JP2013253282A - Electroless plating bath and electroless plated film - Google Patents

Electroless plating bath and electroless plated film Download PDF

Info

Publication number
JP2013253282A
JP2013253282A JP2012128986A JP2012128986A JP2013253282A JP 2013253282 A JP2013253282 A JP 2013253282A JP 2012128986 A JP2012128986 A JP 2012128986A JP 2012128986 A JP2012128986 A JP 2012128986A JP 2013253282 A JP2013253282 A JP 2013253282A
Authority
JP
Japan
Prior art keywords
plating bath
electroless plating
electroless
nickel
carbonate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012128986A
Other languages
Japanese (ja)
Other versions
JP5602790B2 (en
Inventor
Christopher Cordonier
クリストファー コルドニエ
Kyohei Okabe
恭平 岡部
Hideo Honma
英夫 本間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanto Gakuin School Corp
Original Assignee
Kanto Gakuin School Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanto Gakuin School Corp filed Critical Kanto Gakuin School Corp
Priority to JP2012128986A priority Critical patent/JP5602790B2/en
Publication of JP2013253282A publication Critical patent/JP2013253282A/en
Application granted granted Critical
Publication of JP5602790B2 publication Critical patent/JP5602790B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an electroless plating bath, which is free from boric acid used as a pH buffer, has a low nickel content, and can be provided as a condensed solution.SOLUTION: An electroless plating bath 1 includes: copper sulfide hemihydrate 0.03 M; nickel sulfide 0.01 M; trisodium citrate 0.06 M as a complexing agent; sodium hypophosphite 0.18 M as a reducing agent, sodium carbonate 0.25 M as a buffer; lithium hydroxide as a pH adjuster, and a surfactant and the like which are not essential.

Description

本発明は、銅イオンとニッケルイオンとを含む、次亜リン酸を還元剤とする無電解めっき浴および前記無電解めっき浴により成膜された無電解銅ニッケルめっき膜に関する。   The present invention relates to an electroless plating bath containing hypophosphorous acid containing copper ions and nickel ions, and an electroless copper nickel plating film formed by the electroless plating bath.

無電解めっき法は、金属等の導電物、または、樹脂もしくはセラミック等の電気絶縁物に金属膜を形成する方法として広く普及している。導電体として優れた特性を有する銅膜を無電解めっき法により成膜するには、還元剤としてホルマリン(ホルムアルデヒド)を使用するのが一般的である。しかし、ホルマリンは人体に対して有害であり、規制が検討されている。   The electroless plating method is widely used as a method for forming a metal film on a conductive material such as metal or an electrical insulator such as resin or ceramic. In order to form a copper film having excellent characteristics as a conductor by an electroless plating method, it is common to use formalin (formaldehyde) as a reducing agent. However, formalin is harmful to the human body and regulations are being investigated.

これに対して、次亜リン酸塩を還元剤とする無電解銅めっき浴が検討されている。しかし、次亜リン酸塩により銅イオンを直接還元することは容易ではない。発明者は、特開2000−212762号公報において、次亜リン酸塩を還元剤とする無電解銅めっき浴にニッケルイオンを添加することで連続的な銅ニッケル膜の析出が可能となることを開示している。ニッケルイオン添加浴では、次亜リン酸塩により還元析出した金属ニッケルが触媒となり、銅の析出が進行する。   On the other hand, an electroless copper plating bath using hypophosphite as a reducing agent has been studied. However, it is not easy to reduce copper ions directly with hypophosphite. The inventor disclosed in Japanese Patent Application Laid-Open No. 2000-212762 that a continuous copper-nickel film can be deposited by adding nickel ions to an electroless copper plating bath using hypophosphite as a reducing agent. Disclosure. In the nickel ion addition bath, nickel metal reduced and precipitated by hypophosphite serves as a catalyst, and copper deposition proceeds.

上記無電解銅めっき浴において、ほう酸は、陰極近傍でのpH変動を抑制するpH緩衝剤であり、安定した析出のための重要な成分である。しかし、ほう酸は溶解度が低いために、上記無電解銅めっき浴は濃縮溶液での出荷ができず、輸送等が容易であるとは言えなかった。
また、ほう酸に含まれるほう素は、人の健康に被害を生じるおそれのある物質として排水が規制さている。しかし、排水処理においてほう素濃度の低減は容易ではない。
In the above electroless copper plating bath, boric acid is a pH buffer that suppresses pH fluctuations in the vicinity of the cathode, and is an important component for stable deposition. However, since boric acid has low solubility, the electroless copper plating bath cannot be shipped as a concentrated solution, and cannot be said to be easy to transport.
Boron contained in boric acid is regulated as a substance that may cause damage to human health. However, it is not easy to reduce the boron concentration in wastewater treatment.

このため、濃縮溶液での提供が可能な無電解めっき浴、特に、ほう酸を含まない無電解めっき浴が求められていた。また、めっき膜のニッケル含有率が高くなると抵抗が増加するため、ニッケル含有率の低いめっき膜が求められていた。   For this reason, there has been a demand for an electroless plating bath that can be provided in a concentrated solution, particularly an electroless plating bath that does not contain boric acid. Further, since the resistance increases as the nickel content of the plating film increases, a plating film having a low nickel content has been demanded.

特開2000−212762号公報Japanese Unexamined Patent Publication No. 2000-212762

本発明の実施形態は、濃縮溶液での提供が可能な無電解めっき浴および前記無電解めっき浴を用いて製造された低抵抗のめっき膜を提供することを目的とする。   An object of an embodiment of the present invention is to provide an electroless plating bath that can be provided in a concentrated solution and a low-resistance plated film manufactured using the electroless plating bath.

本発明の実施形態の無電解めっき浴は、銅イオンと、ニッケルイオンと、錯化剤イオンと、次亜リン酸イオンと、炭酸イオンと、を含む。   The electroless plating bath according to the embodiment of the present invention includes copper ions, nickel ions, complexing agent ions, hypophosphite ions, and carbonate ions.

また、別の実施形態のめっき膜は、銅イオンと、ニッケルイオンと、錯化剤イオンと、次亜リン酸イオンと、炭酸イオンと、を含む無電解めっき浴を用いて成膜される。   Moreover, the plating film of another embodiment is formed using an electroless plating bath containing copper ions, nickel ions, complexing agent ions, hypophosphite ions, and carbonate ions.

本発明の実施形態によれば、濃縮溶液での提供が可能な無電解めっき浴および前記無電解めっき浴を用いて製造されためっき膜を提供することができる。   According to the embodiment of the present invention, it is possible to provide an electroless plating bath that can be provided in a concentrated solution and a plating film manufactured using the electroless plating bath.

めっき状態を説明するための模式図である。It is a schematic diagram for demonstrating a plating state. 炭酸イオンのpH緩衝機能を説明するための図である。It is a figure for demonstrating the pH buffer function of carbonate ion. 無電解めっき浴の炭酸イオン濃度と銅ニッケル膜のニッケル含有率との関係を示す図である。It is a figure which shows the relationship between the carbonate ion concentration of an electroless-plating bath, and the nickel content rate of a copper nickel film. 無電解めっき浴の炭酸イオン濃度と析出速度との関係を示す図である。It is a figure which shows the relationship between the carbonate ion density | concentration of an electroless-plating bath, and precipitation rate. 無電解めっき浴の炭酸イオン濃度と抵抗率との関係を示す図である。It is a figure which shows the relationship between the carbonate ion concentration of an electroless-plating bath, and a resistivity.

以下、実施形態のめっき浴1について、説明する。
めっき浴1は、以下に示すように、銅イオンと、ニッケルイオンと、錯化剤イオンと、次亜リン酸イオンと、炭酸イオンと、を含む。なお、Mは、モル/リットル(mol/L)を示す。
Hereinafter, the plating bath 1 of the embodiment will be described.
As shown below, the plating bath 1 contains copper ions, nickel ions, complexing agent ions, hypophosphite ions, and carbonate ions. M represents mol / liter (mol / L).

<めっき浴1>
硫酸銅5水和物 0.03M
硫酸ニッケル6水和物 0.01M
クエン酸3ナトリウム無水和物 0.06M
炭酸ナトリウム 0.25M
次亜リン酸ナトリウム1水和物 0.18M
界面活性剤 適量
水酸化リチウム 0.1g/リットル
浴温:45℃
pH9.0
<Plating bath 1>
Copper sulfate pentahydrate 0.03M
Nickel sulfate hexahydrate 0.01M
Trisodium citrate anhydrous 0.06M
Sodium carbonate 0.25M
Sodium hypophosphite monohydrate 0.18M
Surfactant appropriate amount Lithium hydroxide 0.1 g / liter Bath temperature: 45 ° C
pH 9.0

なお、比較のため、以下に示す、ほう酸をpH緩衝剤とする比較例のめっき浴101についてもめっき浴1と同様の成膜を行い、めっき膜103を得た。また、めっき浴1においても炭酸ナトリウムの添加量を増減して、めっき膜を成膜した。更に、炭酸ナトリウムに替えて炭酸カリウムを用いての成膜も行った。   For comparison, a plating film 103 similar to that of the plating bath 1 was formed on a plating bath 101 of a comparative example using boric acid as a pH buffer, as shown below, to obtain a plating film 103. Also, in the plating bath 1, the amount of sodium carbonate added was increased or decreased to form a plating film. Further, film formation was performed using potassium carbonate instead of sodium carbonate.

<めっき浴101>
炭酸ナトリウムに替えてほう酸を、同量の0.25M
それ以外は、めっき浴1と同じ。
<Plating bath 101>
Instead of sodium carbonate boric acid, the same amount of 0.25M
Otherwise, it is the same as plating bath 1.

銅イオンおよびニッケルイオンの供給源としては、硫酸銅5水和物および硫酸ニッケル6水和物のような、各種の水性塩、例えば、塩化物、硫酸塩、蟻酸塩、酢酸塩、炭酸塩、水酸化物または他の塩等を用いる。   Sources of copper and nickel ions include various aqueous salts such as copper sulfate pentahydrate and nickel sulfate hexahydrate, such as chloride, sulfate, formate, acetate, carbonate, Use hydroxides or other salts.

銅イオンの濃度C(M)は、0.005〜0.3Mが好ましく、前記範囲以上であれば析出反応が安定して進行し、前記範囲以下であれば、硫酸銅等の沈殿が生じることがない。また、ニッケルイオンの濃度N(M)は、C/Nが、1〜10であることが好ましい。前記範囲以上であれば銅の析出反応が連続して進行し、前記範囲以下であれば、めっき膜中のニッケル含有率が低く低抵抗である。   The concentration C (M) of the copper ion is preferably 0.005 to 0.3M. If the concentration is not less than the above range, the precipitation reaction proceeds stably, and if it is not more than the above range, precipitation such as copper sulfate occurs. There is no. Further, the nickel ion concentration N (M) is preferably C / N of 1-10. If it is more than the said range, copper precipitation reaction will advance continuously, and if it is less than the said range, the nickel content rate in a plating film is low and it is low resistance.

錯化剤イオンの供給源としては、クエン酸3ナトリウム無水和物のような各種の水溶性化合物、例えば、ロッシェル塩、エチレンジアミン四酢酸(EDTA)、アスパラギン酸、グルタミン酸、コハク酸、クエン酸、または前記化合物の塩もしくは誘導体等を用いる。錯化剤イオンの濃度は、(C+N)に対して0.5〜4が好ましく、前記範囲以上であれば沈殿が生じることがなく、前記範囲以下であれば、濃縮液の製造が容易である。   Sources of complexing agent ions include various water soluble compounds such as trisodium citrate anhydrate, such as Rochelle salt, ethylenediaminetetraacetic acid (EDTA), aspartic acid, glutamic acid, succinic acid, citric acid, or A salt or derivative of the above compound is used. The concentration of the complexing agent ion is preferably 0.5 to 4 with respect to (C + N). If the concentration is higher than the above range, precipitation does not occur. If the concentration is lower than the above range, the concentrate can be easily manufactured. .

次亜リン酸(ホスフィン酸)イオンは、還元剤であり、供給源としては、次亜リン酸ナトリウムまたは次亜リン酸カリウム等を用いる。次亜リン酸イオンの濃度は、(C+N)に対して1〜10が好ましく、前記範囲以上であれば析出反応が安定して進行し、前記範囲以下であれば、めっき浴が自己分解することがない。   Hypophosphorous acid (phosphinic acid) ion is a reducing agent, and sodium hypophosphite or potassium hypophosphite is used as a supply source. The concentration of hypophosphite ion is preferably 1 to 10 with respect to (C + N). If the concentration is higher than the above range, the precipitation reaction proceeds stably. If the concentration is lower than the above range, the plating bath is self-decomposed. There is no.

水酸化リチウムは、pH調整および導電性向上のために添加されているが、必須成分ではなく、水酸化ナトリム等を用いてもよい。なお、めっき浴1は、pH8〜pH11の範囲が好ましく、析出反応が安定して進行し、前記範囲以下であれば、めっき浴が自己分解することがない。   Lithium hydroxide is added to adjust pH and improve conductivity, but is not an essential component, and sodium hydroxide or the like may be used. The plating bath 1 preferably has a pH in the range of pH 8 to pH 11, and the precipitation reaction proceeds stably. If the plating bath is within the above range, the plating bath will not self-decompose.

界面活性剤も必須成分ではないが、基材との濡れ性改善等のために添加されていることが好ましい。界面活性剤には従来からめっき浴に添加されているカチオン系、アニオン系、ノニオン系または両性界面活性剤を用いる。   A surfactant is not an essential component, but is preferably added to improve wettability with a substrate. As the surfactant, a cationic, anionic, nonionic or amphoteric surfactant that has been conventionally added to the plating bath is used.

そして、めっき浴1の特徴である炭酸イオンは、図2に示すように、pH8〜pH11の範囲でpH緩衝機能を有する。炭酸イオンの供給源としては、炭酸ナトリウム、または炭酸カリウム等の炭酸塩を用いることが好ましいが、炭酸ガスをバブリング等により溶解した炭酸水を用いてもよいし、めっき浴1に炭酸ガスをバブリングし溶解してもよい。
<成膜方法>
図1に示すように、基板としてCOP(cycloolefin polymer)を用い、紫外線照射処理、アルカリ処理、コンディショニング処理、パラジウムイオン処理、還元処理の後に、無電解めっき浴1に7分間浸漬し、めっき膜3を得た。
And the carbonate ion which is the characteristic of the plating bath 1 has a pH buffer function in the range of pH8-pH11, as shown in FIG. As a carbonate ion supply source, carbonate such as sodium carbonate or potassium carbonate is preferably used, but carbonated water in which carbon dioxide gas is dissolved by bubbling or the like may be used, or carbon dioxide gas is bubbled into the plating bath 1. It may be dissolved.
<Film formation method>
As shown in FIG. 1, COP (cyclofin polymer) is used as a substrate, and after immersion in an electroless plating bath 1 for 7 minutes after ultraviolet irradiation treatment, alkali treatment, conditioning treatment, palladium ion treatment, and reduction treatment, a plating film 3 Got.

<評価>
めっき膜3の組成分析および厚さ測定には、EPMAを用いた。一方、80℃、30分間の熱処理を行った後に、めっき膜3を下地導電層として20μm厚の電気銅めっきを成膜し、80℃、30分間の熱処理を行った後に、密着強度測定を行った。
<Evaluation>
EPMA was used for composition analysis and thickness measurement of the plating film 3. On the other hand, after performing heat treatment at 80 ° C. for 30 minutes, 20 μm-thick electrolytic copper plating was formed using the plating film 3 as the underlying conductive layer, and after performing heat treatment at 80 ° C. for 30 minutes, the adhesion strength was measured. It was.

図3に示すように、炭酸イオン濃度が0.5M以下であれば、無電解銅ニッケルめっき膜のニッケル含有量が15wt%以下である。また、炭酸供給源としては、炭酸ナトリウム(Na)よりも炭酸カリウム(K)の方が、無電解銅ニッケルめっき膜のニッケル含有量が少なかった。   As shown in FIG. 3, when the carbonate ion concentration is 0.5 M or less, the nickel content of the electroless copper nickel plating film is 15 wt% or less. Moreover, as a carbonic acid supply source, the nickel content of the electroless copper nickel plating film was smaller in potassium carbonate (K) than in sodium carbonate (Na).

なお、リン含有量も炭酸イオン濃度0.25Mでは0.4wtであったが、炭酸イオン濃度の上昇につれて増加し、炭酸イオン濃度1.0Mを越えると、1wt%超であった   The phosphorus content was 0.4 wt at a carbonate ion concentration of 0.25M, but increased as the carbonate ion concentration increased and exceeded 1 wt% when the carbonate ion concentration exceeded 1.0M.

一方、図4に示すように、炭酸イオン濃度が0.1M以上であれば析出反応が開始し、濃度が0.2M以上であれば実用に十分対応した析出速度となり、濃度が1.0Mを超えると析出速度改善効果が小さくなる。   On the other hand, as shown in FIG. 4, when the carbonate ion concentration is 0.1 M or more, the precipitation reaction starts, and when the concentration is 0.2 M or more, the deposition rate is sufficiently compatible with practical use. If it exceeds, the effect of improving the deposition rate becomes small.

また、図5に示すように、炭酸イオン濃度が1.0M以下、好ましくは0.6M以下であれば、無電解銅ニッケルめっき膜の抵抗率が大きくは増加しない。   Moreover, as shown in FIG. 5, if the carbonate ion concentration is 1.0 M or less, preferably 0.6 M or less, the resistivity of the electroless copper nickel plating film does not increase greatly.

なお、ほう酸を用いた比較例のめっき浴101から成膜された比較例の無電解銅ニッケルめっき膜のニッケル含有量は20.7wt%、リン含有量は3.1wt%、析出速度は、28.4μg/cm/分であり、抵抗率は、63μΩ・cmであった。 In addition, the nickel content of the electroless copper nickel plating film of the comparative example formed from the plating bath 101 of the comparative example using boric acid is 20.7 wt%, the phosphorus content is 3.1 wt%, and the deposition rate is 28 It was 0.4 μg / cm 2 / min, and the resistivity was 63 μΩ · cm.

以上の結果から、炭酸イオン濃度は、0.1〜1.0Mが好ましく、特に好ましくは、0.20〜0.60Mであることが判明した。なお、ニッケル含有量が問題とならない用途では炭酸イオン濃度の上限は特にはなく、溶解限度まで含有していてもよい。   From the above results, it was found that the carbonate ion concentration is preferably 0.1 to 1.0M, and particularly preferably 0.20 to 0.60M. In applications where the nickel content is not a problem, there is no particular upper limit for the carbonate ion concentration, and it may be contained up to the solubility limit.

なお、密着強度は、比較例のめっき浴101から成膜されためっき膜では、0.8kN/mだったのに対して、めっき浴1から成膜されためっき膜でも、0.8kN/mと同等であった。   The adhesion strength was 0.8 kN / m for the plating film formed from the plating bath 101 of the comparative example, whereas 0.8 kN / m for the plating film formed from the plating bath 1. It was equivalent.

ここで、ほう酸の溶解度(20℃)は、47.2g/リットル(0.76M)である。更に、ほう酸ナトリムの溶解度は26.0g/リットル(0.13M)であることから、ナトリウム含有溶液への、ほう酸の溶解度は更に低くなり、溶解速度が遅く溶解に要する時間が長くなる。   Here, the solubility (20 ° C.) of boric acid is 47.2 g / liter (0.76 M). Furthermore, since the solubility of sodium borate is 26.0 g / liter (0.13 M), the solubility of boric acid in the sodium-containing solution is further lowered, the dissolution rate is slow, and the time required for dissolution is increased.

これに対して炭酸ナトリウムの溶解度は216g/リットル(2.04M)と2倍以上であり、炭酸カリウムの溶解度は1120g/リットル(8.10M)と10倍以上である。このため、炭酸イオン供給源としては炭酸カリウムが特に好ましい。なお、炭酸塩は過剰量が添加されても、気体として放出されるため沈殿等が生じることがない。 On the other hand, the solubility of sodium carbonate is 216 g / liter (2.04 M), which is 2 times or more, and the solubility of potassium carbonate is 1120 g / liter (8.10 M), which is 10 times or more. For this reason, potassium carbonate is particularly preferred as the carbonate ion supply source. In addition, even if an excessive amount of carbonate is added, since it is released as a gas, no precipitation or the like occurs.

そして、めっき浴1では、銅イオン供給源、ニッケルイオン供給源、錯化剤イオン供給源、および次亜リン酸イオン供給源も、炭酸イオン供給源である炭酸ナトリウムと同様に、溶解度が、いずれも200g/リットル(20℃)以上である。   In the plating bath 1, the copper ion supply source, the nickel ion supply source, the complexing agent ion supply source, and the hypophosphite ion supply source have the same solubility as sodium carbonate, which is the carbonate ion supply source. Is 200 g / liter (20 ° C.) or more.

すなわち、溶解度(20℃)は以下の通りである。
硫酸銅5水和物 317g/リットル
硫酸ニッケル6水和物 650g/リットル
クエン酸3ナトリウム無水和物 730g/リットル
次亜リン酸ナトリウム1水和物 1000g/リットル
That is, the solubility (20 ° C.) is as follows.
Copper sulfate pentahydrate 317 g / liter Nickel sulfate hexahydrate 650 g / liter Trisodium citrate anhydrous 730 g / liter Sodium hypophosphite monohydrate 1000 g / liter

このため、比較例のめっき浴101は、2倍濃縮すると、ほう酸が沈殿してしまった。なお、濃縮液の濃縮率Nは、濃縮液の体積/濃縮前の溶液の体積である。これに対して、めっき浴1は10倍濃縮しても長期間、沈殿が生じないで安定していた。   For this reason, when the plating bath 101 of the comparative example was concentrated twice, boric acid was precipitated. The concentration ratio N of the concentrated liquid is the volume of the concentrated liquid / the volume of the solution before the concentration. On the other hand, the plating bath 1 was stable without precipitation for a long time even when concentrated 10 times.

そして、10倍濃縮されためっき浴1を、水で希釈して使用しても、濃縮しないめっき浴1と同じ結果が得られた。なお、めっき浴1は、全成分が溶解できる範囲まで濃縮してもよい。   Even when the plating bath 1 concentrated 10 times was diluted with water, the same result as the plating bath 1 not concentrated was obtained. In addition, you may concentrate the plating bath 1 to the range which can melt | dissolve all the components.

なお、めっき浴1の濃縮液は、pH調整剤を除く全ての化合物を含む状態で濃縮する、いわゆる一液型であってもよいし、溶解度および安定性に応じた複数の濃縮液から構成されていてもよい。なお、還元剤である次亜リン酸と金属塩とは別の濃縮液とし建浴時に混合されることが好ましい。   In addition, the concentrated solution of the plating bath 1 may be a so-called one-component type that concentrates in a state including all compounds except for the pH adjusting agent, or is composed of a plurality of concentrated solutions according to solubility and stability. It may be. In addition, it is preferable to mix the hypophosphorous acid which is a reducing agent, and a metal salt as separate concentrates, and to mix at the time of a bath.

例えば、めっき浴1は、以下の濃縮液Aと濃縮液Bとからなる、2液型濃縮液とすることができる。   For example, the plating bath 1 can be a two-component concentrate comprising the following concentrate A and concentrate B.

<濃縮液A>
硫酸銅5水和物 0.3M
硫酸ニッケル6水和物 0.1M
クエン酸3ナトリウム無水和物 0.4M
炭酸ナトリウム 2.5M
水酸化リチウム 1.0g/リットル
界面活性剤 適量の10倍
<Concentrate A>
Copper sulfate pentahydrate 0.3M
Nickel sulfate hexahydrate 0.1M
Trisodium citrate anhydrous 0.4M
Sodium carbonate 2.5M
Lithium hydroxide 1.0 g / liter Surfactant 10 times the appropriate amount

<濃縮液B>
次亜リン酸ナトリウム1水和物 1.8M
クエン酸3ナトリウム無水和物 0.2M
<Concentrate B>
Sodium hypophosphite monohydrate 1.8M
Trisodium citrate anhydrous 0.2M

無電解めっき浴1の建浴は、0.8リットルの水に、濃縮液Aを0.1リットル、濃縮液Bを0.1リットル加えて、更に必要に応じて炭酸ナトリウムを用いてpH調整が行われる。   The electroless plating bath 1 is prepared by adding 0.1 liter of concentrate A and 0.1 liter of concentrate B to 0.8 liter of water, and adjusting the pH with sodium carbonate as necessary. Is done.

上記2液型濃縮液では、無電解めっき浴1を1リットル建浴するのに必要な濃縮液は合計0.2リットルであり、濃縮率は5倍である。   In the above-described two-component concentrate, the total concentration required for 1 liter of the electroless plating bath 1 is 0.2 liter, and the concentration rate is five times.

無電解めっき浴1は、2倍以上、例えば10倍の濃縮液を水で希釈することにより作製されるため、輸送等が容易である。   Since the electroless plating bath 1 is prepared by diluting a concentrated solution of 2 times or more, for example, 10 times with water, transportation and the like are easy.

以上の説明のように実施形態の無電解めっき浴1は、ほう素を含んでおらず濃縮溶液での提供が可能である。また、実施形態の無電解めっき浴によれば、ニッケル含有率の低い低抵抗の銅ニッケルめっき膜を作製できる。   As described above, the electroless plating bath 1 according to the embodiment does not contain boron and can be provided as a concentrated solution. Moreover, according to the electroless plating bath of the embodiment, a low resistance copper nickel plating film having a low nickel content can be produced.

本発明は、上述した実施形態に限定されるものではなく、本発明の要旨を変えない範囲において、種々の変更、改変等が可能である。   The present invention is not limited to the above-described embodiments, and various changes and modifications can be made without departing from the scope of the present invention.

Claims (7)

銅イオンと、
ニッケルイオンと、
錯化剤イオンと、
次亜リン酸イオンと、
炭酸イオンと、を含むことを特徴とする無電解めっき浴。
Copper ions,
With nickel ions,
A complexing agent ion;
Hypophosphite ions,
An electroless plating bath comprising carbonate ions.
前記炭酸イオンを、0.1モル/リットル以上含むことを特徴とする請求項1に記載の無電解めっき浴。   The electroless plating bath according to claim 1, wherein the carbonate ion is contained in an amount of 0.1 mol / liter or more. 前記炭酸イオンを、1.0モル/リットル以下含むことを特徴とする請求項2に記載の無電解めっき浴。   The electroless plating bath according to claim 2, wherein the carbonate ion is contained in an amount of 1.0 mol / liter or less. 銅イオン供給源、ニッケルイオン供給源、錯化剤イオン供給源、次亜リン酸イオン供給源、および炭酸イオン供給源の水に対する溶解度が、いずれも200g/リットル(20℃)以上であることを特徴とする請求項3に記載の無電解めっき浴。   The water solubility of the copper ion source, nickel ion source, complexing agent ion source, hypophosphite ion source, and carbonate ion source are all 200 g / liter (20 ° C.) or higher. The electroless plating bath according to claim 3. 濃縮率が、2倍以上の濃縮液を水で希釈することにより作製されることを特徴とする請求項4に記載の無電解めっき浴。   The electroless plating bath according to claim 4, wherein the electroless plating bath is prepared by diluting a concentrated solution having a concentration ratio of 2 times or more with water. 請求項1から請求項5のいずれか1項に記載の無電解めっき浴を用いて成膜されることを特徴とする無電解めっき膜。   An electroless plating film formed by using the electroless plating bath according to any one of claims 1 to 5. 請求項3から請求項5のいずれか1項に記載の無電解めっき浴を用いて成膜され、
ニッケル含有量が15wt%以下であることを特徴とする無電解めっき膜。
It forms into a film using the electroless-plating bath of any one of Claims 3-5,
An electroless plating film having a nickel content of 15 wt% or less.
JP2012128986A 2012-06-06 2012-06-06 Electroless plating bath and electroless plating film Active JP5602790B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012128986A JP5602790B2 (en) 2012-06-06 2012-06-06 Electroless plating bath and electroless plating film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012128986A JP5602790B2 (en) 2012-06-06 2012-06-06 Electroless plating bath and electroless plating film

Publications (2)

Publication Number Publication Date
JP2013253282A true JP2013253282A (en) 2013-12-19
JP5602790B2 JP5602790B2 (en) 2014-10-08

Family

ID=49951042

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012128986A Active JP5602790B2 (en) 2012-06-06 2012-06-06 Electroless plating bath and electroless plating film

Country Status (1)

Country Link
JP (1) JP5602790B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109706437A (en) * 2018-12-20 2019-05-03 德州易能新能源科技有限公司 Prepare metal sulfide film method and film obtained by this method
WO2022153914A1 (en) * 2021-01-18 2022-07-21 東京エレクトロン株式会社 Plating method and plating apparatus

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07118867A (en) * 1993-10-26 1995-05-09 Hitachi Chem Co Ltd Electroless gold plating method
JPH108261A (en) * 1996-06-21 1998-01-13 C Uyemura & Co Ltd Regenerating method of electroless plating bath
JP2001192850A (en) * 2000-01-11 2001-07-17 Ebe Katsuo Surface treating solution for sliding parts, surface treating method for sliding parts and sliding parts
JP2004115885A (en) * 2002-09-27 2004-04-15 Tokyo Electron Ltd Electroless plating method
JP2008169465A (en) * 2006-07-07 2008-07-24 Rohm & Haas Electronic Materials Llc Environmentally friendly electroless copper composition
JP2008221488A (en) * 2007-03-08 2008-09-25 Kanto Gakuin Univ Surface Engineering Research Institute Liquid crystal polymer film-metal-clad laminated sheet
JP2008231459A (en) * 2007-03-16 2008-10-02 Okuno Chem Ind Co Ltd Method for forming electroconductive film on polyimide resin

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07118867A (en) * 1993-10-26 1995-05-09 Hitachi Chem Co Ltd Electroless gold plating method
JPH108261A (en) * 1996-06-21 1998-01-13 C Uyemura & Co Ltd Regenerating method of electroless plating bath
JP2001192850A (en) * 2000-01-11 2001-07-17 Ebe Katsuo Surface treating solution for sliding parts, surface treating method for sliding parts and sliding parts
JP2004115885A (en) * 2002-09-27 2004-04-15 Tokyo Electron Ltd Electroless plating method
JP2008169465A (en) * 2006-07-07 2008-07-24 Rohm & Haas Electronic Materials Llc Environmentally friendly electroless copper composition
JP2008221488A (en) * 2007-03-08 2008-09-25 Kanto Gakuin Univ Surface Engineering Research Institute Liquid crystal polymer film-metal-clad laminated sheet
JP2008231459A (en) * 2007-03-16 2008-10-02 Okuno Chem Ind Co Ltd Method for forming electroconductive film on polyimide resin

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109706437A (en) * 2018-12-20 2019-05-03 德州易能新能源科技有限公司 Prepare metal sulfide film method and film obtained by this method
WO2022153914A1 (en) * 2021-01-18 2022-07-21 東京エレクトロン株式会社 Plating method and plating apparatus

Also Published As

Publication number Publication date
JP5602790B2 (en) 2014-10-08

Similar Documents

Publication Publication Date Title
JP4511623B1 (en) Electroless palladium plating solution
JP6298530B2 (en) Electroless nickel plating solution and electroless nickel plating method
KR101612476B1 (en) Electroless copper plating solution composition and methods of plating copper using the same
TWI572742B (en) Reduction Electroless Silver Plating Solution and Reduced Electroless Silver Plating Method
JP2009046709A (en) Electroless palladium plating solution
KR20130124317A (en) Solutions and methods for metal deposition
JP5602790B2 (en) Electroless plating bath and electroless plating film
TWI709663B (en) Plating bath composition for electroless plating of gold, method for depositing a gold layer and use of ethylenediamine derivative
TWI445839B (en) Electroless pure palladium plating solution
ES2712858T3 (en) Use of water-soluble and air-stable phospha-adamantanes as stabilizers in electrolytes for non-electrolytic deposition of metal
CN102433576A (en) Au-Sn alloy electroplating liquid
JP2013108170A (en) Electroless palladium plating solution
JP3989795B2 (en) Electrolytic hard gold plating solution and plating method using the same
JP2014065943A (en) Reduction type electroless tin plating bath
JP2014047394A (en) Non-cyanogen system gold-palladium alloy plating solution and plating method
JP5025815B1 (en) Hard gold plating solution
TW201317389A (en) Electroless palladium plating solution
JP6842475B2 (en) Cyan-free substituted gold plating solution composition
TWI765877B (en) Cyanide-free liquid composition for immersion gold plating
JPH0633255A (en) Electroless plating bath
KR101392627B1 (en) Electrolytic hard gold plating solution, plating method, and method for manufacturing gold-iron alloy coating
JP4855494B2 (en) Iridium plating solution and plating method thereof
TWI794751B (en) Cyanide-free liquid composition for immersion gold plating
TW201807253A (en) Electroless gold plating bath
JP2016160505A (en) Method for selecting stabilizer for electroless platinum plating solution and electroless platinum plating solution

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140401

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140819

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140820

R150 Certificate of patent or registration of utility model

Ref document number: 5602790

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250