JP2013251089A - Vacuum circuit breaker - Google Patents

Vacuum circuit breaker Download PDF

Info

Publication number
JP2013251089A
JP2013251089A JP2012123918A JP2012123918A JP2013251089A JP 2013251089 A JP2013251089 A JP 2013251089A JP 2012123918 A JP2012123918 A JP 2012123918A JP 2012123918 A JP2012123918 A JP 2012123918A JP 2013251089 A JP2013251089 A JP 2013251089A
Authority
JP
Japan
Prior art keywords
electrode
movable electrode
contact surface
contact
circuit breaker
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012123918A
Other languages
Japanese (ja)
Inventor
Toshinori Kimura
俊則 木村
Mitsuru Tsukima
満 月間
Daiki Donen
大樹 道念
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2012123918A priority Critical patent/JP2013251089A/en
Publication of JP2013251089A publication Critical patent/JP2013251089A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • High-Tension Arc-Extinguishing Switches Without Spraying Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve withstand voltage performance without increasing contact separation of a movable electrode and, especially, to improve interruption performance in a leading small current interruption testing and a capacitor bank opening/closing testing.SOLUTION: A vacuum circuit breaker is provided with a movable electrode 1 and a fixed electrode 2 both of which are freely brought into contact with each other and into separation from each other and another movable electrode 9 provided at a central portion of a contact surface of the fixed electrode 2. At the time of closing of the vacuum circuit breaker, a pre-arc is generated at a contact point of another movable electrode 9 by protruding another movable electrode 9 from the contact surface of the fixed electrode 2. At the time of contact separation, another movable electrode 9 is brought into a state where another movable electrode 9 is pressed into the fixed electrode 2. Accordingly, damage to contact points due to deposition and peeling occurs on a contact surface of another movable electrode 9 and a surface opposite thereto only, and peripheral portions of electrode contact surfaces are free of occurrence of the deposition and the peeling. On account of this, local increases in electric fields are free of occurrence, withstand voltage between electrodes is improved and interruption performance is improved.

Description

この発明は、真空遮断器に関するもので、特に定格電圧が高く、進み小電流遮断試験およびコンデンサバンク開閉試験における遮断性能の高い真空遮断器に関するものである。   The present invention relates to a vacuum circuit breaker, and more particularly to a vacuum circuit breaker having a high rated voltage and a high breaking performance in an advanced small current breaking test and a capacitor bank switching test.

従来の真空遮断器に用いられる真空バルブでは、一対の可動電極と固定電極の接点を用いて遮断性能と耐電圧性能の両性能を確保するのが基本構造であるが、近年の高電圧化、大容量化に対応するため、真空バルブの内部の接点数を直列に二対に増やして、遮断性能は短ギャップの平行磁界形電極で、また、耐電圧性能は長ギャップの耐電圧電極で分担することで解決したものがある。(例えば特許文献1)   In the vacuum valve used in the conventional vacuum circuit breaker, the basic structure is to secure both the breaking performance and the withstand voltage performance using a pair of movable electrode and fixed electrode contacts. In order to cope with the increase in capacity, the number of contacts inside the vacuum valve is increased to two pairs in series, the breaking performance is shared by parallel magnetic field type electrodes with a short gap, and the withstand voltage performance is shared by a withstand voltage electrode with a long gap. There is something that was solved by doing. (For example, Patent Document 1)

特開昭58−68818号公報JP 58-68818 A

従来の真空遮断器に用いられる真空バルブでは、遮断用の平行磁界型電極と耐圧用に開極距離を大きくした耐電圧電極を直列に設けるため、電極部分の寸法が大きくなるとともに耐電圧可動電極の可動距離が大きくなる。従って、電極部分を収納する密封容器が大きくなるとともに、耐電圧可動電極を封止するベローズが長くなり、それに伴って真空バルブが大きくなってしまうという課題があった。また、真空バルブの可動電極は例えば1m/s以上の高速で開極する必要があり、特に定格電圧が高い真空バルブの方が開極スピードを速くする必要があるため、長いベローズにおいては座屈が生じやすくなるという課題もあった。さらに、可動電極の開極距離が大きくなると電極を開閉する駆動機構も大きくなってしまうという課題があった。   In a vacuum valve used in a conventional vacuum circuit breaker, a parallel magnetic field type electrode for breaking and a withstand voltage electrode with a large opening distance for withstand voltage are provided in series, so that the size of the electrode portion increases and the withstand voltage movable electrode The movable distance becomes larger. Accordingly, there is a problem that the sealed container for storing the electrode portion becomes large, the bellows for sealing the withstand voltage movable electrode becomes long, and the vacuum valve becomes large accordingly. In addition, the movable electrode of the vacuum valve needs to be opened at a high speed of, for example, 1 m / s or more, and the vacuum valve with a higher rated voltage needs to increase the opening speed. There is also a problem that it is likely to occur. Furthermore, when the opening distance of the movable electrode is increased, there is a problem that a drive mechanism for opening and closing the electrode is also increased.

この発明は、上記のような課題を解決するためになされたもので、密封容器の大きさや可動電極の開極距離を大きくすること無く耐電圧性能を向上させ、遮断性能の良い真空遮断器を得ることを目的とする。   The present invention has been made to solve the above-described problems, and improves the withstand voltage performance without increasing the size of the sealed container or the opening distance of the movable electrode. The purpose is to obtain.

この発明に係わる真空遮断器は、密封状態に保持された容器内に接離可能に設けられた可動電極および固定電極と、該可動電極および固定電極の何れか一方の電極の接点面の中心部に設けられた別の可動電極と、該別の可動電極を上記電極の接点が開く動作時には電極の接点面に押し込まれた状態で保持するとともに、上記電極の接点が閉じる動作時には電極の接点面から突出させて保持する保持機構とを備えたものである。   A vacuum circuit breaker according to the present invention includes a movable electrode and a fixed electrode that are detachably provided in a sealed container, and a central portion of a contact surface of one of the movable electrode and the fixed electrode. And the other movable electrode is held in a state where it is pushed into the contact surface of the electrode when the contact of the electrode is opened, and the contact surface of the electrode is closed when the contact of the electrode is closed And a holding mechanism for protruding and holding.

この発明の真空遮断器によれば、密封状態に保持された容器内に接離可能に設けられた可動電極および固定電極の何れか一方の電極の接点面の中心部に別の可動電極を設けたため、密封容器や可動電極の開極距離を大きくすること無く耐電圧性能を向上させることができる。また、可動電極の開極距離を大きくすることが無いので、ベローズを長くする必要が無く、真空バルブが大きくなることもない。さらに、保持機構によって上記別の可動電極を上記電極の接点が開く動作時には電極の接点面に押し込まれた状態で保持するとともに、上記電極の接点が閉じる動作時には電極の接点面から突出させて保持するため、遮断性能を示す進み小電流遮断試験性能とコンデンサバンク開閉試験性能が向上する。   According to the vacuum circuit breaker of the present invention, another movable electrode is provided at the center of the contact surface of either one of the movable electrode and the fixed electrode that are detachably provided in the sealed container. Therefore, the withstand voltage performance can be improved without increasing the opening distance of the sealed container or the movable electrode. Further, since the opening distance of the movable electrode is not increased, it is not necessary to lengthen the bellows and the vacuum valve is not increased. Further, the holding mechanism holds the other movable electrode in a state of being pushed into the contact surface of the electrode when the contact of the electrode is opened, and holds the movable electrode protruding from the contact surface of the electrode when the contact of the electrode is closed. Therefore, the advanced small current interruption test performance indicating the interruption performance and the capacitor bank switching test performance are improved.

この発明の実施の形態1に係る真空遮断器を示す側面断面図である。It is side surface sectional drawing which shows the vacuum circuit breaker which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る真空バルブの投入動作における各電極の動きを説明する説明図である。It is explanatory drawing explaining the movement of each electrode in the injection | throwing-in operation | movement of the vacuum valve which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る真空バルブの遮断動作における各電極の動きを説明する説明図である。It is explanatory drawing explaining the motion of each electrode in the interruption | blocking operation | movement of the vacuum valve which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る真空遮断器における真空バルブの固定電極側の構造を示す側面断面図である。It is side surface sectional drawing which shows the structure by the side of the fixed electrode of the vacuum valve in the vacuum circuit breaker concerning Embodiment 1 of this invention. この発明の実施の形態1に係る真空遮断器における保持機構のラッチ機構を説明する説明図である。It is explanatory drawing explaining the latch mechanism of the holding mechanism in the vacuum circuit breaker concerning Embodiment 1 of this invention. この発明の実施の形態1に係る真空バルブの開極時の接点中央部における電界の時間変化を示すグラフ図である。It is a graph which shows the time change of the electric field in the contact center part at the time of opening of the vacuum valve which concerns on Embodiment 1 of this invention. この発明の実施の形態2に係る真空遮断器における保持機構の動作を説明する説明図である。It is explanatory drawing explaining operation | movement of the holding mechanism in the vacuum circuit breaker concerning Embodiment 2 of this invention. この発明の実施の形態2に係る真空バルブの各電極の状態を説明する説明図である。It is explanatory drawing explaining the state of each electrode of the vacuum valve which concerns on Embodiment 2 of this invention. この発明の実施の形態3に係る真空遮断器における真空バルブの可動電極側の構造を示す側面断面図である。It is side surface sectional drawing which shows the structure by the side of the movable electrode of the vacuum valve in the vacuum circuit breaker concerning Embodiment 3 of this invention. 従来の真空遮断器における真空バルブの電極の開閉動作を説明する説明図である。It is explanatory drawing explaining the opening / closing operation | movement of the electrode of the vacuum valve in the conventional vacuum circuit breaker.

実施の形態1.
図1はこの発明の実施の形態1に係る真空遮断器を示す側面断面図、図4はその真空バルブの固定電極側の構造を示す側面断面図である。図において、真空遮断器はタンク27と、該タンク27内の中央部に設置された真空バルブ19と、タンク27の外部に設けられた保持機構12、図示していない開閉機構およびブッシングを主要部品とし、ブッシングの導体28と真空バルブ19で電路を構成し、上記開閉機構で真空バルブ19内の一対の電極の接点を開閉することで電流を入り切りする。
上記真空バルブ19は、密封状態に保持された絶縁筒18内に、該絶縁筒18の軸方向に対向して接離可能に配置された一対の可動電極1および固定電極2を備え、可動電極1の接点面の裏側に固着された可動電極棒3をベローズ5と可動側フランジ7を介して絶縁筒18に取り付けるとともに、可動側絶縁ロッド21およびタンク側ベローズ26を介してタンク27に取り付けて、図示していない開閉機構によって、図1の左右方向に開閉駆動される。また、固定電極2の接点面の裏側に固着された固定電極棒4が固定側フランジ8を介して絶縁筒18に取り付けられている。
Embodiment 1 FIG.
FIG. 1 is a side sectional view showing a vacuum circuit breaker according to Embodiment 1 of the present invention, and FIG. 4 is a side sectional view showing a structure on the fixed electrode side of the vacuum valve. In the figure, the vacuum circuit breaker includes a tank 27, a vacuum valve 19 installed in the center of the tank 27, a holding mechanism 12 provided outside the tank 27, an opening / closing mechanism and a bushing not shown. The bushing conductor 28 and the vacuum valve 19 constitute an electric circuit, and the current is turned on and off by opening and closing the contacts of the pair of electrodes in the vacuum valve 19 by the opening and closing mechanism.
The vacuum valve 19 includes a pair of the movable electrode 1 and the fixed electrode 2 which are disposed in an insulating cylinder 18 held in a sealed state so as to be opposed to and away from each other in the axial direction of the insulating cylinder 18. The movable electrode rod 3 fixed to the back side of the contact surface 1 is attached to the insulating cylinder 18 via the bellows 5 and the movable flange 7, and is attached to the tank 27 via the movable insulating rod 21 and the tank side bellows 26. 1 is opened and closed in the left-right direction in FIG. 1 by an opening / closing mechanism (not shown). The fixed electrode rod 4 fixed to the back side of the contact surface of the fixed electrode 2 is attached to the insulating cylinder 18 via the fixed side flange 8.

さらに、固定電極棒4は中空形状となっており、固定電極2の接点面の中央部に別の可動電極9を設け、該別の可動電極9の接点面の裏側に固着された別の可動電極棒10が上記中空形状の固定電極棒4内を貫通させて設けられ、固定側ベローズ6を介して固定側フランジ8に取り付けられるとともに、固定側絶縁ロッド20およびタンク側ベローズ26を介してタンク27に取り付けられ、保持装置12のロッド25に接続されて、保持装置12により別の可動電極9が後述の所定位置になるように保持される。また、固定側フランジ8には強度補強と電流の通路となる支持ブロック32が固着されており、該支持ブロック32は支持枠30および絶縁ブッシング31を介してタンク27内に固定されている。上記図示していないブッシングの導体28は可とう導体34を介して支持ブロック32に電気的に接続されており、可とう導体34で接続しているため、真空バルブ19の固定時の軸合わせなどの作業性が良くなる。また、可動側もブッシングの導体28は可とう導体34を介して可動電極棒3に固定した割り端子に取り付けられている。   Further, the fixed electrode rod 4 has a hollow shape, and another movable electrode 9 is provided at the center of the contact surface of the fixed electrode 2, and another movable electrode fixed to the back side of the contact surface of the other movable electrode 9. An electrode rod 10 is provided so as to penetrate through the hollow fixed electrode rod 4 and is attached to the fixed flange 8 via the fixed bellows 6, and the tank via the fixed insulating rod 20 and the tank bellows 26. 27, connected to the rod 25 of the holding device 12, and the holding device 12 holds the other movable electrode 9 at a predetermined position described later. In addition, a support block 32 that serves as a strength reinforcement and a current passage is fixed to the fixed-side flange 8, and the support block 32 is fixed in the tank 27 via a support frame 30 and an insulating bushing 31. The bushing conductor 28 (not shown) is electrically connected to the support block 32 via the flexible conductor 34, and is connected by the flexible conductor 34, so that the shaft alignment when the vacuum valve 19 is fixed, etc. Workability is improved. On the movable side, the bushing conductor 28 is attached to a split terminal fixed to the movable electrode rod 3 via a flexible conductor 34.

絶縁筒18はセラミックで形成されており、該セラミックには薄い金属であるメタライズ層を設けてフランジ7および8とロウ付けにより固定する。このため、メタライズ層の端部が高電界となるためシールド33を絶縁筒18の左右の両端部を取り囲んで設ける。また、別の可動電極棒10は可とう導体35および支持具36を介して支持ブロック32に電気的に接続されるとともに、ガイド37により軸合わせされ図1の左右方向にスライド可能に支持されている。タンク27は接地電位であるが、ブッシングの導体28と真空バルブ19の中の各導体は高電圧となるので、これらの間に位置する絶縁ロッド20、絶縁ロッド21および絶縁ブッシング31は絶縁材料製として耐電圧を確保する。また、タンク27の中は絶縁性ガスであるSF6ガス、空気、窒素ガス等を封入する。また、真空遮断器の遮断性能を高める手段として、縦磁界電極がある。図2(a)に示すように、一対の可動電極1および固定電極2は遮断動作時に縦磁界を発生するコイル17を介して可動電極棒3および固定電極棒4にそれぞれ固着して縦磁界電極を構成しており、コイル17の強度補強のため補強部材50を設ける。   The insulating cylinder 18 is made of ceramic, and a thin metallized layer is provided on the ceramic and fixed to the flanges 7 and 8 by brazing. For this reason, since the end portion of the metallized layer becomes a high electric field, the shield 33 is provided so as to surround both left and right end portions of the insulating cylinder 18. Further, the other movable electrode rod 10 is electrically connected to the support block 32 via a flexible conductor 35 and a support 36, and is axially aligned by a guide 37 and supported so as to be slidable in the left-right direction in FIG. Yes. Although the tank 27 is at ground potential, the bushing conductor 28 and each conductor in the vacuum valve 19 have a high voltage, so that the insulating rod 20, the insulating rod 21, and the insulating bushing 31 positioned between them are made of an insulating material. Assure the withstand voltage. The tank 27 is filled with SF6 gas, air, nitrogen gas, etc., which are insulating gases. In addition, there is a longitudinal magnetic field electrode as means for improving the breaking performance of the vacuum circuit breaker. As shown in FIG. 2A, the pair of movable electrode 1 and fixed electrode 2 are fixed to the movable electrode bar 3 and the fixed electrode bar 4 via a coil 17 that generates a vertical magnetic field during the blocking operation, respectively. The reinforcing member 50 is provided for reinforcing the strength of the coil 17.

次に上記保持機構12の詳細構成について説明する。バネ11はタンク27に固定されたバネ支持板13に設けたバネボックス22に収納される。該バネボックス22はロッド25に固定された圧縮板24を備え、バネ11が圧縮板24を押すことで別の可動電極棒10に対して、該別の可動電極棒10の軸と平行で、別の可動電極9から対向する可動電極1に向かう方向の力が発生する。このため、別の可動電極9を固定電極2の接点面より突出させることができる。この突出長を例えば5mmに規定するため、バネボックス22にはストッパ部23が設けられている。また、保持機構12にはロッド25の右端部に図5に示すラッチ機構が設けられている。別の可動電極9は別の電極棒10および絶縁ロッド20を介してロッド25につながる。該ロッド25の動きは連結部61によってアーム59に伝わる。アーム59は支点58を中心に回転し、支点58と連結部61の距離よりも支点58と突起60の距離の方が大きいため、突起60ではロッド25の動きが拡大され、別の可動電極9の移動距離が小さくても上記ラッチ機構を働かせることができる。   Next, the detailed configuration of the holding mechanism 12 will be described. The spring 11 is housed in a spring box 22 provided on a spring support plate 13 fixed to the tank 27. The spring box 22 includes a compression plate 24 fixed to a rod 25, and the spring 11 presses the compression plate 24 so that the other movable electrode rod 10 is parallel to the axis of the other movable electrode rod 10, A force in a direction from another movable electrode 9 toward the opposed movable electrode 1 is generated. For this reason, another movable electrode 9 can be protruded from the contact surface of the fixed electrode 2. In order to regulate the protruding length to 5 mm, for example, the spring box 22 is provided with a stopper portion 23. Further, the holding mechanism 12 is provided with a latch mechanism shown in FIG. Another movable electrode 9 is connected to a rod 25 via another electrode rod 10 and an insulating rod 20. The movement of the rod 25 is transmitted to the arm 59 by the connecting portion 61. The arm 59 rotates around the fulcrum 58, and the distance between the fulcrum 58 and the protrusion 60 is larger than the distance between the fulcrum 58 and the connecting portion 61. Even if the moving distance is small, the latch mechanism can be operated.

突起60は回転板54に設けられた逆へ字形の溝55に嵌め込まれている。回転板54は支点57によって回動可能に支持されており、図示していないバネにより矢印65方向の力が加えられているとともに、図示していないソレノイドによって矢印56方向の力が加えられる。このため、別の可動電極9が固定電極3の接点面から突出した状態では、図5(a)のようにロッド25に対してバネ11の力が矢印64の方向に働いている。さらに図示していないソレノイドによって図示していないバネの矢印65方向の力を上回る矢印56方向の力を働かせることで、突起60は溝55の右端に位置する。別の可動電極9が固定電極3の接点面に押し込まれた状態では、図5(b)のようにロッド25は右に移動するため突起60は左に移動しようとする。ここで図示していないソレノイドによる矢印56方向の力が印加しないようにしておくと、図示していないバネの矢印65方向の力で上記回転板54が回転し、突起60が溝55の左端に移動する。ロッド25にバネ11による矢印64方向の力が印加しても、溝55の形状により突起60は右に移動しないので、この状態で接点を開極しても別の可動電極9は固定電極3の接点面に押し込まれた状態を維持する。   The protrusion 60 is fitted in a reverse-curved groove 55 provided on the rotating plate 54. The rotating plate 54 is rotatably supported by a fulcrum 57, and a force in the direction of arrow 65 is applied by a spring (not shown), and a force in the direction of arrow 56 is applied by a solenoid (not shown). For this reason, when another movable electrode 9 protrudes from the contact surface of the fixed electrode 3, the force of the spring 11 acts on the rod 25 in the direction of the arrow 64 as shown in FIG. Further, the projection 60 is positioned at the right end of the groove 55 by applying a force in the direction of the arrow 56 exceeding a force in the direction of the arrow 65 of the spring (not shown) by a solenoid (not shown). In a state where another movable electrode 9 is pushed into the contact surface of the fixed electrode 3, the rod 25 moves to the right as shown in FIG. 5B, so that the protrusion 60 tends to move to the left. If the force in the direction of the arrow 56 by the solenoid (not shown) is not applied, the rotary plate 54 is rotated by the force in the direction of the arrow 65 (not shown), and the protrusion 60 is placed at the left end of the groove 55. Moving. Even if a force in the direction of the arrow 64 by the spring 11 is applied to the rod 25, the protrusion 60 does not move to the right due to the shape of the groove 55. Therefore, even if the contact is opened in this state, the other movable electrode 9 is fixed electrode 3 The state of being pushed into the contact surface of is maintained.

次に実施の形態1における動作について、図2および図3にもとづいて説明する。図2はこの発明の実施の形態1に係る真空バルブの投入動作における各電極の動きを説明する説明図、図3はこの発明の実施の形態1に係る真空バルブの遮断動作における各電極の動きを説明する説明図である。図2(a)において、可動電極1と固定電極2とが開極している状態では、固定電極2の接点面の中央部に設けられた別の可動電極9は固定電極2に押し込まれた状態であり、保持機構12のラッチ機構は図5(b)の状態になっている。この状態から真空遮断器の投入動作が開始されると、まず閉極動作の前に図5(a)の回転板54に図示していないソレノイドによって矢印56方向の力を加えて保持機構12のラッチを外すと、バネ11による矢印64方向の力により、図2(b)のように別の可動電極9を固定電極2の接点面から突出させる。この状態で図示していない開閉機構により可動電極1が図1の右方向に移動して可動電極1と固定電極2が閉極していくと、図2(c)に示すように、最初に可動電極1と別の可動電極9とが接触する。続いて、図2(d)に示すように図示していない開閉機構により可動電極1と固定電極2が完全に閉極すると、別の可動電極9は固定電極2に押し込まれ、保持機構12は図5(b)の状態になり、別の稼動電極9は固定電極9に押し込まれた状態の位置で保持される。   Next, the operation in the first embodiment will be described with reference to FIG. 2 and FIG. FIG. 2 is an explanatory diagram for explaining the movement of each electrode in the closing operation of the vacuum valve according to Embodiment 1 of the present invention, and FIG. 3 is the movement of each electrode in the shutoff operation of the vacuum valve according to Embodiment 1 of the present invention. It is explanatory drawing explaining these. In FIG. 2A, in the state where the movable electrode 1 and the fixed electrode 2 are open, another movable electrode 9 provided at the center of the contact surface of the fixed electrode 2 is pushed into the fixed electrode 2. The latch mechanism of the holding mechanism 12 is in the state shown in FIG. When the closing operation of the vacuum circuit breaker is started from this state, first, before the closing operation, a force in the direction of the arrow 56 is applied to the rotating plate 54 of FIG. When the latch is removed, another movable electrode 9 is projected from the contact surface of the fixed electrode 2 as shown in FIG. In this state, when the movable electrode 1 is moved in the right direction in FIG. 1 by the opening / closing mechanism (not shown) and the movable electrode 1 and the fixed electrode 2 are closed, first, as shown in FIG. The movable electrode 1 and another movable electrode 9 are in contact with each other. Subsequently, when the movable electrode 1 and the fixed electrode 2 are completely closed by an opening / closing mechanism (not shown) as shown in FIG. 2D, another movable electrode 9 is pushed into the fixed electrode 2, and the holding mechanism 12 is 5B, the other working electrode 9 is held at a position where it is pushed into the fixed electrode 9. In the state shown in FIG.

一方、遮断動作では図3(a)に示すように、別の可動電極9が固定電極2に押し込まれた状態で図示していない開閉機構によって可動電極1が図1の左方向に移動させられるため、可動電極1と固定電極2は開極する。開極しても保持機構12は図5(b)の状態のままであるため、図3(b)に示すように別の可動電極9は固定電極2に押し込まれた状態の位置で保持される。   On the other hand, in the blocking operation, as shown in FIG. 3A, the movable electrode 1 is moved leftward in FIG. 1 by an opening / closing mechanism (not shown) with another movable electrode 9 pushed into the fixed electrode 2. Therefore, the movable electrode 1 and the fixed electrode 2 are opened. Since the holding mechanism 12 remains in the state shown in FIG. 5B even when the pole is opened, the other movable electrode 9 is held at the position where it is pushed into the fixed electrode 2 as shown in FIG. 3B. The

以上のように構成された本発明の真空遮断機においては、密封状態に保持された容器内に接離可能に設けられた可動電極1および固定電極2と該固定電極2の接点面の中心部に別の可動電極9を設けたため、密封容器や可動電極1の開極距離を大きくすることが無く、また、可動電極1の開極距離を大きくすることが無いので、ベローズ5、26を長くする必要が無く、真空バルブ19が大きくなることもない。   In the vacuum circuit breaker of the present invention configured as described above, the movable electrode 1 and the fixed electrode 2 provided in the container held in a sealed state so as to be able to come into contact with and away from each other, and the central portion of the contact surface of the fixed electrode 2 Since the other movable electrode 9 is provided, the opening distance of the sealed container or the movable electrode 1 is not increased, and the opening distance of the movable electrode 1 is not increased. The vacuum valve 19 does not become large.

次いで、上記のように構成された真空遮断器の遮断性能および耐電圧性能について、より分かりやすくするため、従来の真空バルブの電極構造と対比させて説明する。一般に、送電線もしくはコンデンサバンク開閉に用いられる真空遮断器は、送電線の対地キャパシタンスまたはコンデンサバンクのキャパシタンスによって決まる進み小電流を遮断する能力が要求される。このため、進み小電流遮断試験やコンデンサバンク開閉試験を実施して遮断性能を検出する必要がある。この進み小電流遮断試験やコンデンサバンク開閉試験を行った真空遮断器の電極の接点表面分析を実施した結果、以下の現象が起こっていることを見出した。回路電圧を印加した状態で電極を閉じていくと、固定電極2と可動電極1の間の電界が高くなり、該電極が閉じる前に絶縁破壊が生じる。この時に生じるアーク(以後、プレアークと呼ぶ)の熱によって電極の接点表面に溶融が生じる。この後、電極は閉じ、溶融部位は熱拡散により温度が下がり溶着する。続く開極動作によって、溶着部位は引き剥がされるので、接点表面に損傷が生じる。この損傷によって、電極の接点表面には高さ数十μmから数百μmの微小な突起が生じ、その先端には高電界が生じるため遮断性能や耐電圧性能が低下する。   Next, the breaking performance and the withstand voltage performance of the vacuum circuit breaker configured as described above will be described in comparison with the electrode structure of a conventional vacuum valve for easier understanding. In general, a vacuum circuit breaker used for opening / closing a transmission line or a capacitor bank is required to have an ability to cut off a small advance current determined by the ground capacitance of the transmission line or the capacitance of the capacitor bank. For this reason, it is necessary to detect the breaking performance by conducting a progressive small current breaking test and a capacitor bank switching test. As a result of conducting contact surface analysis of the electrode of the vacuum circuit breaker in which this advanced small current interruption test and capacitor bank switching test were conducted, it was found that the following phenomenon occurred. When the electrode is closed with the circuit voltage applied, the electric field between the fixed electrode 2 and the movable electrode 1 becomes high, and dielectric breakdown occurs before the electrode is closed. The heat of the arc generated at this time (hereinafter referred to as pre-arc) causes melting on the contact surface of the electrode. Thereafter, the electrode is closed, and the melted portion is welded with the temperature lowered by thermal diffusion. Subsequent opening operation causes the welded site to be peeled off, causing damage to the contact surface. Due to this damage, a minute protrusion having a height of several tens to several hundreds of μm is generated on the contact surface of the electrode, and a high electric field is generated at the tip thereof, so that the breaking performance and the withstand voltage performance are lowered.

この現象を図10に示す従来の真空遮断機における電極の動作説明図にもとづいて説明する。図10において、通常の真空バルブでは固定電極と可動電極だけがあるが、特許文献1の真空バルブでは中間ホルダ90を設けており、該中間ホルダ90の両端部にそれぞれ一対の耐電圧可動電極91と耐電圧中間電極92ならびに一対の平行磁界型中間電極93と平行磁界型固定電極94が設けられており、ストッパー95で遮断性能を高めるために上記一対の平行磁界型電極93および94の開極距離は遮断に最適な十数mmの短い距離にするとともに、上記一対の耐電圧電極91および92は耐電圧性能を高めるために十数mm以上の長い開極距離としている。中間ホルダガイド板96と上記耐電圧中間電極との間には圧縮バネ97が設けられている。   This phenomenon will be described with reference to the operation explanatory diagram of the electrode in the conventional vacuum circuit breaker shown in FIG. In FIG. 10, a normal vacuum valve has only a fixed electrode and a movable electrode, but the vacuum valve of Patent Document 1 includes an intermediate holder 90, and a pair of voltage-resistant movable electrodes 91 are provided at both ends of the intermediate holder 90. And a withstand voltage intermediate electrode 92 and a pair of parallel magnetic field type intermediate electrodes 93 and a parallel magnetic field type fixed electrode 94 are provided. In order to improve the blocking performance by the stopper 95, the pair of parallel magnetic field type electrodes 93 and 94 are opened. The distance is set to a short distance of 10 and 10 mm, which is optimal for interruption, and the pair of voltage-resistant electrodes 91 and 92 has a long opening distance of 10 and more mm in order to improve the voltage resistance performance. A compression spring 97 is provided between the intermediate holder guide plate 96 and the withstand voltage intermediate electrode.

次に、このように構成された従来の電極の動作について説明する。開極状態では図10(a)に示すように一対の平行磁界型電極93、94と一対の耐電圧電極91、92の両方とも開いている。閉極動作では図10(b)閉極途中に示すように、まず一対の耐電圧電極91、92が閉じ、さらに図示していない開閉機構によって圧縮バネ97を押し縮めることで、一対の平行磁界型電極93、94も閉じるが、このときに発生したプレアークにより図10(c)閉極状態に示すように一対の平行磁界型電極93、94に融着98が生ずる。開極時は10(d)開極途中のようにまず一対の平行磁界型電極93、94が開くので、該一対の平行磁界型電極93、94の接点表面に上記引き剥がしによる微小な突起99が発生しアークが発生するため遮断性能が低下するが、一対の平行磁界型電極93、94は高い遮断性能を持つのでアークは消弧する。その後、図10(e)に示すように一対の耐電圧電極91、92が長い開極距離で開くので、耐電圧性能は高くなる。   Next, the operation of the conventional electrode configured as described above will be described. In the open state, as shown in FIG. 10A, both the pair of parallel magnetic field type electrodes 93 and 94 and the pair of withstand voltage electrodes 91 and 92 are open. In the closing operation, as shown in the middle of closing in FIG. 10 (b), the pair of withstand voltage electrodes 91 and 92 are first closed, and the compression spring 97 is further compressed by an opening / closing mechanism (not shown), thereby a pair of parallel magnetic fields. The mold electrodes 93 and 94 are also closed, but the pre-arc generated at this time causes fusion 98 to occur between the pair of parallel magnetic field type electrodes 93 and 94 as shown in FIG. At the time of opening, since the pair of parallel magnetic field type electrodes 93 and 94 is opened first as in the case of 10 (d) opening, the minute protrusion 99 by the above-mentioned peeling is formed on the contact surface of the pair of parallel magnetic field type electrodes 93 and 94. However, since the arc is generated and the interruption performance is deteriorated, the pair of parallel magnetic field type electrodes 93 and 94 have high interruption performance, so that the arc is extinguished. Thereafter, as shown in FIG. 10 (e), the pair of withstand voltage electrodes 91 and 92 are opened at a long opening distance, so that the withstand voltage performance is improved.

一般に電極間に電圧が印加されている状態においては、電極の接点面の周辺部の方が中央部に比べて高電界となるため、上記プレアークによる溶着98および引き剥がしによる微小な突起99は電極の接点面の周辺部に発生しやすく、周辺部に発生した場合の方が中央部に発生した場合よりも遮断性能が低下するため、電極の接点面の周辺部にR加工を施したり、電極の接点面の中央部を突出させるなど、電極形状を工夫することによって少しでも遮断性能を向上させる対策が実施されているが、電極の接点面の周辺部にR加工を施したものでは、その直ぐ内側の接点面の平坦部分で、上記融着98および引き剥がしによる突起98が発生し、その突起98の発生した部分が高電界となって遮断性能が低下する。また、電極の接点面の中央が突出している形状においては、接点中央部は接点周辺部よりギャップ長が短いため高電界となる。この中央突出部に溶着引き剥がしによる微小な突起ができるため、極端な高電界となり遮断性能が低下する。   In general, when a voltage is applied between the electrodes, the peripheral portion of the contact surface of the electrode has a higher electric field than the central portion. Therefore, the welding 98 by the pre-arc and the minute protrusion 99 by the peeling are the electrodes. Since the breaking performance is lower in the peripheral part of the contact surface of the electrode than in the case where it occurs in the central part, the peripheral part of the electrode contact surface is subjected to R machining, Measures to improve the shut-off performance as much as possible by devising the electrode shape, such as projecting the center part of the contact surface of the electrode, but in the case where the periphery of the contact surface of the electrode is subjected to R processing, At the flat portion of the contact surface immediately inside, the above-mentioned fusion 98 and the protrusion 98 due to the peeling are generated, and the portion where the protrusion 98 is generated becomes a high electric field and the interruption performance is lowered. Moreover, in the shape where the center of the contact surface of the electrode protrudes, the contact center portion has a higher electric field because the gap length is shorter than the contact periphery portion. Since a minute protrusion is formed on the central projecting portion by welding and peeling, an extremely high electric field is generated and the interruption performance is lowered.

一方、本発明の電極構造では、真空バルブの開極距離は数十mmという値で、定格電圧が高いほど開極距離も大きくなる。これに対して、投入時のプレアークは電極間距離が数mmという小さな値になった所で発生する。そこで、別の可動電極9の固定電極2からの突出量を例えば5mmとすると、別の可動電極9の表面電界の方が固定電極2の接点面周辺部より先に放電発生電界となり、別の可動電極9でプレアークが発生する。閉極時に図2(c)のように上記別の可動電極9とその対向面の上記可動電極1の接点面の中央部が最初に接するので、閉極時のプレアークによる溶着引き剥がしによって生じる突起は別の可動電極9の接点面とその対向面である可動電極1の接点面の中央部でのみ発生し、別の可動電極9と可動電極1が接触すると可動電極1と固定電極2は同電位となるため、プレアークは発生しない。別の可動電極9のある接点面中央部は接点面周辺部に比べて電界が低いため、溶着引き剥がしによる微小な突起ができても突起先端の電界は接点周辺部にできた場合に比べて緩和される。さらに、可動電極1の接点面周辺部および固定電極2の接点面はプレアークが発生しないため清浄に保たれるので、電界の局所的上昇が発生せず電極間耐電圧は向上し、その結果、進み小電流遮断試験およびコンデンサバンク開閉試験における遮断性能が向上することとなる。   On the other hand, in the electrode structure of the present invention, the opening distance of the vacuum valve is a value of several tens mm, and the opening distance increases as the rated voltage increases. On the other hand, the pre-arc at the time of charging occurs when the distance between the electrodes becomes a small value of several mm. Therefore, if the amount of protrusion of the other movable electrode 9 from the fixed electrode 2 is, for example, 5 mm, the surface electric field of the other movable electrode 9 becomes a discharge generating electric field before the peripheral portion of the contact surface of the fixed electrode 2. A pre-arc is generated at the movable electrode 9. As shown in FIG. 2 (c), the center of the contact surface of the movable electrode 1 on the opposite surface of the movable electrode 9 is first in contact with the other movable electrode 9 at the time of closing. Occurs only at the center of the contact surface of another movable electrode 9 and the contact surface of the movable electrode 1 which is the opposite surface. When the movable electrode 9 and the movable electrode 1 come into contact with each other, the movable electrode 1 and the fixed electrode 2 are the same. Since it becomes a potential, no pre-arcing occurs. Since the electric field at the center of the contact surface with another movable electrode 9 is lower than that at the periphery of the contact surface, the electric field at the tip of the protrusion is smaller than that at the periphery of the contact even if a minute protrusion is formed by welding peeling. Alleviated. Further, since the pre-arc does not occur in the peripheral portion of the contact surface of the movable electrode 1 and the contact surface of the fixed electrode 2, the electric field is not increased locally and the withstand voltage between the electrodes is improved. The cut-off performance in the advanced small current cut-off test and the capacitor bank switching test will be improved.

ここで、進み小電流遮断試験における接点表面電界の変化を調べたところ、再起電圧の立ち上り速度と開極動作による接点間ギャップ長の増大の関係から、開極途中に接点表面電界が最大となることが分った。本発明による真空遮断器の電極形状を用いて電界解析した結果を図6に示す。図6において、縦軸は接点中央部の電界を示す。再起電圧第1波目の電界が極端に高く、その後のピーク電界は一定となる。さらに、再起電圧第1波目の電界ピークでは、接点中心部の電界が、接点周辺部で溶着引き外しによる微小な突起ができる位置の電界より約20%小さくなった。微小な突起ができることによる電界増倍率をβとすると、接点中心部の場合も接点周辺部の場合も電界はβ倍になるので、本構造のように接点面中心部に微小な突起ができる場合の方が接点面周辺部の場合より電界は約20%小さくなる。この結果、再起電圧第1波目の高電界に耐えることができ遮断性能が向上する。また、再起電圧第2波以降の電界ピークでは、開極しきった状態であり、接点面中心部の電界が、接点面周辺部より約36%電界緩和され、耐電圧性能も向上する。   Here, when the change in the contact surface electric field in the advanced small current interruption test was examined, the contact surface electric field reached the maximum during the opening due to the relationship between the rising speed of the reactivation voltage and the increase in the gap length between the contacts due to the opening operation. I found out. FIG. 6 shows the result of electric field analysis using the electrode shape of the vacuum circuit breaker according to the present invention. In FIG. 6, the vertical axis represents the electric field at the center of the contact. The electric field of the first wave of the regenerative voltage is extremely high, and the subsequent peak electric field is constant. Furthermore, at the electric field peak of the first wave of the regenerative voltage, the electric field at the center of the contact was about 20% smaller than the electric field at the position where minute protrusions were formed by welding removal at the periphery of the contact. If the electric field multiplication factor due to the formation of minute protrusions is β, the electric field is multiplied by β in both the contact center and the contact periphery, so that a small protrusion can be formed at the center of the contact surface as in this structure. The electric field is about 20% smaller than in the case of the contact surface periphery. As a result, it is possible to withstand the high electric field of the first wave of the regenerative voltage, and the interruption performance is improved. Further, the electric field peak after the second wave of the regenerative voltage is in a fully open state, and the electric field at the center of the contact surface is relaxed by about 36% from the periphery of the contact surface, and the withstand voltage performance is also improved.

さらに、真空遮断器の耐電圧性能を向上させるために、一般的に製造工程においてコンディショニングが行われる。コンディショニング方法として、AC電圧やインパルスという電圧を印加して放電させる電圧コンディショニングと、kAオーダーの大電流を遮断する電流コンディショニングがある。本発明の真空遮断器では、別の可動電極9を固定電極2に押し込んだ状態では、上記説明のように接点面の周辺部の方が中央部より電界が高いという傾向があるので、接点面中央部のコンディショニングが不十分になる傾向がある。そこで、本構造では別の可動電極9を突出させた状態での電圧コンディショニングも行い、別の可動電極9の接点面と可動電極1および固定電極2の接点面の両方を十分にコンディショニングする。また、電流コンディショニングでは、接点面が最後に離れる位置でアークが発弧してコンディショニングする性質があるので、接点面の周辺部の方がコンディショニングされるが、接点面中心部のコンディショニングが不足する傾向がある。そこで本構造では、別の可動電極9を突出させた電流コンディショニングも行い、接点面中心部の電流コンディショニングも十分に行うことができる。
一般にコンディショニングは、真空バルブ単体で実施した後に真空遮断器として組み立てるが、耐電圧性能安定化のために真空遮断器として組み立てた後におこなっても良い。
Further, in order to improve the withstand voltage performance of the vacuum circuit breaker, conditioning is generally performed in the manufacturing process. As a conditioning method, there are voltage conditioning for discharging by applying an AC voltage or an impulse voltage, and current conditioning for interrupting a large current of kA order. In the vacuum circuit breaker of the present invention, when another movable electrode 9 is pushed into the fixed electrode 2, the electric field tends to be higher in the peripheral part of the contact surface than in the central part as described above. There is a tendency for the conditioning of the central part to be insufficient. Therefore, in this structure, voltage conditioning is performed in a state where another movable electrode 9 is protruded, and both the contact surface of another movable electrode 9 and the contact surfaces of the movable electrode 1 and the fixed electrode 2 are sufficiently conditioned. In addition, current conditioning has the property that an arc is ignited and conditioned at the position where the contact surface finally leaves, so that the periphery of the contact surface is conditioned, but the condition at the center of the contact surface tends to be insufficient. There is. Therefore, in this structure, current conditioning with another movable electrode 9 protruding is also performed, and current conditioning at the center of the contact surface can be sufficiently performed.
In general, conditioning is performed as a vacuum circuit breaker after being performed by a single vacuum valve, but may be performed after being assembled as a vacuum circuit breaker in order to stabilize withstand voltage performance.

実施の形態2.
上記実施の形態1の保持機構12では、開極時に別の可動電極9が固定電極2に押し込まれている状態を保持したが、この実施の形態2の保持機構12では皿バネ66を用いて開極時に別の可動電極9が固定電極2の接点面に対して奥に凹んだ状態に押し込まれて保持するものである。図7はこの発明の実施の形態2に係る真空遮断器における保持機構12の動作を説明する説明図で、図8は真空バルブの各電極の状態を説明する説明図である。図8(a)は別の可動電極9が固定電極2より突出している状態を示しており、このとき保持機構12は図7(a)の状態になっている。この保持機構12でもアーム59を用いてロッド25の動きを増幅する。可動電極1の閉極動作によって図8(b)のように可動電極1と固定電極2が閉じた時に、図7(b)に示すように支持板67に支持された皿バネ66が反転し、ロッド25をさらに奥に引き込む結果、別の可動電極9は図8(c)に示すように固定電極2の接点面よりも奥に凹んだ状態に押し込まれた状態となる。開極時は別の可動電極9がこの奥に凹んだ状態に押し込まれたまま開極する。
Embodiment 2. FIG.
In the holding mechanism 12 of the first embodiment, the state where another movable electrode 9 is pushed into the fixed electrode 2 at the time of opening is held. However, in the holding mechanism 12 of the second embodiment, the disc spring 66 is used. When the electrode is opened, another movable electrode 9 is pushed and held in a state of being recessed deeply with respect to the contact surface of the fixed electrode 2. FIG. 7 is an explanatory view for explaining the operation of the holding mechanism 12 in the vacuum circuit breaker according to Embodiment 2 of the present invention, and FIG. 8 is an explanatory view for explaining the state of each electrode of the vacuum valve. FIG. 8A shows a state in which another movable electrode 9 protrudes from the fixed electrode 2. At this time, the holding mechanism 12 is in the state shown in FIG. This holding mechanism 12 also uses the arm 59 to amplify the movement of the rod 25. When the movable electrode 1 and the fixed electrode 2 are closed as shown in FIG. 8B by the closing operation of the movable electrode 1, the disc spring 66 supported by the support plate 67 is inverted as shown in FIG. 7B. As a result of pulling the rod 25 further back, the other movable electrode 9 is pushed into a state of being recessed deeper than the contact surface of the fixed electrode 2 as shown in FIG. At the time of opening, the other movable electrode 9 is opened while being pushed into the recessed state.

投入時に別の可動電極9を突出させるには、ソレノイドにより矢印56方向の力で中心軸68を押すことで皿バネ66を反転させて、保持機構12を図7(b)の状態から図7(a)の状態にする。以上の動作により、投入時のプレアークは別の可動電極9とその対向面にある可動電極1の接点面の中心部で発生し、その後、図8(c)のように別の可動電極9が固定電極2の接点面の奥に凹んだ状態に押し込まれた時に、この部分の電極接点表面に溶着引き剥がしによる微小突起が発生する。しかし、開極時は別の可動電極9がこの奥に凹んだ状態のまま開極するため、別の可動電極9の接点表面に印加する電界が抑制され、一層の電界緩和がなされる。このため短絡遮断の時に可動電極1の接点面周辺部と固定電極2の接点面周辺部でアークが発弧するようにできる。一般に縦磁界電極では、接点周辺部でアークが発弧した方が、発弧直後にアークに作用する縦磁界が強くなるので、その結果、進み小電流遮断試験およびコンデンサバンク開閉試験における遮断性能が向上する。   In order to project another movable electrode 9 at the time of closing, the disc spring 66 is reversed by pushing the center shaft 68 with a force in the direction of arrow 56 by a solenoid, and the holding mechanism 12 is moved from the state of FIG. Set to the state of (a). By the above operation, a pre-arc at the time of charging is generated at the center of the contact surface of another movable electrode 9 and the movable electrode 1 on the opposite surface, and then another movable electrode 9 is moved as shown in FIG. When it is pushed into the recessed state of the contact surface of the fixed electrode 2, a minute protrusion is generated on the surface of the electrode contact at this portion due to welding and peeling. However, since the other movable electrode 9 is opened while the other movable electrode 9 is recessed at the time of opening, the electric field applied to the contact surface of the other movable electrode 9 is suppressed, and the electric field is further relaxed. For this reason, an arc can be generated at the contact surface peripheral portion of the movable electrode 1 and the contact electrode peripheral portion of the fixed electrode 2 when the short circuit is interrupted. Generally, in the longitudinal magnetic field electrode, when the arc is ignited around the contact point, the longitudinal magnetic field acting on the arc immediately after the arc is stronger, so that the breaking performance in the advanced small current interruption test and the capacitor bank switching test is improved. improves.

実施の形態3.
図9はこの発明の実施の形態3に係る真空遮断器における真空バルブの可動電極側の構造を示す側面断面図である。上記実施の形態1および2では何れも固定電極2に別の可動電極9を設けた場合について説明したが、この実施の形態3では可動電極1に別の可動電極9を設けたものである。このため、可動電極棒3は中空とし内部に別の電極棒10を設ける。また、真空バルブの内部の真空封止のため小形ベローズ69を設ける。電極棒3とタンク27を絶縁するため絶縁ロッド71と別の電極棒10の絶縁ロッド72を設ける。また、タンク側ベローズ26の外に、小形タンクベローズ70を設ける。保持機構12は可動電極棒3に絶縁ロッド71を介して接続されたロッド77に設け、別の電極棒10に絶縁ロッド72を介してつながるロッド78に保持機構12用ロッド73を設ける。この保持機構12は図5または図7に示した構造を用いてもよいし他の構造でもよい。別の可動電極9を突出させるためのバネ11やロッド77には接圧バネ74を設ける。本構造ではアーム75を用いて電極棒を駆動するため、支点58からの距離の遠い別の電極棒10の方が移動距離が大きくなることを利用している。この結果、閉極動作において別の可動電極9が先に固定電極2と接触する。図9は閉極途中状態を示しており別の可動電極9が突出している状態を示している。また、別の可動電極9の動作は基本的に実施の形態1での説明と同じである。本構造によりタンク27の固定電極2側に保持機構12を設ける必要が無くなり、よりコンパクトな構造となるという効果がある。
Embodiment 3 FIG.
FIG. 9 is a side sectional view showing the structure of the movable electrode side of the vacuum valve in the vacuum circuit breaker according to Embodiment 3 of the present invention. In the first and second embodiments, the case where another movable electrode 9 is provided on the fixed electrode 2 has been described. However, in the third embodiment, another movable electrode 9 is provided on the movable electrode 1. For this reason, the movable electrode rod 3 is hollow and another electrode rod 10 is provided inside. A small bellows 69 is provided for vacuum sealing inside the vacuum valve. Insulating rod 71 and insulating rod 72 of another electrode rod 10 are provided to insulate electrode rod 3 from tank 27. Further, a small tank bellows 70 is provided outside the tank side bellows 26. The holding mechanism 12 is provided on a rod 77 connected to the movable electrode rod 3 via an insulating rod 71, and a rod 73 for the holding mechanism 12 is provided on a rod 78 connected to another electrode rod 10 via an insulating rod 72. The holding mechanism 12 may use the structure shown in FIG. 5 or FIG. 7 or another structure. A contact pressure spring 74 is provided on the spring 11 and the rod 77 for projecting another movable electrode 9. In this structure, since the electrode rod is driven using the arm 75, the fact that the moving distance of another electrode rod 10 farther from the fulcrum 58 is larger is utilized. As a result, another movable electrode 9 comes into contact with the fixed electrode 2 first in the closing operation. FIG. 9 shows a state in the middle of closing and shows a state in which another movable electrode 9 protrudes. The operation of the other movable electrode 9 is basically the same as that described in the first embodiment. With this structure, there is no need to provide the holding mechanism 12 on the fixed electrode 2 side of the tank 27, and there is an effect that the structure becomes more compact.

なお、この発明は、その発明の範囲内において、各実施の形態を自由に組み合わせたり、各実施の形態を適宜、変形、省略することが可能である。   It should be noted that within the scope of the present invention, the embodiments can be freely combined, or the embodiments can be appropriately modified or omitted.

1 可動電極 2 固定電極
9 別の可動電極 12 保持機構
19 真空バルブ 66 皿バネ
DESCRIPTION OF SYMBOLS 1 Movable electrode 2 Fixed electrode 9 Another movable electrode 12 Holding mechanism 19 Vacuum valve 66 Disc spring

Claims (4)

密封状態に保持された容器内に接離可能に設けられた可動電極および固定電極と、該可動電極および固定電極の何れか一方の電極の接点面の中心部に設けられた別の可動電極と、該別の可動電極を上記電極の接点が開く動作時には電極の接点面に押し込まれた状態で保持するとともに、上記電極の接点が閉じる動作時には電極の接点面から突出させて保持する保持機構を備えたことを特徴とする真空遮断器。   A movable electrode and a fixed electrode that are detachably provided in a sealed container, and another movable electrode that is provided at the center of the contact surface of one of the movable electrode and the fixed electrode; A holding mechanism for holding the other movable electrode in a state where it is pushed into the contact surface of the electrode when the contact of the electrode is opened, and projecting from the contact surface of the electrode when the contact of the electrode is closed. A vacuum circuit breaker characterized by comprising. 上記別の可動電極の接点面が電極の接点面に対して凹んだ状態に押し込まれて保持されていることを特徴とする請求項1に記載の真空遮断器。   2. The vacuum circuit breaker according to claim 1, wherein the contact surface of the other movable electrode is pushed and held in a state of being recessed with respect to the contact surface of the electrode. 上記保持機構が皿バネで構成され、該皿バネの反転により上記別の可動電極の位置を保持することを特徴とする請求項1または請求項2に記載の真空遮断器。   The vacuum circuit breaker according to claim 1 or 2, wherein the holding mechanism is constituted by a disc spring, and the position of the other movable electrode is held by reversing the disc spring. 上記別の可動電極が上記可動電極の接点面の中心部に設けられ、上記可動電極の接点面の裏側より上記容器外に延びたロッドに上記保持機構が設けられていることを特徴とする請求項1から請求項3のいずれか1項に記載の真空遮断器。   The another movable electrode is provided at the center of the contact surface of the movable electrode, and the holding mechanism is provided on a rod extending from the back side of the contact surface of the movable electrode to the outside of the container. The vacuum circuit breaker according to any one of claims 1 to 3.
JP2012123918A 2012-05-31 2012-05-31 Vacuum circuit breaker Pending JP2013251089A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012123918A JP2013251089A (en) 2012-05-31 2012-05-31 Vacuum circuit breaker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012123918A JP2013251089A (en) 2012-05-31 2012-05-31 Vacuum circuit breaker

Publications (1)

Publication Number Publication Date
JP2013251089A true JP2013251089A (en) 2013-12-12

Family

ID=49849591

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012123918A Pending JP2013251089A (en) 2012-05-31 2012-05-31 Vacuum circuit breaker

Country Status (1)

Country Link
JP (1) JP2013251089A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53118059U (en) * 1977-02-28 1978-09-20
JPS53118060U (en) * 1977-02-28 1978-09-20
JP2004241204A (en) * 2003-02-04 2004-08-26 Mitsubishi Electric Corp Switching device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53118059U (en) * 1977-02-28 1978-09-20
JPS53118060U (en) * 1977-02-28 1978-09-20
JP2004241204A (en) * 2003-02-04 2004-08-26 Mitsubishi Electric Corp Switching device

Similar Documents

Publication Publication Date Title
JP3664899B2 (en) Vacuum switchgear
JP5178644B2 (en) Gas circuit breaker with input resistance contact and its input / output method
KR101704807B1 (en) operation device using electromagnetic repulsion force for circuit breaker
US8791779B2 (en) Fast switch with non-circular Thomson coil
JP2008545228A (en) Electrical switchgear and method for operating the electrical switchgear
KR20160007249A (en) Magnetic Switch
EP2442339B1 (en) Contact assembly for vacuum interrupter
US10269512B2 (en) Method and device for cutting off an electric current with dynamic magnetic blow-out
CN102903567A (en) Power transmission device for vacuum interrupter and vacuum breaker having the same
KR101966602B1 (en) Insulated housing type interlocking disconnector and vacuum valve
CN110085475A (en) Vacuum interrupter Double-coil type structure of contact terminal in mechanical high-voltage dc circuit breaker
JP2014212088A (en) Switchgear
KR101231764B1 (en) Gas insulated switchgear
JP2013251089A (en) Vacuum circuit breaker
JP4714527B2 (en) High voltage high capacity circuit breaker
JP2017135000A (en) Gas circuit breaker
JP2012248379A (en) Vacuum circuit breaker
JP5836907B2 (en) Vacuum shut-off device
JP5020164B2 (en) Vacuum valve
JP6057887B2 (en) Vacuum circuit breaker
JP2008311036A (en) Vacuum switchgear
JP5591644B2 (en) Gas circuit breaker and replacement method thereof
JP4684914B2 (en) Vacuum circuit breaker
CN102024614A (en) Breaker switch
CN202025674U (en) Breaker switch

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150424

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160329

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20161004