JP2013253302A - Method for manufacturing sintering-diffusion-bonded component - Google Patents

Method for manufacturing sintering-diffusion-bonded component Download PDF

Info

Publication number
JP2013253302A
JP2013253302A JP2012130744A JP2012130744A JP2013253302A JP 2013253302 A JP2013253302 A JP 2013253302A JP 2012130744 A JP2012130744 A JP 2012130744A JP 2012130744 A JP2012130744 A JP 2012130744A JP 2013253302 A JP2013253302 A JP 2013253302A
Authority
JP
Japan
Prior art keywords
resistant material
green compact
wear
shaft member
diffusion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012130744A
Other languages
Japanese (ja)
Other versions
JP5862468B2 (en
Inventor
Kio Mukai
喜央 向
Hirotake Hamamatsu
宏武 濱松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2012130744A priority Critical patent/JP5862468B2/en
Publication of JP2013253302A publication Critical patent/JP2013253302A/en
Application granted granted Critical
Publication of JP5862468B2 publication Critical patent/JP5862468B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To allow the cutting work of a surface layer of an abrasion-resistant material without execution of an annealing step.SOLUTION: A method for manufacturing a sintering-diffusion-bonded component in which an abrasion-resistant material composed of carbon steel having a hardness of Hv 600 or more and a compact composed of an Fe-based metal mainly composed of Fe are mutually bonded by sintering-diffusion-bonding includes: an assembling step 101 of assembling an abrasion-resistant material into a compact containing a ferritized element; a decarburization step 102 of causing decarburization on a surface layer of the abrasion-resistant material to form a ferrite phase by heating the abrasion-resistant material and the compact under a decarburizing atmosphere; a sintering step 103 of diffusion-bonding the abrasion-resistant material to the compact while sintering the compact by heating the abrasion-resistant material and the compact, and further extending the forming range of the ferrite phase by diffusing the ferritized element on the surface layer of the abrasion-resistant material; and a cutting step 104 of cutting the surface layer of the diffusion-bonded abrasion-resistant material.

Description

本発明は、異なる材料を焼結拡散接合により接合した焼結拡散接合部品の製造方法に関するものである。   The present invention relates to a method for manufacturing a sintered diffusion bonded component in which different materials are bonded by sintered diffusion bonding.

このような焼結拡散接合部品である可動鉄心が特許文献1〜3等に開示されている。この可動鉄心は、炭素鋼からなる耐摩耗性材料で構成された軸部材と、この軸部材の一端側に設けられ、内孔を有する形状であって、Fe系金属からなる外周部材とを備えるものである。この可動鉄心は、外周部材の形状とされた圧粉体と軸部材とを一体化させる一体化工程を行った後、圧粉体と軸部材とを加熱する焼結工程を行うことにより、圧粉体を焼結させて外周部材を形成するとともに、圧粉体と軸部材とを焼結拡散接合により接合することで製造される。   A movable iron core which is such a sintered diffusion bonding component is disclosed in Patent Documents 1 to 3 and the like. The movable iron core includes a shaft member made of a wear-resistant material made of carbon steel, and an outer peripheral member made of an Fe-based metal that is provided on one end side of the shaft member and has an inner hole. Is. This movable iron core is subjected to a sintering process in which the green compact and the shaft member are heated after performing an integration process in which the green compact having the shape of the outer peripheral member and the shaft member are integrated. The outer peripheral member is formed by sintering the powder, and the green compact and the shaft member are joined by sintered diffusion bonding.

特許4702945号公報Japanese Patent No. 4702945 特許4721457号公報Japanese Patent No. 472457 特開2009−102711号公報JP 2009-102711 A 特開2010−174353号公報JP 2010-174353 A

ところで、上述のように、炭素鋼からなる耐摩耗性材料とFe系金属からなる圧粉体を焼結拡散接合により接合した焼結拡散接合部品を製造する際では、焼結工程後に除冷を実施したとしても、耐摩耗性材料には焼きが入り、硬化してしまう。   By the way, as described above, when manufacturing a sintered diffusion bonding part in which a wear-resistant material made of carbon steel and a green compact made of Fe-based metal are bonded by sintering diffusion bonding, cooling is performed after the sintering process. Even if implemented, the wear resistant material will burn and harden.

このため、後工程で耐摩耗性材料の表層を切削加工する必要がある場合、切削加工前に焼鈍工程を実施することにより、耐摩耗性材料の硬度を落とさなければならず、焼鈍工程を実施しなくても切削加工ができることが望まれていた。   For this reason, when it is necessary to cut the surface layer of the wear-resistant material in the subsequent process, the hardness of the wear-resistant material must be reduced by carrying out the annealing process before cutting, and the annealing process is carried out. It has been desired that cutting can be performed without the need.

本発明は上記点に鑑みて、焼鈍工程を実施しなくても、耐摩耗性材料の表層を切削加工できるようにすることを目的とする。   In view of the above points, an object of the present invention is to enable cutting of a surface layer of an abrasion-resistant material without performing an annealing step.

上記目的を達成するため、請求項1に記載の発明では、
耐摩耗性材料と、フェライト化元素を含有する圧粉体とを一体化させる一体化工程(101)と、
一体化工程後に、耐摩耗性材料と圧粉体とを脱炭性雰囲気下で加熱することにより、耐摩耗性材料の表層に脱炭を生じさせてフェライト相を形成する脱炭工程(102)と、
脱炭工程後に、耐摩耗性材料と圧粉体とを加熱することにより、圧粉体を焼結させるとともに耐摩耗性材料と圧粉体とを焼結拡散接合し、さらに、耐摩耗性材料の表層にフェライト化元素が拡散することによってフェライト相の形成範囲を拡張させて耐摩耗性材料の表面に軟化層(33)を形成する焼結工程(103)と、
焼結工程後に、耐摩耗性材料の表層を切削加工する切削工程(104)とを有することを特徴としている。
In order to achieve the above object, in the invention described in claim 1,
An integration step (101) for integrating the wear-resistant material and the green compact containing the ferritic element;
After the integration step, the decarburization step (102) in which the wear resistant material and the green compact are heated in a decarburizing atmosphere to cause decarburization in the surface layer of the wear resistant material to form a ferrite phase. When,
After the decarburization process, the wear-resistant material and the green compact are heated to sinter the green compact and to sinter diffusion-bond the wear-resistant material and the green compact. A sintering step (103) for extending the formation range of the ferrite phase by diffusing the ferritic element into the surface layer, and forming a softening layer (33) on the surface of the wear-resistant material;
And a cutting step (104) for cutting the surface layer of the wear-resistant material after the sintering step.

これによれば、焼結工程で、耐摩耗性材料の表面に軟化層が形成されるので、焼結工程後に焼鈍工程を実施しなくても、耐摩耗性材料の表層を切削加工することができる。   According to this, since the softening layer is formed on the surface of the wear resistant material in the sintering process, the surface layer of the wear resistant material can be cut without performing the annealing process after the sintering process. it can.

なお、この欄および特許請求の範囲で記載した各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示す一例である。   In addition, the code | symbol in the bracket | parenthesis of each means described in this column and the claim is an example which shows a corresponding relationship with the specific means as described in embodiment mentioned later.

第1実施形態におけるアーマチャを備える電磁弁の断面構成を示す図である。It is a figure which shows the cross-sectional structure of a solenoid valve provided with the armature in 1st Embodiment. 図1中のアーマチャの斜視図である。It is a perspective view of the armature in FIG. 図1中のアーマチャの製造工程を示す図である。It is a figure which shows the manufacturing process of the armature in FIG. 軸部材1の表層の硬度が低下するメカニズムを説明するための図である。It is a figure for demonstrating the mechanism in which the hardness of the surface layer of the shaft member 1 falls. 軸部材1の表層の硬度が低下するメカニズムを説明するための図である。It is a figure for demonstrating the mechanism in which the hardness of the surface layer of the shaft member 1 falls. 軸部材1の表層の硬度が低下するメカニズムを説明するための図である。It is a figure for demonstrating the mechanism in which the hardness of the surface layer of the shaft member 1 falls. 軸部材1の表層の硬度が低下するメカニズムを説明するための図である。It is a figure for demonstrating the mechanism in which the hardness of the surface layer of the shaft member 1 falls. 本発明の実施例における焼結拡散接合部品の断面を示す金属顕微鏡写真である。It is a metal micrograph which shows the cross section of the sintering diffusion bonding components in the Example of this invention.

以下、本発明の実施形態について説明する。
(第1実施形態)
第1実施形態では、車両用燃料噴射装置のソレノイド式インジェクタのアーマチャ(可動鉄心)の製造方法について説明する。
Hereinafter, embodiments of the present invention will be described.
(First embodiment)
1st Embodiment demonstrates the manufacturing method of the armature (movable iron core) of the solenoid type injector of the fuel injection device for vehicles.

まず、アーマチャを備える電磁弁の構造について説明する。図1、2に示すように、アーマチャ3は、軸部材1とこの軸部材1の一端側に設けられた外周部材2とを有している。この軸部材1の他端側には図示しない弁座と離接する図示しない弁体が設けられている。外周部材2は軸部材1の長手方向に対して垂直な方向に延びた扁平形状である。   First, the structure of a solenoid valve provided with an armature will be described. As shown in FIGS. 1 and 2, the armature 3 includes a shaft member 1 and an outer peripheral member 2 provided on one end side of the shaft member 1. On the other end side of the shaft member 1 is provided a valve body (not shown) that is in contact with a valve seat (not shown). The outer peripheral member 2 has a flat shape extending in a direction perpendicular to the longitudinal direction of the shaft member 1.

そして、図1に示す電磁弁10は、軸部材1の長手方向においてアーマチャ3と対向する位置に固定鉄心4が配置されており、この固定鉄心4にはソレノイドコイル5が巻回されている。この電磁弁10においては、固定鉄心4に巻回されたソレノイドコイル5に電流を供給することによって、アーマチャ3が固定鉄心4側に磁力吸引されて弁が開くとともに、固定鉄心4に巻回されたソレノイドコイル5に流れる電流を遮断することによって、図示しないばねの復帰力によりアーマチャ3が元の位置に復帰し、弁が閉じられる。   In the electromagnetic valve 10 shown in FIG. 1, a fixed iron core 4 is disposed at a position facing the armature 3 in the longitudinal direction of the shaft member 1, and a solenoid coil 5 is wound around the fixed iron core 4. In this electromagnetic valve 10, by supplying current to the solenoid coil 5 wound around the fixed iron core 4, the armature 3 is attracted to the fixed iron core 4, and the valve is opened, and the armature 3 is wound around the fixed iron core 4. By shutting off the current flowing through the solenoid coil 5, the armature 3 returns to the original position by the return force of a spring (not shown), and the valve is closed.

ここで、アーマチャ3は、異なる材料からなる軸部材1と外周部材2とが焼結拡散接合してなる拡散接合部品である。   Here, the armature 3 is a diffusion bonded component formed by sintering diffusion bonding the shaft member 1 and the outer peripheral member 2 made of different materials.

軸部材1は、硬度がHv600以上の炭素鋼からなる耐摩耗性材料で構成されている。この耐摩耗性材料としては、例えばJIS規格のSKH51材、SKH2材等の高速度工具鋼や、例えばJIS規格のSUJ2材等の軸受鋼や、例えばJIS規格のSKD11材等の合金工具鋼が挙げられる。   The shaft member 1 is made of an abrasion-resistant material made of carbon steel having a hardness of Hv600 or higher. Examples of the wear-resistant material include high speed tool steel such as JIS standard SKH51 material and SKH2 material, bearing steel such as JIS standard SUJ2 material, and alloy tool steel such as JIS standard SKD11 material. It is done.

外周部材2は、Feを主成分とするFe系金属からなる圧粉体を焼結させたものである。圧粉体は、原料粉末を圧粉成形したものである。この原料粉末としては、例えば、Fe−Si−P系や、Fe−Si系の組成を有する軟磁性粉末が挙げられる。SiおよびPは焼結拡散接合を形成するための元素であるが、これらの元素のうちSiは、耐摩耗性材料に拡散した場合に拡散した領域の組織をフェライト相化するフェライト化元素でもある。   The outer peripheral member 2 is obtained by sintering a green compact made of Fe-based metal whose main component is Fe. The green compact is obtained by compacting a raw material powder. Examples of the raw material powder include Fe-Si-P-based and soft magnetic powder having an Fe-Si-based composition. Si and P are elements for forming sintered diffusion bonding, and among these elements, Si is also a ferritizing element that causes the structure of the diffused region to become a ferrite phase when diffused into the wear-resistant material. .

次に、アーマチャ3の製造方法について説明する。   Next, a method for manufacturing the armature 3 will be described.

図3に示すように、軸部材1と外周部材2の形状とされた圧粉体とを組み付ける組み付け工程101を行う。この組み付け工程101が特許請求の範囲に記載の一体化工程に相当する。   As shown in FIG. 3, the assembly | attachment process 101 which assembles the green compact made into the shape of the shaft member 1 and the outer peripheral member 2 is performed. This assembly process 101 corresponds to the integration process described in the claims.

具体的には、耐摩耗性材料からなる軸部材1を用意する。また、内孔を有する外側部材2の形状となるように、原料粉末を圧粉成形して得られた圧粉体を用意する。このとき、圧粉体には成形潤滑剤が含まれている。この成形潤滑剤は、熱処理によってCOとHOに分解される有機化合物からなるものである。この成形潤滑剤としては、ワックス系、ステアリン酸系等の一般的な金属粉末の圧粉成形用の潤滑剤を用いることができる。そして、得られた圧粉体の内孔に軸部材1を嵌合して一体化する。 Specifically, a shaft member 1 made of an abrasion resistant material is prepared. Moreover, the green compact obtained by compacting raw material powder so that it may become the shape of the outer member 2 which has an inner hole is prepared. At this time, the green compact contains a molding lubricant. This molding lubricant is made of an organic compound that is decomposed into CO 2 and H 2 O by heat treatment. As this molding lubricant, a lubricant for compacting metal powder such as wax and stearic acid can be used. And the shaft member 1 is fitted and integrated in the inner hole of the obtained green compact.

その後、組み付け後の軸部材1と圧粉体とを加熱することにより、圧粉体中の成形潤滑剤を分解させる脱脂工程102を行う。加熱温度は、成形潤滑剤の分解温度、例えば、600℃である。このとき、一般的な脱脂工程では、成形潤滑剤の分解によって生成するガスを加熱雰囲気から排除するが、本実施形態では、成形潤滑剤の分解によって生成するCOとHOとを加熱雰囲気中に残した状態とすることで、COとHOとが存在する加熱雰囲気下で軸部材1と圧粉体とを加熱する。例えば、圧粉体中の成形潤滑剤の添加量を、圧粉体の成形に必要な添加量よりも増大させることで、COとHOとを加熱雰囲気中に残した状態とすることが可能となる。これは、成形潤滑剤の分解によって加熱雰囲気中に放出されるCOとHOとが増大すると、加熱雰囲気中のCOとHOとが全て排除されずに残された状態になりやすいからである。 Then, the degreasing process 102 which decomposes | disassembles the shaping | molding lubricant in a green compact is performed by heating the shaft member 1 and green compact after an assembly | attachment. The heating temperature is a decomposition temperature of the molded lubricant, for example, 600 ° C. At this time, in a general degreasing process, gas generated by decomposition of the molding lubricant is excluded from the heating atmosphere. In this embodiment, CO 2 and H 2 O generated by decomposition of the molding lubricant are heated in the heating atmosphere. The shaft member 1 and the green compact are heated in a heating atmosphere in which CO 2 and H 2 O exist by being left in the inside. For example, the amount of molding lubricant added in the green compact is increased beyond that required for compacting the green compact, leaving CO 2 and H 2 O in the heated atmosphere. Is possible. This is because, if the CO 2 released into the heating atmosphere by decomposition of the molded lubricant and H 2 O is increased, ready to CO 2 and of H 2 O in a heated atmosphere is left without being eliminated all It is easy.

その後、組み付け後の軸部材1と圧粉体とを加熱することにより、圧粉体を焼結させて外周部材2とするとともに軸部材1と外周部材2とを拡散接合する焼結工程103を行う。このときの加熱温度は、例えば、1100℃〜1300℃である。   Thereafter, the assembled shaft member 1 and the green compact are heated to sinter the green compact to form the outer peripheral member 2, and at the same time, a sintering step 103 for diffusion bonding the shaft member 1 and the outer peripheral member 2. Do. The heating temperature at this time is 1100 degreeC-1300 degreeC, for example.

その後、軸部材1の表層を切削加工する切削工程104を行う。このとき、焼結工程後の軸部材1の表層は、切削加工ができるほど硬度が低下しているので、焼鈍工程を実施しなくても、軸部材1の表層を切削加工することができる。このようにしてアーマチャ3が製造される。   Then, the cutting process 104 which cuts the surface layer of the shaft member 1 is performed. At this time, since the hardness of the surface layer of the shaft member 1 after the sintering step is reduced to the extent that cutting can be performed, the surface layer of the shaft member 1 can be cut without performing the annealing step. In this way, the armature 3 is manufactured.

次に、軸部材1の表層の硬度が低下するメカニズムについて、図4〜7を用いて説明する。図4〜7は図1中の破線で囲まれた領域A1に相当する。   Next, the mechanism by which the hardness of the surface layer of the shaft member 1 is lowered will be described with reference to FIGS. 4 to 7 correspond to a region A1 surrounded by a broken line in FIG.

組み付け工程後であって、脱脂工程102の前の段階では、図4に示すように、軸部材1は、全領域の組織がγ相となっている。また、外周部材2を形成するための圧粉体20には、Si、P元素や、成形潤滑剤21が含まれている。   After the assembly process and before the degreasing process 102, as shown in FIG. 4, the shaft member 1 has a γ phase in the entire region. The green compact 20 for forming the outer peripheral member 2 contains Si and P elements and a molding lubricant 21.

そして、脱脂工程102では、図5に示すように、成形潤滑剤21から生成した脱炭性ガスであるCOとHOとを加熱雰囲気中に残した状態で、軸部材1と圧粉体20とを加熱するので、軸部材1の表面でC元素の抜け(脱炭)が生じる。これにより、軸部材1の表層の組織がγ相からα相(フェライト相)に変化する。このフェライト相の軸部材1の表面からの厚さは、例えば、50μmである。 Then, in the degreasing step 102, as shown in FIG. 5, while leaving the CO 2 and H 2 O is a decarburizing gas generated from the molded lubricant 21 in the heating atmosphere, the shaft member 1 and the dust Since the body 20 is heated, C element escape (decarburization) occurs on the surface of the shaft member 1. Thereby, the structure of the surface layer of the shaft member 1 changes from the γ phase to the α phase (ferrite phase). The thickness of the ferrite phase shaft member 1 from the surface is, for example, 50 μm.

その後、焼結工程103では、図6に示すように、軸部材1に含まれるCr、Mo等の元素が圧粉体20側に拡散し、圧粉体20に添加されているSi元素、P元素が軸部材1側に拡散する。これにより、図7に示すように、軸部材1と外周部材2との間に、両者を拡散接合する拡散層30が形成される。拡散層30は、外周部材2側の部分31と軸部材1側の部分32とからなる。このうち、軸部材1側の部分32は硬度がHv300以下のフェライト相となる。   Thereafter, in the sintering step 103, as shown in FIG. 6, elements such as Cr and Mo contained in the shaft member 1 diffuse to the green compact 20 side, and the Si element added to the green compact 20, P The element diffuses toward the shaft member 1 side. As a result, as shown in FIG. 7, a diffusion layer 30 is formed between the shaft member 1 and the outer peripheral member 2 to diffuse and bond them. The diffusion layer 30 includes a portion 31 on the outer peripheral member 2 side and a portion 32 on the shaft member 1 side. Among these, the portion 32 on the shaft member 1 side is a ferrite phase having a hardness of Hv300 or less.

この焼結工程103のとき、軸部材1の表層に形成されたフェライト相は元素の拡散係数が高い組織であるため、図6に示すように、圧粉体20に添加されているSiが、軸部材1の圧粉体20側の部分だけでなく軸部材1の表層にも拡散する。このSiはフェライト相化を促進するフェライト化元素のため、図7に示すように、さらに、フェライト相でない領域にSiが拡散することで、フェライト相化が促進される。これにより、フェライト相の形成範囲が拡張し、フェライト相の軸部材1の表面からの厚さが、例えば、50μmから200μmに広がる。   In the sintering step 103, since the ferrite phase formed on the surface layer of the shaft member 1 has a structure with a high element diffusion coefficient, Si added to the green compact 20 as shown in FIG. It diffuses not only in the portion of the shaft member 1 on the green compact 20 side but also in the surface layer of the shaft member 1. Since Si is a ferritic element that promotes ferrite phase formation, as shown in FIG. 7, the diffusion of Si into a region that is not a ferrite phase further promotes ferrite phase formation. Thereby, the formation range of a ferrite phase expands, and the thickness from the surface of the shaft member 1 of a ferrite phase spreads from 50 micrometers to 200 micrometers, for example.

このように、軸部材1の表面での脱炭とSiの拡散との相乗効果により、軸部材1の表面にフェライト相からなる軟化層33が形成され、軸部材1の表層が軟化するものと考えられる。
(他の実施形態)
(1)第1実施形態では、軸部材1の表層に脱炭を生じさせる手段として、脱脂工程において、成形潤滑剤の分解により生成するCOとHOとを加熱雰囲気中に残した状態とする手段を採用したが、他の手段を採用しても良い。
Thus, due to the synergistic effect of decarburization on the surface of the shaft member 1 and diffusion of Si, a softened layer 33 made of a ferrite phase is formed on the surface of the shaft member 1, and the surface layer of the shaft member 1 is softened. Conceivable.
(Other embodiments)
(1) In the first embodiment, as a means for causing decarburization on the surface layer of the shaft member 1, a state in which CO 2 and H 2 O generated by decomposition of the molded lubricant are left in the heating atmosphere in the degreasing step. However, other means may be adopted.

例えば、第1実施形態の脱脂工程102を、一般的な脱脂工程と同様に、成形潤滑剤の分解によって生成するガスを加熱雰囲気から排除するように変更する。そして、この脱脂工程102と焼結工程103との間に、組み付け後の軸部材1と圧粉体とを、脱炭性雰囲気下で加熱することにより、軸部材1の表面から脱炭させる脱炭工程を追加すれば良い。このとき用いる脱炭性ガスは、COとHOの少なくとも一方のガスであれば良く、これら以外のガスであっても良い。CO、HO以外の脱炭性ガスとしては、H、O等が挙げられる。 For example, the degreasing process 102 of the first embodiment is changed so as to exclude the gas generated by the decomposition of the molding lubricant from the heating atmosphere, as in the general degreasing process. Then, between the degreasing step 102 and the sintering step 103, the assembled shaft member 1 and the green compact are heated in a decarburizing atmosphere to decarburize from the surface of the shaft member 1. What is necessary is just to add a charcoal process. The decarburizing gas used at this time may be at least one of CO 2 and H 2 O, and may be other gas. Examples of decarburizing gases other than CO 2 and H 2 O include H 2 and O 2 .

(2)第1実施形態の組み付け工程101では、軸部材1と、外周部材2の形状に成形された圧粉体とを用意して、圧粉体の内孔に軸部材1を嵌合して一体化したが、この組み付け工程101の代わりに、特許文献4に記載のように、圧粉体の成形と同時に、軸部材1と圧粉体20とを一体化させる一体化工程を行っても良い。すなわち、金型内で軸部材1を保持した状態で、金型内の原料粉末を加圧することにより、軸部材1と圧粉体の一体化部品をインサート成形しても良い。   (2) In the assembly process 101 of the first embodiment, the shaft member 1 and the green compact molded in the shape of the outer peripheral member 2 are prepared, and the shaft member 1 is fitted into the inner hole of the green compact. However, instead of this assembling step 101, as described in Patent Document 4, an integration step of integrating the shaft member 1 and the green compact 20 at the same time as forming the green compact is performed. Also good. That is, an integrated part of the shaft member 1 and the green compact may be insert-molded by pressing the raw material powder in the mold while holding the shaft member 1 in the mold.

(3)第1実施形態では、本発明の焼結拡散接合部品の製造方法を、インジェクタのアーマチャの製造方法に適用した例を説明したが、複雑形状の焼結ギヤ部品等の他の焼結拡散接合部品の製造方法に適用することも可能である。この焼結ギヤ部品は、軸部とこの軸部の一端側に設けられたギヤ部とから構成され、軸部の形状とされた耐摩耗性材料とギヤ部の形状とされた圧粉体とを焼結拡散接合することにより得られるものである。   (3) In the first embodiment, an example in which the method for manufacturing a sintered diffusion bonding part of the present invention is applied to a method for manufacturing an armature of an injector has been described. It is also possible to apply to a method for manufacturing a diffusion bonded part. The sintered gear part is composed of a shaft portion and a gear portion provided on one end side of the shaft portion, and includes a wear-resistant material having a shape of the shaft portion and a green compact having a shape of the gear portion. Is obtained by sintering diffusion bonding.

以下、本発明の実施例について説明する。
(実施例1)
耐摩耗性材料からなる所望形状の試験片と、圧粉体を所望形状とした試験片とを焼結拡散接合により接合して焼結拡散接合部品を作製した。
Examples of the present invention will be described below.
Example 1
A specimen having a desired shape made of an abrasion-resistant material and a specimen having a green compact in a desired shape were joined by sintered diffusion bonding to produce a sintered diffusion bonded part.

具体的には、SKH51材からなる円柱状の耐摩耗性材料を用意した。また、組成がSi:2.0wt%、P:0.35wt%、Mn:0.2wt%、S:0.08wt%、残部がFeおよび不可避不純物の金属粉末を円柱状に加圧成形した圧粉体を用意した。この圧粉体は、ワックス系の潤滑剤が圧粉体全体に対して0.5wt%添加されたものである。   Specifically, a cylindrical wear-resistant material made of SKH51 material was prepared. Further, a pressure obtained by pressure-molding a metal powder having a composition of Si: 2.0 wt%, P: 0.35 wt%, Mn: 0.2 wt%, S: 0.08 wt%, the balance being Fe and inevitable impurities in a cylindrical shape. Powder was prepared. This green compact is obtained by adding 0.5 wt% of a wax-based lubricant to the whole green compact.

そして、耐摩耗性材料の一面と圧粉体の一面とを接触させて組み付けた後、脱脂工程と焼結工程とを順に行った。脱脂工程では0.5Torrの真空炉中で635℃にて1時間加熱した。焼結工程では0.5Torrの真空炉中で1215℃にて1時間加熱した。   Then, after one surface of the wear-resistant material and one surface of the green compact were brought into contact with each other and assembled, a degreasing step and a sintering step were sequentially performed. In the degreasing process, heating was performed at 635 ° C. for 1 hour in a vacuum furnace of 0.5 Torr. In the sintering process, heating was performed at 1215 ° C. for 1 hour in a vacuum furnace of 0.5 Torr.

また、脱脂工程では、真空炉の内部に設置された多孔質アルミナ板の表面上に、組み付け後の耐摩耗性材料と圧粉体とを置いて加熱した。この多孔質アルミナ板は、事前処理によってCOとHOのガスを吸着させたものである。これにより、脱脂工程において、圧粉体中の成形潤滑剤の分解によってCOとHOが放出されることに加えて、多孔質アルミナ板からCOとHOが放出されるようにした。なお、事前処理では、真空炉の内部に多孔質アルミナ板を設置し、この多孔質アルミナ板の表面上に、この事前処理用に用意した成形潤滑剤を含む圧粉体を置いて加熱した。これにより、圧粉体中の成形潤滑剤を分解させてCOとHOとを圧粉体から放出させ、放出されたCOとHOのガスを多孔質アルミナ板に吸着させた。このように、本実施例では、ガス吸着させた多孔質アルミナ板を用いることで、成形潤滑剤の添加量を増大させたときに成形潤滑剤の分解によって加熱雰囲気中に放出されるCOとHOとが増大する状況と同様の状況を作り出した。 In the degreasing process, the assembled wear-resistant material and the green compact were placed on the surface of the porous alumina plate installed inside the vacuum furnace and heated. This porous alumina plate is obtained by adsorbing CO 2 and H 2 O gases by pretreatment. Accordingly, in the degreasing process, in addition to CO 2 and H 2 O is released by degradation of the molding lubricant in the green compact, as CO 2 and H 2 O is released from the porous alumina plate did. In the pretreatment, a porous alumina plate was placed inside the vacuum furnace, and a green compact containing a molding lubricant prepared for the pretreatment was placed on the surface of the porous alumina plate and heated. As a result, the molding lubricant in the green compact was decomposed to release CO 2 and H 2 O from the green compact, and the released CO 2 and H 2 O gas was adsorbed to the porous alumina plate. . Thus, in this example, by using a porous alumina plate that has been gas-adsorbed, CO 2 released into the heating atmosphere by decomposition of the molding lubricant when the amount of molding lubricant added is increased. A situation similar to that with increasing H 2 O was created.

その後、作製した焼結拡散接合部品の断面を金属顕微鏡で観察するとともに、耐摩耗性材料の表層の硬度をマイクロビッカース測定法により測定した。   Thereafter, the cross section of the produced sintered diffusion bonded part was observed with a metal microscope, and the hardness of the surface layer of the wear-resistant material was measured by a micro Vickers measurement method.

その結果、図8に示すように、耐摩耗性材料1の表層の組織が他の領域と異なっていることが確認された。また、用意した耐摩耗性材料1は、接合前の表層の硬度がHv600であったが、接合後の表層の硬度がHv200であった。これらの結果より、耐摩耗性材料1の表面に軟化層33が形成されていることがわかる。この軟化層33はフェライト相であると推測される。   As a result, as shown in FIG. 8, it was confirmed that the structure of the surface layer of the wear-resistant material 1 was different from other regions. Further, the prepared wear-resistant material 1 had a surface layer hardness before bonding of Hv600, but the surface layer hardness after bonding was Hv200. From these results, it can be seen that the softened layer 33 is formed on the surface of the wear-resistant material 1. The softened layer 33 is presumed to be a ferrite phase.

1 軸部材
2 外周部材
3 アーマチャ
10 電磁弁
20 圧粉体
21 成形潤滑剤
DESCRIPTION OF SYMBOLS 1 Shaft member 2 Outer peripheral member 3 Armature 10 Solenoid valve 20 Green compact 21 Molding lubricant

Claims (3)

硬度がHv600以上の炭素鋼からなり、所望形状とされた耐摩耗性材料(1)と、Feを主成分とするFe系金属からなり、所望形状とされた圧粉体(20)とを焼結拡散接合により接合した焼結拡散接合部品の製造方法において、
前記耐摩耗性材料と、フェライト化元素を含有する前記圧粉体とを一体化させる一体化工程(101)と、
前記一体化工程後に、前記耐摩耗性材料と前記圧粉体とを脱炭性雰囲気下で加熱することにより、前記耐摩耗性材料の表層に脱炭を生じさせてフェライト相を形成する脱炭工程(102)と、
前記脱炭工程後に、前記耐摩耗性材料と前記圧粉体とを加熱することにより、前記圧粉体を焼結させるとともに前記耐摩耗性材料と前記圧粉体とを焼結拡散接合し、さらに、前記耐摩耗性材料の表層に前記フェライト化元素が拡散することによって前記フェライト相の形成範囲を拡張させて前記耐摩耗性材料の表面に軟化層(33)を形成する焼結工程(103)と、
前記焼結工程後に、前記耐摩耗性材料の表層を切削加工する切削工程(104)とを有することを特徴とする焼結拡散接合部品の製造方法。
An abrasion-resistant material (1) made of carbon steel having a hardness of Hv 600 or more and having a desired shape and a green compact (20) made of an Fe-based metal containing Fe as a main component and having a desired shape are sintered. In the method of manufacturing a sintered diffusion bonded part bonded by bonded diffusion bonding,
An integration step (101) for integrating the wear-resistant material and the green compact containing a ferritic element;
After the integration step, the wear resistant material and the green compact are heated in a decarburizing atmosphere, thereby decarburizing the surface layer of the wear resistant material to form a ferrite phase. Step (102);
After the decarburization step, by heating the wear-resistant material and the green compact, the green compact is sintered and the wear-resistant material and the green compact are sintered and diffusion bonded. Further, a sintering step (103) of forming a softening layer (33) on the surface of the wear-resistant material by expanding the formation range of the ferrite phase by diffusing the ferritic element into the surface layer of the wear-resistant material. )When,
A method of manufacturing a sintered diffusion bonded part, comprising: a cutting step (104) for cutting a surface layer of the wear-resistant material after the sintering step.
前記圧粉体(20)は成形潤滑剤(21)を含んでおり、
前記一体化工程と前記焼結工程との間に、前記成形潤滑剤の分解温度にて加熱することにより、前記圧粉体中の前記成形潤滑剤を分解させる脱脂工程(102)を有し、
前記脱炭工程は、前記脱脂工程において、前記成形潤滑剤の分解によって生成したCOとHOとを、加熱雰囲気中に残した状態とすることであることを特徴とする請求項1に記載の焼結拡散接合部品の製造方法。
The green compact (20) contains a molding lubricant (21),
A degreasing step (102) for decomposing the molding lubricant in the green compact by heating at a decomposition temperature of the molding lubricant between the integration step and the sintering step;
The decarburizing step is a state in which CO 2 and H 2 O generated by the decomposition of the molding lubricant are left in a heated atmosphere in the degreasing step. The manufacturing method of the sintered diffusion bonding components as described.
前記焼結拡散接合部品は、軸部材(1)と、前記軸部材の一端側に位置する外周部材(2)とを有するインジェクタのアーマチャ(3)であり、
前記軸部材の形状とされた前記耐摩耗性材料と、前記外周部材の形状とされた前記圧粉体とを一体化させることを特徴とする請求項1または2に記載の拡散接合部品の製造方法。
The sintered diffusion bonding component is an injector armature (3) having a shaft member (1) and an outer peripheral member (2) located on one end side of the shaft member,
The diffusion bonded component according to claim 1 or 2, wherein the wear-resistant material in the shape of the shaft member and the green compact in the shape of the outer peripheral member are integrated. Method.
JP2012130744A 2012-06-08 2012-06-08 Manufacturing method of sintered diffusion bonding parts Expired - Fee Related JP5862468B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012130744A JP5862468B2 (en) 2012-06-08 2012-06-08 Manufacturing method of sintered diffusion bonding parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012130744A JP5862468B2 (en) 2012-06-08 2012-06-08 Manufacturing method of sintered diffusion bonding parts

Publications (2)

Publication Number Publication Date
JP2013253302A true JP2013253302A (en) 2013-12-19
JP5862468B2 JP5862468B2 (en) 2016-02-16

Family

ID=49951061

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012130744A Expired - Fee Related JP5862468B2 (en) 2012-06-08 2012-06-08 Manufacturing method of sintered diffusion bonding parts

Country Status (1)

Country Link
JP (1) JP5862468B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6417804A (en) * 1987-07-10 1989-01-20 Kawasaki Steel Co High density iron series sintered material and its production
JPH03232903A (en) * 1990-02-06 1991-10-16 Toyota Motor Corp Manufacture of high carbon sintered parts
JPH09157706A (en) * 1995-12-08 1997-06-17 Hitachi Powdered Metals Co Ltd Method for reforming ferrous sintered material
US5819154A (en) * 1995-12-08 1998-10-06 Hitachi Powdered Metal Co., Ltd. Manufacturing process of sintered iron alloy improved in machinability, mixed powder for manufacturing, modification of iron alloy and iron alloy product
JP2009021490A (en) * 2007-07-13 2009-01-29 Hitachi Powdered Metals Co Ltd Sintered soft magnetic substance and sintered movable iron core using the same, and manufacturing method of them
JP2009102711A (en) * 2007-10-24 2009-05-14 Denso Corp Soft magnetic sintering material, method for producing the same, and electromagnetic structure

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6417804A (en) * 1987-07-10 1989-01-20 Kawasaki Steel Co High density iron series sintered material and its production
JPH03232903A (en) * 1990-02-06 1991-10-16 Toyota Motor Corp Manufacture of high carbon sintered parts
JPH09157706A (en) * 1995-12-08 1997-06-17 Hitachi Powdered Metals Co Ltd Method for reforming ferrous sintered material
US5819154A (en) * 1995-12-08 1998-10-06 Hitachi Powdered Metal Co., Ltd. Manufacturing process of sintered iron alloy improved in machinability, mixed powder for manufacturing, modification of iron alloy and iron alloy product
JP2009021490A (en) * 2007-07-13 2009-01-29 Hitachi Powdered Metals Co Ltd Sintered soft magnetic substance and sintered movable iron core using the same, and manufacturing method of them
JP2009102711A (en) * 2007-10-24 2009-05-14 Denso Corp Soft magnetic sintering material, method for producing the same, and electromagnetic structure

Also Published As

Publication number Publication date
JP5862468B2 (en) 2016-02-16

Similar Documents

Publication Publication Date Title
JP4062221B2 (en) Electromagnetic actuator, method for manufacturing electromagnetic actuator, and fuel injection valve
US20060027950A1 (en) Method for manufacturing soft magnetic material
JP5959263B2 (en) Pinion gear and manufacturing method thereof
KR101438602B1 (en) Sintered alloy for valve seat and manufacturing method of exhaust valve seat using the same
JP2010216016A (en) Mixture for powder metallurgy and method for producing powder-metallurgy component using the same
JP4702945B2 (en) Sintered movable iron core and manufacturing method thereof
JP5627623B2 (en) Method for manufacturing a fixed magnetic circuit element
GB2343682A (en) Manufacturing method of sintered compact machine component having inner and outer part
CN1883017A (en) Method for producing composite soft magnetic material exhibiting excellent magnetic characteristics, high strength and low iron loss
JP2013515186A (en) Magnet core for solenoid valve
JP5862468B2 (en) Manufacturing method of sintered diffusion bonding parts
CN101506398B (en) High carbon surface densified sintered steel products and method of production therefor
JP5849863B2 (en) Manufacturing method of sintered diffusion bonding parts
JP4721457B2 (en) Sintered soft magnetic body, sintered movable iron core using the same, and manufacturing method thereof
US6299664B1 (en) Method of manufacturing sliding part and vortex flow generator for injection valve manufactured by that method
KR101363024B1 (en) Sintered steel alloy for wear resistance at high temperatures and fabrication method of valve-seat using the same
JP2006108475A (en) Process for producing soft magnetic material
CN108690931B (en) Method for producing wear-resistant iron-based sintered alloy
JP2009102711A (en) Soft magnetic sintering material, method for producing the same, and electromagnetic structure
JP5003509B2 (en) Manufacturing method of solenoid valve
JP5490927B2 (en) Method for producing hardened aluminum material by cross-coupling reaction
JPH06330108A (en) Production of sintered composite mechanical parts
JP2019151910A (en) Method for producing composite sintered member and composite sintered member
KR101363025B1 (en) Sintered steel alloy for wear resistance at high temperatures and fabrication method of valve-seat using the same
JP2006000952A (en) Method of machining sintered magnetic substance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141022

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150723

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150728

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151006

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151214

R151 Written notification of patent or utility model registration

Ref document number: 5862468

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees