JP2013251960A - Multilevel power converter - Google Patents

Multilevel power converter Download PDF

Info

Publication number
JP2013251960A
JP2013251960A JP2012123844A JP2012123844A JP2013251960A JP 2013251960 A JP2013251960 A JP 2013251960A JP 2012123844 A JP2012123844 A JP 2012123844A JP 2012123844 A JP2012123844 A JP 2012123844A JP 2013251960 A JP2013251960 A JP 2013251960A
Authority
JP
Japan
Prior art keywords
voltage
capacitor
phase
command
switching element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012123844A
Other languages
Japanese (ja)
Inventor
Kunihiko Saiki
邦彦 齋木
Masakazu Muneshima
正和 宗島
Takehisa Koganezawa
竹久 小金澤
Shota Urushibata
正太 漆畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP2012123844A priority Critical patent/JP2013251960A/en
Publication of JP2013251960A publication Critical patent/JP2013251960A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/487Neutral point clamped inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0095Hybrid converter topologies, e.g. NPC mixed with flying capacitor, thyristor converter mixed with MMC or charge pump mixed with buck
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/007Plural converter units in cascade
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/4837Flying capacitor converters

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To eliminate an interference between the control for a neutral-point voltage and the control for a capacitor voltage of each phase.SOLUTION: A multilevel power converter, including five-level power conversion parts for three phases and two capacitors serially connected between the positive and negative electrodes of a DC current, includes: a vector selection part 201 for prediction-calculating respective currents of the five-level power conversion parts for the individual phases, for each of six vectors moved from the present vector defined for two-axis coordinate system zone in spatial vector control, and selecting a vector whose deviation of the prediction-calculated current against a current instruction value is the smallest, to thereby calculate a phase voltage instruction; a Vc voltage constant-control part 202 for calculating a charge/discharge instruction with which a deviation of the capacitor voltage within the five-level power conversion parts against an instruction value is the smallest; and a Vdc voltage constant-control part 203 for calculating a neutral-point voltage when selecting a movement destination vector determined by the phase voltage instruction and selecting a vector with which the voltage deviation between the two capacitors is eliminated to thereby determine the charge/discharge instruction.

Description

本発明は、5レベルの相電圧が出力可能で、且つ1つの直流電圧源で動作する電力変換回路に係り、直流電圧源の正負極間の直流電圧を複数の電圧レベルに変換した交流電圧を出力するマルチレベル電力変換器およびその制御方法に関する。   The present invention relates to a power conversion circuit that can output a five-level phase voltage and operates with a single DC voltage source, and converts an AC voltage obtained by converting a DC voltage between positive and negative electrodes of a DC voltage source into a plurality of voltage levels. The present invention relates to an output multilevel power converter and a control method thereof.

直流電圧源の正負極間の直流電圧を複数の電圧レベルに変換した交流電圧を出力する電力変換器は、従来、例えば特許文献1、2に記載の3レベル三相インバータ装置が提案されていた。   Conventionally, for example, a three-level three-phase inverter device described in Patent Literatures 1 and 2 has been proposed as a power converter that outputs an AC voltage obtained by converting a DC voltage between positive and negative electrodes of a DC voltage source into a plurality of voltage levels. .

特許文献1には、3レベル三相インバータにおいて、直流電源の中性点電圧を制御することが記載されている。特許文献2には、空間ベクトル変調法を利用して中性点電位の安定化を図る方法が記載されている。   Patent Document 1 describes controlling a neutral point voltage of a DC power supply in a three-level three-phase inverter. Patent Document 2 describes a method for stabilizing the neutral point potential using a space vector modulation method.

特開平5−292754号公報JP-A-5-292754 特開平8−107698号公報JP-A-8-107698

前記特許文献1、2では、三相インバータにおける中性点電圧の制御はなされているが、三相各相のインバータに各々設けられ、充放電によって複数の電圧レベルを生成するためのコンデンサの電圧を一定に維持する制御、または一定の電圧範囲に維持する制御については考慮されていない。   In Patent Documents 1 and 2, the neutral point voltage in the three-phase inverter is controlled, but the voltage of the capacitor for generating a plurality of voltage levels by charging and discharging is provided for each of the three-phase inverters. Is not taken into consideration for control for maintaining the voltage constant or for maintaining the voltage within a certain voltage range.

このため、特許文献1、2の技術では、中性点電圧の制御と各相のコンデンサ電圧の制御が干渉する恐れがあり、これによって、歪の少ない最適な出力電圧波形の制御が行えないという問題があった。   For this reason, in the techniques of Patent Documents 1 and 2, there is a possibility that the control of the neutral point voltage and the control of the capacitor voltage of each phase may interfere with each other, and this makes it impossible to control the optimum output voltage waveform with little distortion. There was a problem.

本発明は上記課題を解決するものであり、その目的は、中性点電圧の制御と各相のコンデンサ電圧の制御が干渉することのないマルチレベル電力変換器およびその制御方法を提供することにある。   SUMMARY OF THE INVENTION The present invention solves the above-described problems, and an object of the present invention is to provide a multilevel power converter in which neutral point voltage control and capacitor voltage control of each phase do not interfere with each other, and a control method therefor. is there.

上記課題を解決するための請求項1記載のマルチレベル電力変換器は、直流電圧源の正負極間の直流電圧を複数の電圧レベルに変換した交流電圧を出力するマルチレベル電力変換器において、第1〜第4のスイッチング素子を順次直列接続したスイッチング素子直列回路と、前記スイッチング素子直列回路の第1のスイッチング素子側端と第4のスイッチング素子側端との間に順次直列接続された第1および第2のコンデンサと、前記第1のスイッチング素子および第2のスイッチング素子の共通接続点と、第3のスイッチング素子および第4のスイッチング素子の共通接続点との間に順次直列接続された第1および第2のダイオードと、前記第1のコンデンサおよび第1のスイッチング素子の共通接続点に一端が接続された第5のスイッチング素子と、前記第2のコンデンサおよび第4のスイッチング素子の共通接続点に一端が接続された第6のスイッチング素子と、前記第1および第2のコンデンサの共通接続点に一端が接続された、互いに逆の耐圧方向に制御できる第1のスイッチング手段とを備え、前記第1および第2のダイオードの共通接続点と第1および第2のコンデンサの共通接続点とを接続して構成されたマルチレベル電力変換部を三相交流の各相に各々設け、前記三相各相のマルチレベル電力変換部の、前記第5のスイッチング素子の他端どうしを前記直流電圧源の正極に接続し、前記第6のスイッチング素子の他端どうしを前記直流電圧源の負極に接続し、前記第1のスイッチング手段の他端どうしを、前記直流電圧源の正、負極間に直列接続した第3のコンデンサおよび第4のコンデンサの共通接続点に中性点として接続し、前記三相各相のマルチレベル電力変換部の、前記第2および第3のスイッチング素子の共通接続点を三相各相の各出力端とし、前記三相各相のマルチレベル電力変換部の電流指令値、前記三相各相のマルチレベル電力変換部の各出力端の電圧検出値および電流検出値を入力とし、空間ベクトル制御における2軸座標系領域に定義された現在のベクトルから、三相の各方向に単位ベクトル分プラス方向、マイナス方向に各々のベクトルが移動したときの6つのベクトルそれぞれについて前記三相各相のマルチレベル電力変換部の電流を予測演算し、前記6つのベクトルのうち、前記予測演算した電流と前記三相各相の電流指令値との偏差が最も小さいベクトルを選択して相電圧指令を求めるベクトル選択部と、前記相電圧指令で決定されたベクトルを選択したときの前記三相各相の第1のコンデンサおよび第2のコンデンサの各コンデンサ電圧を、前記予測演算した電流に基づいて推定し、当該推定コンデンサ電圧とコンデンサ電圧指令との偏差が最も小さくなる充放電指令を求める前記三相各相のマルチレベル電力変換部のコンデンサ電圧一定制御部と、前記三相各相のマルチレベル電力変換部の各相の電流検出値、前記第3および第4のコンデンサの電圧検出値、前記ベクトル選択部で求められた相電圧指令および前記コンデンサ電圧一定制御部で求められた充放電指令を入力とし、前記ベクトル選択部の相電圧指令で決定された移動先ベクトルを選択したときの前記中性点を流れる電流を計算し、前記移動先ベクトルのうち、前記第3のコンデンサ電圧と第4のコンデンサ電圧の偏差が無くなるベクトルを選択して充放電指令を決定し、該決定された充放電指令および前記相電圧指令を出力する直流電圧一定制御部と、前記直流電圧一定制御部から出力された充放電指令および相電圧指令に基づいてゲート遷移方向を選択し、このゲート遷移方向に合わせたゲート信号を出力するゲート遷移部とを有して、前記ゲート信号に基づく前記第1〜第6のスイッチング素子および第1のスイッチング手段のオン、オフ制御によって複数の電圧レベルを出力させる制御手段を設けた、ことを特徴としている。   The multilevel power converter according to claim 1 for solving the above-mentioned problem is a multilevel power converter that outputs an AC voltage obtained by converting a DC voltage between positive and negative electrodes of a DC voltage source into a plurality of voltage levels. A switching element series circuit in which the first to fourth switching elements are sequentially connected in series, and a first series connection in series between the first switching element side end and the fourth switching element side end of the switching element series circuit. And a second capacitor, a first common connection point between the first switching element and the second switching element, and a second common connection point between the third switching element and the fourth switching element. A fifth switch having one end connected to a common connection point of the first and second diodes and the first capacitor and the first switching element One end connected to a common connection point of the switching element, a second connection point of the second capacitor and the fourth switching element, and a common connection point of the first and second capacitors. And a first switching means that can be controlled in the reverse withstand voltage directions, and is configured by connecting a common connection point of the first and second diodes and a common connection point of the first and second capacitors. A multi-level power converter is provided for each phase of the three-phase AC, and the other ends of the fifth switching elements of the multi-level power converter for each of the three-phase phases are connected to the positive electrode of the DC voltage source, The other end of the sixth switching element is connected to the negative electrode of the DC voltage source, and the other end of the first switching means is connected in series between the positive and negative electrodes of the DC voltage source. Connected to the common connection point of the sensor and the fourth capacitor as a neutral point, and the common connection point of the second and third switching elements of the multi-phase power conversion unit of the three-phase each phase is Each output terminal, the current command value of the multi-level power conversion unit of each of the three-phase each phase, the voltage detection value and the current detection value of each output terminal of the multi-phase power conversion unit of each of the three-phase each input, a space vector From the current vector defined in the two-axis coordinate system area in the control, each of the three-phase each phase for each of the six vectors when each vector moves in the positive direction and the negative direction by the unit vector in each direction of the three phases. Predicting and calculating the current of the multi-level power converter, and selecting the vector having the smallest deviation between the predicted and calculated current and the current command value of each of the three-phase phases from among the six vectors. A vector selection unit for obtaining a command, and the capacitor voltages of the first capacitor and the second capacitor of the three-phase each phase when the vector determined by the phase voltage command is selected, based on the predicted calculation current And a capacitor voltage constant control unit of the multi-level power conversion unit for each of the three-phase phases to obtain a charge / discharge command that minimizes the deviation between the estimated capacitor voltage and the capacitor voltage command, Current detection value of each phase of level power conversion unit, voltage detection value of third and fourth capacitors, phase voltage command obtained by vector selection unit, and charge / discharge command obtained by constant capacitor voltage control unit Is input, the current flowing through the neutral point when the destination vector determined by the phase voltage command of the vector selection unit is selected is calculated, and the destination vector is calculated. DC voltage constant is selected to select a vector in which the deviation between the third capacitor voltage and the fourth capacitor voltage is eliminated, and to determine a charge / discharge command, and to output the determined charge / discharge command and the phase voltage command. A control unit; and a gate transition unit that selects a gate transition direction based on the charge / discharge command and the phase voltage command output from the DC voltage constant control unit and outputs a gate signal in accordance with the gate transition direction. The first to sixth switching elements and the first switching means based on the gate signal are provided with control means for outputting a plurality of voltage levels by on / off control.

また、請求項3記載のマルチレベル電力変換器の制御方法は、第1〜第4のスイッチング素子を順次直列接続したスイッチング素子直列回路と、前記スイッチング素子直列回路の第1のスイッチング素子側端と第4のスイッチング素子側端との間に順次直列接続された第1および第2のコンデンサと、前記第1のスイッチング素子および第2のスイッチング素子の共通接続点と、第3のスイッチング素子および第4のスイッチング素子の共通接続点との間に順次直列接続された第1および第2のダイオードと、前記第1のコンデンサおよび第1のスイッチング素子の共通接続点に一端が接続された第5のスイッチング素子と、前記第2のコンデンサおよび第4のスイッチング素子の共通接続点に一端が接続された第6のスイッチング素子と、前記第1および第2のコンデンサの共通接続点に一端が接続された、互いに逆の耐圧方向に制御できる第1のスイッチング手段とを備え、前記第1および第2のダイオードの共通接続点と第1および第2のコンデンサの共通接続点とを接続して構成されたマルチレベル電力変換部を三相交流の各相に各々設け、前記三相各相のマルチレベル電力変換部の、前記第5のスイッチング素子の他端どうしを直流電圧源の正極に接続し、前記第6のスイッチング素子の他端どうしを前記直流電圧源の負極に接続し、前記第1のスイッチング手段の他端どうしを、前記直流電圧源の正、負極間に直列接続した第3のコンデンサおよび第4のコンデンサの共通接続点に中性点として接続し、前記三相各相のマルチレベル電力変換部の、前記第2および第3のスイッチング素子の共通接続点を三相各相の各出力端として構成されたマルチレベル電力変換器の制御方法であって、前記第1〜第6のスイッチング素子および第1のスイッチング手段のオン、オフ制御によって複数の電圧レベルを出力させる制御手段のベクトル選択部が、前記三相各相のマルチレベル電力変換部の電流指令値、前記三相各相のマルチレベル電圧変換部の各出力端の電圧検出値および電流検出値を入力とし、空間ベクトル制御における2軸座標系領域に定義された現在のベクトルから、三相各相の各方向に単位ベクトル分プラス方向、マイナス方向に各々のベクトルが移動したときの6つのベクトルそれぞれについて前記三相各相のマルチレベル電力変換部の電流を予測演算し、前記6つのベクトルのうち、前記予測演算した電流と前記三相各相の電流指令値との偏差が最も小さいベクトルを選択して相電圧指令を求めるステップと、前記制御手段の、三相各相のマルチレベル電力変換部のコンデンサ電圧一定制御部が、前記相電圧指令で決定されたベクトルを選択したときの前記三相各相の第1のコンデンサおよび第2のコンデンサの各コンデンサ電圧を、前記予測演算した電流に基づいて推定し、当該推定コンデンサ電圧とコンデンサ電圧指令との偏差が最も小さくなる充放電指令を求めるステップと、前記制御手段の直流電圧一定制御部が、前記三相各相のマルチレベル電力変換部の各相の電流検出値、前記第3および第4のコンデンサの電圧検出値、前記ベクトル選択部で求められた相電圧指令および前記コンデンサ電圧一定制御部で求められた充放電指令を入力とし、前記ベクトル選択部の相電圧指令で決定された移動先ベクトルを選択したときの前記中性点を流れる電流を計算し、前記移動先ベクトルのうち、前記第3のコンデンサ電圧と第4のコンデンサ電圧の偏差が無くなるベクトルを選択して充放電指令を決定し、該決定された充放電指令および前記相電圧指令を出力するステップと、前記制御手段のゲート遷移部が、前記直流電圧一定制御部から出力された充放電指令および相電圧指令に基づいてゲート遷移方向を選択し、このゲート遷移方向に合わせたゲート信号を出力するステップとを備えたことを特徴としている。   According to a third aspect of the present invention, there is provided a multilevel power converter control method comprising: a switching element series circuit in which first to fourth switching elements are sequentially connected in series; a first switching element side end of the switching element series circuit; First and second capacitors sequentially connected in series with the fourth switching element side end; a common connection point of the first switching element and the second switching element; a third switching element and a second switching element; First and second diodes sequentially connected in series with a common connection point of the four switching elements, and a fifth terminal having one end connected to the common connection point of the first capacitor and the first switching element. A sixth switching element having one end connected to a common connection point of the switching element and the second capacitor and the fourth switching element; A first switching means having one end connected to a common connection point of the first and second capacitors and capable of controlling in a reverse withstand voltage direction, and a common connection point of the first and second diodes A multi-level power converter configured by connecting a common connection point of the first and second capacitors is provided in each phase of a three-phase AC, and the fifth multi-level power converter of the three-phase each phase The other ends of the switching elements are connected to the positive electrode of the DC voltage source, the other ends of the sixth switching elements are connected to the negative electrode of the DC voltage source, and the other ends of the first switching means are connected to each other, Connected as a neutral point to a common connection point of a third capacitor and a fourth capacitor connected in series between the positive and negative electrodes of the DC voltage source, and the second of the multi-level power converters of the three-phase each phase And third A control method for a multi-level power converter configured by using a common connection point of switching elements as output terminals of three-phase each phase, wherein the first to sixth switching elements and the first switching means are turned on / off The vector selection unit of the control means for outputting a plurality of voltage levels by control includes a current command value of the multi-level power conversion unit of the three-phase each phase, a voltage at each output terminal of the multi-level voltage conversion unit of the three-phase each phase Using the detection value and current detection value as input, each vector moves in the positive and negative directions by a unit vector in each direction of each of the three phases from the current vector defined in the two-axis coordinate system area in space vector control. The current of the multi-level power conversion unit of each of the three phases is predicted and calculated for each of the six vectors, and the prediction calculation of the six vectors is performed. Obtaining a phase voltage command by selecting a vector having the smallest deviation between the measured current and the current command value of each of the three-phase phases, and a constant capacitor voltage of the multi-level power converter of each of the three-phase phases of the control means The controller estimates each capacitor voltage of the first capacitor and the second capacitor of each phase of the three phases when the vector determined by the phase voltage command is selected based on the predicted calculation current, A step of obtaining a charge / discharge command in which a deviation between the estimated capacitor voltage and the capacitor voltage command is minimized; and a DC voltage constant control unit of the control unit includes a current of each phase of the multi-level power conversion unit of the three-phase each phase Detection value, voltage detection value of the third and fourth capacitors, phase voltage command obtained by the vector selection unit, and charge / discharge finger obtained by the capacitor voltage constant control unit Is input, the current flowing through the neutral point when the destination vector determined by the phase voltage command of the vector selection unit is selected, and the third capacitor voltage and the third capacitor voltage of the destination vector are calculated. A step of selecting a vector that eliminates the deviation of the capacitor voltage of 4 and determining a charge / discharge command, and outputting the determined charge / discharge command and the phase voltage command; and a gate transition unit of the control means includes the DC voltage And a step of selecting a gate transition direction based on a charge / discharge command and a phase voltage command output from the constant control unit, and outputting a gate signal in accordance with the gate transition direction.

上記構成によれば、三相各相のマルチレベル電力変換部の第1および第2のコンデンサの電圧制御は、第1のコンデンサ、第2のコンデンサの各推定コンデンサ電圧とコンデンサ電圧指令値との偏差に基づいてコンデンサ電圧一定制御部によって行われ、直流電圧源の正負極間の直流電圧の中性点電圧(第3および第4のコンデンサの共通接続点の電圧)の制御は、前記第3のコンデンサ電圧と第4のコンデンサ電圧との偏差に基づいて直流電圧一定制御部によって行われる。このため、三相各相のコンデンサ電圧の制御と直流電圧源の正負極間の直流電圧の中性点電圧の制御が独立して行われることになり、両者の制御は干渉しない。   According to the above configuration, the voltage control of the first and second capacitors of the multi-level power conversion unit for each of the three phases is performed between the estimated capacitor voltages of the first capacitor and the second capacitor and the capacitor voltage command value. The neutral voltage of the DC voltage between the positive and negative electrodes of the DC voltage source (the voltage at the common connection point of the third and fourth capacitors) is controlled by the capacitor voltage constant control unit based on the deviation. This is performed by the DC voltage constant control unit based on the deviation between the capacitor voltage and the fourth capacitor voltage. For this reason, the control of the capacitor voltage of each of the three phases and the control of the neutral point voltage of the DC voltage between the positive and negative electrodes of the DC voltage source are performed independently, and the control of both does not interfere.

また、請求項2記載のマルチレベル電力変換器は、請求項1において、前記制御手段のオン、オフ制御は、同一電圧レベルの相電圧指令時に、前記第1のコンデンサ又は第2のコンデンサを充電させる制御モードと放電させる制御モードを有し、さらに、前記第1のコンデンサおよび第2のコンデンサを同時に充電させる制御モードと同時に放電させる制御モードとを有し、前記三相各相のマルチレベル電力変換部のコンデンサ電圧一定制御部は、前記相電圧指令が変化したときに、変化直前の時点における前記第1のコンデンサ電圧、第2のコンデンサ電圧とコンデンサ電圧指令との偏差が正のときに、前記第1のコンデンサ、第2のコンデンサの少なくとも何れか一方を放電させる制御モードに移行させる充放電指令を決定し、前記第1のコンデンサ電圧、第2のコンデンサ電圧とコンデンサ電圧指令との偏差が負のときに、前記第1のコンデンサ、第2のコンデンサの少なくとも何れか一方を充電させる制御モードに移行させる充放電指令を決定することを特徴としている。   The multi-level power converter according to claim 2 is characterized in that in claim 1, the on / off control of the control means charges the first capacitor or the second capacitor at the time of phase voltage command of the same voltage level. A control mode for discharging and a control mode for discharging, and a control mode for simultaneously discharging the first capacitor and the second capacitor. When the phase voltage command changes, the capacitor voltage constant control unit of the conversion unit has a positive deviation between the first capacitor voltage and the second capacitor voltage and the capacitor voltage command immediately before the change. Determining a charge / discharge command to shift to a control mode for discharging at least one of the first capacitor and the second capacitor; When a deviation between the capacitor voltage and the second capacitor voltage and the capacitor voltage command is negative, a charge / discharge command for shifting to a control mode for charging at least one of the first capacitor and the second capacitor is determined. It is characterized by that.

また、請求項4記載のマルチレベル電力変換器の制御方法は、請求項3において、前記制御手段のオン、オフ制御は、同一電圧レベルの相電圧指令時に、前記第1のコンデンサ又は第2のコンデンサを充電させる制御モードと放電させる制御モードを有し、さらに、前記第1のコンデンサおよび第2のコンデンサを同時に充電させる制御モードと同時に放電させる制御モードとを有し、前記三相各相のマルチレベル電力変換部のコンデンサ電圧一定制御部が充放電指令を求めるステップは、前記相電圧指令が変化したときに、変化直前の時点における前記第1のコンデンサ電圧、第2のコンデンサ電圧とコンデンサ電圧指令との偏差が正のときに、前記第1のコンデンサ、第2のコンデンサの少なくとも何れか一方を放電させる制御モードに移行させる充放電指令を決定し、前記第1のコンデンサ電圧、第2のコンデンサ電圧とコンデンサ電圧指令との偏差が負のときに、前記第1のコンデンサ、第2のコンデンサの少なくとも何れか一方を充電させる制御モードに移行させる充放電指令を決定することを特徴としている。   According to a fourth aspect of the present invention, in the control method for a multilevel power converter according to the third aspect, the on / off control of the control means is performed when the first capacitor or the second A control mode for charging the capacitor and a control mode for discharging, and a control mode for simultaneously discharging the first capacitor and the second capacitor, and a control mode for discharging simultaneously with the three-phase each phase. The step of obtaining the charge / discharge command by the constant capacitor voltage control unit of the multi-level power conversion unit includes the first capacitor voltage, the second capacitor voltage, and the capacitor voltage immediately before the change when the phase voltage command is changed. When the deviation from the command is positive, the control mode is set to discharge at least one of the first capacitor and the second capacitor. A charge / discharge command to be performed is determined, and when a deviation between the first capacitor voltage and the second capacitor voltage and the capacitor voltage command is negative, at least one of the first capacitor and the second capacitor is A charge / discharge command for shifting to a control mode for charging is determined.

上記構成によれば、第1のコンデンサ電圧、第2のコンデンサ電圧とコンデンサ電圧指令との偏差が正のとき(すなわちコンデンサ電圧がコンデンサ電圧指令よりも大きいとき)に放電させることができ、前記偏差が負のとき(すなわちコンデンサ電圧がコンデンサ電圧指令よりも小さいとき)に充電させることができる。   According to the above configuration, when the deviation between the first capacitor voltage, the second capacitor voltage, and the capacitor voltage command is positive (that is, when the capacitor voltage is larger than the capacitor voltage command), the discharge can be performed. Can be charged when is negative (ie when the capacitor voltage is less than the capacitor voltage command).

これによって、三相各相のコンデンサ(第1のコンデンサ、第2のコンデンサ)のコンデンサ電圧を一定に制御することができ、コンデンサ電圧の脈動が低減し、所望する相電圧が出力しやすくなり、制御性能が向上する。   As a result, the capacitor voltage of each of the three-phase capacitors (the first capacitor and the second capacitor) can be controlled to be constant, the pulsation of the capacitor voltage is reduced, and the desired phase voltage is easily output. Control performance is improved.

また、第1のコンデンサおよび第2のコンデンサを同時に充電させる制御モードと同時に放電させる制御モードとを有しているので、コンデンサ電圧の脈動が低減し、所望する相電圧が出力しやすくなり、制御性能が向上する。   In addition, since it has a control mode in which the first capacitor and the second capacitor are charged at the same time and a control mode in which the capacitor is discharged at the same time, the pulsation of the capacitor voltage is reduced, and the desired phase voltage is easily output. Performance is improved.

(1)請求項1〜4に記載の発明によれば、三相各相のコンデンサ電圧の制御と直流電圧源の中性点電圧の制御が独立して行われるため、両者の制御が干渉することはない。これによって、歪の少ない最適な出力電圧波形の制御が行える。また、少ない素子数でマルチレベル電力変換器を実現することができ、コスト低減を図ることができる。
(2)請求項2、4に記載の発明によれば、三相各相のコンデンサ(第1のコンデンサ、第2のコンデンサ)のコンデンサ電圧を一定に制御することができ、コンデンサ電圧の脈動が低減し、所望する相電圧が出力しやすくなり、制御性能が向上する。
(1) According to the first to fourth aspects of the present invention, the control of the capacitor voltage of each phase of the three phases and the control of the neutral point voltage of the DC voltage source are performed independently, so the control of both interferes. There is nothing. This makes it possible to control the optimal output voltage waveform with little distortion. In addition, a multilevel power converter can be realized with a small number of elements, and costs can be reduced.
(2) According to the second and fourth aspects of the invention, the capacitor voltage of each of the three-phase capacitors (the first capacitor and the second capacitor) can be controlled to be constant, and the pulsation of the capacitor voltage The desired phase voltage is easily output and the control performance is improved.

本発明の一実施形態例の5レベル電力変換器の回路図。1 is a circuit diagram of a five-level power converter according to an embodiment of the present invention. 本発明の一実施形態例における制御手段の制御ブロック図。The control block diagram of the control means in one embodiment of this invention. 本発明の一実施形態例で利用する、空間ベクトル制御における2軸座標系領域に定義されたベクトルのベクトル遷移図。The vector transition diagram of the vector defined in the biaxial coordinate system area | region in space vector control utilized in one embodiment of this invention. 本発明の一実施形態例のコンデンサ電圧一定制御部の充放電指令によるゲート遷移の様子を示すゲート遷移図。The gate transition diagram which shows the mode of the gate transition by the charging / discharging instruction | command of the capacitor voltage constant control part of one embodiment of this invention.

以下、図面を参照しながら本発明の実施の形態を説明するが、本発明は下記の実施形態例に限定されるものではない。以下、本発明を5レベル電力変換器(5レベルインバータ)に適用した実施例を説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings, but the present invention is not limited to the following embodiments. Hereinafter, an embodiment in which the present invention is applied to a 5-level power converter (5-level inverter) will be described.

本発明の実施形態における5レベル電力変換器は、図1に示すように、スイッチング素子S1〜S10、ダイオードD1,D2およびコンデンサC1,C2によって5レベル電力変換部100を構成し、該5レベル電力変換部100を三相分(100U,100V,100W)設け、直流電源VDCに対して2分圧したコンデンサCU、CLの中性点NPを基準にY結線に接続したものである。 As shown in FIG. 1, the five-level power converter according to the embodiment of the present invention includes the switching elements S1 to S10, the diodes D1 and D2, and the capacitors C1 and C2 to form a five-level power converter 100. The converter 100 is provided for three phases (100 U, 100 V, 100 W), and is connected to the Y connection with reference to the neutral point NP of the capacitors C U and C L divided by two with respect to the DC power source V DC .

図1において、U相の5レベル電力変換部100Uの構成は次のとおりである。第1〜第4のスイッチング素子S1〜S4を順次直列接続してスイッチング素子直列回路が構成されている。このスイッチング素子直列回路の両端間には、第1および第2のコンデンサC1,C2が直列に接続されている。   In FIG. 1, the configuration of a U-phase five-level power converter 100U is as follows. A switching element series circuit is configured by sequentially connecting the first to fourth switching elements S1 to S4 in series. Between the both ends of this switching element series circuit, the 1st and 2nd capacitor | condenser C1, C2 is connected in series.

DCは直流電源であり、この直流電源VDCの正、負極端間には、第3および第4のコンデンサCU,CLが直列接続されている。直流電源VDCの正極端と、スイッチング素子S1およびコンデンサC1の共通接続点との間には、本発明の第5のスイッチング素子を構成するスイッチング素子S5,S6が直列に接続されている。スイッチング素子S4およびコンデンサC2の共通接続点と、直流電源VDCの負極端との間には、本発明の第6のスイッチング素子を構成するスイッチング素子S7,S8が直列に接続されている。 V DC is a DC power source, and third and fourth capacitors C U and C L are connected in series between the positive and negative ends of the DC power source V DC . Switching elements S5 and S6 constituting the fifth switching element of the present invention are connected in series between the positive terminal of the DC power source V DC and the common connection point of the switching element S1 and the capacitor C1. Switching elements S7 and S8 constituting the sixth switching element of the present invention are connected in series between the common connection point of the switching element S4 and the capacitor C2 and the negative end of the DC power source V DC .

スイッチング素子S1およびS2の共通接続点と、スイッチング素子S3およびS4の共通接続点との間には、図示極性のダイオードD1,D2が直列に接続されている。   Between the common connection point of the switching elements S1 and S2 and the common connection point of the switching elements S3 and S4, diodes D1 and D2 having the polarities shown are connected in series.

ダイオードD1およびD2の共通接続点はコンデンサC1およびC2の共通接続点NP´(Floating NP;浮動中点)に接続されている。この浮動中点NP´には、スイッチング素子S9およびS10を互いに逆の耐圧方向に直列接続して成る第1のスイッチング手段の一端が接続され、該第1のスイッチング手段の他端はコンデンサCUおよびCLの共通接続点(中性点NP)に接続されている。 A common connection point of the diodes D1 and D2 is connected to a common connection point NP ′ (Floating NP; floating midpoint) of the capacitors C1 and C2. One end of a first switching means comprising switching elements S9 and S10 connected in series in opposite withstand voltage directions is connected to the floating midpoint NP ′, and the other end of the first switching means is connected to a capacitor C U. And C L are connected to a common connection point (neutral point NP).

前記スイッチング素子S2およびS3の共通接続点をU相の出力端子Uとしている。   The common connection point of the switching elements S2 and S3 is a U-phase output terminal U.

V相、W相の各5レベル電力変換部100V,100Wも前記U相の5レベル電力変換部100Uと同様に構成されている。   V-phase and W-phase 5-level power converters 100V and 100W are also configured similarly to the U-phase 5-level power converter 100U.

尚、第1のスイッチング手段は、スイッチング素子S9,S10に限らず、互いに逆の耐圧方向に制御が可能な1個の双方向スイッチによって構成してもよい。   The first switching means is not limited to the switching elements S9 and S10, and may be constituted by one bidirectional switch that can be controlled in the reverse withstand voltage direction.

前記スイッチング素子S1〜S10は、例えばスイッチング素子としてIGBT等で構成されている。   The switching elements S1 to S10 are composed of, for example, IGBTs as switching elements.

前記第5のスイッチング素子は、耐圧を考慮して2個のスイッチング素子S5,S6を用いているが、これに限らず2倍の耐圧を有する1個のスイッチング素子で構成してもよい。   The fifth switching element uses the two switching elements S5 and S6 in consideration of the withstand voltage. However, the fifth switching element is not limited to this and may be composed of one switching element having a double withstand voltage.

また前記第6のスイッチング素子は、耐圧を考慮して2個のスイッチング素子S7,S8を用いているが、これに限らず2倍の耐圧を有する1個のスイッチング素子で構成してもよい。   The sixth switching element uses two switching elements S7 and S8 in consideration of the withstand voltage. However, the sixth switching element is not limited to this, and may be composed of one switching element having a double withstand voltage.

前記各相のスイッチング素子S1〜S10は、図示省略の制御部(制御手段)によって、5レベルの電圧を出力するためのスイッチングパターンに従ってオン、オフ制御され、その結果U相、V相、W相の各出力端子U,V,Wと中性点NPの間に5レベルの電圧が出力されるものである。   The switching elements S1 to S10 of each phase are on / off controlled by a control unit (control means) (not shown) according to a switching pattern for outputting a voltage of five levels, and as a result, U phase, V phase, W phase A five-level voltage is output between each of the output terminals U, V, W and the neutral point NP.

尚、前記直流電源VDCの電源電圧は固定でも可変でもよい。また、交流電源を整流した直流電圧でもよく、以下の説明では直流電源VDCで説明する。 The power source voltage of the DC power source V DC may be fixed or variable. Moreover, AC power source may be a DC voltage obtained by rectifying an, the following description will be in the DC power supply V DC.

上記構成において、直流電源VDCの電圧を例えば4Eとすると、コンデンサCU,CLには2Eの電圧が各々充電されるものとする。 In the above structure, when a voltage, for example, 4E of the DC power supply V DC, capacitor C U, the C L is assumed that the voltage of 2E are respectively charged.

スイッチング素子S1〜S10のオン、オフは、例えば表1に示すモード1〜モード9を有するスイッチングパターンに従って制御される。   The on / off of the switching elements S1 to S10 is controlled according to a switching pattern having mode 1 to mode 9 shown in Table 1, for example.

Figure 2013251960
Figure 2013251960

表1はスイッチング素子S1〜S10のオン・オフのモード1〜9(表1中ではMode1〜9と表記している)により各相の出力端子U,V,Wに出力される電圧(VLN)とコンデンサC1,C2の充放電の有無を示している。 Table 1 shows the voltages (V LN ) output to the output terminals U, V, and W of each phase according to the on / off modes 1 to 9 (indicated as Mode 1 to 9 in Table 1) of the switching elements S1 to S10. ) And whether the capacitors C1 and C2 are charged or discharged.

表1中、充放電状態は、出力端子U,V,Wから出力する電流が正、負の場合のコンデンサC1,C2の充放電状態を表し、+は充電、−は放電、0は充放電無しを示し、中性点電流IMの1は中性点NPから浮動中点NP´へ流出する電流が有りの場合を示し、0は無しの場合を示している。 In Table 1, the charge / discharge state represents the charge / discharge state of the capacitors C1, C2 when the currents output from the output terminals U, V, W are positive and negative, + is charge,-is discharge, and 0 is charge / discharge. It indicates no, 1 neutral point current I M represents the case with the current flowing from the neutral point NP to the floating midpoint NP', 0 represents the case of no.

直流電源VDCの電圧が4E、コンデンサCU,CLの電圧が2Eのとき、各出力端子U,V,Wと中性点NPの間の電圧は2E,E,0,−E,−2Eの5レベルの電圧を出力可能である。 When the voltage of the DC power source V DC is 4E and the voltages of the capacitors C U and C L are 2E, the voltages between the output terminals U, V, W and the neutral point NP are 2E, E, 0, −E, − 5E voltage of 2E can be output.

ここで、U相の5レベル電力変換部100Uを例とし、表1のスイッチングパターンの各モード1〜モード9と出力端子U,中性点NP間の電流ILの経路(IL>0のときの経路)を以下に説明する。 Here, taking the U-phase five-level power converter 100U as an example, the path of the current I L between the modes 1 to 9 of the switching pattern in Table 1 and the output terminal U and the neutral point NP (I L > 0) Will be described below.

尚、以下の説明では、コンデンサCUにおける直流電源VDCの正極端側の端部をP、コンデンサCLにおける直流電源VDCの負極端側の端部をNと表現する。 In the following description, the end of the positive electrode side of the DC power source V DC at capacitor C U P, expressed as N the end of the negative electrode side of the DC power source V DC at capacitor C L.

<モード1>
スイッチング素子S3,S4,S7〜S9が各々オフ、スイッチング素子S1,S2,S5,S6,S10が各々オンとなり、電流ILは、NP→CU→P→S5→S6→S1→S2→出力端子Uの経路で流れる。出力端子Uと中性点NP間の電圧は2Eとなる。このモード1においてコンデンサC1、C2の充放電はない。
<Mode 1>
Switching elements S3, S4, S7 to S9 are each turned off, the switching element S1, S2, S5, S6, S10 are each turned on, current I L, NP → C U → P → S5 → S6 → S1 → S2 → Output It flows through the path of terminal U. The voltage between the output terminal U and the neutral point NP is 2E. In this mode 1, the capacitors C1 and C2 are not charged / discharged.

<モード2>
スイッチング素子S1,S4,S7〜S9が各々オフ、スイッチング素子S2,S3,S5,S6,S10が各々オンとなり、電流ILは、NP→CU→P→S5→S6→C1→D1→S2→出力端子Uの経路で流れる。出力端子Uと中性点NP間の電圧はEとなる。このモード2においてコンデンサC1は充電される。
<Mode 2>
The switching elements S1, S4, S7 to S9 are turned off, the switching elements S2, S3, S5, S6, and S10 are turned on, and the current I L is NP → C U → P → S5 → S6 → C1 → D1 → S2. → Flows along the path of the output terminal U. The voltage between the output terminal U and the neutral point NP is E. In this mode 2, the capacitor C1 is charged.

<モード3>
スイッチング素子S3〜S8が各々オフ、スイッチング素子S1,S2,S9,S10が各々オンとなり、電流ILは、NP→S10→S9→C1→S1→S2→出力端子Uの経路で流れる。出力端子Uと中性点NP間の電圧はEとなる。このモード3においてコンデンサC1は放電される。また、中性点NPと浮動中点NP´の間に中性点電流IMが流れる。
<Mode 3>
The switching elements S3 to S8 are turned off, the switching elements S1, S2, S9, and S10 are turned on, and the current I L flows through a path of NP → S10 → S9 → C1 → S1 → S2 → output terminal U. The voltage between the output terminal U and the neutral point NP is E. In this mode 3, the capacitor C1 is discharged. Further, a neutral point current I M flows between the neutral point NP and the floating neutral point NP ′.

<モード4>
スイッチング素子S1,S2,S7〜S8が各々オフ、スイッチング素子S3〜S6,S10が各々オンとなり、電流ILは、NP→CU→S5→S6→C1→C2→S4→S3→出力端子Uの経路で流れる。出力端子Uと中性点NP間の電圧は0となる。このモード4においてコンデンサC1,C2が充電される。
<Mode 4>
Switching elements S1, S2, S7 to S8 are turned off, switching elements S3 to S6 and S10 are turned on, and current I L is NP → C U → S5 → S6 → C1 → C2 → S4 → S3 → output terminal U It flows in the route. The voltage between the output terminal U and the neutral point NP is zero. In this mode 4, the capacitors C1 and C2 are charged.

<モード5>
スイッチング素子S1,S4〜S8が各々オフ、スイッチング素子S2,S3,S9,S10が各々オンとなり、電流ILは、NP→S10→S9→D1→S2→出力端子Uの経路で流れる。出力端子Uと中性点NP間の電圧は0となる。このモード5においてコンデンサC1,C2の充放電はない。また、中性点NPと浮動中点NP´の間に中性点電流IMが流れる。
<Mode 5>
The switching elements S1, S4 to S8 are turned off, the switching elements S2, S3, S9, and S10 are turned on, and the current I L flows through a path of NP → S10 → S9 → D1 → S2 → output terminal U. The voltage between the output terminal U and the neutral point NP is zero. In mode 5, there is no charge / discharge of the capacitors C1 and C2. Further, a neutral point current I M flows between the neutral point NP and the floating neutral point NP ′.

<モード6>
スイッチング素子S3〜S6,S10が各々オフ、スイッチング素子S1,S2,S7〜S9が各々オンとなり、電流ILは、NP→CL→N→S8→S7→C2→C1→S1→S2→出力端子Uの経路で流れる。出力端子Uと中性点NP間の電圧は0となる。このモード6においてコンデンサC1,C2は放電される。
<Mode 6>
The switching elements S3 to S6, S10 are turned off, the switching elements S1, S2, S7 to S9 are turned on, and the current I L is output from NP → C L → N → S8 → S7 → C2 → C1 → S1 → S2 → output. It flows through the path of terminal U. The voltage between the output terminal U and the neutral point NP is zero. In this mode 6, the capacitors C1 and C2 are discharged.

<モード7>
スイッチング素子S1,S2,S5,S6〜S8が各々オフ、スイッチング素子S3,S4,S9、S10が各々オンとなり、電流ILは、NP→S10→S9→C2→S4→S3→出力端子Uの経路で流れる。出力端子Uと中性点NP間の電圧は−Eとなる。このモード7においてコンデンサC2は充電される。また、中性点NPと浮動中点NP´の間に中性点電流IMが流れる。
<Mode 7>
The switching elements S1, S2, S5, S6 to S8 are turned off, the switching elements S3, S4, S9, and S10 are turned on, and the current I L is NP → S10 → S9 → C2 → S4 → S3 → output terminal U It flows along the route. The voltage between the output terminal U and the neutral point NP is -E. In this mode 7, the capacitor C2 is charged. Further, a neutral point current I M flows between the neutral point NP and the floating neutral point NP ′.

<モード8>
スイッチング素子S1、S4〜S6,S10が各々オフ、スイッチング素子S2,S3,S7〜S9が各々オンとなり、電流ILは、NP→CL→S8→S7→C2→D1→S2→出力端子Uの経路で流れる。出力端子Uと中性点NP間の電圧は−Eとなる。このモード8においてコンデンサC2は放電される。
<Mode 8>
The switching elements S1, S4 to S6, S10 are turned off, the switching elements S2, S3, S7 to S9 are turned on, and the current I L is NP → C L → S8 → S7 → C2 → D1 → S2 → output terminal U It flows in the route. The voltage between the output terminal U and the neutral point NP is -E. In this mode 8, the capacitor C2 is discharged.

<モード9>
スイッチング素子S1,S2,S5,S6,S10が各々オフ、スイッチング素子S3,S4,S7〜S9が各々オンとなり、電流ILは、NP→CL→S8→S7→S4→S3→出力端子Uの経路で流れる。出力端子Uと中性点NP間の電圧は−2Eとなる。このモード9においてコンデンサC1,C2の充放電はない。
<Mode 9>
The switching elements S1, S2, S5, S6, S10 are turned off, the switching elements S3, S4, S7 to S9 are turned on, and the current I L is NP → C L → S8 → S7 → S4 → S3 → output terminal U It flows in the route. The voltage between the output terminal U and the neutral point NP is −2E. In this mode 9, there is no charge / discharge of the capacitors C1 and C2.

前記モード1〜モード9の電流経路、コンデンサC1,C2の充放電状態、中性点NPから流出する中性点電流IMの有無は、V相の5レベル電力変換部100V、W相の5レベル電力変換部100Wにおいても前記と同様となる。 The current paths of the modes 1 to 9, the charge / discharge states of the capacitors C 1 and C 2, and the presence / absence of the neutral point current I M flowing out from the neutral point NP are determined by the V-phase 5-level power conversion unit 100 V and the W-phase 5 The same applies to the level power converter 100W.

前記表1において、モード2とモード3の出力電圧はどちらも+Eであり、コンデンサC1に電流が流れるため、コンデンサC1の電圧を調節することが可能である。モード2では電流が正(IL>0)の時にコンデンサC1が充電され、電流が負の時(IL<0)にコンデンサC1は放電される。モード3では電流が正の時にコンデンサC1が放電され、電流が負の時にコンデンサC1は充電される。モード2とモード3をモード1またはモード5を介して交互に選択することにより、コンデンサC1の電圧を一定に維持できる。 In Table 1, since the output voltages of mode 2 and mode 3 are both + E and current flows through the capacitor C1, the voltage of the capacitor C1 can be adjusted. In mode 2, the capacitor C1 is charged when the current is positive (I L > 0), and the capacitor C1 is discharged when the current is negative (I L <0). In mode 3, the capacitor C1 is discharged when the current is positive, and the capacitor C1 is charged when the current is negative. By alternately selecting mode 2 and mode 3 via mode 1 or mode 5, the voltage of capacitor C1 can be kept constant.

モード7とモード8の出力電圧はどちらも−Eであり、コンデンサC2に電流が流れるため、コンデンサC2の電圧を調節することが可能である。モード7では電流が正の時にC2が充電され、電流が負の時にC2は放電される。モード8では電流が正の時にC2が放電され、電流が負の時にC2は充電される。モード7とモード8をモード5またはモード9を介して交互に選択することにより、コンデンサC2の電圧を一定に維持できる。   Since the output voltages of mode 7 and mode 8 are both -E, and a current flows through the capacitor C2, the voltage of the capacitor C2 can be adjusted. In mode 7, C2 is charged when the current is positive, and C2 is discharged when the current is negative. In mode 8, C2 is discharged when the current is positive, and C2 is charged when the current is negative. By alternately selecting the mode 7 and the mode 8 via the mode 5 or the mode 9, the voltage of the capacitor C2 can be kept constant.

尚、本実施形態例では表1のモード4、モード6に示すように、コンデンサC1,C2を同時に充電させる制御モードと、コンデンサC1,C2を同時に放電させる制御モードとを備えている。これによって、コンデンサC1,C2の電圧の脈動を低減し、所望する相電圧を出力しやすくし、制御性能を改善している。   In this embodiment, as shown in mode 4 and mode 6 of Table 1, there are a control mode in which the capacitors C1 and C2 are charged simultaneously and a control mode in which the capacitors C1 and C2 are discharged simultaneously. This reduces the pulsation of the voltages of the capacitors C1 and C2, makes it easier to output the desired phase voltage, and improves the control performance.

また、モード3、モード5、モード7においては、直流電源VDCの正、負極端間に直列接続されたコンデンサCU,CLの中性点NPから中性点電流IMが流出するため、コンデンサCUとCLの各電圧のバランスが崩れる。 In mode 3, mode 5 and mode 7, the neutral point current I M flows out from the neutral point NP of the capacitors C U and C L connected in series between the positive and negative terminals of the DC power source V DC. The balance between the voltages of the capacitors C U and C L is lost.

この直流電源VDC側のコンデンサCU,CLの各電圧のバランスを改善して中性点NPの電圧を一定に保つ制御(Vdc電圧一定制御)と、前記三相各相のコンデンサC1,C2を一定に維持する制御(Vc電圧一定制御)とを、互いに干渉することなく実行する制御部(本発明の制御手段)の実施形態例を図2に示す。 A control (Vdc voltage constant control) for improving the balance of the voltages of the capacitors C U and C L on the DC power source V DC side to keep the voltage at the neutral point NP constant, and the capacitors C1, FIG. 2 shows an embodiment of a control unit (control means of the present invention) that executes control for maintaining C2 constant (Vc voltage constant control) without interfering with each other.

図2の制御部は、空間ベクトル変調を用いることにより、三相交流成分の制御、コンデンサCUとCLの電圧一定制御、三相各相のコンデンサC1とC2の電圧制御を独立で行うものであり、電流予測方式に基づくベクトル選択部201と、コンデンサC1とC2の電圧を所望の電圧に制御するVc電圧一定制御部(本発明のコンデンサ電圧一定制御部)202と、コンデンサCUとCLの電圧を一定に保つVdc電圧一定制御部(本発明の直流電圧一定制御部)203と、ゲート遷移部204とから構成される。 Control unit of FIG. 2, by using the spatial vector modulation, control of the three-phase AC component, the voltage constant control of the capacitor C U and C L, performs the three-phase phase of the capacitor C1 C2 the voltage control in the independent A vector selection unit 201 based on a current prediction method, a Vc voltage constant control unit (capacitor voltage constant control unit of the present invention) 202 for controlling the voltages of the capacitors C1 and C2 to a desired voltage, capacitors C U and C The circuit includes a Vdc voltage constant control unit (a DC voltage constant control unit of the present invention) 203 that keeps the L voltage constant, and a gate transition unit 204.

ベクトル選択部201は、U,V,W相の電流指令値IuRef,IvRef,IwRefとU,V,W相の相電圧検出値Vuac,Vvac,Vwac又はUV,UW,WU線間電圧の検出値と、U,V,W相の相電流検出値Iuinv,Ivinv,Iwinvとを入力としている。 The vector selection unit 201 outputs U, V, W phase current command values I uRef , I vRef , I wRef and U, V, W phase detected voltage values V uac , V vac , V wac or UV, UW, WU. The line voltage detection values and U, V, and W phase current detection values I uinv , I vinv , and I winv are input.

ベクトル選択部201は、空間ベクトル制御における2軸座標系領域に定義された現在のベクトルから、u,v,wの各方向に単位ベクトル分プラス方向、マイナス方向に各々移動したときの6つの状態のベクトルそれぞれについて前記三相各相の5レベル電力変換部100U,100V,100Wの電流を予測演算し、前記6つのベクトルのうち、前記予測した電流の、前記三相各相の電流指令値IURef,IvRef,IwRefとの偏差が最も小さいベクトルを選択して相電圧指令VuN,VvN,VwN(表1のVLN)を求める。 The vector selection unit 201 has six states when moving from the current vector defined in the biaxial coordinate system area in the space vector control to the unit vector in the u, v, and w directions in the plus and minus directions, respectively. The current of the five-level power converters 100U, 100V, 100W of each of the three-phase phases is predicted for each of the vectors, and the current command value I of each of the three-phase phases of the predicted current among the six vectors is calculated. A vector having the smallest deviation from URef , I vRef , and I wRef is selected to obtain phase voltage commands V uN , V vN , and V wN (V LN in Table 1).

図3は、前記ベクトル選択部201が選択するベクトルの遷移を表しており、現在のベクトルVnから、α−β空間上のu,v,w方向の単位ベクトル分プラス方向(図中の右方向)に移動した先の3つの状態のベクトルと、マイナス方向(図中の左方向)に移動した先の3つの状態のベクトルとが存在する。   FIG. 3 shows the transition of the vector selected by the vector selection unit 201. From the current vector Vn, the unit vector in the u, v, and w directions in the α-β space is added in the plus direction (right direction in the figure). ) And the three previous state vectors moved in the negative direction (left direction in the figure).

ベクトル選択部201で実行される電流予測方式は、空間ベクトル制御の一種であり、前記6つの状態のベクトルに移動した電流について、図1の5レベル電力変換器の等価回路より算出される下記インバータ電流の推定式(式(1))から、制御の演算周期における1ステップから数ステップ先のインバータ値を予測演算することで、電流誤差が少なくなる位置に移動する方式である。   The current prediction method executed by the vector selection unit 201 is a kind of space vector control, and the following inverter calculated by the equivalent circuit of the five-level power converter of FIG. This is a method of moving to a position where current error is reduced by predicting and calculating an inverter value several steps ahead from one step in the control calculation cycle from the current estimation formula (formula (1)).

Iinv=L/s(Vinv−Vac)…(1)
L:フィルタ及びモータのインダクタンス
s:ラプラス演算子
Vinv:インバータの端子電圧であり、図1の端子u,v,wの電圧
Vac:Vuac,Vvac,Vwac
ベクトル選択部201で前記6ベクトルの中から最適なベクトルを選択する際の処理動作は、入力信号IURef,IvRef,IwRef、Vuac,Vvac,Vwac、Iuinv,Ivinv,Iwinvにより、等価回路(図1の回路の等価モデル)より算出されるインバータ電流の推定式Iinv=L/s(Vinv−Vac)を用いて、6つの状態のベクトルそれぞれにインバータ電流を予測演算し、6つのベクトルの中で最も電流指令値IRefとの差異が少なくなるベクトルを選択し、これを相電圧指令VLN(VUN,VVN,VWN)として出力する。
Iinv = L / s (Vinv−Vac) (1)
L: inductance of filter and motor s: Laplace operator Vinv: terminal voltage of the inverter, voltage at terminals u, v, w in FIG. 1 Vac: V uac , V vac , V wac
Processing operations when the vector selection unit 201 selects an optimal vector from the six vectors are input signals I URef , I vRef , I wRef , V uac , V vac , V wac , I uinv , I vinv , I Using winv , an inverter current estimation formula Iinv = L / s (Vinv−Vac) calculated from an equivalent circuit (an equivalent model of the circuit of FIG. 1) is used to predict and calculate the inverter current for each of the six state vectors. The vector having the smallest difference from the current command value I Ref is selected from the six vectors, and this is output as the phase voltage command V LN (V UN , V VN , V WN ).

また、選択したベクトルはスイッチングの方向により、例えば図3においてVn(A,b,c)から右に移動する場合、(A+1,B,C)と(A,B−1,C−1)のαβ空間上の位置が等価な2つの状態を示す。   Further, when the selected vector moves to the right from Vn (A, b, c) in FIG. 3 according to the switching direction, for example, (A + 1, B, C) and (A, B-1, C-1) Two states in which positions in the αβ space are equivalent are shown.

Vc電圧一定制御部202は、前記相電圧指令VLN(VUN,VVN,VWN)で決定されたベクトルを選択したときの前記コンデンサC1,C2の各コンデンサ電圧を、前記予測した電流に基づいて推定し、当該推定コンデンサ電圧とコンデンサ電圧指令(図1の直流電源VDCの1/4の電圧E)との偏差が最も小さくなる充放電指令GateDirを求める
図4に、本発明における充放電指令GateDir、相電圧指令VLNとゲート遷移の関係を示す。図4中の丸囲み数字は表1のモード1〜モード9に対応している。
The Vc voltage constant control unit 202 converts the capacitor voltages of the capacitors C1 and C2 when the vector determined by the phase voltage command V LN (V UN , V VN , V WN ) is selected into the predicted current. The charge / discharge command GateDir having the smallest deviation between the estimated capacitor voltage and the capacitor voltage command (a voltage E that is ¼ of the DC power source V DC in FIG. 1) is obtained based on FIG. The relationship between the discharge command GateDir, the phase voltage command V LN and the gate transition is shown. The circled numbers in FIG. 4 correspond to modes 1 to 9 in Table 1.

Vc電圧一定制御部202では、ベクトル選択部201で相電圧指令VLNが求められる毎に、コンデンサC1,C2の推定コンデンサ電圧とコンデンサ電圧指令との偏差の極性が正の場合は電圧を下げる必要があるため、電流の極性が正の場合(IL>0)充放電指令を図4のGateDir=nとし、電流の極性が負の場合(IL<0)充放電指令を図4のGateDir=pとする。 In the constant Vc voltage control unit 202, every time the vector selection unit 201 obtains the phase voltage command V LN , it is necessary to lower the voltage when the polarity of the deviation between the estimated capacitor voltage of the capacitors C1 and C2 and the capacitor voltage command is positive. Therefore, when the current polarity is positive (I L > 0), the charge / discharge command is GateDir = n in FIG. 4, and when the current polarity is negative (I L <0), the charge / discharge command is set to GateDir in FIG. = P.

また同様に、コンデンサC1,C2の推定コンデンサ電圧とコンデンサ電圧指令との偏差の極性が負の場合は電圧を上げる必要があるため、電流の極性が正の場合(IL>0)充放電指令を図4のGateDir=pとし、電流の極性が負の場合(IL<0)充放電指令を図4のGateDir=nとする。 Similarly, when the polarity of the deviation between the estimated capacitor voltage of the capacitors C1 and C2 and the capacitor voltage command is negative, it is necessary to increase the voltage. Therefore, when the polarity of the current is positive (I L > 0), the charge / discharge command 4 is set to GateDir = p, and when the current polarity is negative (I L <0), the charge / discharge command is set to GateDir = n in FIG.

この処理は、状態変化後の相電圧指令がコンデンサC1とC2を制御できる状態(VLN=E,0、−E)であるかに関わらず行なわれる。これは、充放電指令GateDirが相電圧指令VLNとは独立した変数のためである。 This process is performed regardless of whether the phase voltage command after the state change is in a state where the capacitors C1 and C2 can be controlled (V LN = E, 0, -E). This is because the charge / discharge command GateDir is a variable independent of the phase voltage command V LN .

前記充放電指令GateDirはコンデンサC1とC2の一定電圧制御をするためのフラグであり、ゲート状態が遷移する際に、相電圧指令VLNに対し移動先が2つある場合、充放電指令GateDirの向きに合わせてゲート遷移を行なう。 The charge / discharge command GateDir is a flag for performing constant voltage control of the capacitors C1 and C2, and when there are two destinations for the phase voltage command V LN when the gate state transitions, the charge / discharge command GateDir Gate transition is performed according to the direction.

次に、上記相電圧指令VLNが変化した場合のVc電圧一定制御部202が行う動作の具体例を図4および表1とともに述べる。 Next, a specific example of the operation performed by the Vc voltage constant control unit 202 when the phase voltage command V LN changes will be described with reference to FIG. 4 and Table 1.

<モード1による制御中に相電圧指令VLNが2EからEに変化した場合>
この場合、コンデンサC1,C2の推定コンデンサ電圧とコンデンサ電圧指令との偏差が正であれば、電流極性が正(IL>0)のときは充放電指令GateDir=nの矢印方向のモード3を選んでコンデンサC1を放電させ、電流極性が負(IL<0)のときは充放電指令GateDir=pの矢印方向のモード2を選んでコンデンサC1を放電させる。これによってコンデンサC1の電圧を下げることができる。
<When phase voltage command V LN changes from 2E to E during control in mode 1>
In this case, if the deviation between the estimated capacitor voltage of the capacitors C1 and C2 and the capacitor voltage command is positive, the mode 3 in the arrow direction of the charge / discharge command GateDir = n is set when the current polarity is positive (I L > 0). When selected, the capacitor C1 is discharged, and when the current polarity is negative (I L <0), the capacitor C1 is discharged by selecting the mode 2 in the arrow direction of the charge / discharge command GateDir = p. As a result, the voltage of the capacitor C1 can be lowered.

また、コンデンサC1,C2の推定コンデンサ電圧とコンデンサ電圧指令との偏差が負であれば、電流極性が正(IL>0)のときは充放電指令GateDir=pの矢印方向のモード2を選んでコンデンサC1を充電させ、電流極性が負(IL<0)のときは充放電指令GateDir=nの矢印方向のモード3を選んでコンデンサC1を充電させる。これによってコンデンサC1の電圧を上げることができる。 Further, if the deviation between the estimated capacitor voltage of the capacitors C1 and C2 and the capacitor voltage command is negative, when the current polarity is positive (I L > 0), the mode 2 in the arrow direction of the charge / discharge command GateDir = p is selected. To charge the capacitor C1, and when the current polarity is negative (I L <0), the capacitor C1 is charged by selecting the mode 3 in the arrow direction of the charge / discharge command GateDir = n. As a result, the voltage of the capacitor C1 can be increased.

<モード2による制御中に相電圧指令VLNがEから0に変化した場合>
この場合、コンデンサC1,C2の推定コンデンサ電圧とコンデンサ電圧指令との偏差が正であれば、電流極性が正(IL>0)のときは充放電指令GateDir=nの矢印方向のモード5を選んでコンデンサC1の充電を無しとし、電流極性が負(IL<0)のときは充放電指令GateDir=pの矢印方向のモード4を選んでコンデンサC1のみならずコンデンサC2も放電させる。これによってコンデンサC1、C2の電圧を下げることができる。
<When phase voltage command V LN changes from E to 0 during control in mode 2>
In this case, if the deviation between the estimated capacitor voltage of the capacitors C1 and C2 and the capacitor voltage command is positive, when the current polarity is positive (I L > 0), the mode 5 in the arrow direction of the charge / discharge command GateDir = n is set. When the capacitor C1 is not selected and the current polarity is negative (I L <0), the mode 4 in the arrow direction of the charge / discharge command GateDir = p is selected to discharge not only the capacitor C1 but also the capacitor C2. As a result, the voltages of the capacitors C1 and C2 can be lowered.

また、コンデンサC1,C2の推定コンデンサ電圧とコンデンサ電圧指令との偏差が負であれば、電流極性が正(IL>0)のときは充放電指令GateDir=pの矢印方向のモード4を選んでコンデンサC1のみならずコンデンサC2も充電させ、電流極性が負(IL<0)のときは充放電指令GateDir=nの矢印方向のモード5を選んでコンデンサC1の放電を中止させる。これによってコンデンサC1の電圧を上げることができる。 If the deviation between the estimated capacitor voltage of the capacitors C1 and C2 and the capacitor voltage command is negative, the mode 4 in the arrow direction of the charge / discharge command GateDir = p is selected when the current polarity is positive (I L > 0). Then, not only the capacitor C1 but also the capacitor C2 is charged, and when the current polarity is negative (I L <0), the mode 5 in the arrow direction of the charge / discharge command GateDir = n is selected to stop the discharge of the capacitor C1. As a result, the voltage of the capacitor C1 can be increased.

<モード3による制御中に相電圧指令VLNがEから0に変化した場合>
この場合、コンデンサC1,C2の推定コンデンサ電圧とコンデンサ電圧指令との偏差が正であれば、電流極性が正(IL>0)のときは充放電指令GateDir=nの矢印方向のモード6を選んでコンデンサC1のみならずコンデンサC2も放電させ、電流極性が負(IL<0)のときは充放電指令GateDir=pの矢印方向のモード5を選んでコンデンサC1の充電を中止させる。これによってコンデンサC1の電圧を下げることができる。
<When phase voltage command V LN changes from E to 0 during control in mode 3>
In this case, if the deviation between the estimated capacitor voltage of the capacitors C1 and C2 and the capacitor voltage command is positive, the mode 6 in the arrow direction of the charge / discharge command GateDir = n is set when the current polarity is positive (I L > 0). The capacitor C2 is discharged as well as the capacitor C1, and when the current polarity is negative (I L <0), the charging of the capacitor C1 is stopped by selecting the mode 5 in the arrow direction of the charge / discharge command GateDir = p. As a result, the voltage of the capacitor C1 can be lowered.

また、コンデンサC1,C2の推定コンデンサ電圧とコンデンサ電圧指令との偏差が負であれば、電流極性が正(IL>0)のときは充放電指令GateDir=pの矢印方向のモード5を選んでコンデンサC1の放電を中止させ、電流極性が負(IL<0)のときは充放電指令GateDir=nの矢印方向のモード6を選んでコンデンサC1のみならずコンデンサC2も充電させる。これによってコンデンサC1、C2の電圧を上げることができる。 Further, if the deviation between the estimated capacitor voltage of the capacitors C1 and C2 and the capacitor voltage command is negative, when the current polarity is positive (I L > 0), the mode 5 in the arrow direction of the charge / discharge command GateDir = p is selected. Then, the discharge of the capacitor C1 is stopped, and when the current polarity is negative (I L <0), the mode 6 in the arrow direction of the charge / discharge command GateDir = n is selected to charge not only the capacitor C1 but also the capacitor C2. As a result, the voltages of the capacitors C1 and C2 can be increased.

<モード5による制御中に相電圧指令VLNが0からEに変化した場合>
この場合、コンデンサC1,C2の推定コンデンサ電圧とコンデンサ電圧指令との偏差が正であれば、電流極性が正(IL>0)のときは充放電指令GateDir=nの矢印方向のモード3を選んでコンデンサC1を放電させ、電流極性が負(IL<0)のときは充放電指令GateDir=pの矢印方向のモード2を選んでコンデンサC1を放電させる。これによってコンデンサC1の電圧を下げることができる。
<When phase voltage command V LN changes from 0 to E during control in mode 5>
In this case, if the deviation between the estimated capacitor voltage of the capacitors C1 and C2 and the capacitor voltage command is positive, the mode 3 in the arrow direction of the charge / discharge command GateDir = n is set when the current polarity is positive (I L > 0). When selected, the capacitor C1 is discharged, and when the current polarity is negative (I L <0), the capacitor C1 is discharged by selecting the mode 2 in the arrow direction of the charge / discharge command GateDir = p. As a result, the voltage of the capacitor C1 can be lowered.

また、コンデンサC1,C2の推定コンデンサ電圧とコンデンサ電圧指令との偏差が負であれば、電流極性が正(IL>0)のときは充放電指令GateDir=pの矢印方向のモード2を選んでコンデンサC1を充電させ、電流極性が負(IL<0)のときは充放電指令GateDir=nの矢印方向のモード3を選んでコンデンサC1を充電させる。これによってコンデンサC1の電圧を上げることができる。 Further, if the deviation between the estimated capacitor voltage of the capacitors C1 and C2 and the capacitor voltage command is negative, when the current polarity is positive (I L > 0), the mode 2 in the arrow direction of the charge / discharge command GateDir = p is selected. To charge the capacitor C1, and when the current polarity is negative (I L <0), the capacitor C1 is charged by selecting the mode 3 in the arrow direction of the charge / discharge command GateDir = n. As a result, the voltage of the capacitor C1 can be increased.

<モード1による制御中に相電圧指令VLNが0から−Eに変化した場合>
この場合、コンデンサC1,C2の推定コンデンサ電圧とコンデンサ電圧指令との偏差が正であれば、電流極性が正(IL>0)のときは充放電指令GateDir=nの矢印方向のモード8を選んでコンデンサC2を放電させ、電流極性が負(IL<0)のときは充放電指令GateDir=pの矢印方向のモード7を選んでコンデンサC2を放電させる。これによってコンデンサC2の電圧を下げることができる。
<When phase voltage command V LN changes from 0 to -E during mode 1 control>
In this case, if the deviation between the estimated capacitor voltage of the capacitors C1 and C2 and the capacitor voltage command is positive, the mode 8 in the arrow direction of the charge / discharge command GateDir = n is set when the current polarity is positive (I L > 0). The capacitor C2 is selected and discharged, and when the current polarity is negative (I L <0), the capacitor C2 is discharged by selecting the mode 7 in the arrow direction of the charge / discharge command GateDir = p. As a result, the voltage of the capacitor C2 can be lowered.

また、コンデンサC1,C2の推定コンデンサ電圧とコンデンサ電圧指令との偏差が負であれば、電流極性が正(IL>0)のときは充放電指令GateDir=pの矢印方向のモード7を選んでコンデンサC2を充電させ、電流極性が負(IL<0)のときは充放電指令GateDir=nの矢印方向のモード8を選んでコンデンサC2を充電させる。これによってコンデンサC2の電圧を上げることができる。 Further, if the deviation between the estimated capacitor voltage of the capacitors C1 and C2 and the capacitor voltage command is negative, when the current polarity is positive (I L > 0), the mode 7 in the arrow direction of the charge / discharge command GateDir = p is selected. To charge the capacitor C2, and when the current polarity is negative (I L <0), the capacitor C2 is charged by selecting the mode 8 in the arrow direction of the charge / discharge command GateDir = n. As a result, the voltage of the capacitor C2 can be increased.

<モード7による制御中に相電圧指令VLNが−Eから0に変化した場合>
この場合、コンデンサC1,C2の推定コンデンサ電圧とコンデンサ電圧指令との偏差が正であれば、電流極性が正(IL>0)のときは充放電指令GateDir=nの矢印方向のモード5を選んでコンデンサC2の充電を中止させ、電流極性が負(IL<0)のときは充放電指令GateDir=pの矢印方向のモード4を選んでコンデンサC2のみならずコンデンサC1も放電させる。これによってコンデンサC1、C2の電圧を下げることができる。
<When phase voltage command V LN changes from -E to 0 during control in mode 7>
In this case, if the deviation between the estimated capacitor voltage of the capacitors C1 and C2 and the capacitor voltage command is positive, when the current polarity is positive (I L > 0), the mode 5 in the arrow direction of the charge / discharge command GateDir = n is set. When the current polarity is negative (I L <0), the mode C4 in the direction of the arrow of the charge / discharge command GateDir = p is selected to discharge not only the capacitor C2 but also the capacitor C1. As a result, the voltages of the capacitors C1 and C2 can be lowered.

また、コンデンサC1,C2の推定コンデンサ電圧とコンデンサ電圧指令との偏差が負であれば、電流極性が正(IL>0)のときは充放電指令GateDir=pの矢印方向のモード4を選んでコンデンサC2のみならずコンデンサC1も充電させ、電流極性が負(IL<0)のときは充放電指令GateDir=nの矢印方向のモード5を選んでコンデンサC2の放電を中止させる。これによってコンデンサC1、C2の電圧を上げることができる。 If the deviation between the estimated capacitor voltage of the capacitors C1 and C2 and the capacitor voltage command is negative, the mode 4 in the arrow direction of the charge / discharge command GateDir = p is selected when the current polarity is positive (I L > 0). Then, not only the capacitor C2 but also the capacitor C1 is charged, and when the current polarity is negative (I L <0), the mode 5 in the arrow direction of the charge / discharge command GateDir = n is selected to stop the discharge of the capacitor C2. As a result, the voltages of the capacitors C1 and C2 can be increased.

<モード8による制御中に相電圧指令VLNが−Eから0に変化した場合>
この場合、コンデンサC1,C2の推定コンデンサ電圧とコンデンサ電圧指令との偏差が正であれば、電流極性が正(IL>0)のときは充放電指令GateDir=nの矢印方向のモード6を選んでコンデンサC2のみならずコンデンサC1も放電させ、電流極性が負(IL<0)のときは充放電指令GateDir=pの矢印方向のモード5を選んでコンデンサC2の充電を中止させる。これによってコンデンサC1、C2の電圧を下げることができる。
<When phase voltage command V LN changes from -E to 0 during control in mode 8>
In this case, if the deviation between the estimated capacitor voltage of the capacitors C1 and C2 and the capacitor voltage command is positive, the mode 6 in the arrow direction of the charge / discharge command GateDir = n is set when the current polarity is positive (I L > 0). The capacitor C1 is discharged as well as the capacitor C2, and when the current polarity is negative (I L <0), the charging of the capacitor C2 is stopped by selecting the mode 5 in the arrow direction of the charge / discharge command GateDir = p. As a result, the voltages of the capacitors C1 and C2 can be lowered.

また、コンデンサC1,C2の推定コンデンサ電圧とコンデンサ電圧指令との偏差が負であれば、電流極性が正(IL>0)のときは充放電指令GateDir=pの矢印方向のモード5を選んでコンデンサC2の放電を中止させ、電流極性が負(IL<0)のときは充放電指令GateDir=nの矢印方向のモード6を選んでコンデンサC2のみならずコンデンサC1も充電させる。これによってコンデンサC1、C2の電圧を上げることができる。 Further, if the deviation between the estimated capacitor voltage of the capacitors C1 and C2 and the capacitor voltage command is negative, when the current polarity is positive (I L > 0), the mode 5 in the arrow direction of the charge / discharge command GateDir = p is selected. Then, discharging of the capacitor C2 is stopped, and when the current polarity is negative (I L <0), the mode 6 in the arrow direction of the charge / discharge command GateDir = n is selected to charge not only the capacitor C2 but also the capacitor C1. As a result, the voltages of the capacitors C1 and C2 can be increased.

<モード9による制御中に相電圧指令VLNが−2Eから−Eに変化した場合>
この場合、コンデンサC1,C2の推定コンデンサ電圧とコンデンサ電圧指令との偏差が正であれば、電流極性が正(IL>0)のときは充放電指令GateDir=nの矢印方向のモード8を選んでコンデンサC2を放電させ、電流極性が負(IL<0)のときは充放電指令GateDir=pの矢印方向のモード7を選んでコンデンサC2を放電させる。これによってコンデンサC2の電圧を下げることができる。
<When phase voltage command V LN changes from -2E to -E during control in mode 9>
In this case, if the deviation between the estimated capacitor voltage of the capacitors C1 and C2 and the capacitor voltage command is positive, the mode 8 in the arrow direction of the charge / discharge command GateDir = n is set when the current polarity is positive (I L > 0). The capacitor C2 is selected and discharged, and when the current polarity is negative (I L <0), the capacitor C2 is discharged by selecting the mode 7 in the arrow direction of the charge / discharge command GateDir = p. As a result, the voltage of the capacitor C2 can be lowered.

また、コンデンサC1,C2の推定コンデンサ電圧とコンデンサ電圧指令との偏差が負であれば、電流極性が正(IL>0)のときは充放電指令GateDir=pの矢印方向のモード7を選んでコンデンサC2を充電させ、電流極性が負(IL<0)のときは充放電指令GateDir=nの矢印方向のモード8を選んでコンデンサC2を充電させる。これによってコンデンサC2の電圧を上げることができる。 Further, if the deviation between the estimated capacitor voltage of the capacitors C1 and C2 and the capacitor voltage command is negative, when the current polarity is positive (I L > 0), the mode 7 in the arrow direction of the charge / discharge command GateDir = p is selected. To charge the capacitor C2, and when the current polarity is negative (I L <0), the capacitor C2 is charged by selecting the mode 8 in the arrow direction of the charge / discharge command GateDir = n. As a result, the voltage of the capacitor C2 can be increased.

Vdc電圧一定制御部203は、前記三相各相の5レベル電力変換部100U,100V,100Wの各相の電流検出値Iuinv,Ivinv,Iwinv、前記直流電源VDCの正、負極端間に直列接続されたコンデンサCU,CLの電圧検出値VCU,VCL、前記ベクトル選択部201で求められた相電圧指令VLN(VUN,VVN,VWN)および前記Vc電圧一定制御部202で求められた充放電指令GateDirを入力とし、前記ベクトル選択部201の相電圧指令VLNで決定された移動先ベクトルを選択したときの前記中性点NPを流れる中性点電流IMを計算し、前記移動先ベクトルのうち、前記VCUとVCLの偏差が無くなるベクトルを選択して充放電指令を決定し、該決定された充放電指令GateDirおよび前記相電圧指令VUN,VVN,VWNを出力する。 The Vdc voltage constant control unit 203 includes current detection values I uinv , I vinv , I winv of each phase of the five-level power conversion units 100U, 100V, 100W of the three phases, positive and negative terminals of the DC power source V DC The voltage detection values V CU , V CL of capacitors C U , C L connected in series between them, the phase voltage command V LN (V UN , V VN , V WN ) obtained by the vector selector 201 and the Vc voltage The neutral point current flowing through the neutral point NP when the charge / discharge command GateDir obtained by the constant control unit 202 is input and the destination vector determined by the phase voltage command V LN of the vector selection unit 201 is selected. I M is calculated, a charge / discharge command is determined by selecting a vector in which the deviation between V CU and V CL is eliminated from the destination vectors, and the determined charge / discharge command GateDir and the phase voltage command V UN are determined. , V VN And it outputs the V WN.

コンデンサCUとCLの電圧VCUとVCLは、中性点NPから中性点電流IMが流れた場合(すなわち表1のモード3,5,7の場合)にバランスが崩れる(IMが正の場合VCUが大、負の場合VCLが大となる)ため、中性点電流IMが電圧のバランスを改善する方向を常に選択することで、VCUとVCLのバランスを保つことができる。 The voltages V CU and V CL of the capacitors C U and C L are out of balance when the neutral point current I M flows from the neutral point NP (that is, in the case of modes 3, 5, and 7 in Table 1) (I M is a positive when V CU large, negative if V CL is large) Therefore, by always selecting the direction neutral point current I M to improve the balance of the voltage, the balance of the V CU and V CL Can keep.

このためVdc電圧一定制御部203では、中性点電流IMを計算してVCUとVCLの偏差が無くなるベクトルを選択する。 Therefore, the Vdc voltage constant control unit 203 calculates a neutral point current I M and selects a vector that eliminates the deviation between V CU and V CL .

ゲート遷移部204は、Vdc電圧一定制御部203とVc電圧一定制御部202により得られた3相それぞれの相電圧指令VuN,VvN,VwNと充放電指令GateDiru,GateDirv,GateDirwにより、次の遷移する方向を選択し、それに合わせたゲート信号を出力する。 The gate transition unit 204 performs the following operation according to the phase voltage commands V uN , V vN , V wN of the three phases obtained by the Vdc voltage constant control unit 203 and the Vc voltage constant control unit 202 and the charge / discharge commands GateDiru, GateDirv, GateDirw. The direction of transition is selected, and a gate signal matching that is output.

前記状態が遷移する場合にはデッドタイム状態を経由し、また、各状態へ遷移した後は設定した最小オン時間経過後でないと次の状態へと遷移できないよう移動を制限する。   When the state transitions, a dead time state is passed, and after the transition to each state, the movement is restricted so that the transition to the next state can be made only after the set minimum on-time has elapsed.

100U,100V,100W…5レベル電力変換部
201…ベクトル選択部
202…Vc電圧一定制御部
203…Vdc電圧一定制御部
204…ゲート遷移部
S1〜S10…スイッチング素子
DC…直流電源
C1,C2,CU,CL…コンデンサ
D1,D2…ダイオード
100U, 100V, 100W ... 5-level power conversion unit 201 ... vector selection unit 202 ... Vc voltage constant control unit 203 ... Vdc voltage constant control unit 204 ... gate transition unit S1-S10 ... switching element V DC ... DC power supply C1, C2, C U , C L ... capacitor D1, D2 ... diode

Claims (4)

直流電圧源の正負極間の直流電圧を複数の電圧レベルに変換した交流電圧を出力するマルチレベル電力変換器において、
第1〜第4のスイッチング素子を順次直列接続したスイッチング素子直列回路と、前記スイッチング素子直列回路の第1のスイッチング素子側端と第4のスイッチング素子側端との間に順次直列接続された第1および第2のコンデンサと、前記第1のスイッチング素子および第2のスイッチング素子の共通接続点と、第3のスイッチング素子および第4のスイッチング素子の共通接続点との間に順次直列接続された第1および第2のダイオードと、前記第1のコンデンサおよび第1のスイッチング素子の共通接続点に一端が接続された第5のスイッチング素子と、前記第2のコンデンサおよび第4のスイッチング素子の共通接続点に一端が接続された第6のスイッチング素子と、前記第1および第2のコンデンサの共通接続点に一端が接続された、互いに逆の耐圧方向に制御できる第1のスイッチング手段とを備え、前記第1および第2のダイオードの共通接続点と第1および第2のコンデンサの共通接続点とを接続して構成されたマルチレベル電力変換部を三相交流の各相に各々設け、
前記三相各相のマルチレベル電力変換部の、前記第5のスイッチング素子の他端どうしを前記直流電圧源の正極に接続し、前記第6のスイッチング素子の他端どうしを前記直流電圧源の負極に接続し、前記第1のスイッチング手段の他端どうしを、前記直流電圧源の正、負極間に直列接続した第3のコンデンサおよび第4のコンデンサの共通接続点に中性点として接続し、前記三相各相のマルチレベル電力変換部の、前記第2および第3のスイッチング素子の共通接続点を三相各相の各出力端とし、
前記三相各相のマルチレベル電力変換部の電流指令値、前記三相各相のマルチレベル電力変換部の各出力端の電圧検出値および電流検出値を入力とし、空間ベクトル制御における2軸座標系領域に定義された現在のベクトルから、三相の各方向に単位ベクトル分プラス方向、マイナス方向に各々のベクトルが移動したときの6つのベクトルそれぞれについて前記三相各相のマルチレベル電力変換部の電流を予測演算し、前記6つのベクトルのうち、前記予測演算した電流と前記三相各相の電流指令値との偏差が最も小さいベクトルを選択して相電圧指令を求めるベクトル選択部と、前記相電圧指令で決定されたベクトルを選択したときの前記三相各相の第1のコンデンサおよび第2のコンデンサの各コンデンサ電圧を、前記予測演算した電流に基づいて推定し、当該推定コンデンサ電圧とコンデンサ電圧指令との偏差が最も小さくなる充放電指令を求める前記三相各相のマルチレベル電力変換部のコンデンサ電圧一定制御部と、前記三相各相のマルチレベル電力変換部の各相の電流検出値、前記第3および第4のコンデンサの電圧検出値、前記ベクトル選択部で求められた相電圧指令および前記コンデンサ電圧一定制御部で求められた充放電指令を入力とし、前記ベクトル選択部の相電圧指令で決定された移動先ベクトルを選択したときの前記中性点を流れる電流を計算し、前記移動先ベクトルのうち、前記第3のコンデンサ電圧と第4のコンデンサ電圧の偏差が無くなるベクトルを選択して充放電指令を決定し、該決定された充放電指令および前記相電圧指令を出力する直流電圧一定制御部と、前記直流電圧一定制御部から出力された充放電指令および相電圧指令に基づいてゲート遷移方向を選択し、このゲート遷移方向に合わせたゲート信号を出力するゲート遷移部とを有して、前記ゲート信号に基づく前記第1〜第6のスイッチング素子および第1のスイッチング手段のオン、オフ制御によって複数の電圧レベルを出力させる制御手段を設けた、
ことを特徴とするマルチレベル電力変換器。
In a multi-level power converter that outputs an AC voltage obtained by converting a DC voltage between the positive and negative electrodes of a DC voltage source into a plurality of voltage levels,
A switching element series circuit in which the first to fourth switching elements are sequentially connected in series, and a first switching element side circuit of the switching element series circuit that is sequentially connected in series between the first switching element side end and the fourth switching element side end. The first and second capacitors, the common connection point of the first switching element and the second switching element, and the common connection point of the third switching element and the fourth switching element are sequentially connected in series. The first and second diodes, the fifth switching element having one end connected to a common connection point of the first capacitor and the first switching element, and the common of the second capacitor and the fourth switching element One end is connected to a common connection point of the sixth switching element, one end of which is connected to the connection point, and the first and second capacitors. And a first switching means that can be controlled in directions opposite to each other with a withstand voltage, and is configured by connecting a common connection point of the first and second diodes and a common connection point of the first and second capacitors. Multi-level power converters are provided for each phase of the three-phase AC,
The other end of the fifth switching element of the multi-phase power converter for each of the three phases is connected to the positive electrode of the DC voltage source, and the other end of the sixth switching element is connected to the DC voltage source. Connect to the negative electrode, and connect the other ends of the first switching means as a neutral point to the common connection point of the third capacitor and the fourth capacitor connected in series between the positive and negative electrodes of the DC voltage source. , The common connection point of the second and third switching elements of the multi-phase power conversion unit of each of the three-phase each phase as an output terminal of each of the three-phase each phase,
Two-axis coordinates in space vector control using as input the current command value of the multi-level power conversion unit for each of the three-phase phases and the voltage detection value and current detection value of each output terminal of the multi-level power conversion unit for each of the three phases A multi-level power conversion unit for each of the three phases for each of the six vectors when the respective vectors move in the positive direction and the negative direction for the unit vector in each direction of the three phases from the current vector defined in the system region A vector selection unit that obtains a phase voltage command by selecting a vector having the smallest deviation between the predicted current and the current command value of each of the three phases among the six vectors; When the vector determined by the phase voltage command is selected, the predicted voltage of each capacitor voltage of the first capacitor and the second capacitor of the three-phase each phase is calculated. Based on the capacitor voltage constant control unit of the multi-level power conversion unit of each of the three-phase each phase for obtaining a charge / discharge command that minimizes the deviation between the estimated capacitor voltage and the capacitor voltage command; and Current detection value of each phase of the multi-level power conversion unit, voltage detection value of the third and fourth capacitors, phase voltage command obtained by the vector selection unit, and charging / discharging obtained by the capacitor voltage constant control unit An instruction is input, a current flowing through the neutral point when the destination vector determined by the phase voltage command of the vector selection unit is selected, and the third capacitor voltage of the destination vector is calculated. A DC voltage for selecting a vector that eliminates the deviation of the fourth capacitor voltage, determining a charge / discharge command, and outputting the determined charge / discharge command and the phase voltage command. A constant control unit, and a gate transition unit that selects a gate transition direction based on the charge / discharge command and the phase voltage command output from the DC voltage constant control unit and outputs a gate signal in accordance with the gate transition direction. And a control means for outputting a plurality of voltage levels by on / off control of the first to sixth switching elements and the first switching means based on the gate signal,
A multi-level power converter characterized by that.
前記制御手段のオン、オフ制御は、同一電圧レベルの相電圧指令時に、前記第1のコンデンサ又は第2のコンデンサを充電させる制御モードと放電させる制御モードを有し、さらに、前記第1のコンデンサおよび第2のコンデンサを同時に充電させる制御モードと同時に放電させる制御モードとを有し、
前記三相各相のマルチレベル電力変換部のコンデンサ電圧一定制御部は、前記相電圧指令が変化したときに、変化直前の時点における前記第1のコンデンサ電圧、第2のコンデンサ電圧とコンデンサ電圧指令との偏差が正のときに、前記第1のコンデンサ、第2のコンデンサの少なくとも何れか一方を放電させる制御モードに移行させる充放電指令を決定し、前記第1のコンデンサ電圧、第2のコンデンサ電圧とコンデンサ電圧指令との偏差が負のときに、前記第1のコンデンサ、第2のコンデンサの少なくとも何れか一方を充電させる制御モードに移行させる充放電指令を決定することを特徴とする請求項1に記載のマルチレベル電力変換器。
The on / off control of the control means has a control mode in which the first capacitor or the second capacitor is charged and a control mode in which the first capacitor or the second capacitor is discharged at the time of a phase voltage command at the same voltage level. And a control mode for simultaneously discharging the second capacitor and a control mode for discharging simultaneously.
When the phase voltage command changes, the capacitor voltage constant control unit of the multi-phase power conversion unit for each of the three phases has the first capacitor voltage, the second capacitor voltage, and the capacitor voltage command immediately before the change. A charge / discharge command to shift to a control mode for discharging at least one of the first capacitor and the second capacitor is determined, and the first capacitor voltage and the second capacitor The charge / discharge command for shifting to a control mode for charging at least one of the first capacitor and the second capacitor when the deviation between the voltage and the capacitor voltage command is negative is determined. 2. The multilevel power converter according to 1.
第1〜第4のスイッチング素子を順次直列接続したスイッチング素子直列回路と、前記スイッチング素子直列回路の第1のスイッチング素子側端と第4のスイッチング素子側端との間に順次直列接続された第1および第2のコンデンサと、前記第1のスイッチング素子および第2のスイッチング素子の共通接続点と、第3のスイッチング素子および第4のスイッチング素子の共通接続点との間に順次直列接続された第1および第2のダイオードと、前記第1のコンデンサおよび第1のスイッチング素子の共通接続点に一端が接続された第5のスイッチング素子と、前記第2のコンデンサおよび第4のスイッチング素子の共通接続点に一端が接続された第6のスイッチング素子と、前記第1および第2のコンデンサの共通接続点に一端が接続された、互いに逆の耐圧方向に制御できる第1のスイッチング手段とを備え、前記第1および第2のダイオードの共通接続点と第1および第2のコンデンサの共通接続点とを接続して構成されたマルチレベル電力変換部を三相交流の各相に各々設け、
前記三相各相のマルチレベル電力変換部の、前記第5のスイッチング素子の他端どうしを直流電圧源の正極に接続し、前記第6のスイッチング素子の他端どうしを前記直流電圧源の負極に接続し、前記第1のスイッチング手段の他端どうしを、前記直流電圧源の正、負極間に直列接続した第3のコンデンサおよび第4のコンデンサの共通接続点に中性点として接続し、前記三相各相のマルチレベル電力変換部の、前記第2および第3のスイッチング素子の共通接続点を三相各相の各出力端として構成されたマルチレベル電力変換器の制御方法であって、
前記第1〜第6のスイッチング素子および第1のスイッチング手段のオン、オフ制御によって複数の電圧レベルを出力させる制御手段のベクトル選択部が、前記三相各相のマルチレベル電力変換部の電流指令値、前記三相各相のマルチレベル電圧変換部の各出力端の電圧検出値および電流検出値を入力とし、空間ベクトル制御における2軸座標系領域に定義された現在のベクトルから、三相各相の各方向に単位ベクトル分プラス方向、マイナス方向に各々のベクトルが移動したときの6つのベクトルそれぞれについて前記三相各相のマルチレベル電力変換部の電流を予測演算し、前記6つのベクトルのうち、前記予測演算した電流と前記三相各相の電流指令値との偏差が最も小さいベクトルを選択して相電圧指令を求めるステップと、
前記制御手段の、三相各相のマルチレベル電力変換部のコンデンサ電圧一定制御部が、前記相電圧指令で決定されたベクトルを選択したときの前記三相各相の第1のコンデンサおよび第2のコンデンサの各コンデンサ電圧を、前記予測演算した電流に基づいて推定し、当該推定コンデンサ電圧とコンデンサ電圧指令との偏差が最も小さくなる充放電指令を求めるステップと、
前記制御手段の直流電圧一定制御部が、前記三相各相のマルチレベル電力変換部の各相の電流検出値、前記第3および第4のコンデンサの電圧検出値、前記ベクトル選択部で求められた相電圧指令および前記コンデンサ電圧一定制御部で求められた充放電指令を入力とし、前記ベクトル選択部の相電圧指令で決定された移動先ベクトルを選択したときの前記中性点を流れる電流を計算し、前記移動先ベクトルのうち、前記第3のコンデンサ電圧と第4のコンデンサ電圧の偏差が無くなるベクトルを選択して充放電指令を決定し、該決定された充放電指令および前記相電圧指令を出力するステップと、
前記制御手段のゲート遷移部が、前記直流電圧一定制御部から出力された充放電指令および相電圧指令に基づいてゲート遷移方向を選択し、このゲート遷移方向に合わせたゲート信号を出力するステップとを備えたことを特徴とするマルチレベル電力変換器の制御方法。
A switching element series circuit in which the first to fourth switching elements are sequentially connected in series, and a first switching element side circuit of the switching element series circuit that is sequentially connected in series between the first switching element side end and the fourth switching element side end. The first and second capacitors, the common connection point of the first switching element and the second switching element, and the common connection point of the third switching element and the fourth switching element are sequentially connected in series. The first and second diodes, the fifth switching element having one end connected to a common connection point of the first capacitor and the first switching element, and the common of the second capacitor and the fourth switching element One end is connected to a common connection point of the sixth switching element, one end of which is connected to the connection point, and the first and second capacitors. And a first switching means that can be controlled in directions opposite to each other with a withstand voltage, and is configured by connecting a common connection point of the first and second diodes and a common connection point of the first and second capacitors. Multi-level power converters are provided for each phase of the three-phase AC,
The other ends of the fifth switching elements of the multi-phase power converter for each of the three phases are connected to the positive electrode of the DC voltage source, and the other ends of the sixth switching elements are connected to the negative electrode of the DC voltage source. And the other ends of the first switching means are connected as a neutral point to a common connection point of a third capacitor and a fourth capacitor connected in series between the positive and negative electrodes of the DC voltage source, A control method of a multi-level power converter configured such that a common connection point of the second and third switching elements of the multi-phase power converter of each of the three-phase phases is used as each output terminal of each of the three-phase phases. ,
The vector selection unit of the control unit that outputs a plurality of voltage levels by on / off control of the first to sixth switching elements and the first switching unit is a current command of the multi-level power conversion unit of the three-phase each phase Value, a voltage detection value and a current detection value at each output end of the multi-phase voltage conversion unit of each of the three phases, and from the current vector defined in the two-axis coordinate system region in the space vector control, Predicting and calculating the current of the multi-level power conversion unit for each of the three phases for each of the six vectors when the vectors move in the positive direction and the negative direction by a unit vector in each direction of the phase, Among them, a step of obtaining a phase voltage command by selecting a vector having the smallest deviation between the predicted current and the current command value of each of the three-phase phases,
The first and second capacitors of the three-phase each phase when the constant voltage control unit of the multi-level power conversion unit of the three-phase each phase of the control unit selects the vector determined by the phase voltage command. Estimating each capacitor voltage of the capacitor based on the predicted and calculated current, obtaining a charge / discharge command with a minimum deviation between the estimated capacitor voltage and the capacitor voltage command;
The DC voltage constant control unit of the control means is obtained by the current detection value of each phase of the multi-level power conversion unit of the three-phase each phase, the voltage detection value of the third and fourth capacitors, and the vector selection unit. The current flowing through the neutral point when the phase vector command and the charge / discharge command obtained by the constant capacitor voltage control unit are input and the destination vector determined by the phase voltage command of the vector selection unit is selected. And calculating a charge / discharge command by selecting a vector in which a deviation between the third capacitor voltage and the fourth capacitor voltage is eliminated from the destination vector, and determining the determined charge / discharge command and the phase voltage command. A step of outputting
A step of selecting a gate transition direction based on a charge / discharge command and a phase voltage command output from the DC voltage constant control unit, and outputting a gate signal in accordance with the gate transition direction; A control method for a multi-level power converter, comprising:
前記制御手段のオン、オフ制御は、同一電圧レベルの相電圧指令時に、前記第1のコンデンサ又は第2のコンデンサを充電させる制御モードと放電させる制御モードを有し、さらに、前記第1のコンデンサおよび第2のコンデンサを同時に充電させる制御モードと同時に放電させる制御モードとを有し、
前記三相各相のマルチレベル電力変換部のコンデンサ電圧一定制御部が充放電指令を求めるステップは、前記相電圧指令が変化したときに、変化直前の時点における前記第1のコンデンサ電圧、第2のコンデンサ電圧とコンデンサ電圧指令との偏差が正のときに、前記第1のコンデンサ、第2のコンデンサの少なくとも何れか一方を放電させる制御モードに移行させる充放電指令を決定し、前記第1のコンデンサ電圧、第2のコンデンサ電圧とコンデンサ電圧指令との偏差が負のときに、前記第1のコンデンサ、第2のコンデンサの少なくとも何れか一方を充電させる制御モードに移行させる充放電指令を決定することを特徴とする請求項3に記載のマルチレベル電力変換器の制御方法。
The on / off control of the control means has a control mode in which the first capacitor or the second capacitor is charged and a control mode in which the first capacitor or the second capacitor is discharged at the time of a phase voltage command at the same voltage level. And a control mode for simultaneously discharging the second capacitor and a control mode for discharging simultaneously.
The step of obtaining the charge / discharge command by the capacitor voltage constant control unit of the multi-level power conversion unit for each of the three-phase phases includes the first capacitor voltage, the second capacitor voltage immediately before the change, When the deviation between the capacitor voltage and the capacitor voltage command is positive, a charge / discharge command for shifting to a control mode for discharging at least one of the first capacitor and the second capacitor is determined, and the first When a deviation between the capacitor voltage and the second capacitor voltage and the capacitor voltage command is negative, a charge / discharge command for shifting to a control mode for charging at least one of the first capacitor and the second capacitor is determined. The control method of a multilevel power converter according to claim 3.
JP2012123844A 2012-05-31 2012-05-31 Multilevel power converter Pending JP2013251960A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012123844A JP2013251960A (en) 2012-05-31 2012-05-31 Multilevel power converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012123844A JP2013251960A (en) 2012-05-31 2012-05-31 Multilevel power converter

Publications (1)

Publication Number Publication Date
JP2013251960A true JP2013251960A (en) 2013-12-12

Family

ID=49850153

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012123844A Pending JP2013251960A (en) 2012-05-31 2012-05-31 Multilevel power converter

Country Status (1)

Country Link
JP (1) JP2013251960A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017051035A (en) * 2015-09-04 2017-03-09 株式会社明電舎 Control method for multi-phase power converter, and multi-phase power converter
CN109818508A (en) * 2017-11-20 2019-05-28 南京南瑞继保电气有限公司 A kind of flexible direct current converter valve submodule voltage control method and device
CN117200462A (en) * 2023-11-07 2023-12-08 深圳鹏城新能科技有限公司 Instruction detection circuit, grid-connected device and electronic equipment

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017051035A (en) * 2015-09-04 2017-03-09 株式会社明電舎 Control method for multi-phase power converter, and multi-phase power converter
CN109818508A (en) * 2017-11-20 2019-05-28 南京南瑞继保电气有限公司 A kind of flexible direct current converter valve submodule voltage control method and device
CN109818508B (en) * 2017-11-20 2021-02-09 南京南瑞继保电气有限公司 Voltage control method and device for flexible direct current converter valve submodule
CN117200462A (en) * 2023-11-07 2023-12-08 深圳鹏城新能科技有限公司 Instruction detection circuit, grid-connected device and electronic equipment
CN117200462B (en) * 2023-11-07 2024-03-26 深圳鹏城新能科技有限公司 Instruction detection circuit, grid-connected device and electronic equipment

Similar Documents

Publication Publication Date Title
EP2897279B1 (en) Multilevel converter systems and methods with reduced common mode voltage
US9906168B2 (en) Power converting apparatus, control device, and method for controlling power converting apparatus
US9130481B2 (en) Power converting appartatus
JP6232944B2 (en) Multi-level power converter
JP6186357B2 (en) Power converter
US20120287686A1 (en) Matrix converter
JP6111541B2 (en) Control method of multi-level power conversion circuit
JP6188827B2 (en) Power converter
JP2011109789A (en) Power conversion equipment
KR101588147B1 (en) Power conversion device
JP5360125B2 (en) Series multiple power converter
EP2755312B1 (en) Power conversion device
EP2755311B1 (en) Power conversion device
JP6671045B2 (en) Power conversion system
JP3636098B2 (en) Power converter control circuit
KR20140066063A (en) Motor driving apparatus and control method thereof
JP2013251960A (en) Multilevel power converter
US8976553B2 (en) Power conversion device
JP2020031485A (en) Power converter
JP5978927B2 (en) 5 level power converter
JP5978926B2 (en) 5 level power converter
JP6291882B2 (en) AC-AC converter
JP2020156162A (en) Power conversion device
JP4983051B2 (en) Power conversion control system
JP7182478B2 (en) power converter