JP5849863B2 - Manufacturing method of sintered diffusion bonding parts - Google Patents

Manufacturing method of sintered diffusion bonding parts Download PDF

Info

Publication number
JP5849863B2
JP5849863B2 JP2012130745A JP2012130745A JP5849863B2 JP 5849863 B2 JP5849863 B2 JP 5849863B2 JP 2012130745 A JP2012130745 A JP 2012130745A JP 2012130745 A JP2012130745 A JP 2012130745A JP 5849863 B2 JP5849863 B2 JP 5849863B2
Authority
JP
Japan
Prior art keywords
resistant material
wear
green compact
shaft member
diffusion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012130745A
Other languages
Japanese (ja)
Other versions
JP2013253303A (en
Inventor
喜央 向
喜央 向
宏武 濱松
宏武 濱松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2012130745A priority Critical patent/JP5849863B2/en
Publication of JP2013253303A publication Critical patent/JP2013253303A/en
Application granted granted Critical
Publication of JP5849863B2 publication Critical patent/JP5849863B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、異なる材料を焼結拡散接合により接合した焼結拡散接合部品の製造方法に関するものである。   The present invention relates to a method for manufacturing a sintered diffusion bonded component in which different materials are bonded by sintered diffusion bonding.

このような焼結拡散接合部品である可動鉄心が特許文献1〜3等に開示されている。この可動鉄心は、炭素鋼からなる耐摩耗性材料で構成された軸部材と、この軸部材の一端側に設けられ、内孔を有する形状であって、Fe系金属からなる外周部材とを備えるものである。この可動鉄心は、外周部材の形状とされた圧粉体と軸部材とを一体化させる一体化工程を行った後、圧粉体と軸部材とを加熱する焼結工程を行うことにより、圧粉体を焼結させて外周部材を形成するとともに、圧粉体と軸部材とを焼結拡散接合により接合することで製造される。   A movable iron core which is such a sintered diffusion bonding component is disclosed in Patent Documents 1 to 3 and the like. The movable iron core includes a shaft member made of a wear-resistant material made of carbon steel, and an outer peripheral member made of an Fe-based metal that is provided on one end side of the shaft member and has an inner hole. Is. This movable iron core is subjected to a sintering process in which the green compact and the shaft member are heated after performing an integration process in which the green compact having the shape of the outer peripheral member and the shaft member are integrated. The outer peripheral member is formed by sintering the powder, and the green compact and the shaft member are joined by sintered diffusion bonding.

特許4702945号公報Japanese Patent No. 4702945 特許4721457号公報Japanese Patent No. 472457 特開2009−102711号公報JP 2009-102711 A 特開2010−174353号公報JP 2010-174353 A

ところで、上述のように、炭素鋼からなる耐摩耗性材料とFe系金属からなる圧粉体を焼結拡散接合により接合した焼結拡散接合部品を製造する際では、圧粉体がSi等のフェライト化元素を含有する場合、接合後の耐摩耗性材料の表層に軟化部位が存在することがわかった。なお、フェライト化元素とは耐摩耗性材料に拡散した場合に拡散した領域の組織をフェライト相(α相)化する元素である。また、ここでいう耐摩耗性材料の表層とは、耐摩耗性材料の接合面以外の表面の層を意味する。   By the way, as described above, when manufacturing a sintered diffusion bonding component in which a wear resistant material made of carbon steel and a green compact made of Fe-based metal are bonded by sintered diffusion bonding, the green compact is made of Si or the like. It has been found that when a ferritic element is contained, a softened portion exists in the surface layer of the wear-resistant material after joining. The ferritic element is an element that converts the structure of the diffused region into a ferrite phase (α phase) when diffused into the wear-resistant material. Further, the surface layer of the wear-resistant material here means a layer on the surface other than the joint surface of the wear-resistant material.

この軟化部位が存在する理由は次のように考えられる。   The reason for the presence of this softened site is considered as follows.

図8に示すように、圧粉体20がFe−P−Si系の組成を有し、耐摩耗性材料1がMo、Cr等の元素を含有する場合を例として説明する。上述の焼結工程では、耐摩耗性材料1中のMo元素、Cr元素が圧粉体20の接合面20a付近に拡散するとともに、圧粉体20中のP元素、Si元素が耐摩耗性材料1の接合面1a付近に拡散する。   As shown in FIG. 8, the case where the green compact 20 has an Fe—P—Si composition and the wear-resistant material 1 contains elements such as Mo and Cr will be described as an example. In the above-described sintering process, Mo element and Cr element in the wear-resistant material 1 diffuse near the bonding surface 20a of the green compact 20, and P element and Si element in the green compact 20 wear-resistant material. 1 diffuses in the vicinity of the joint surface 1a.

これにより、図9に示すように、圧粉体20と耐摩耗性材料1との間に拡散層40が形成され、圧粉体20と耐摩耗性材料1とが接合される。この拡散層40は、圧粉体20の接合面20aに形成された拡散層41と、耐摩耗性材料1の接合面1aに形成された拡散層42とからなる。耐摩耗性材料1の接合面1aに形成された拡散層42は、フェライト化元素であるSiが拡散したことによってフェライト相からなり、耐摩耗性材料1の他の領域よりも硬度が低い領域となる。   Thereby, as shown in FIG. 9, the diffusion layer 40 is formed between the green compact 20 and the wear-resistant material 1, and the green compact 20 and the wear-resistant material 1 are joined. The diffusion layer 40 includes a diffusion layer 41 formed on the bonding surface 20 a of the green compact 20 and a diffusion layer 42 formed on the bonding surface 1 a of the wear resistant material 1. The diffusion layer 42 formed on the joint surface 1a of the wear resistant material 1 is formed of a ferrite phase by the diffusion of Si as a ferritizing element, and has a lower hardness than the other regions of the wear resistant material 1. Become.

ここで、圧粉体20には成形潤滑剤が含まれている。このため、一体化工程と焼結工程との間で、耐摩耗性材料1と圧粉体20とを加熱して、圧粉体20中の成形潤滑剤を分解除去する脱脂工程が行われる。成形潤滑剤の分解によって脱炭性ガスであるCOおよびHOが生成するので、この脱脂工程では、COおよびHOを加熱雰囲気から排除している。しかし、COおよびHOを加熱雰囲気から排除するようにしても、COおよびHOが加熱雰囲気中に残り、耐摩耗性材料1の表面1b、1cがCOおよびHOに触れてしまう。このため、耐摩耗性材料1の表面1b、1cが脱炭し、耐摩耗性材料1の表面1b、1cにフェライト相からなる図示しない薄い層が形成される。この薄い層は元素の拡散係数が高く、この薄い層では元素の拡散が促進される。なお、脱脂工程での加熱雰囲気に脱炭性ガスであるHやOが導入される場合も、耐摩耗性材料1の表面1b、1cが脱炭し、上記した薄い層が形成される。 Here, the green compact 20 contains a molding lubricant. For this reason, the degreasing process of heating the wear-resistant material 1 and the green compact 20 to decompose and remove the molding lubricant in the green compact 20 is performed between the integration process and the sintering process. Since the decomposition of the molded lubricant is decarburizing gas CO 2 and H 2 O is produced, in this degreasing step, and eliminates the CO 2 and H 2 O from the heating atmosphere. However, the CO 2 and H 2 O be excluded from the heating atmosphere, remains in the CO 2 and H 2 O is heated atmosphere, the surface 1b of the wear-resistant material 1, 1c to the CO 2 and H 2 O Touch it. For this reason, the surfaces 1b and 1c of the wear-resistant material 1 are decarburized, and a thin layer (not shown) made of a ferrite phase is formed on the surfaces 1b and 1c of the wear-resistant material 1. This thin layer has a high element diffusion coefficient, and this thin layer promotes element diffusion. Even if the H 2 and O 2 is decarburizing gas is introduced into the heating atmosphere in the degreasing step, the surface 1b of the wear-resistant material 1, 1c is decarburized, thin layer described above is formed .

したがって、焼結工程のときでは、図8に示すように、耐摩耗性材料1の表層をフェライト化元素であるSiが拡散するため、図9に示すように、耐摩耗性材料1の接合面1aに形成された拡散層42が耐摩耗性材料1の表層に伸展する。これが、耐摩耗性材料1の表層に軟化部位が存在する理由である。   Therefore, at the time of the sintering process, as shown in FIG. 8, Si as a ferritizing element diffuses in the surface layer of the wear resistant material 1, so that the joint surface of the wear resistant material 1 as shown in FIG. 9. The diffusion layer 42 formed on 1 a extends to the surface layer of the wear-resistant material 1. This is the reason why the softened portion exists in the surface layer of the wear-resistant material 1.

このため、耐摩耗性材料1の表面のうち図9中の上側に位置する一方の表面1bに高硬度が要求される場合では、後工程で表層に存在する軟化部位を切削等により除去する除去工程を行う必要がある。この除去工程では、広範囲にわたって焼結拡散接合部品の表層を除去しなければならないので、除去工程の所要時間が長くなってしまう。   For this reason, when high hardness is required for one surface 1b located on the upper side in FIG. 9 among the surfaces of the wear-resistant material 1, the removal is performed by removing the softened portion existing in the surface layer by cutting or the like in a subsequent process. It is necessary to perform a process. In this removal process, since the surface layer of the sintered diffusion bonded part has to be removed over a wide range, the time required for the removal process becomes long.

例えば、耐摩耗性材料の表面1bと圧粉体20の表面20bを面一に仕上げる必要がある場合、図9中の一点鎖線で囲まれた最終形状A2となるように、軟化部位だけでなく結拡散接合部品の表面1b、20bの全域にわたって表層を除去しなければならない。このとき除去する表層の厚さは均一であって、軟化部位の耐摩耗性材料1の表面1bからの深さに応じた厚さである。なお、結拡散接合部品の一方の表面1b、20bだけでなく、反対側の他方の表面1c、20cにも高硬度が要求される場合は、結拡散接合部品の両面1b、1c、20b、20cに対して表層の除去を行わなければならない。   For example, when it is necessary to finish the surface 1b of the wear resistant material and the surface 20b of the green compact 20 in a flush manner, not only the softened portion but also the final shape A2 surrounded by the one-dot chain line in FIG. The surface layer must be removed over the entire area of the surface 1b, 20b of the diffusion diffusion bonded component. The thickness of the surface layer to be removed at this time is uniform and is a thickness corresponding to the depth from the surface 1b of the wear-resistant material 1 at the softened portion. In addition, when high hardness is requested | required not only on one surface 1b, 20b of the bonding diffusion bonding component but also on the other surface 1c, 20c on the opposite side, both surfaces 1b, 1c, 20b, 20c of the bonding diffusion bonding component are required. The surface layer must be removed.

また、軟化部位が存在する部分のみを除去する場合でも、軟化部位が広範囲に存在していれば、広範囲にわたって表層を除去しなければならず、除去工程の所要時間が長くなってしまう。   Further, even when only the portion where the softened portion exists is removed, if the softened portion exists in a wide range, the surface layer must be removed over a wide range, and the time required for the removal process becomes long.

本発明は上記点に鑑みて、焼結拡散接合部品の製造の際に、除去工程の所要時間を短縮することを目的とする。   In view of the above points, an object of the present invention is to shorten the time required for the removal step when manufacturing a sintered diffusion bonding part.

上記目的を達成するため、請求項1に記載の発明では、
耐摩耗性材料(1)の接合面(1a)に隣接する位置に、耐摩耗性材料の表面(1b)から突出した突起部(30)が設けられた耐摩耗性材料と、フェライト化元素を含む圧粉体(20)とを一体化させる一体化工程(101)と、
一体化工程後に、耐摩耗性材料と圧粉体とを加熱することにより、圧粉体を焼結させ、耐摩耗性材料の接合面に圧粉体中のフェライト化元素が拡散してなる拡散層(42)を形成させるとともに圧粉体の接合面(20a)に耐摩耗性材料中の元素が拡散してなる拡散層(41)を形成させて耐摩耗性材料と圧粉体とを焼結拡散接合し、さらに、耐摩耗性材料の接合面に形成される拡散層を突起部内に誘導して留まらせる焼結工程(103)と、
焼結工程後に、突起部を除去する除去工程(104)とを有することを特徴としている。
In order to achieve the above object, in the invention described in claim 1,
A wear-resistant material provided with a protrusion (30) protruding from the surface (1b) of the wear-resistant material at a position adjacent to the joint surface (1a) of the wear-resistant material (1), and a ferritic element An integration step (101) for integrating the green compact (20) to be included;
After the integration process, the wear-resistant material and the green compact are heated to sinter the green compact and the diffusion of ferritic elements in the green compact on the joint surface of the wear-resistant material A layer (42) is formed, and a diffusion layer (41) formed by diffusing elements in the wear-resistant material is formed on the joint surface (20a) of the green compact to burn the wear-resistant material and the green compact. A sintering step (103) for bonding and diffusion bonding, and further inducing and retaining a diffusion layer formed on the bonding surface of the wear-resistant material in the protrusions;
And a removal step (104) for removing the protrusions after the sintering step.

本発明のように、耐摩耗性材料の接合面に隣接する位置に突起部を設けることで、耐摩耗性材料の接合面に形成される拡散層を突起部の表層に誘導することができる。そこで、拡散層が突起部のみに存在し、耐摩耗性材料の表層に存在しないように、突起部の高さや幅等を設定することにより、耐摩耗性材料の接合面に形成される拡散層を突起部内に誘導して留まらせれば、突起部を除去するだけで、耐摩耗性材料の表層に拡散層が存在しないようにできる。   As in the present invention, by providing the protrusion at a position adjacent to the joint surface of the wear resistant material, the diffusion layer formed on the joint surface of the wear resistant material can be guided to the surface layer of the protrusion. Therefore, the diffusion layer is formed on the joint surface of the wear-resistant material by setting the height and width of the projection so that the diffusion layer exists only on the projection and not on the surface of the wear-resistant material. Can be guided and retained in the protrusions, the diffusion layer is not present on the surface layer of the wear-resistant material simply by removing the protrusions.

このように、本発明によれば、耐摩耗性材料に突起部を形成しない場合と比較して、除去工程での除去範囲を狭くでき、除去工程の所要時間を短縮できる。   Thus, according to the present invention, the removal range in the removal process can be narrowed and the time required for the removal process can be shortened as compared with the case where no protrusion is formed on the wear-resistant material.

なお、この欄および特許請求の範囲で記載した各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示す一例である。   In addition, the code | symbol in the bracket | parenthesis of each means described in this column and the claim is an example which shows a corresponding relationship with the specific means as described in embodiment mentioned later.

第1実施形態におけるアーマチャを備える電磁弁の断面構成を示す図である。It is a figure which shows the cross-sectional structure of a solenoid valve provided with the armature in 1st Embodiment. 図1中のアーマチャの斜視図である。It is a perspective view of the armature in FIG. 図1中のアーマチャの製造工程を示す図である。It is a figure which shows the manufacturing process of the armature in FIG. 第1実施形態におけるアーマチャの製造途中での軸部材と圧粉体の断面図である。It is sectional drawing of the shaft member and green compact in the middle of manufacture of the armature in 1st Embodiment. 第1実施形態におけるアーマチャの製造において、焼結工程後の軸部材に形成される拡散層の範囲を説明するための断面図である。In manufacture of the armature in 1st Embodiment, it is sectional drawing for demonstrating the range of the diffused layer formed in the shaft member after a sintering process. 第1実施形態におけるアーマチャの製造において、除去工程後の軸部材に形成される拡散層の範囲を説明するための断面図である。In manufacture of an armature in a 1st embodiment, it is a sectional view for explaining a range of a diffusion layer formed in a shaft member after a removal process. 実施例1における焼結拡散接合部品の断面を示す金属顕微鏡写真である。2 is a metallographic micrograph showing a cross section of a sintered diffusion bonding component in Example 1. FIG. 圧粉体と耐摩耗性材料の焼結拡散接合を説明するための断面図である。It is sectional drawing for demonstrating the sintering diffusion bonding of a green compact and an abrasion-resistant material. 本発明が解決しようとする課題を説明するための図であって、圧粉体と耐摩耗性材料とを焼結拡散接合したときに形成される拡散層の範囲を説明するための断面図である。It is a figure for demonstrating the subject which this invention tends to solve, Comprising: It is sectional drawing for demonstrating the range of the diffusion layer formed when sintering compaction and a wear-resistant material are sintered-diffusion joined. is there.

以下、本発明の実施形態について説明する。
(第1実施形態)
第1実施形態では、車両用燃料噴射装置のソレノイド式インジェクタのアーマチャ(可動鉄心)の製造方法について説明する。
Hereinafter, embodiments of the present invention will be described.
(First embodiment)
1st Embodiment demonstrates the manufacturing method of the armature (movable iron core) of the solenoid type injector of the fuel injection device for vehicles.

まず、アーマチャを備える電磁弁の構造について説明する。図1、2に示すように、アーマチャ3は、軸部材1とこの軸部材1の一端側に設けられた外周部材2とを有している。この軸部材1の他端側には図示しない弁座と離接する図示しない弁体が設けられている。外周部材2は軸部材1の長手方向に対して垂直な方向に延びた扁平形状である。   First, the structure of a solenoid valve provided with an armature will be described. As shown in FIGS. 1 and 2, the armature 3 includes a shaft member 1 and an outer peripheral member 2 provided on one end side of the shaft member 1. On the other end side of the shaft member 1 is provided a valve body (not shown) that is in contact with a valve seat (not shown). The outer peripheral member 2 has a flat shape extending in a direction perpendicular to the longitudinal direction of the shaft member 1.

そして、図1に示す電磁弁10は、軸部材1の長手方向においてアーマチャ3と対向する位置に固定鉄心4が配置されており、この固定鉄心4にはソレノイドコイル5が巻回されている。この電磁弁10においては、固定鉄心4に巻回されたソレノイドコイル5に電流を供給することによって、アーマチャ3が固定鉄心4側に磁力吸引されて弁が開くとともに、固定鉄心4に巻回されたソレノイドコイル5に流れる電流を遮断することによって、図示しないばねの復帰力によりアーマチャ3が元の位置に復帰し、弁が閉じられる。   In the electromagnetic valve 10 shown in FIG. 1, a fixed iron core 4 is disposed at a position facing the armature 3 in the longitudinal direction of the shaft member 1, and a solenoid coil 5 is wound around the fixed iron core 4. In this electromagnetic valve 10, by supplying current to the solenoid coil 5 wound around the fixed iron core 4, the armature 3 is attracted to the fixed iron core 4, and the valve is opened, and the armature 3 is wound around the fixed iron core 4. By shutting off the current flowing through the solenoid coil 5, the armature 3 returns to the original position by the return force of a spring (not shown), and the valve is closed.

ここで、アーマチャ3は、異なる材料からなる軸部材1と外周部材2とが焼結拡散接合してなる拡散接合部品である。   Here, the armature 3 is a diffusion bonded component formed by sintering diffusion bonding the shaft member 1 and the outer peripheral member 2 made of different materials.

軸部材1は、硬度がHv600以上の炭素鋼からなる耐摩耗性材料で構成されている。この耐摩耗性材料としては、例えばJIS規格のSKH51材、SKH2材等の高速度工具鋼や、例えばJIS規格のSUJ2材等の軸受鋼や、例えばJIS規格のSKD11材等の合金工具鋼が挙げられる。   The shaft member 1 is made of an abrasion-resistant material made of carbon steel having a hardness of Hv600 or higher. Examples of the wear resistant material include high speed tool steel such as JIS standard SKH51 material and SKH2 material, bearing steel such as JIS standard SUJ2 material, and alloy tool steel such as JIS standard SKD11 material. It is done.

外周部材2は、Feを主成分とするFe系金属からなる圧粉体を焼結させたものである。圧粉体は、原料粉末を圧粉成形したものである。この原料粉末としては、例えば、Fe−Si−P系や、Fe−Si系の組成を有する軟磁性粉末が挙げられる。SiおよびPは焼結拡散接合を形成するための元素であるが、これらの元素のうちSiは、耐摩耗性材料に拡散した場合に拡散した領域の組織をフェライト相化するフェライト化元素でもある。   The outer peripheral member 2 is obtained by sintering a green compact made of Fe-based metal whose main component is Fe. The green compact is obtained by compacting a raw material powder. Examples of the raw material powder include Fe-Si-P-based and soft magnetic powder having an Fe-Si-based composition. Si and P are elements for forming sintered diffusion bonding, and among these elements, Si is also a ferritizing element that causes the structure of the diffused region to become a ferrite phase when diffused into the wear-resistant material. .

次に、アーマチャ3の製造方法について説明する。   Next, a method for manufacturing the armature 3 will be described.

図3に示すように、所望形状とされた軸部材1と外周部材2の形状とされた圧粉体とを組み付ける組み付け工程101を行う。この組み付け工程101が特許請求の範囲に記載の一体化工程に相当する。   As shown in FIG. 3, an assembling step 101 for assembling the shaft member 1 having a desired shape and the green compact having the shape of the outer peripheral member 2 is performed. This assembly process 101 corresponds to the integration process described in the claims.

具体的には、図4に示す形状の耐摩耗性材料からなる軸部材1を用意する。なお、図4は、図1中の破線で囲まれた領域A1に相当する。この軸部材1は、軸部材1の表面1bのうち軸部材1の接合面1aに隣接する位置に、軸部材1の表面1bから突出した形状の突起部30が設けられている。この突起部30は、後述する除去工程104で除去されるものである。この突起部30は、接合面1aと連続する表面30aを有している。この突起部30は、図4の上方から軸部材1の表面1bを見たとき、軸部材1の表面1bにて線状に位置する接合面1aの全範囲に沿って配置されている。   Specifically, a shaft member 1 made of a wear-resistant material having the shape shown in FIG. 4 is prepared. 4 corresponds to a region A1 surrounded by a broken line in FIG. The shaft member 1 is provided with a protruding portion 30 having a shape protruding from the surface 1 b of the shaft member 1 at a position adjacent to the joint surface 1 a of the shaft member 1 on the surface 1 b of the shaft member 1. The protrusion 30 is removed in a removal step 104 described later. The protrusion 30 has a surface 30a continuous with the joint surface 1a. When the surface 1b of the shaft member 1 is viewed from above in FIG. 4, the protrusions 30 are arranged along the entire range of the joint surface 1a positioned linearly on the surface 1b of the shaft member 1.

また、内孔を有する外側部材2の形状となるように、原料粉末を圧粉成形して得られた圧粉体20を用意する。このとき、圧粉体20には成形潤滑剤が含まれている。この成形潤滑剤は、熱処理によってCOとHOに分解される有機化合物からなるものである。この成形潤滑剤としては、ワックス系、ステアリン酸系等の一般的な金属粉末の圧粉成形用の潤滑剤を用いることができる。 Moreover, the green compact 20 obtained by compacting raw material powder so that it may become the shape of the outer member 2 which has an inner hole is prepared. At this time, the green compact 20 contains a molding lubricant. This molding lubricant is made of an organic compound that is decomposed into CO 2 and H 2 O by heat treatment. As this molding lubricant, a lubricant for compacting metal powder such as wax and stearic acid can be used.

そして、得られた圧粉体20の内孔に軸部材1を嵌合して一体化する。これにより、図4に示すように、圧粉体20の接合面20aと軸部材1の接合面1aとが接触した状態となる。   Then, the shaft member 1 is fitted into the inner hole of the obtained green compact 20 and integrated. Thereby, as shown in FIG. 4, the bonding surface 20 a of the green compact 20 and the bonding surface 1 a of the shaft member 1 are in contact with each other.

その後、組み付け後の軸部材1と圧粉体20とを加熱することにより、圧粉体中の成形潤滑剤を分解させる脱脂工程102を行う。加熱温度は、成形潤滑剤の分解温度、例えば、600℃である。このとき、軸部材1の表面での脱炭を抑制するために、成形潤滑剤の分解によって生成するCOとHOとを加熱雰囲気からできるだけ排除することが好ましい。また、加熱雰囲気に脱炭性ガスであるHやOを導入しないことが好ましい。 Then, the degreasing process 102 which decomposes | disassembles the shaping | molding lubricant in a green compact is performed by heating the shaft member 1 and the green compact 20 after an assembly | attachment. The heating temperature is a decomposition temperature of the molded lubricant, for example, 600 ° C. At this time, in order to suppress decarburization on the surface of the shaft member 1, it is preferable to eliminate CO 2 and H 2 O generated by the decomposition of the molded lubricant as much as possible from the heating atmosphere. Moreover, it is preferable not to introduce decarburizing gas H 2 or O 2 into the heating atmosphere.

その後、組み付け後の軸部材1と圧粉体20とを加熱することにより、圧粉体20を焼結させて外周部材2を形成するとともに軸部材1と外周部材2とを拡散接合する焼結工程103を行う。このときの加熱温度は1100℃〜1300℃である。   Thereafter, by heating the assembled shaft member 1 and the green compact 20, the green compact 20 is sintered to form the outer peripheral member 2, and the shaft member 1 and the outer peripheral member 2 are diffusion bonded. Step 103 is performed. The heating temperature at this time is 1100 degreeC-1300 degreeC.

その後、軸部材1の突起部30を研削等により除去する除去工程104を行う。本実施形態では、突起部30を除去したものがアーマチャ3の最終形状である。このようにしてアーマチャ3が製造される。   Then, the removal process 104 which removes the projection part 30 of the shaft member 1 by grinding etc. is performed. In the present embodiment, the final shape of the armature 3 is obtained by removing the protrusion 30. In this way, the armature 3 is manufactured.

次に、本実施形態の特徴について説明する。   Next, features of the present embodiment will be described.

上述の焼結工程103では、「発明が解決しようとする課題」の欄で説明した通り、図8に示すように、軸部材1に含まれるCr元素やMo元素等が圧粉体20の接合面20a付近に拡散し、圧粉体20に添加されているSi元素やP元素が軸部材1の接合面1a付近に拡散する。これにより、本実施形態においても、図9に示すように、軸部材1と外周部材2との間に、両者を拡散接合する拡散層40が形成される。この拡散層40は、圧粉体20の接合面20aに形成された拡散層41と、軸部材1の接合面1aに形成された拡散層42とからなる。   In the above-described sintering step 103, as described in the section “Problems to be Solved by the Invention”, as shown in FIG. 8, the Cr element, the Mo element, etc. contained in the shaft member 1 are joined to the green compact 20. The Si element and the P element that are diffused near the surface 20 a and added to the green compact 20 are diffused near the joint surface 1 a of the shaft member 1. Thereby, also in this embodiment, as shown in FIG. 9, the diffusion layer 40 which diffusely bonds both is formed between the shaft member 1 and the outer peripheral member 2. The diffusion layer 40 includes a diffusion layer 41 formed on the bonding surface 20 a of the green compact 20 and a diffusion layer 42 formed on the bonding surface 1 a of the shaft member 1.

ここで、脱脂工程でCOおよびHOを加熱雰囲気から排除するようにしても、COおよびHOが加熱雰囲気中に残り、耐摩耗性材料1の表面がCOおよびHOに触れてしまう。このため耐摩耗性材料1の表面が脱炭し、耐摩耗性材料1の表面に元素の拡散係数が高いフェライト相からなる薄い層が形成される。 Here, even if CO 2 and H 2 O are excluded from the heating atmosphere in the degreasing step, CO 2 and H 2 O remain in the heating atmosphere, and the surface of the wear-resistant material 1 is CO 2 and H 2 O. Will touch. For this reason, the surface of the wear resistant material 1 is decarburized, and a thin layer made of a ferrite phase having a high element diffusion coefficient is formed on the surface of the wear resistant material 1.

このため、本実施形態とは異なり、軸部材1に突起部を設けていない場合では、図9に示すように、Si元素が軸部材1の表層に拡散することで、軸部材1の接合面1aに形成された拡散層42が軸部材1の表層に伸展する。   For this reason, unlike this embodiment, when the projection part is not provided in the shaft member 1, the Si element diffuses into the surface layer of the shaft member 1, as shown in FIG. The diffusion layer 42 formed on 1 a extends to the surface layer of the shaft member 1.

これに対して、本実施形態では、軸部材1に突起部30を設けている。この突起部30の表面30aにも、脱脂工程で残ったCOおよびHOによって、元素の拡散係数が高いフェライト相からなる薄い層が形成される。このため、本実施形態では、図5に示すように、Si元素が突起部30の表面30aに沿って拡散することで、軸部材1の接合面1aに形成された拡散層42が突起部30の表層に伸展する。 On the other hand, in this embodiment, the protrusion 30 is provided on the shaft member 1. A thin layer made of a ferrite phase having a high element diffusion coefficient is also formed on the surface 30a of the protrusion 30 by the CO 2 and H 2 O remaining in the degreasing step. Therefore, in this embodiment, as shown in FIG. 5, the Si element diffuses along the surface 30 a of the protrusion 30, so that the diffusion layer 42 formed on the joint surface 1 a of the shaft member 1 becomes the protrusion 30. Extends to the surface layer.

さらに、本実施形態では、この拡散層42が突起部30のみに存在し、軸部材1の表層に存在しないように、予め実験等によって拡散層42の伸展距離を求めておき、この伸展距離に基づいて、突起部30の高さや幅等を設定する。これにより、軸部材1の接合面1aに形成される拡散層42を突起部30に誘導して留まらせることができる。このため、除去工程では、図6に示すように、突起部30を除去するだけで、軟化部位となる拡散層42を除去することができる。   Furthermore, in the present embodiment, the extension distance of the diffusion layer 42 is obtained in advance by experiments or the like so that the diffusion layer 42 exists only on the protrusion 30 and does not exist on the surface layer of the shaft member 1. Based on this, the height and width of the protrusion 30 are set. As a result, the diffusion layer 42 formed on the joint surface 1 a of the shaft member 1 can be guided and retained in the protrusion 30. For this reason, in the removing step, as shown in FIG. 6, the diffusion layer 42 that becomes the softened portion can be removed simply by removing the protrusion 30.

このように、本実施形態によれば、除去工程で突起部30のみを除去することで、軸部材1の表層に拡散層が存在しないようにできるので、軸部材1に突起部30を形成しない場合と比較して、除去範囲を狭くでき、除去工程の所要時間を短縮できる。   As described above, according to the present embodiment, by removing only the protrusion 30 in the removal step, the surface layer of the shaft member 1 can be made to have no diffusion layer, and thus the protrusion 30 is not formed on the shaft member 1. Compared to the case, the removal range can be narrowed, and the time required for the removal process can be shortened.

なお、本実施形態では、接合面1aに形成された拡散層42は、接合面1aに存在したままである。また、軸部材1の表面1bに形成されたフェライト相からなる薄い層を残している。これは、この薄い層による軸部材1の表面1bの硬度への影響が小さいためである。   In the present embodiment, the diffusion layer 42 formed on the bonding surface 1a remains on the bonding surface 1a. Moreover, the thin layer which consists of the ferrite phase formed in the surface 1b of the shaft member 1 is left. This is because the influence of the thin layer on the hardness of the surface 1b of the shaft member 1 is small.

また、本実施形態では、軸部材1の表面1bに形成されたフェライト相からなる薄い層を残しているが、この薄い層を除去しても良い。この場合、上述の除去工程での突起部30の除去に加えて、軸部材1の表面1bの薄い層を研削等により除去する。この薄い層の除去を行っても、突起部を形成しない場合と比較して、除去する層が薄いので、除去工程の所要時間を短縮できる。   Moreover, in this embodiment, although the thin layer which consists of a ferrite phase formed in the surface 1b of the shaft member 1 is left, you may remove this thin layer. In this case, in addition to the removal of the protrusion 30 in the above-described removal step, the thin layer of the surface 1b of the shaft member 1 is removed by grinding or the like. Even if this thin layer is removed, the time required for the removal process can be shortened because the layer to be removed is thin compared to the case where no protrusion is formed.

(他の実施形態)
第1実施形態の組み付け工程101では、軸部材1と、外周部材2の形状に成形された圧粉体20とを用意して、圧粉体20の内孔に軸部材1を嵌合して一体化したが、この組み付け工程101の代わりに、特許文献4に記載のように、圧粉体20の成形と同時に、軸部材1と圧粉体20とを一体化させる一体化工程を行っても良い。すなわち、金型内で軸部材1を保持した状態で、金型内の原料粉末を加圧することにより、軸部材1と圧粉体20の一体化部品をインサート成形しても良い。
(Other embodiments)
In the assembly process 101 of the first embodiment, the shaft member 1 and the green compact 20 molded into the shape of the outer peripheral member 2 are prepared, and the shaft member 1 is fitted into the inner hole of the green compact 20. Although integrated, instead of the assembling step 101, an integration step of integrating the shaft member 1 and the green compact 20 at the same time as forming the green compact 20 is performed as described in Patent Document 4. Also good. That is, an integrated part of the shaft member 1 and the green compact 20 may be insert-molded by pressing the raw material powder in the mold while holding the shaft member 1 in the mold.

また、第1実施形態では、本発明の焼結拡散接合部品の製造方法を、インジェクタのアーマチャの製造方法に適用した例を説明したが、複雑形状の焼結ギヤ部品等の他の焼結拡散接合部品の製造方法に適用することも可能である。この焼結ギヤ部品は、軸部とこの軸部の一端側に設けられたギヤ部とから構成され、軸部の形状とされた耐摩耗性材料とギヤ部の形状とされた圧粉体とを焼結拡散接合することにより得られるものである。   Further, in the first embodiment, the example in which the method for manufacturing a sintered diffusion bonding part of the present invention is applied to the method for manufacturing an armature of an injector has been described. It is also possible to apply to the manufacturing method of a joining component. The sintered gear part is composed of a shaft portion and a gear portion provided on one end side of the shaft portion, and includes a wear-resistant material having a shape of the shaft portion and a green compact having a shape of the gear portion. Is obtained by sintering diffusion bonding.

以下、本発明の実施例について説明する。
(実施例1)
耐摩耗性材料からなる所望形状の試験片と、圧粉体を所望形状とした試験片とを焼結拡散接合により接合して焼結拡散接合部品を作製した。
Examples of the present invention will be described below.
Example 1
A specimen having a desired shape made of an abrasion-resistant material and a specimen having a green compact in a desired shape were joined by sintered diffusion bonding to produce a sintered diffusion bonded part.

具体的には、SKH51材からなる円柱状であって、上述の突起部を有する耐摩耗性材料を用意した。耐摩耗性材料の表面からの突起部の高さを0.5mmとした。また、組成がSi:2.0wt%、P:0.35wt%、Mn:0.2wt%、S:0.08wt%、残部がFeおよび不可避不純物の金属粉末を円柱状に加圧成形した圧粉体を用意した。この圧粉体は、ワックス系の潤滑剤が圧粉体全体に対して0.5wt%添加されたものである。   Specifically, a wear-resistant material having a columnar shape made of SKH51 material and having the above-described protrusions was prepared. The height of the protrusion from the surface of the wear resistant material was 0.5 mm. Further, a pressure obtained by pressure-molding a metal powder having a composition of Si: 2.0 wt%, P: 0.35 wt%, Mn: 0.2 wt%, S: 0.08 wt%, the balance being Fe and inevitable impurities in a cylindrical shape. Powder was prepared. This green compact is obtained by adding 0.5 wt% of a wax-based lubricant to the whole green compact.

そして、耐摩耗性材料の一面と圧粉体の一面とを接触させて組み付けた後、脱脂工程と焼結工程とを順に行った。脱脂工程では0.5Torrの真空炉中で635℃にて1時間加熱した。焼結工程では0.5Torrの真空炉中で1215℃にて1時間加熱した。   Then, after one surface of the wear-resistant material and one surface of the green compact were brought into contact with each other and assembled, a degreasing step and a sintering step were sequentially performed. In the degreasing process, heating was performed at 635 ° C. for 1 hour in a vacuum furnace of 0.5 Torr. In the sintering process, heating was performed at 1215 ° C. for 1 hour in a vacuum furnace of 0.5 Torr.

その後、突起部を残した状態の焼結拡散接合部品の断面を金属顕微鏡で観察するとともに、耐摩耗性材料の表層の硬度をマイクロビッカース測定法により測定した。   Then, while observing the cross section of the sintered diffusion bonding part in a state where the protrusions were left with a metal microscope, the hardness of the surface layer of the wear resistant material was measured by a micro Vickers measurement method.

その結果、図7に示すように、耐摩耗性材料1の突起部30の表層の組織が他の領域と異なっていることが確認され、耐摩耗性材料1の接合面1aに形成された拡散層42が突起部30の表層に伸展したものと推測される。また、用意した耐摩耗性材料1は、硬度がHv600であったが、接合後の突起部30の表層の硬度はHv200であり、突起部30の表層に軟化部位が形成されたことが確認された。   As a result, as shown in FIG. 7, it is confirmed that the structure of the surface layer of the protrusion 30 of the wear resistant material 1 is different from the other regions, and the diffusion formed on the joint surface 1 a of the wear resistant material 1. It is presumed that the layer 42 extends to the surface layer of the protrusion 30. The prepared wear-resistant material 1 had a hardness of Hv600, but the hardness of the surface layer of the protrusion 30 after bonding was Hv200, and it was confirmed that a softened portion was formed on the surface layer of the protrusion 30. It was.

1 軸部材(耐摩耗性材料)
2 外周部材
3 アーマチャ
10 電磁弁
20 圧粉体
30 突起部
42 軸部材(耐摩耗性材料)の接合面に形成された拡散層
1 Shaft member (Abrasion resistant material)
2 Peripheral member 3 Armature 10 Solenoid valve 20 Green compact 30 Protruding part 42 Diffusion layer formed on joint surface of shaft member (abrasion resistant material)

Claims (3)

硬度がHv600以上の炭素鋼からなり、所望形状とされた耐摩耗性材料と、Feを主成分とするFe系金属からなり、所望形状とされた圧粉体とを焼結拡散接合により接合した焼結拡散接合部品の製造方法において、
前記耐摩耗性材料(1)の接合面(1a)に隣接する位置に、前記耐摩耗性材料の表面(1b)から突出した突起部(30)が設けられた前記耐摩耗性材料と、フェライト化元素を含む前記圧粉体(20)とを一体化させる一体化工程(101)と、
前記一体化工程後に、前記耐摩耗性材料と前記圧粉体とを加熱することにより、前記圧粉体を焼結させ、前記耐摩耗性材料の接合面に前記圧粉体中の前記フェライト化元素が拡散してなる拡散層(42)を形成させるとともに前記圧粉体の接合面(20a)に前記耐摩耗性材料中の元素が拡散してなる拡散層(41)を形成させて前記耐摩耗性材料と前記圧粉体とを焼結拡散接合し、さらに、前記耐摩耗性材料の接合面に形成される拡散層を前記突起部内に誘導して留まらせる焼結工程(103)と、
前記焼結工程後に、前記突起部を除去する除去工程(104)とを有することを特徴とする焼結拡散接合部品の製造方法。
A wear-resistant material made of carbon steel having a hardness of Hv600 or more and made into a desired shape and a green compact made of Fe-based metal containing Fe as a main component and made into a desired shape are joined by sintered diffusion bonding. In the manufacturing method of sintered diffusion bonding parts,
The wear resistant material provided with a protrusion (30) protruding from the surface (1b) of the wear resistant material at a position adjacent to the joint surface (1a) of the wear resistant material (1), and ferrite An integration step (101) for integrating the green compact (20) containing the chemical element;
After the integration step, the wear-resistant material and the green compact are heated to sinter the green compact, and the ferritization in the green compact is bonded to the joint surface of the wear-resistant material. A diffusion layer (42) formed by diffusing elements is formed, and a diffusion layer (41) formed by diffusing elements in the wear-resistant material is formed on the joint surface (20a) of the green compact to form the above-mentioned resistance. Sintering diffusion bonding of the wearable material and the green compact, and further, a sintering step (103) for inducing and retaining a diffusion layer formed on the bonding surface of the wear-resistant material in the protrusions;
And a removal step (104) for removing the protrusions after the sintering step.
前記圧粉体(20)は成形潤滑剤(21)を含んでおり、
前記一体化工程と前記焼結工程との間に、前記成形潤滑剤の分解温度にて加熱することにより、前記圧粉体中の前記成形潤滑剤を分解させる脱脂工程(102)を有することを特徴とする請求項1に記載の焼結拡散接合部品の製造方法。
The green compact (20) contains a molding lubricant (21),
A degreasing step (102) for decomposing the molding lubricant in the green compact by heating at a decomposition temperature of the molding lubricant between the integration step and the sintering step; The method for producing a sintered diffusion bonding part according to claim 1, wherein
前記焼結拡散接合部品は、軸部材、前記軸部材の一端側に位置する外周部材(2)とを有するインジェクタのアーマチャ(3)であり、
前記軸部材の形状とされた前記耐摩耗性材料(1)と、前記外周部材の形状とされた前記圧粉体とを一体化させることを特徴とする請求項1または2に記載の拡散接合部品の製造方法。
The sintered diffusion bonding component is an injector armature (3) having a shaft member and an outer peripheral member (2) located on one end side of the shaft member,
3. The diffusion bonding according to claim 1, wherein the wear-resistant material (1) having the shape of the shaft member and the green compact having the shape of the outer peripheral member are integrated. A manufacturing method for parts.
JP2012130745A 2012-06-08 2012-06-08 Manufacturing method of sintered diffusion bonding parts Active JP5849863B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012130745A JP5849863B2 (en) 2012-06-08 2012-06-08 Manufacturing method of sintered diffusion bonding parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012130745A JP5849863B2 (en) 2012-06-08 2012-06-08 Manufacturing method of sintered diffusion bonding parts

Publications (2)

Publication Number Publication Date
JP2013253303A JP2013253303A (en) 2013-12-19
JP5849863B2 true JP5849863B2 (en) 2016-02-03

Family

ID=49951062

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012130745A Active JP5849863B2 (en) 2012-06-08 2012-06-08 Manufacturing method of sintered diffusion bonding parts

Country Status (1)

Country Link
JP (1) JP5849863B2 (en)

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60155605A (en) * 1984-01-24 1985-08-15 Toyota Motor Corp Fitting and fixing method of sintered parts
JPH02285004A (en) * 1989-04-27 1990-11-22 Komatsu Ltd Production of sintered hydraulic piston shoe and the piston shoe
JP3954215B2 (en) * 1998-09-16 2007-08-08 日立粉末冶金株式会社 Manufacturing method of composite sintered machine parts
WO2005029515A1 (en) * 2003-09-17 2005-03-31 Hitachi Powdered Metals Co., Ltd. Sintered movable iron-core and method of manufacturing the same
JP4562483B2 (en) * 2004-10-07 2010-10-13 株式会社デンソー Method for producing soft magnetic material
US20060101641A1 (en) * 2004-11-15 2006-05-18 Borgwarner Inc. Armature pin and method for assembly
JP4721457B2 (en) * 2007-07-13 2011-07-13 日立粉末冶金株式会社 Sintered soft magnetic body, sintered movable iron core using the same, and manufacturing method thereof
JP5266682B2 (en) * 2007-07-31 2013-08-21 キャタピラージャパン株式会社 Multi-layer sintered sliding member
JP2009102711A (en) * 2007-10-24 2009-05-14 Denso Corp Soft magnetic sintering material, method for producing the same, and electromagnetic structure
JP5330822B2 (en) * 2008-12-22 2013-10-30 日立粉末冶金株式会社 Molding equipment
JP5146341B2 (en) * 2009-01-30 2013-02-20 株式会社デンソー Mold structure for insert molding and molding method
JP2010215951A (en) * 2009-03-16 2010-09-30 Hitachi Powdered Metals Co Ltd Sintered composite sliding component and manufacturing method therefor
JP5099093B2 (en) * 2009-09-15 2012-12-12 株式会社デンソー Sintered compact and manufacturing method thereof

Also Published As

Publication number Publication date
JP2013253303A (en) 2013-12-19

Similar Documents

Publication Publication Date Title
JP4062221B2 (en) Electromagnetic actuator, method for manufacturing electromagnetic actuator, and fuel injection valve
US5754937A (en) Hi-density forming process
JP4702945B2 (en) Sintered movable iron core and manufacturing method thereof
JP5959263B2 (en) Pinion gear and manufacturing method thereof
JP2006049625A (en) Manufacturing method of soft magnetic material
JP2013213278A (en) Sintered alloy for valve seat, method for manufacturing valve seat and valve seat utilizing the same
US20130145878A1 (en) Scissors gear structure and manufacturing method thereof
KR20140133821A (en) Sintered bearing
JP2009505028A (en) Method for producing a rigid casing
JP5575265B2 (en) Magnet core for solenoid valve
US20190224754A1 (en) Method for production of a sintered component
Danninger What will be the future of powder metallurgy
JP2010510458A (en) Method for manufacturing a fixed magnetic circuit element
CN101506398B (en) High carbon surface densified sintered steel products and method of production therefor
US11090720B2 (en) Method for producing a powder-metallurgical product
JP5849863B2 (en) Manufacturing method of sintered diffusion bonding parts
US20160023274A1 (en) Machine part and process for producing same
JP5862468B2 (en) Manufacturing method of sintered diffusion bonding parts
JP2009021490A (en) Sintered soft magnetic substance and sintered movable iron core using the same, and manufacturing method of them
JP2009102711A (en) Soft magnetic sintering material, method for producing the same, and electromagnetic structure
JP3246574B2 (en) Manufacturing method of sintered composite machine parts
KR101363024B1 (en) Sintered steel alloy for wear resistance at high temperatures and fabrication method of valve-seat using the same
JPS6184302A (en) Manufacture of sintered forged parts
KR101363025B1 (en) Sintered steel alloy for wear resistance at high temperatures and fabrication method of valve-seat using the same
JP2004323869A (en) Method for manufacturing steel member with oxide film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141022

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150715

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150818

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150910

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151117

R151 Written notification of patent or utility model registration

Ref document number: 5849863

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250