JP5020164B2 - Vacuum valve - Google Patents

Vacuum valve Download PDF

Info

Publication number
JP5020164B2
JP5020164B2 JP2008142674A JP2008142674A JP5020164B2 JP 5020164 B2 JP5020164 B2 JP 5020164B2 JP 2008142674 A JP2008142674 A JP 2008142674A JP 2008142674 A JP2008142674 A JP 2008142674A JP 5020164 B2 JP5020164 B2 JP 5020164B2
Authority
JP
Japan
Prior art keywords
electrode
windmill
vacuum valve
contact
arc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008142674A
Other languages
Japanese (ja)
Other versions
JP2009289660A (en
Inventor
俊則 木村
友和 吉田
満 月間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2008142674A priority Critical patent/JP5020164B2/en
Publication of JP2009289660A publication Critical patent/JP2009289660A/en
Application granted granted Critical
Publication of JP5020164B2 publication Critical patent/JP5020164B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • High-Tension Arc-Extinguishing Switches Without Spraying Means (AREA)
  • Arc-Extinguishing Devices That Are Switches (AREA)

Description

この発明は、風車形電極を備えた真空バルブに関し、特に、その風車形電極の改良に関するものである。   The present invention relates to a vacuum valve provided with a windmill electrode, and more particularly to an improvement of the windmill electrode.

風車形電極を有する従来の真空バルブとして、例えば、図6に示すような技術が開示されている。図6(a)は真空バルブを示す全体構成であり、(b)は(a)の可動電極部の斜視図である。絶縁筒21の両端に端板22a、22bを取り付けて、内部を高真空状態にした真空容器23が構成されており、真空容器23内には、一方の端板22aを貫通した固定電極棒24の先端に固着された固定電極25と、他方の端板22bを貫通した可動電極棒26の先端に固着された可動電極27とが対向配置されている。また、可動電極棒26と端板22bとの間にはベローズ28が設けられている。   For example, a technique as shown in FIG. 6 is disclosed as a conventional vacuum valve having a windmill electrode. FIG. 6A is an overall configuration showing a vacuum valve, and FIG. 6B is a perspective view of the movable electrode portion of FIG. A vacuum vessel 23 in which end plates 22a and 22b are attached to both ends of the insulating cylinder 21 and the inside thereof is in a high vacuum state is configured. In the vacuum vessel 23, a fixed electrode rod 24 penetrating one end plate 22a. The fixed electrode 25 fixed to the tip of the first electrode and the movable electrode 27 fixed to the tip of the movable electrode rod 26 penetrating the other end plate 22b are disposed to face each other. A bellows 28 is provided between the movable electrode rod 26 and the end plate 22b.

このような構成の真空バルブは、可動電極棒26に接続された操作装置(図示せず)を駆動源として、可動電極棒26を軸方向に移動させることにより、固定電極25と可動電極27とが電気的に接離する。両電極25,27間に点弧されたアークから拡散する金属蒸気が真空容器23の内壁に付着することを防止するために、シールド29が絶縁筒21の内壁に装着されている。   The vacuum valve having such a configuration is configured to move the movable electrode rod 26 in the axial direction by using an operating device (not shown) connected to the movable electrode rod 26 as a drive source, thereby to Is electrically connected and separated. A shield 29 is attached to the inner wall of the insulating cylinder 21 in order to prevent metal vapor diffusing from the arc ignited between the electrodes 25 and 27 from adhering to the inner wall of the vacuum vessel 23.

可動電極27は、図6(b)に示すように、電極自身に溝を設け風車形に形成されている。すなわち、中心部に位置して溝30によって分画されている風車部31と、周縁部に位置して溝30によって分割されており前記風車部31より厚さが厚い複数の接触部32とからなり、中央部で可動電極棒26に接合されている。固定電極25も同様である。
この構成により、溝30によって電極内の電流経路が制限され、その電路によって生じる磁界により、アークの発弧直後から強い磁気駆動力をアークに作用させて、アークを駆動して電極の円周上を移動させることにより、アークの停滞を防止して電極の局部溶解を避け、遮断性能の向上を図っている(例えば、特許文献1参照)。
As shown in FIG. 6B, the movable electrode 27 is formed in a windmill shape by providing a groove in the electrode itself. That is, a windmill part 31 located at the center and divided by the groove 30, and a plurality of contact parts 32 located at the periphery and divided by the groove 30 and thicker than the windmill part 31. It is joined to the movable electrode rod 26 at the center. The same applies to the fixed electrode 25.
With this configuration, the current path in the electrode is limited by the groove 30, and the magnetic field generated by the electric path causes a strong magnetic driving force to act on the arc immediately after the arc is generated, so that the arc is driven on the circumference of the electrode. Is moved to prevent arc stagnation and avoid local melting of the electrode, thereby improving the interruption performance (see, for example, Patent Document 1).

特開2001−52576号公報(第4頁、図1)JP 2001-52576 A (page 4, FIG. 1)

真空バルブに求められる性能としては短絡遮断性能の他に短絡投入性能、短時間耐電流性能、通電性能(温度上昇試験で検証)などがある。上記の特許文献1に示すような、外周部が突出しているタイプの風車形電極は特に短絡遮断性能に優れている。しかし、短絡投入性能、短時間耐電流性能に関して、次のような電磁反発力の問題がある。これを図7により説明する。図7は、特許文献1に示された電極構造の電極平面図である。
通常、短絡投入試験や短時間耐電流試験の電流ピーク付近においては、固定電極と可動電極の接触点のほぼ一点を大電流が流れるようになるため、この接触点(以下、通電点と称す)において大きな電磁反発力が発生する。しかし、本電極では、図7(a)に丸印で示すような位置に通電点が生じる可能性があり、その場合、固定電極面とこれに対向配置された可動電極面とで電流パスAが隣り合わせとなり、かつ、電流の向きが逆であるため電磁反発力が発生する。
The performance required for the vacuum valve includes short-circuit closing performance, short-time current withstanding performance, current-carrying performance (verified by a temperature rise test), and the like. As shown in the above-mentioned patent document 1, the type of the windmill-type electrode with the outer peripheral portion protruding is particularly excellent in short circuit interruption performance. However, there are the following problems of electromagnetic repulsion regarding short-circuiting performance and short-time withstand current performance. This will be described with reference to FIG. FIG. 7 is an electrode plan view of the electrode structure disclosed in Patent Document 1. As shown in FIG.
Usually, in the vicinity of the current peak of a short-circuit insertion test or a short-time withstand current test, a large current flows through almost one of the contact points between the fixed electrode and the movable electrode, so this contact point (hereinafter referred to as the energization point) A large electromagnetic repulsive force is generated at. However, in this electrode, there is a possibility that a conduction point is generated at a position as indicated by a circle in FIG. 7A. In this case, the current path A is formed between the fixed electrode surface and the movable electrode surface arranged opposite thereto. Are adjacent to each other and the direction of the current is opposite, so that an electromagnetic repulsive force is generated.

この電磁反発力について実験及び磁界解析で検討した結果、下記の2点が判明した。
(1)固定電極と可動電極との間に発生する電磁反発力は、上記で述べた、通電点で発生する電磁反発力と電流パスによる電磁反発力との和に等しい。
(2)固定電極面と可動電極面との電流パスによって発生する電磁反発力は通電点の位置に依存し、図7(b)に示す電極の凹部(風車部31)に近い通電点41の場合より、接触部32の先端側の通電点42の場合の方が大きい。このため、トータルの電磁反発力は先端側の通電点42の場合は、凹部に近い通電点41の場合の1.6倍になる。
通電の位置はばらつくため、電磁反発力による発弧抑制のためには接触部32の先端側に通電点42が生じてもいいように大きな接圧をかけておく必要がある。その結果、接圧バネの強化に伴い開閉機構の機械的強度も高めなければならず遮断器が大きくなるという問題点があった。
As a result of examining this electromagnetic repulsion force by experiment and magnetic field analysis, the following two points were found.
(1) The electromagnetic repulsive force generated between the fixed electrode and the movable electrode is equal to the sum of the electromagnetic repulsive force generated at the energization point and the electromagnetic repulsive force generated by the current path described above.
(2) The electromagnetic repulsive force generated by the current path between the fixed electrode surface and the movable electrode surface depends on the position of the energization point, and the energization point 41 close to the concave portion (windmill portion 31) of the electrode shown in FIG. The case of the energization point 42 on the tip side of the contact portion 32 is larger than the case. For this reason, the total electromagnetic repulsion force is 1.6 times greater in the case of the energization point 42 on the tip side than in the case of the energization point 41 close to the recess.
Since the position of energization varies, it is necessary to apply a large contact pressure so that the energization point 42 may be generated at the tip end side of the contact portion 32 in order to suppress arcing due to electromagnetic repulsion. As a result, the mechanical strength of the opening / closing mechanism has to be increased with the strengthening of the contact pressure spring, resulting in a problem that the circuit breaker becomes large.

この発明は上記のような問題点を解消するためになされたもので、短絡遮断性能だけでなく短絡投入性能、短時間耐電流性能、通電性能に優れた風車形電極を備えた真空バルブを提供することを目的とする。   The present invention has been made to solve the above-described problems, and provides a vacuum valve provided with a windmill-type electrode that is excellent not only in short-circuit interruption performance but also in short-circuit insertion performance, short-time current resistance performance, and energization performance. The purpose is to do.

この発明の真空バルブは、真空容器内に接離可能に配置された1対の風車形電極を有する真空バルブにおいて、風車形電極は、電極棒と接合される円形の中心部と、中心部の外周にあって中心部の面より対向電極側に突出した突出部とを有し、中心部側から突出部の周縁に向かい渦巻き状に伸びる複数の溝によって突出部が複数の円弧部に分割されており、1対の風車形電極のうちの一方は、溝の幅を周縁に向かうにしたがって広く形成して、突出部の円弧部の周方向に伸びる先端部の長さが他方の風車形電極の先端部より短くなるようにしたものである。 The vacuum valve according to the present invention is a vacuum valve having a pair of windmill-shaped electrodes that are detachably arranged in a vacuum vessel, wherein the windmill-shaped electrode includes a circular center portion joined to the electrode rod, The protrusion is divided into a plurality of circular arc portions by a plurality of grooves extending in a spiral shape from the center portion side toward the periphery of the protrusion portion. and which, hand of the one pair of the windmill type electrodes are widely formed toward the periphery of the width of the groove, the other wind turbine type length of the tip portion extending in the circumferential direction of the arcuate portion of the projecting portion The length is shorter than the tip of the electrode .

この発明の真空バルブによれば、一対の風車形電極は、中心部とその外周の突出部とを有し、中心部側から周縁に向かい渦巻き状に伸びる複数の溝によって突出部が複数の円弧部に分割されており、一方の風車形電極は、溝の幅を周縁に向かうにしたがって広く形成したので、突出部の先端部で固定電極と可動電極が接触しなくなり、電磁反発力が抑制され、短絡遮断性能を維持したまま、短絡投入性能、短時間耐電流性能を高めることができる。したがって、電極径の小型化と、接圧低減が可能となり、結果として遮断器を小型化することができる。 According to the vacuum valve of the present invention, the pair of windmill-shaped electrodes has a central portion and a protruding portion on the outer periphery thereof, and the protruding portion has a plurality of circular arcs by a plurality of grooves extending spirally from the central portion side toward the peripheral edge. part is divided into, windmill-shaped electrode of the hand is, since the wider toward the periphery of the width of the groove, the fixed electrode and the movable electrode is not in contact with the tip portion of the protruding portion, the electromagnetic repulsive force is suppressed Thus, while maintaining the short-circuit breaking performance, the short-circuiting performance and the short-time current withstanding performance can be enhanced. Therefore, the electrode diameter can be reduced and the contact pressure can be reduced, and as a result, the circuit breaker can be reduced in size.

実施の形態1.
図1及び図2は、この発明の実施の形態1による真空バルブの風車形電極の平面図である。図1と図2は、一方を固定電極、他方を可動電極として組み合わせて使用するものである。以下の説明では、図1を固定電極、図2を可動電極として説明する。図3は図1のIII−IIIから見た断面図である。また、真空バルブの全体の構成図は、背景技術の項で説明した図6と同等なので、図示及び説明は省略する。
Embodiment 1 FIG.
1 and 2 are plan views of wind turbine-shaped electrodes of a vacuum valve according to Embodiment 1 of the present invention. FIG. 1 and FIG. 2 are used by combining one as a fixed electrode and the other as a movable electrode. In the following description, FIG. 1 will be described as a fixed electrode and FIG. 2 as a movable electrode. FIG. 3 is a sectional view taken along line III-III in FIG. Further, since the overall configuration diagram of the vacuum valve is the same as that of FIG. 6 described in the background art section, illustration and description thereof are omitted.

図1において、風車形電極である固定電極1は、円盤状をした接点材料からなり、後述の電極棒が接合される円形の中心部2と、中心部2の外周を取り巻いて、中心部2の面より対向電極側に突出した突出部3とを有している。そして、中心部2側から突出部3の周縁に向かって渦巻き状に伸びる複数の(図では4個の)溝4が形成され、この溝4によって突出部3は複数(4個)の円弧部に分割されている。溝4は、電極の表面から裏面まで切れ込んでいる。なお、溝4の数は4個に限定しない。
図1に示す面が後述の図2に示す可動電極11の面との対向面となり、突出部3は可動電極11の突出部13と互いに接触する構造になっている。
In FIG. 1, a fixed electrode 1 that is a windmill-shaped electrode is made of a disk-shaped contact material, and surrounds a circular center portion 2 to which an electrode rod, which will be described later, is joined, and an outer periphery of the center portion 2. And a protruding portion 3 protruding toward the counter electrode from the surface. Then, a plurality of (four in the figure) grooves 4 extending in a spiral shape from the center 2 side toward the peripheral edge of the protrusion 3 are formed, and the protrusion 3 is formed by a plurality of (four) arc portions by the groove 4. It is divided into The groove 4 is cut from the front surface to the back surface of the electrode. The number of grooves 4 is not limited to four.
The surface shown in FIG. 1 is a surface facing the surface of the movable electrode 11 shown in FIG. 2 to be described later, and the protrusion 3 is in contact with the protrusion 13 of the movable electrode 11.

図3の側面断面図に示すように、固定電極1には、中央に貫通する接合穴5が設けられており、その接合穴5に、真空容器外から電流を導く電極棒6の細く絞られた先端部が挿入されて固着されている。固定電極1の背面には、機械的強度を補うための補強板7が設けられており、更に、電極棒6の肩部と補強板7との間にはステンレス製のスペーサ8が介在されて、ろう付けによって一体に固着されている。
なお、固定電極1の接点材料としては、Crを20〜40重量%含むCu−Cr系の合金か、更に微量のTeを含むCu−Cr−Te系の合金が望ましい。また、補強板7はSUSが機械強度、耐電圧性能、導電率の点で望ましい。
As shown in the side sectional view of FIG. 3, the fixed electrode 1 is provided with a joint hole 5 penetrating in the center, and the electrode rod 6 for guiding current from outside the vacuum vessel is narrowed into the joint hole 5. The tip is inserted and secured. A reinforcing plate 7 for supplementing mechanical strength is provided on the back surface of the fixed electrode 1, and a stainless steel spacer 8 is interposed between the shoulder portion of the electrode bar 6 and the reinforcing plate 7. It is fixed together by brazing.
The contact material of the fixed electrode 1 is preferably a Cu—Cr alloy containing 20 to 40% by weight of Cr or a Cu—Cr—Te alloy containing a small amount of Te. The reinforcing plate 7 is preferably SUS in terms of mechanical strength, withstand voltage performance, and conductivity.

次に、図2によってもう一方の風車形電極である可動電極を説明する。
可動電極11は、基本的には図1と同様であり、電極棒6と接合される円形の中心部12と、中心部12の外周を取り巻いて、対向電極側に突出した突出部13とを有し、更に複数の渦巻き状の溝14が形成されているが、溝部の形状が異なっている。
すなわち、溝14は、中心部12側から突出部13の周縁に向かい渦巻き状に伸びる複数の(図では4個の)溝14によって突出部13が4個の円弧部に分割された形となっている。更に、円弧部の突出部13の周方向に伸びる先端部(先端部C)の長さが短くなるように、すなわち、中心部12に近づくように、突出部13において溝14の幅を周縁に向かうにしたがって大きくなるように形成している。なお、溝14の渦巻き方向は、接触面側から見ると固定電極1とは反対方向になっている。
Next, the movable electrode which is the other windmill type electrode will be described with reference to FIG.
The movable electrode 11 is basically the same as in FIG. 1, and includes a circular central portion 12 joined to the electrode rod 6 and a protruding portion 13 that surrounds the outer periphery of the central portion 12 and protrudes toward the counter electrode. In addition, a plurality of spiral grooves 14 are formed, but the shapes of the groove portions are different.
That is, the groove 14 has a shape in which the protruding portion 13 is divided into four arc portions by a plurality of (four in the drawing) grooves 14 extending spirally from the central portion 12 side toward the peripheral edge of the protruding portion 13. ing. Further, the width of the groove 14 is set to the peripheral edge of the protruding portion 13 so that the length of the tip portion (tip portion C) extending in the circumferential direction of the protruding portion 13 of the arc portion becomes shorter, that is, closer to the center portion 12. It is formed to become larger as it goes. The spiral direction of the groove 14 is opposite to the fixed electrode 1 when viewed from the contact surface side.

図4は、固定電極1と可動電極11を合わせた状態を示しており、網掛け部が閉極時に両電極が接触する接触面15である。なお、この接触面とは設計的な接触面であり接触可能なエリアであって、実際はこのエリア内のどこか(1点又は複数点)で接触することになる。
可動電極11の溝14の形状を、周縁部になるにつれて広くなるように形成したことにより、図に示すように、閉極時には、固定電極1と可動電極11の両突出部3,13の全てが接触面とはならずに、固定電極1の突出部3のうち、先端部(先端部B)では接触しない構造となっている。
FIG. 4 shows a state in which the fixed electrode 1 and the movable electrode 11 are combined, and the shaded portion is a contact surface 15 where both electrodes come into contact when the electrode is closed. In addition, this contact surface is a design contact surface and is an area that can be contacted. In actuality, contact is made at some point (one point or a plurality of points) in this area.
By forming the shape of the groove 14 of the movable electrode 11 so as to become wider toward the peripheral edge, as shown in the figure, at the time of closing, all the protruding portions 3 and 13 of the fixed electrode 1 and the movable electrode 11 are all. Does not become a contact surface, and has a structure in which the tip portion (tip portion B) does not come into contact with the protruding portion 3 of the fixed electrode 1.

次に動作について図4を参照しながら説明する。
短絡投入試験、短時間耐電流試験時において、両電極1,11の接触面15は図4に示すようになっているが、前述のように、電流ピークでは接触面のどこかのほぼ1点で大電流が通電する。この通電点が、電極の中心部に近い場合に比べて突出部の先端側(先端部B)に近い場合の方がトータルの電磁反発力は1.6倍になる。
そこで、本実施の形態では、図4に示すように、突出部の先端部Bでは接触しない構造としたので、従来の風車形電極に比べて、電磁反発力は抑制されることになる。
Next, the operation will be described with reference to FIG.
In the short-circuit insertion test and the short-time withstand current test, the contact surface 15 of both electrodes 1 and 11 is as shown in FIG. 4, but as described above, at the current peak, almost one point anywhere on the contact surface. A large current is applied. The total electromagnetic repulsive force is 1.6 times greater when the energization point is closer to the tip side (tip B) than the center of the electrode.
Therefore, in the present embodiment, as shown in FIG. 4, the structure is configured such that the tip end portion B of the projecting portion does not come into contact, so that the electromagnetic repulsion force is suppressed as compared with the conventional windmill electrode.

短絡遮断試験時には電極対1,11は解離し、接触面15上にアークが発生する。図4にアーク発生箇所を丸印で示す。アークは接触面15上であれば任意の位置に発生し、図4では例えば16a〜16cを例として示している。電極棒6を流れる電流Iは接合穴5の接合部から電極1(又は11)へ流れ込み、アーク16aが発生している接触面15に対応した中心部2(又は12)を流れ接触面15(突出部)のアーク16aへ流入する。図4中では電流Iとして示している。電流Iのうちの円周方向成分Iθによってアーク16aは円周方向へ駆動力Fを受ける。このため、アークは発弧直後から強力な磁気駆動力を受ける。その結果例えばアーク16aはアーク16bの位置の方に向かって高速に移動し、更に16cを経て隣の突出部へ移る。この動作を連続的に行い実質的にはアーク発生中は突出部の上を回転運動することになる。この結果、アークは発弧直後から高速移動するため接点表面の温度が抑制され、金属蒸気の発生も抑制されるため、従来の風車形電極と同等の遮断性能が得られる。 In the short circuit interruption test, the electrode pairs 1 and 11 are dissociated and an arc is generated on the contact surface 15. FIG. 4 shows the arc occurrence locations with circles. The arc is generated at an arbitrary position as long as it is on the contact surface 15, and FIG. 4 shows, for example, 16a to 16c as an example. The current I flowing through the electrode rod 6 flows from the joint portion of the joint hole 5 into the electrode 1 (or 11), and flows through the center portion 2 (or 12) corresponding to the contact surface 15 where the arc 16a is generated. The projection 16) flows into the arc 16a. In FIG. 4, the current I 2 is shown. The arc 16a receives the driving force F in the circumferential direction by the circumferential component I 2 θ of the current I 2 . For this reason, the arc receives a strong magnetic driving force immediately after the arc is generated. As a result, for example, the arc 16a moves at a high speed toward the position of the arc 16b, and further moves to the adjacent protrusion through 16c. This operation is carried out continuously, and in effect during the generation of the arc, it rotates on the protrusion. As a result, since the arc moves at a high speed immediately after the arc is generated, the temperature of the contact surface is suppressed, and the generation of metal vapor is also suppressed, so that the same breaking performance as that of the conventional windmill electrode is obtained.

通電性能を向上させ真空バルブの温度上昇を抑制するためには、固定電極と可動電極との接触面の接触抵抗を低く抑える必要がある。本実施の形態では、突出部先端の接触面積が減ることになるが、この分を補完するためは、突出部の内径を小さくすることで対処できる。
また、定格電圧が高くない場合は、突出部端部の面取りR(図5参照)を小さくして接触面積を増やすことも可能である。この場合は、真空バルブのコンディショニングで、印加電圧を高くすることや電流コンディショニングを適用するなどの方法で、定格を上げることが可能である。
In order to improve the energization performance and suppress the temperature rise of the vacuum valve, it is necessary to keep the contact resistance of the contact surface between the fixed electrode and the movable electrode low. In the present embodiment, the contact area at the tip of the protrusion is reduced, but in order to compensate for this, it can be dealt with by reducing the inner diameter of the protrusion.
Further, when the rated voltage is not high, it is also possible to increase the contact area by reducing the chamfer R (see FIG. 5) of the protruding portion end. In this case, the rating can be raised by increasing the applied voltage or applying current conditioning in the conditioning of the vacuum valve.

なお、上記の説明では、図2の形状の電極を可動電極としたが、図2の電極を固定電極としても良く、また、図2の電極を固定電極,可動電極の両方に適用しても良い。   In the above description, the electrode having the shape shown in FIG. 2 is a movable electrode. However, the electrode shown in FIG. 2 may be a fixed electrode, and the electrode shown in FIG. good.

以上のように本発明の真空バルブによれば、真空容器内に接離可能に配置された1対の風車形電極を有する真空バルブにおいて、風車形電極は、電極棒と接合される円形の中心部と、中心部の外周にあって中心部の面より対向電極側に突出した突出部とを有し、中心部側から突出部の周縁に向かい渦巻き状に伸びる複数の溝によって突出部が複数の円弧部に分割されており、1対の風車形電極のうちの少なくとも一方は、溝の幅を周縁に向かうにしたがって広く形成して、突出部の円弧部の周方向に伸びる先端部の長さが短くなるようにしたので、突出部の先端部で固定電極と可動電極が接触しなくなり、電磁反発力が抑制され、短絡遮断性能を維持したまま、短絡投入性能、短時間耐電流性能を高めることができる。したがって、電極径の小型化と、接圧低減が可能となり、結果として遮断器を小型化することができる。   As described above, according to the vacuum valve of the present invention, in the vacuum valve having a pair of windmill-shaped electrodes that are detachably arranged in the vacuum vessel, the windmill-shaped electrode has a circular center joined to the electrode rod. And a plurality of protrusions formed by a plurality of grooves extending spirally from the center side toward the peripheral edge of the protrusion. And at least one of the pair of windmill-shaped electrodes is formed so that the width of the groove increases toward the periphery, and the length of the tip portion extending in the circumferential direction of the arc portion of the protruding portion Therefore, the fixed electrode and the movable electrode are not in contact at the tip of the projecting part, the electromagnetic repulsion force is suppressed, and the short-circuit closing performance and short-time current resistance performance are maintained while maintaining the short-circuit breaking performance. Can be increased. Therefore, the electrode diameter can be reduced and the contact pressure can be reduced, and as a result, the circuit breaker can be reduced in size.

実施の形態2.
図5はこの発明の実施の形態2による真空バルブの風車形電極部を示す断面図である。図示以外の電極の平面構造は、実施の形態1と同等なので、図示及び説明は省略する。また、真空バルブの全体構成は図6と同等である。
Embodiment 2. FIG.
FIG. 5 is a sectional view showing a windmill electrode portion of a vacuum valve according to Embodiment 2 of the present invention. Since the planar structure of the electrodes other than those shown is the same as that of the first embodiment, the illustration and description are omitted. The overall configuration of the vacuum valve is the same as that shown in FIG.


実験及び磁界解析による検討の結果によって、短絡投入試験、短時間耐電流試験での電磁反発力を低減するもう一つの方法として、突出部の高さを高くする方法があることが分った。そこで、本実施の形態では、電極の寸法関係を以下のようにしたものである。
,
As a result of the examination by the experiment and the magnetic field analysis, it has been found that there is a method of increasing the height of the protruding portion as another method for reducing the electromagnetic repulsion force in the short-circuit insertion test and the short-time current resistance test. Therefore, in this embodiment, the dimensional relationship of the electrodes is as follows.

図5において、中心部12の表面から突出部13の対向電極側に突出した突出高さをh、中心部12の厚さをk、突出部13の全厚みをHとする。
そして、h=4mm〜8mm、k=3mm〜7mm、H=15mm以下とした。
なお、上記寸法の電極が適用される真空バルブとしては、定格電流が20kA〜40kA程度のものを想定している。
上記寸法において、特に、突出高さhが上記の範囲にあれば、電磁反発力を低減できることを、実験び磁界解析により検証した。例えば、突出高さを3mmから5mmに増やすと電磁反発力は10%程度低下する。突出高さを高くすると遮断性能にかかわる磁気駆動力が低下するため遮断性能が若干低下するが、短絡投入性能、短時間耐電流性能が電極径を決めている場合には、結果的に電極径の低減、接圧の低減を達成することができる。
なお、この寸法は、固定電極と可動電極のいずれにも適用できる。
In FIG. 5, h is a protruding height protruding from the surface of the central portion 12 toward the counter electrode side of the protruding portion 13, k is a thickness of the central portion 12, and H is a total thickness of the protruding portion 13.
Then, h = 4 mm to 8 mm, k = 3 mm to 7 mm, and H = 15 mm or less.
In addition, as a vacuum valve to which the electrode of the said dimension is applied, the thing with a rated current of about 20 kA-40 kA is assumed.
In the above dimensions, it was verified by experiments and magnetic field analysis that the electromagnetic repulsion force can be reduced particularly when the projection height h is in the above range. For example, when the protrusion height is increased from 3 mm to 5 mm, the electromagnetic repulsion force decreases by about 10%. If the protrusion height is increased, the magnetic driving force related to the breaking performance will be reduced, and the breaking performance will be slightly reduced. Reduction of contact pressure can be achieved.
This dimension can be applied to both the fixed electrode and the movable electrode.

以上のように実施の形態2の真空バルブによれば、中心部の面から対向電極側に突出した突出部の突出高さを、4mm以上、8mm以下としたので、短絡遮断性能と、短絡投入性能、短時間耐電流性能をバランスさせることができるので、電極径の小型化と、接圧低減が可能となり、結果として遮断器を小型化することができる。   As described above, according to the vacuum valve of the second embodiment, the projecting height of the projecting part projecting from the center surface to the counter electrode side is set to 4 mm or more and 8 mm or less. Since the performance and short-time withstand current performance can be balanced, the electrode diameter can be reduced and the contact pressure can be reduced. As a result, the circuit breaker can be reduced in size.

この発明の実施の形態1による真空バルブの風車形電極の一方の電極を示す平面である。It is a plane which shows one electrode of the windmill type electrode of the vacuum valve by Embodiment 1 of this invention. 図1と対となる他方の風車形電極を示す平面である。It is a plane which shows the other windmill type electrode which becomes a pair with FIG. 図1のIII−III断面図である。FIG. 3 is a sectional view taken along line III-III in FIG. 1. この発明の実施の形態1による真空バルブの風車形電極の動作を説明する図である。It is a figure explaining operation | movement of the windmill-shaped electrode of the vacuum valve by Embodiment 1 of this invention. この発明の実施の形態2による真空バルブの風車形電極を示す断面図である。It is sectional drawing which shows the windmill type electrode of the vacuum valve by Embodiment 2 of this invention. 従来の真空バルブを示す断面図及び要部拡大図である。It is sectional drawing and the principal part enlarged view which show the conventional vacuum valve. 図6の真空バルブの動作を説明する図である。It is a figure explaining operation | movement of the vacuum valve of FIG.

符号の説明Explanation of symbols

1 固定電極(風車形電極) 2 中心部
3 突出部 4 溝
5 接合穴 6 電極棒
7 補強板 8 スペーサ
11 可動電極(風車形電極) 12 中心部
13 突出部 14 溝
15 接触面 16a〜16c アーク。
DESCRIPTION OF SYMBOLS 1 Fixed electrode (windmill-shaped electrode) 2 Center part 3 Projection part 4 Groove 5 Joint hole 6 Electrode rod 7 Reinforcement plate 8 Spacer 11 Movable electrode (windmill-shaped electrode) 12 Center part 13 Projection part 14 Groove 15 Contact surface 16a-16c Arc .

Claims (2)

真空容器内に接離可能に配置された1対の風車形電極を有する真空バルブにおいて、
前記風車形電極は、電極棒と接合される円形の中心部と、前記中心部の外周にあって前記中心部の面より対向電極側に突出した突出部とを有し、前記中心部側から前記突出部の周縁に向かい渦巻き状に伸びる複数の溝によって前記突出部が複数の円弧部に分割されており、
前記1対の風車形電極のうちの一方は、前記溝の幅を前記周縁に向かうにしたがって広く形成して、前記突出部の前記円弧部の周方向に伸びる先端部の長さが他方の風車形電極の先端部より短くなるようにしたことを特徴とする真空バルブ。
In a vacuum valve having a pair of windmill-shaped electrodes arranged in a vacuum container so as to be able to contact and separate,
The windmill-shaped electrode has a circular center part joined to the electrode rod, and a projecting part which is on the outer periphery of the center part and protrudes from the surface of the center part toward the counter electrode, from the center part side The protrusion is divided into a plurality of arc portions by a plurality of grooves extending spirally toward the periphery of the protrusion,
Hand of said pair of the windmill type electrodes are widely formed toward the width of the groove in the periphery, the length of the distal end portion extending in a circumferential direction of the arcuate portion of the projecting portion and the other A vacuum valve characterized by being shorter than the tip of the windmill electrode .
請求項1記載の真空バルブにおいて、前記中心部の面から前記対向電極側に突出した前記突出部の突出高さを、4mm以上、8mm以下としたことを特徴とする真空バルブ。   2. The vacuum valve according to claim 1, wherein a protruding height of the protruding portion protruding from the surface of the central portion toward the counter electrode is 4 mm or more and 8 mm or less.
JP2008142674A 2008-05-30 2008-05-30 Vacuum valve Active JP5020164B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008142674A JP5020164B2 (en) 2008-05-30 2008-05-30 Vacuum valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008142674A JP5020164B2 (en) 2008-05-30 2008-05-30 Vacuum valve

Publications (2)

Publication Number Publication Date
JP2009289660A JP2009289660A (en) 2009-12-10
JP5020164B2 true JP5020164B2 (en) 2012-09-05

Family

ID=41458670

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008142674A Active JP5020164B2 (en) 2008-05-30 2008-05-30 Vacuum valve

Country Status (1)

Country Link
JP (1) JP5020164B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6523037B2 (en) * 2015-05-07 2019-05-29 三菱電機株式会社 Vacuum valve and method of manufacturing vacuum valve
CN105792497B (en) * 2016-01-27 2017-12-26 西安交通大学 A kind of plasma jet triggers anti-yaw damper rotating the arc electrode used for high-voltage switch
JP7492376B2 (en) * 2020-05-28 2024-05-29 株式会社日立製作所 Switchgear

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0766725B2 (en) * 1987-11-07 1995-07-19 三菱電機株式会社 Vacuum circuit breaker
JP3812711B2 (en) * 1999-06-04 2006-08-23 三菱電機株式会社 Vacuum valve
JP2002334639A (en) * 2001-05-08 2002-11-22 Mitsubishi Electric Corp Vacuum valve
JP2002373537A (en) * 2001-06-13 2002-12-26 Hitachi Ltd Electrode for vacuum circuit breaker and its manufacturing method, vacuum valve, and vacuum circuit breaker

Also Published As

Publication number Publication date
JP2009289660A (en) 2009-12-10

Similar Documents

Publication Publication Date Title
US9484169B2 (en) Vacuum interrupter arrangement for a medium voltage circuit breaker with cup-shaped TMF-contacts
WO2018180411A1 (en) Electromagnetic relay
CN113678219A (en) Vacuum valve
EP2485235B1 (en) Vacuum interrupter for vacuum circuit breaker
RU2508575C2 (en) Contact for vacuum interrupter
JP5020164B2 (en) Vacuum valve
KR101362622B1 (en) Vacuum valve
JP5342517B2 (en) Vacuum valve
KR100478394B1 (en) Vacuum valve
JP6975111B2 (en) Gas insulation switchgear
JP2001052576A (en) Vacuum valve
JP2006318795A (en) Vacuum valve
JP4979569B2 (en) Vacuum switchgear
JP6138601B2 (en) Electrode for vacuum circuit breaker and vacuum valve using the same
JP5556596B2 (en) Vacuum valve
JP5139161B2 (en) Vacuum valve
JP7404079B2 (en) vacuum valve
JP2762510B2 (en) Magnetically driven electrodes for vacuum interrupters
JP2751300B2 (en) Magnetically driven electrodes for vacuum interrupters
JP6080694B2 (en) Vacuum valve
JPH04155721A (en) Vacuum bulb
JP2881794B2 (en) Magnetically driven electrodes for vacuum interrupters
JP5550626B2 (en) Electrode for vacuum circuit breaker and vacuum circuit breaker
JP2021026979A (en) Gas circuit breaker
JP2001351484A (en) Vacuum bulb

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100622

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120313

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120522

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120612

R151 Written notification of patent or utility model registration

Ref document number: 5020164

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150622

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250