevent the urging force from becoming excessive, and the rollover phenomenon at the low compression ratio of the scroll compressor is prevented. It is possible to avoid it as much as possible, and also to prevent the deterioration of compressor efficiency due to excessive supply amount, which is a precaution for the differential pressure lubrication method, and to prevent the oil and high pressure gas from flowing out to the low pressure side due to the differential pressure at the time of shutdown Provide an appropriate ratio range in the design of the minimum cross-sectional area of the inflow and outflow passages.

一般にオイルのような非圧縮性流体に関してベルヌーイの式と連続の式を用いれば、高圧P1、低圧P3、流入側減圧部16の最小断面積A1、流出側減圧部18の最小断面積A2とした時、高圧と低圧の間の空間の中間圧力P2は、P2=(A1^2*P1+A2^2*P3)/(A1^2+A2^2)と表される。   In general, if Bernoulli's equation and continuous equation are used for an incompressible fluid such as oil, the high pressure P1, the low pressure P3, the minimum cross-sectional area A1 of the inflow-side decompression unit 16, and the minimum cross-sectional area A2 of the outflow-side decompression unit 18 are obtained. Sometimes, the intermediate pressure P2 in the space between the high pressure and the low pressure is expressed as P2 = (A1 ^ 2 * P1 + A2 ^ 2 * P3) / (A1 ^ 2 + A2 ^ 2).

また、流出側減圧部18の最小断面積A2は圧縮機の構造、型式、排気量等によって異なるが、過大流入によるオイル加熱損失と隙間シール用適正オイル量などを考慮しながら決定される。   The minimum cross-sectional area A2 of the outflow side pressure reducing unit 18 varies depending on the compressor structure, model, displacement, etc., but is determined in consideration of an oil heating loss due to excessive inflow and an appropriate oil amount for gap sealing.

本発明の目的を達成するためにまず図2に示すような概略構造において、差圧方式における流出側減圧部18の最小断面積A2に対する流入側減圧部16の最小断面積A1との断面積比A1/A2を検討する。   In order to achieve the object of the present invention, first, in the schematic structure as shown in FIG. 2, the ratio of the cross-sectional area between the minimum cross-sectional area A1 of the inflow-side decompression unit 16 to the minimum cross-sectional area A2 of the outflow-side decompression unit 18 in the differential pressure system. Consider A1 / A2.

また、環状軸シール部材6の直径をD2とすると、可動スクロール2の鏡板直径D1との関係が重要であり、直径比D2/D1として検討する必要がある。   Further, if the diameter of the annular shaft seal member 6 is D2, the relationship with the end plate diameter D1 of the movable scroll 2 is important, and it is necessary to consider the diameter ratio D2 / D1.

更には流出側の外周背圧部19の圧力Pm2との相関についても検討を加える。   Further, the correlation with the pressure Pm2 of the outer peripheral back pressure portion 19 on the outflow side is also examined.

最適背圧構造としては可動スクロール2が固定スクロール1から転覆(または離脱)せず、更にスラスト荷重が最小となるような可動スクロール2の背部圧力分布構造と定義し、前記直径比D2/D1、環状軸シール部材6の外周背圧部19の圧力比εm2をパラメータとしてまず計算を行った。   The optimum back pressure structure is defined as a back pressure distribution structure of the movable scroll 2 in which the movable scroll 2 does not roll over (or disengages) from the fixed scroll 1 and the thrust load is minimized, and the diameter ratio D2 / D1, First, calculation was performed using the pressure ratio εm2 of the outer peripheral back pressure portion 19 of the annular shaft seal member 6 as a parameter.

計算例として図3に環状軸シール部材6の内部である中央背圧部に吐出圧力を作用させた従来の構成の場合の一回転中のスラスト荷重分布を示す。図中Fth1、Fth2は前述した図11で説明した代表スラスト荷重である。   As a calculation example, FIG. 3 shows the thrust load distribution during one rotation in the case of the conventional configuration in which the discharge pressure is applied to the central back pressure portion inside the annular shaft seal member 6. In the figure, Fth1 and Fth2 are the representative thrust loads described with reference to FIG.

また、図4は前述中央背圧部の圧力(中央背圧)を可動スクロールのスラスト荷重Fth2が部分的にマイナスとなるいわゆる部分転覆する直前まで減少させた場合のスラスト荷重分布である。従来の構成にくらべスラスト荷重の値をかなり低く出来ることがわかる。   FIG. 4 shows the thrust load distribution when the pressure of the central back pressure portion (central back pressure) is reduced to just before so-called partial rollover where the thrust load Fth2 of the movable scroll is partially negative. It can be seen that the value of the thrust load can be considerably reduced compared to the conventional configuration.

図5には中央背圧部の圧力(中央背圧)に対する総スラスト荷重についてその変化の様相について示した。この場合、中央背圧部の圧力が18.5kg/cm2未満になるとFth2が部分的にマイナスとなり、一回転中に部分的に可動スクロールは固定スクロールから離脱する。この現象を転覆と定義している。この結果はこの条件では総スラスト荷重が従来にくらべ最大約7割減少できることを示している。   FIG. 5 shows changes in the total thrust load with respect to the pressure in the central back pressure portion (central back pressure). In this case, when the pressure in the central back pressure portion becomes less than 18.5 kg / cm 2, Fth2 is partially negative, and the movable scroll partially disengages from the fixed scroll during one rotation. This phenomenon is defined as capsize. This result shows that the total thrust load can be reduced by about 70% at maximum under this condition.

ここで、前記中央背圧部を吐出圧力から中間圧力とした場合の最大のスラスト荷重低減効果を100%とした時、目安としてそれぞれ50%、10%のスラスト荷重低減効果が得られる諸因子について以降で検討を加える。   Here, when the maximum thrust load reduction effect when the central back pressure part is changed from the discharge pressure to the intermediate pressure is assumed to be 100%, as a guideline, various factors that can obtain a thrust load reduction effect of 50% and 10%, respectively. We will examine it later.

上述したような方法で、前記した種々の影響因子に対しPd/Ps=30/5(kg/cm2abs)の状態での転覆限界となる中央背圧部の圧力を計算によって求め、その圧力となるような流入・流出側減圧部の最小通路断面積A1,A2を選択する。   By the above-described method, the pressure of the central back pressure part which becomes the rollover limit in the state of Pd / Ps = 30/5 (kg / cm 2 abs) with respect to the various influencing factors described above is obtained by calculation, and becomes the pressure. The minimum passage cross-sectional areas A1 and A2 of the inflow / outflow side decompression section are selected.

そしてそのA1/A2を固定し、吸入圧力Psを一定のまま、吐出圧力を変化させた時の中央背圧(中央背圧部の圧力)の変化の一例を図6に示す。   FIG. 6 shows an example of the change in the central back pressure (pressure at the central back pressure portion) when the discharge pressure is changed while the A1 / A2 is fixed and the suction pressure Ps is kept constant.

この条件では吐出圧力Pd=30kg/cm2では転覆しない中央背圧部の圧力比Pm1/Pdはおよそ0.5で良く、吐出圧力Pdを6kg/cm2まで下げると中央背圧部の圧力比Pm1/Pdはおよそ0.9まで上昇する。即ち、吐出圧力が低い低圧縮比では流入通路の絞りによって発生する差圧は小さくなる為、わずかな差圧分については環状軸シール部の直径D2や外周背圧部の圧力比εm2によって転覆防止を加える微修正設計を
施せばよいことが判る。
Under this condition, the pressure ratio Pm1 / Pd of the central back pressure portion that does not roll over at the discharge pressure Pd = 30 kg / cm 2 may be about 0.5, and when the discharge pressure Pd is reduced to 6 kg / cm 2, the pressure ratio Pm1 / Pm1 / of the central back pressure portion. Pd rises to approximately 0.9. In other words, since the differential pressure generated by the restriction of the inflow passage becomes small at a low compression ratio where the discharge pressure is low, rollover is prevented by a diameter D2 of the annular shaft seal portion and a pressure ratio εm2 of the outer peripheral back pressure portion. It can be seen that a fine correction design to add

図7には、上述したように直径比D2/D1を0.5〜0.683、環状軸シール部の外周背圧部の圧力比εm2を1〜2.33までパラメータとして変化させ、転覆が発生しない限界圧力比Pm1/Pdと、限界圧力比Pm1/Pdとなるような流入・流出側減圧部の最小断面積比A1/A2の計算結果を示す。当然のことながら、環状軸シール部の直径D2が小さな場合には中央背圧部の圧力を増加させるか、外周背圧部の圧力比を増加させればよいが、それぞれの圧力を生成する流入・流出側減圧部16,18の最小断面積比は中央背圧部を高くするほど流入側減圧部の最小断面積A1を大きくする必要がある。   In FIG. 7, as described above, the diameter ratio D2 / D1 is changed from 0.5 to 0.683, and the pressure ratio εm2 of the outer peripheral back pressure portion of the annular shaft seal portion is changed from 1 to 2.33 as parameters. The calculation results of the limit pressure ratio Pm1 / Pd that does not occur and the minimum cross-sectional area ratio A1 / A2 of the inflow / outflow-side decompression section that gives the limit pressure ratio Pm1 / Pd are shown. As a matter of course, when the diameter D2 of the annular shaft seal portion is small, the pressure of the central back pressure portion may be increased or the pressure ratio of the outer peripheral back pressure portion may be increased. -As for the minimum cross-sectional area ratio of the outflow side decompression parts 16, 18, it is necessary to increase the minimum cross-sectional area A1 of the inflow side decompression part as the central back pressure part is increased.

上述の結果は、種々の因子は複雑な相関を持つため、全体的な傾向を把握するために、パラメータM=(D2/D1)^m*εm2^n*A1/A2 と定義し、この式でm=2+(D2/D1−0.5)*3、n=0.4とし、パラメータMで整理すると図7は図8のように整理される。   Since the above results show that various factors have complicated correlations, the parameter M = (D2 / D1) ^ m * εm2 ^ n * A1 / A2 is defined in order to grasp the overall tendency. When m = 2 + (D2 / D1-0.5) * 3 and n = 0.4, and rearranging by the parameter M, FIG. 7 is rearranged as shown in FIG.

ここで、パラメータMminとはPd/Ps=30/5(単位:kg/cm2)において可動スクロールの離脱(または転覆)現象の発生がない限界のパラメータMを表わしている。   Here, the parameter Mmin represents a limit parameter M at which the phenomenon of the movable scroll disengagement (or rollover) does not occur at Pd / Ps = 30/5 (unit: kg / cm 2).

また、M10%とは、前記転覆現象がない範囲で、かつスラスト荷重の最大低減効果を100%とした時、概ね10%軽減する環状軸シール部材の内部の中間圧力を支配するパラメータMである。   Further, M10% is a parameter M that governs the intermediate pressure inside the annular shaft seal member that is reduced by approximately 10% when the maximum reduction effect of the thrust load is 100% within a range in which there is no rollover phenomenon. .

更には、M50%とは前記転覆現象がない範囲で、かつスラスト荷重の最大低減効果を100%とした時、概ね50%軽減する環状軸シール部材の内部の中間圧力を支配するパラメータMである。   Further, M50% is a parameter M that governs the intermediate pressure inside the annular shaft seal member that is reduced by about 50% when the maximum reduction effect of the thrust load is 100% in a range where the above rollover phenomenon does not occur. .

この図から直径比D2/D1が最も小さい0.5の場合と、最も大きな0.683の場合を除き、Mmin、M50%、M10%の値はほぼ一定値になるような傾向がある。前記両端のD2/D1では、M10%の値の傾向が中央部とは異なる。   From this figure, the values of Mmin, M50%, and M10% tend to be almost constant values except when the diameter ratio D2 / D1 is the smallest 0.5 and the largest 0.683. In D2 / D1 at both ends, the tendency of the value of M10% is different from the central portion.

更に精査するとεm2が最も大きな2.67ではMminの値が1≦εm2≦2.33とは少し値が小さい傾向にある。   Upon further examination, at 2.67 where εm2 is the largest, the value of Mmin tends to be slightly smaller than 1 ≦ εm2 ≦ 2.33.

以上、パラメータMの値がほぼ一定値になる直径比D2/D1と外周背圧部の圧力比の範囲を0.56≦D2/D1≦0.65、1≦εm2≦2.33と限定すると、パラメータMminの値は0.43±0.08の範囲となるが、転覆のないことを条件とするとMminは0.36以上となる。   As described above, when the range of the diameter ratio D2 / D1 at which the value of the parameter M is almost constant and the pressure ratio of the outer peripheral back pressure portion is limited to 0.56 ≦ D2 / D1 ≦ 0.65, 1 ≦ εm2 ≦ 2.33 The value of the parameter Mmin is in the range of 0.43 ± 0.08. On the condition that there is no rollover, Mmin is 0.36 or more.

また、スラスト荷重の低減効果として最大低減効果を100%として概ね10%の低減効果が得られるパラメータM10%はおよそ1.8であり、概ね50%の低減効果が得られるパラメータM50%の値はおよそ0.7であることがわかる。   In addition, the parameter M10% at which a reduction effect of about 10% is obtained is about 1.8 with the maximum reduction effect being 100% as the reduction effect of the thrust load, and the value of the parameter M50% at which a reduction effect of about 50% is obtained is about It turns out that it is about 0.7.

以上を整理すると、渦巻き状のハネを有する固定スクロール1と、前記固定スクロールと対となり圧縮室を形成する渦巻き状のハネを有し旋回運動をする可動スクロール2と、前記可動スクロールを駆動するシャフト3と、前記シャフトを支持するとともに前記可動スクロールの背面に隣接した面に環状軸シール溝5を有する軸受けホルダ4と、前記環状軸シール溝内に軸方向に移動可能に配置した環状軸シール部材6を備えた背部構造において、運転中は環状軸シール部材6に囲まれた中央背圧部を、吐出圧力により加圧供給されるオイルを流入側減圧部16で減圧し流出側減圧部18にも通路抵抗を形成することによ
り発生する中間圧力とした構成とする一方、前記環状軸シール部材6の外側の外周背圧部空間を吸入圧力ないし吸入圧力より高い中間圧力とし、前記可動スクロール2の直径をD1、環状軸シール部材6の直径をD2、環状軸シール部材の外周部の吸入圧力に対する平均圧力比をεm2、差圧給油における流入側減圧部16の最小断面積をA1、流出側減圧部18の最小断面積をA2として、パラメータM=(D2/D1)^m*εm2^n*A1/A2と定義し、m=2+(D2/D1−0.5)*3、n=0.4とした時、可動スクロール2の離脱(または転覆)現象の発生がない範囲で、前記中央背圧部を吐出圧力から中間圧力とした場合のスラスト荷重の最大低減効果を100%とした時、スラスト荷重低減効果を概ね10%以上にするには、パラメータMを0.56≦D2/D1≦0.65、1≦εm2≦2.33の範囲において0.36≦M≦1.8の範囲となるように、前記可動スクロール2の鏡板直径D1、環状軸シール部材6の直径D2、環状軸シール部材6の外周背圧の吸入圧力に対する平均圧力比εm2、流入、流出通路最小断面積A1、A2を選出すればよい事となる。
When the above is arranged, the fixed scroll 1 having a spiral honey, the movable scroll 2 having a spiral honey that forms a compression chamber in a pair with the fixed scroll, and a shaft that drives the movable scroll. 3, a bearing holder 4 that supports the shaft and has an annular shaft seal groove 5 on a surface adjacent to the back surface of the movable scroll, and an annular shaft seal member that is disposed in the annular shaft seal groove so as to be movable in the axial direction. 6, during operation, the central back pressure part surrounded by the annular shaft seal member 6 is depressurized by the inflow side decompression part 16 with the oil supplied under pressure by the discharge pressure, and is discharged to the outflow side decompression part 18. Is also configured to have an intermediate pressure generated by forming a passage resistance, while the outer peripheral back pressure portion space outside the annular shaft seal member 6 is set to a suction pressure or a suction pressure. The intermediate scroll pressure is D1, the diameter of the movable scroll 2 is D1, the diameter of the annular shaft seal member 6 is D2, the average pressure ratio to the suction pressure of the outer periphery of the annular shaft seal member is εm2, and the inflow side pressure reducing portion in the differential pressure oil supply 16 is defined as parameter M = (D2 / D1) ^ m * εm2 ^ n * A1 / A2, where A1 is the minimum cross-sectional area of A16 and A2 is the minimum cross-sectional area of the outflow side decompression unit 18, and m = 2 + (D2 / D1 -0.5) * 3, when n = 0.4, the thrust when the central back pressure portion is changed from the discharge pressure to the intermediate pressure within a range where the movable scroll 2 is not detached (or overturned). When the maximum load reduction effect is 100%, the parameter M is in the range of 0.56 ≦ D2 / D1 ≦ 0.65, 1 ≦ εm2 ≦ 2.33 in order to make the thrust load reduction effect approximately 10% or more. 0.36 ≦ M ≦ 1.8 The end plate diameter D1 of the movable scroll 2, the diameter D2 of the annular shaft seal member 6, the average pressure ratio εm2 of the outer peripheral back pressure of the annular shaft seal member 6 to the suction pressure, the minimum cross-sectional area of the inflow and outflow passages A1 , A2 should be selected.

また、可動スクロール2の離脱(または転覆)現象の発生がない範囲で、前記中央背圧部を吐出圧力から中間圧力とした場合のスラスト荷重の最大低減効果を100%としたとき、概ね50%以上の低減効果が得られるようにする前記定義のパラメータMを、0.56≦D2/D1≦0.65、1≦εm2≦2.33の範囲において、0.36≦M≦0.7の範囲となるように前述緒因子を選出すれば良い事を意味している。   In addition, when the central back pressure part is changed from the discharge pressure to the intermediate pressure within a range where the phenomenon of separation (or rollover) of the movable scroll 2 does not occur, the maximum reduction effect of the thrust load is assumed to be approximately 50%. The above defined parameter M for obtaining the above reduction effect is 0.36 ≦ M ≦ 0.7 in the range of 0.56 ≦ D2 / D1 ≦ 0.65, 1 ≦ εm2 ≦ 2.33. It means that the above-mentioned factors should be selected so as to be within the range.

以上のように、本発明にかかるスクロール圧縮機は、吐出圧力が高い高負荷運転領域において可動スクロールに作用する軸方向支持反力(スラスト荷重)を小さくする構成が可能となるので摺動損失が少なくなり、高エネルギ効率の圧縮機にすることが出来る。よって、ルームエアコンや給湯器等多くの分野のスクロール圧縮機として適用できる。   As described above, the scroll compressor according to the present invention can be configured to reduce the axial support reaction force (thrust load) acting on the movable scroll in the high load operation region where the discharge pressure is high. As a result, the compressor can be made highly energy efficient. Therefore, it can be applied as a scroll compressor in many fields such as room air conditioners and water heaters.

1 固定スクロール
2 可動スクロール
2a 可動スクロール鏡板
3 シャフト
4 軸受けホルダ
5 環状軸シール溝
6 環状軸シール部材
7 シャフトシール
8 メインベアリング
9 ベアリング室(中央背圧部)
10 ドライブベアリング
11 モータ
13 オイル溜め部
15 流入通路
16 流入側減圧部(流入通路の最小断面積部)
17 流出通路
18 流出側減圧部(流出通路の最小断面積部)
19 外周背圧部
DESCRIPTION OF SYMBOLS 1 Fixed scroll 2 Movable scroll 2a Movable scroll end plate 3 Shaft 4 Bearing holder 5 Annular shaft seal groove 6 Annular shaft seal member 7 Shaft seal 8 Main bearing 9 Bearing chamber (central back pressure part)
DESCRIPTION OF SYMBOLS 10 Drive bearing 11 Motor 13 Oil reservoir 15 Inflow passage 16 Inflow side pressure reduction part (minimum cross-sectional area part of inflow passage)
17 Outflow passage 18 Outflow side decompression section (minimum cross-sectional area of outflow passage)
19 Outer back pressure part

Claims (2)

渦巻き状のハネを有する固定スクロールと、前記固定スクロールと対となり圧縮室を形成しながら旋回運動する可動スクロールと、前記可動スクロールを駆動するシャフトと、前記シャフトを支持するとともに前記可動スクロールの背面に隣接した面に環状軸シール溝を有する軸受けホルダと、前記環状軸シール溝内に軸方向に移動可能に配置して中央背圧部を形成した環状軸シール部材と、運転中は吐出圧力により加圧供給されるオイルを減圧して前記中央背圧部に供給する流入側減圧部と、前記中央背圧部から前記環状軸シール部材外周の外周背圧部へとつながる流出通路に設けた流出側減圧部とを備え、前記環状軸シール部材の外周背圧部を吸入圧力ないし吸入圧力より高い中間圧力とした差圧給油方式のスクロール圧縮機であって、前記可動スクロールの鏡板直径をD1、環状軸シール部材の直径をD2、環状軸シール部材の外周背圧部の吸入圧力に対する平均圧力比をεm2、差圧給油における流入側減圧部の最小断面積をA1、流出側減圧部の最小断面積をA2とし、パラメータM=(D2/D1)^m*εm2^n*A1/A2と定義し、m=2+(D2/D1−0.5)*3、n=0.4とした時、可動スクロールの離脱(または転覆)現象の発生がない範囲で、前記中央背圧部を吐出圧力から中間圧力とした場合の前記固定スクロールが可動スクロールを軸方向に支持するスラスト荷重の最大低減効果を100%としたとき、スラスト荷重低減効果を概ね10%以上にするパラメータMを、0.56≦D2/D1≦0.65、1≦εm2≦2.33の範囲において0.36≦M≦1.8の範囲となるようにしたスクロール圧縮機。 A fixed scroll having a spiral fold, a movable scroll that forms a compression chamber in a pair with the fixed scroll, a shaft that drives the movable scroll, a shaft that supports the shaft, and a back surface of the movable scroll A bearing holder having an annular shaft seal groove on an adjacent surface, an annular shaft seal member that is movably disposed in the axial direction in the annular shaft seal groove to form a central back pressure portion, and is applied by discharge pressure during operation. An inflow side decompression unit that decompresses pressure-supplied oil and supplies it to the central back pressure part, and an outflow side provided in an outflow passage that leads from the central back pressure part to the outer peripheral back pressure part on the outer periphery of the annular shaft seal member A differential pressure oil supply type scroll compressor having a pressure reducing portion, wherein the outer peripheral back pressure portion of the annular shaft seal member is an intermediate pressure higher than a suction pressure or a suction pressure, The diameter of the end plate of the movable scroll is D1, the diameter of the annular shaft seal member is D2, the average pressure ratio with respect to the suction pressure of the outer peripheral back pressure portion of the annular shaft seal member is εm2, and the minimum cross-sectional area of the inflow side pressure reducing portion in the differential pressure oil supply is A1, the minimum cross-sectional area of the outflow side decompression section is A2, and defined as parameter M = (D2 / D1) ^ m * εm2 ^ n * A1 / A2, m = 2 + (D2 / D1-0.5) * 3 When n = 0.4, the fixed scroll moves in the axial direction when the central back pressure portion is changed from the discharge pressure to the intermediate pressure within a range in which the movable scroll is not detached (or overturned). When the maximum reduction effect of the thrust load supported by 100 is 100%, the parameter M for making the thrust load reduction effect approximately 10% or more is set to 0.56 ≦ D2 / D1 ≦ 0.65, 1 ≦ εm2 ≦ 2.33. In the range .36 scroll compressor as in the range of ≦ M ≦ 1.8. 可動スクロールの離脱(または転覆)現象の発生がない範囲で、中央背圧部を吐出圧力から中間圧力とした場合の前記固定スクロールが可動スクロールを軸方向に支持するスラスト荷重の最大低減効果を100%としたとき、概ね50%以上の低減効果が得られるようにするパラメータMを、0.56≦D2/D1≦0.65、1≦εm2≦2.33の範囲において0.36≦M≦0.7の範囲とした請求項1に記載のスクロール圧縮機。 The maximum effect of reducing the thrust load by which the fixed scroll supports the movable scroll in the axial direction when the central back pressure portion is changed from the discharge pressure to the intermediate pressure within a range in which the movable scroll is not separated (or overturned) occurs. %, The parameter M for obtaining a reduction effect of approximately 50% or more is 0.36 ≦ M ≦ in the range of 0.56 ≦ D2 / D1 ≦ 0.65, 1 ≦ εm2 ≦ 2.33. The scroll compressor according to claim 1, wherein the range is 0.7.
JP2012127758A 2012-06-05 2012-06-05 Scroll compressor Pending JP2013253486A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012127758A JP2013253486A (en) 2012-06-05 2012-06-05 Scroll compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012127758A JP2013253486A (en) 2012-06-05 2012-06-05 Scroll compressor

Publications (1)

Publication Number Publication Date
JP2013253486A true JP2013253486A (en) 2013-12-19

Family

ID=49951199

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012127758A Pending JP2013253486A (en) 2012-06-05 2012-06-05 Scroll compressor

Country Status (1)

Country Link
JP (1) JP2013253486A (en)

Similar Documents

Publication Publication Date Title
KR101290005B1 (en) Scroll compressor
JP5380482B2 (en) Scroll compressor
JP2585380Y2 (en) Rotary compressor
JP2008303844A (en) Scroll fluid machine
JP2010065635A (en) Scroll compressor
CN100371605C (en) Eccentric coupling device in radial compliance scroll compressor
JP2015161209A (en) Compressor and refrigeration cycle device
JP2013253486A (en) Scroll compressor
JP2013249733A (en) Scroll compressor
JP2001041162A (en) Displacement fluid machinery
JP2002048080A (en) Gas compressor
JP2005201171A (en) Lubricating mechanism of compressor
JP2008121623A (en) Scroll compressor
JP4848859B2 (en) Scroll compressor
JP4940630B2 (en) Scroll expander
JP2008002311A (en) Scroll compressor
JP6913842B2 (en) Scroll compressor
JP4848432B2 (en) Scroll compressor
JP2013087741A (en) Scroll compressor
JP2007247562A (en) Refrigerant compressor
JP5341819B2 (en) Scroll type fluid machinery
JP5181534B2 (en) Scroll compressor
CN102062093B (en) Rolling rotor refrigeration compressor provided with energy adjustment system
JP2008014174A (en) Compressor
JP5429138B2 (en) Scroll compressor