JP2002334639A - Vacuum valve - Google Patents

Vacuum valve

Info

Publication number
JP2002334639A
JP2002334639A JP2001137359A JP2001137359A JP2002334639A JP 2002334639 A JP2002334639 A JP 2002334639A JP 2001137359 A JP2001137359 A JP 2001137359A JP 2001137359 A JP2001137359 A JP 2001137359A JP 2002334639 A JP2002334639 A JP 2002334639A
Authority
JP
Japan
Prior art keywords
electrode
vacuum valve
windmill
arc
conductivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001137359A
Other languages
Japanese (ja)
Inventor
Toshinori Kimura
俊則 木村
Kenichi Koyama
健一 小山
Hiromi Koga
博美 古賀
Tomotaka Yano
知孝 矢野
Takefumi Ito
武文 伊藤
Shoji Murakami
省自 村上
Shinji Sato
伸治 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2001137359A priority Critical patent/JP2002334639A/en
Publication of JP2002334639A publication Critical patent/JP2002334639A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a vacuum valve of improved breaking performance by proposing an exact evaluation index on electrode materials. SOLUTION: With the vacuum valve made by arranging at least a pair of pinwheel-shaped electrodes 1 having a center part bonded with an electrode bar 6 and a wing part consisting of a plurality of wings bent in an arc shape separated by a plurality of grooves 2 extended from the center and oriented toward an outer periphery part inside a vacuum vessel free in detachment, a part 3 of the pinwheel-shaped electrode touching at least the other pinwheel- shaped electrode is formed of a CuCr system material with thermal conductivity of not less than 195 W/mK, with thermal diffusivity not less than 0.6 cm<2> /s, or with conductivity of not less than 50%IACS.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、風車形電極を真空
容器内に接離可能に配置してなる真空バルブに関し、特
にその電極材料に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vacuum valve in which a windmill-shaped electrode is disposed in a vacuum vessel so as to be able to contact and separate therefrom, and more particularly to a material for the electrode.

【0002】[0002]

【従来の技術】図6は、内部を高真空状態にした真空容
器中に一対の接点(電極)を気密に封入した真空バルブ
の全体構成を示す図である。図において、絶縁筒21の
両端に端板22a、22bを取り付けて、内部を高真空
状態にした真空容器23が構成されており、真空容器2
3内には、一方の端板22aを貫通した固定電極棒24
aの先端に固着された固定側の電極1aと、他方の端板
22bを貫通した可動電極棒24bの先端に固着された
可動側の電極1bとが対向配置されている。
2. Description of the Related Art FIG. 6 is a diagram showing the overall structure of a vacuum valve in which a pair of contacts (electrodes) is hermetically sealed in a vacuum vessel having a high vacuum inside. In the figure, a vacuum vessel 23 having end plates 22a and 22b attached to both ends of an insulating cylinder 21 to make the inside a high vacuum state is formed.
3, fixed electrode rods 24 penetrating through one end plate 22a.
The fixed-side electrode 1a fixed to the tip of the movable electrode 1a and the movable-side electrode 1b fixed to the tip of the movable electrode rod 24b penetrating the other end plate 22b are arranged to face each other.

【0003】可動電極棒24bと端板22bとの間には
ベローズ25が設けられている。ベローズ25は、可動
電極棒24bに接続された操作器(図示せず)を駆動し
て、可動電極棒24bを軸方向に移動させる。そして、
この可動電極棒24bの移動により、固定側の電極1a
と可動側の電極1bとが電気的に接離する。電極1a、
1b間に点弧されたアークから拡散する金属蒸気が真空
容器23の内壁に付着することを防止するために、シー
ルド26がシールド支え27により絶縁筒21の内壁に
装着されている。
A bellows 25 is provided between the movable electrode rod 24b and the end plate 22b. The bellows 25 drives an operating device (not shown) connected to the movable electrode rod 24b to move the movable electrode rod 24b in the axial direction. And
The movement of the movable electrode rod 24b causes the fixed electrode 1a to move.
The movable side electrode 1b electrically contacts and separates. Electrode 1a,
A shield 26 is attached to the inner wall of the insulating cylinder 21 by a shield support 27 in order to prevent metal vapor diffused from the arc ignited during 1b from adhering to the inner wall of the vacuum vessel 23.

【0004】このような真空バルブにおける電極1a、
1bは同形状(正確には面対称)であって、何れも電極
自身に溝を設けた風車形をなしている。この溝の形成に
より電極内の電流経路を制限して、ほぼ円周方向に往復
ループ状の電路を構成し、それによって生じる磁界によ
りアークを駆動して電極の円周上を移動させることによ
り、アークの停滞を防止して、電極の局部溶解を避け、
遮断性能の向上を図っている。
[0004] The electrodes 1a,
1b has the same shape (more precisely, plane symmetry), and each has a windmill shape in which a groove is provided in the electrode itself. By restricting the current path in the electrode by the formation of this groove, a reciprocating loop-like electric path is formed in a substantially circumferential direction, and the magnetic field generated thereby drives the arc to move on the circumference of the electrode. Prevent arc stagnation, avoid local melting of electrodes,
Improving the breaking performance.

【0005】[0005]

【発明が解決しようとする課題】上記のように構成され
た風車形電極を有する真空バルブにおいて、さらなる遮
断性能の向上が望まれる。遮断性能の向上に関しては、
数々の研究がなされており、例えば特開平4−3687
34号公報のように電極構造の改良もなされている。し
かしながら、電極材料については遮断性能に密接に関係
した的確な評価指標は提案されていない。
In a vacuum valve having a windmill-shaped electrode configured as described above, it is desired to further improve the shutoff performance. Regarding the improvement of blocking performance,
Numerous studies have been made, for example, in JP-A-4-3687.
The electrode structure has been improved as in JP-A-34-34. However, no accurate evaluation index has been proposed for electrode materials that is closely related to the breaking performance.

【0006】本発明は、電極材料についての的確な評価
指標を提案することにより、遮断性能がより向上した真
空バルブを提供することを目的としている。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a vacuum valve with improved shutoff performance by proposing an accurate evaluation index for an electrode material.

【0007】[0007]

【課題を解決するための手段】本発明に係る第1の真空
バルブは、電極棒と接合される中心部と、前記中心部か
ら延びる複数の溝によって分画されて前記中心部から外
周部に指向する円弧状に湾曲する複数の羽根からなる羽
根部とを有する少なくとも1対の風車形電極を、真空容
器内に接離可能に配置してなる真空バルブにおいて、前
記風車形電極の少なくとも他方の風車形電極と接触する
部分を、熱伝導率が195W/mK以上、熱拡散率が
0.6cm/s以上、または導電率が50%IACS
以上であるCuCr系材料によって形成したものであ
る。
A first vacuum valve according to the present invention is divided from a central portion joined to an electrode rod and a plurality of grooves extending from the central portion from the central portion to an outer peripheral portion. A vacuum valve in which at least one pair of windmill-shaped electrodes having a plurality of blades each of which is directed to be curved in an arc shape is disposed so as to be capable of coming and going in a vacuum vessel; A portion having a thermal conductivity of 195 W / mK or more, a thermal diffusivity of 0.6 cm 2 / s or more, or a conductivity of 50% IACS
It is formed of the above CuCr-based material.

【0008】本発明に係る第2の真空バルブは、羽根は
その外周部側が中心部側よりも対向電極の方に突出し、
閉極時に対向電極と接触するように構成されているもの
である。
In the second vacuum valve according to the present invention, the outer peripheral portion of the blade protrudes toward the counter electrode from the central portion,
It is configured to be in contact with the opposing electrode when closing the electrode.

【0009】[0009]

【発明の実施の形態】実施の形態1.本発明者らは、電
極(接点)材料の熱伝導率、熱拡散率、および導電率に
注目し、これらの物性値と遮断性能とに密接な関係があ
ることを見出し、本発明に至った。すなわち、風車形電
極の少なくとも他方の風車形電極と接触する部分を、熱
伝導率が195W/mK以上、熱拡散率が0.6cm
/s以上、または導電率が50%IACS以上であるC
uCr系材料によって形成することにより、遮断性能が
より向上した真空バルブが得られる。なお、%IACS
は、焼き鈍した純銅の導電率を100とした比で表わさ
れる導電率の単位である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiment 1 The present inventors have paid attention to the thermal conductivity, thermal diffusivity, and conductivity of an electrode (contact) material, and have found that there is a close relationship between these physical property values and the breaking performance, leading to the present invention. . That is, at least a portion of the windmill-shaped electrode that is in contact with the other windmill-shaped electrode has a thermal conductivity of 195 W / mK or more and a thermal diffusivity of 0.6 cm 2.
/ S or C having a conductivity of 50% IACS or more
By forming with a uCr-based material, a vacuum valve with further improved shutoff performance can be obtained. In addition,% IACS
Is a unit of conductivity represented by a ratio of the conductivity of annealed pure copper to 100.

【0010】図1は本発明の実施の形態1による真空バ
ルブの風車形電極の構造を示す斜視図、図2は同じくそ
の平面図、図3は図2のA−A´線における断面図であ
る。図において、6は固定側または可動側の銅製の電極
棒であり、電極棒6には固定側または可動側の風車形電
極(以下単に電極という)1が固着されている。電極1
は、その中央に貫通する円形の接合穴7が設けられた偏
平円筒状をなしており、その接合穴7の中途まで、細く
絞られた電極棒6の先端部6aが挿入された態様で、電
極1が電極棒6に固着されている。そして、外部から電
極棒6を介して、真空容器(図示せず)内の電極1に電
流が導かれるようになっている。
FIG. 1 is a perspective view showing the structure of a windmill-shaped electrode of a vacuum valve according to a first embodiment of the present invention, FIG. 2 is a plan view thereof, and FIG. 3 is a cross-sectional view taken along line AA 'of FIG. is there. In the figure, reference numeral 6 denotes a fixed or movable copper electrode rod, and a fixed or movable windmill-shaped electrode (hereinafter simply referred to as an electrode) 1 is fixed to the electrode rod 6. Electrode 1
Has a flat cylindrical shape provided with a circular joining hole 7 penetrating at the center thereof, and a tip 6a of a finely narrowed electrode rod 6 is inserted halfway into the joining hole 7, The electrode 1 is fixed to the electrode rod 6. Then, a current is guided from the outside to the electrode 1 in a vacuum vessel (not shown) via the electrode rod 6.

【0011】電極1の中心部から周縁部にわたって表面
から裏面まで到る概略渦巻き形状の4本の溝2が切られ
ている。電極1は、電極棒6と接合される中心部と、中
心部から延びる複数の溝2によって分画されて中心部か
ら外周部に指向する円弧状に湾曲する複数の羽根からな
る羽根部とを有している。また、本実施の形態では、羽
根はその外周部3側が中心部(腕部)4側よりも対向電
極の方に突出し、閉極時に対向電極と接触するように構
成されている。
From the center to the periphery of the electrode 1, four generally spiral grooves 2 extending from the front surface to the back surface are cut. The electrode 1 includes a central portion joined to the electrode rod 6 and a wing portion composed of a plurality of wings which are divided by a plurality of grooves 2 extending from the central portion and curved in an arc shape directed from the central portion to the outer peripheral portion. Have. In the present embodiment, the blade is configured such that the outer peripheral portion 3 side protrudes toward the counter electrode from the center portion (arm portion) 4 side, and comes into contact with the counter electrode when the electrode is closed.

【0012】電極1の裏面には、機械的強度を補うため
のステンレス製の補強板5が設けられている。また、電
極棒6の肩部と補強板5との間には、ステンレス製のス
ペーサ8が介在され、ロウ付けによって、これらの電極
棒6、補強板5及びスペーサ8が一体固着されている。
スペーサ8は、この電極1及び電極棒6の接合部の強度
を確保するために設けられており、電流の流れをその接
合部(接合穴7)の径以内に制限するために、電極棒6
の材料の銅より抵抗が大きいステンレス製としている。
A reinforcing plate 5 made of stainless steel is provided on the back surface of the electrode 1 to supplement mechanical strength. A stainless steel spacer 8 is interposed between the shoulder of the electrode rod 6 and the reinforcing plate 5, and the electrode rod 6, the reinforcing plate 5 and the spacer 8 are integrally fixed by brazing.
The spacer 8 is provided in order to ensure the strength of the joint between the electrode 1 and the electrode rod 6. In order to restrict the flow of current to within the diameter of the joint (joining hole 7), the spacer 8 is used.
The material is made of stainless steel, which has higher resistance than copper.

【0013】なお、このような構成において、電極1の
外径をD、羽根の外周部3の内径をDi 、電極1の高さ
をH、羽根の外周部3と中心部4との厚さの差(羽根の
外周部3の突出高さ)をh、接合穴7の径をdとする。
In such a configuration, the outer diameter of the electrode 1 is D, the inner diameter of the outer peripheral portion 3 of the blade is Di, the height of the electrode 1 is H, and the thickness of the outer peripheral portion 3 and the center portion 4 of the blade. (The projecting height of the outer peripheral portion 3 of the blade) is h, and the diameter of the joint hole 7 is d.

【0014】次に、動作について説明する。真空バルブ
の通電時には、固定側の電極1の羽根の外周部3と可動
側の電極1の羽根の外周部3とが接触しており、電流遮
断時には、その両電極1、1の羽根の外周部3、3は開
離して、各羽根の外周部3、3上にアークが発生する。
このアークは、羽根の外周部3上の任意の位置で発生し
うる。図2ではアークが位置9で発生した場合を例とし
て示している。
Next, the operation will be described. When the vacuum valve is energized, the outer peripheral portion 3 of the blade of the fixed-side electrode 1 and the outer peripheral portion 3 of the blade of the movable-side electrode 1 are in contact. The parts 3,3 are separated and an arc is generated on the outer peripheral parts 3,3 of each blade.
This arc can occur at any position on the outer periphery 3 of the blade. FIG. 2 shows a case where an arc is generated at the position 9 as an example.

【0015】電極棒6を流れる電流I1 は、接合穴7に
固着されたその先端部6aを介して電極1へ流れ込み、
アーク9が発生している羽根の外周部3に対応した腕部
4を流れて羽根の外周部3のアーク9へ流入する。この
電流の流れを、図2では電流I2 として示している。こ
の電流I2 が発生する磁界の半径方向成分によってアー
ク9は円周方向への駆動力を受ける。
The current I 1 flowing through the electrode rod 6 flows into the electrode 1 via the tip 6 a fixed to the joint hole 7,
It flows through the arm 4 corresponding to the outer peripheral portion 3 of the blade where the arc 9 is generated, and flows into the arc 9 of the outer peripheral portion 3 of the blade. This current flow is shown as a current I2 in FIG. The arc 9 receives a driving force in the circumferential direction due to the radial component of the magnetic field generated by the current I2.

【0016】その結果、例えばアーク9はアーク9′の
位置の方向に向かって移動する。アーク9がアーク9'
の位置に達すると、今度はアーク9'に流れ込む電流が
発生する磁界によって駆動力を受け、アーク9′は図2
において時計回り方向の隣の羽根の外周部3へ移動す
る。よって、アークが羽根の外周部3の上で発生した直
後から駆動力が働いてアークが回転を始め、その後、こ
のような動作が連続的に行われて、アーク発生中は、羽
根の外周部3の上をアークが実質的に回転運動すること
になる。
As a result, for example, the arc 9 moves toward the position of the arc 9 '. Arc 9 is Arc 9 '
Is reached, the driving force is applied by the magnetic field generated by the current flowing into the arc 9 '.
Moves to the outer periphery 3 of the next blade in the clockwise direction. Therefore, immediately after the arc is generated on the outer peripheral portion 3 of the blade, the driving force acts to start the rotation of the arc. Thereafter, such an operation is continuously performed. 3, the arc will rotate substantially.

【0017】次に、電極1材料について説明する。電極
1はCuCr系材料によって作成した。CuCr系材料
の製造は、焼結法で行った。すなわち、純度99%以上
のCu粉とCr粉を用意し、これらの粉末を所定の比率
(Cu:Cr=75重量%:25重量%)になるように
配合し、混合粉を得た。次に、この混合粉を金型に充填
して所定の圧力で加圧成形し、圧粉体を作製した。その
圧粉体を還元雰囲気中で焼結した。
Next, the material of the electrode 1 will be described. The electrode 1 was made of a CuCr-based material. The production of the CuCr-based material was performed by a sintering method. That is, Cu powder and Cr powder having a purity of 99% or more were prepared, and these powders were blended in a predetermined ratio (Cu: Cr = 75% by weight: 25% by weight) to obtain a mixed powder. Next, the mixed powder was filled in a mold and pressed under a predetermined pressure to produce a green compact. The green compact was sintered in a reducing atmosphere.

【0018】上記の焼結法において、加圧成形の圧力や
焼結条件を種々変化させて熱伝導率、熱拡散率、および
導電率を変化させたCu−Cr系材料からなる同一形状
の複数の電極1を作製し、それらの各電極1を真空バル
ブに組み込んだ場合について、JEC−2300「交流
遮断器」に準じて定格電圧24kV,定格遮断電流25
kAの合成遮断試験を行い、熱伝導率、熱拡散率、およ
び導電率と遮断性能(遮断限界電流)との関係を調べ
た。なお、遮断限界電流は、比較例3の値を基準とした
相対値で示した。なお、真空バルブは図6のような標準
的な構成のものを用いた。表1はこれらの試験結果をま
とめたものである。
In the above-mentioned sintering method, a plurality of Cu-Cr-based materials having different thermal conductivity, thermal diffusivity, and electrical conductivity by variously changing the pressure and sintering conditions of the pressure molding are used. In the case where the electrodes 1 are manufactured and each of the electrodes 1 is incorporated in a vacuum valve, the rated voltage is 24 kV and the rated breaking current is 25 according to JEC-2300 “AC circuit breaker”.
A kA synthetic cutoff test was performed to examine the relationship between the thermal conductivity, the thermal diffusivity, and the conductivity and the cutoff performance (cutoff limit current). Note that the cut-off limit current is shown as a relative value based on the value of Comparative Example 3. The vacuum valve used had a standard configuration as shown in FIG. Table 1 summarizes the results of these tests.

【0019】[0019]

【表1】 [Table 1]

【0020】表1より、熱伝導率が195W/mK以上
である実施例1および2において、熱伝導率が195W
/mKよりも小さい比較例1〜3に比べて、遮断性能が
向上していることが分かる。熱伝導率が大きいと遮断性
能が向上する原因について以下に述べる。我々は、例え
ば、刊行物(Toshinori Kimura, Atsushi Sawada, Keni
chi Koyama, Hiromi Koga, Tomotaka Yano,"Influence
of Vacuum Arc Behavior on Current Interrupting Lim
it of Spiral Contact," 19th ISDEIV, P443-446,Sep
t.,2000)に示したように、スパイラル電極の遮断性能
とアークの駆動特性に関して研究を行なった。接触部で
発弧するアークは発弧直後 数msは断面積を増加させ
ながら中心の位置はほとんど停滞し(停滞期間)、速度
が急速に増加(加速期間)した後、金属蒸気を吹き出し
ながら100m/sを超える高速で回転(高速期間)す
る。電極形状や電極材料を変えてアークの駆動特性の比
較を行った結果、遮断性能は初期停滞期間の長さと密接
な関係があることが分った。例えば、初期停滞期間の長
さが長くなると、停滞期間に電極表面に注入されるエネ
ルギーが大きくなるため、電極表面に溶融点が発生し、
この溶融状態がその後も継続するため電流零点における
金属蒸気密度に影響し、遮断失敗にいたると考えられ
る。この、電極表面に注入されるエネルギーは電極の内
部への熱伝導と蒸発熱による冷却によって消費されると
考えられる。ここで、電極材料の熱伝導率が高ければ、
電極表面に注入されるエネルギーの内、電極の内部へ拡
散する量が増加すると考えられる。このため、電極表面
からの金属蒸気の発生量(蒸発量)が減少し、遮断性能
が向上すると考えられる。
According to Table 1, in Examples 1 and 2 where the thermal conductivity was 195 W / mK or more, the thermal conductivity was 195 W / mK.
It can be seen that the breaking performance is improved as compared with Comparative Examples 1 to 3 smaller than / mK. The reason why the breaking performance is improved when the thermal conductivity is large will be described below. We have published, for example, publications (Toshinori Kimura, Atsushi Sawada, Keni
chi Koyama, Hiromi Koga, Tomotaka Yano, "Influence
of Vacuum Arc Behavior on Current Interrupting Lim
it of Spiral Contact, "19 th ISDEIV, P443-446, Sep
t., 2000), research was conducted on the breaking performance of the spiral electrode and the driving characteristics of the arc. Immediately after the arc ignited at the contact part, the center position almost stagnates (stagnation period) for several ms while increasing the cross-sectional area, and the speed increases rapidly (acceleration period). / S high speed (high speed period). As a result of comparing the driving characteristics of the arc by changing the electrode shape and the electrode material, it was found that the breaking performance was closely related to the length of the initial stagnation period. For example, when the length of the initial stagnation period is increased, the energy injected into the electrode surface during the stagnation period increases, so that a melting point occurs on the electrode surface,
It is considered that since the melting state continues thereafter, the metal vapor density at the current zero point is affected, and the interruption fails. It is considered that the energy injected into the electrode surface is consumed by heat conduction into the inside of the electrode and cooling by heat of evaporation. Here, if the thermal conductivity of the electrode material is high,
It is considered that of the energy injected into the electrode surface, the amount diffused into the electrode increases. For this reason, it is considered that the generation amount (evaporation amount) of metal vapor from the electrode surface is reduced, and the blocking performance is improved.

【0021】また、熱拡散率が0.6cm/s以上で
ある実施例1および2において、それよりも小さい比較
例1〜3に比べて、遮断性能が向上していることが分か
る。熱拡散率αは、Kを熱伝導率、Cpを定圧比熱、ρを
密度とすると、α=K/Cp・ρ により求められ、温度の
移動速度に関係した量である。従って、熱伝導率の場合
と同様に、熱拡散率が大きいと遮断性能は向上すると考
えられる。また、導電率が50%IACS以上である実
施例1および2において、それよりも小さい比較例1〜
3に比べて、遮断性能が向上していることが分かる。固
体物性論によると、金属の熱伝導率と導電率(電気伝導
率)は比例関係にある(ヴィーデマン−フランツの法
則)。従って、熱伝導率の場合と同様に、導電率が大き
いと遮断性能は向上すると考えられる。
Further, it can be seen that in Examples 1 and 2 in which the thermal diffusivity is 0.6 cm 2 / s or more, the breaking performance is improved as compared with Comparative Examples 1 to 3 which are smaller than that. The thermal diffusivity α is obtained by α = K / Cp · ρ, where K is thermal conductivity, Cp is constant-pressure specific heat, and ρ is density, and is a quantity related to the moving speed of temperature. Therefore, as in the case of the thermal conductivity, it is considered that the blocking performance is improved if the thermal diffusivity is large. Further, in Examples 1 and 2 in which the conductivity is 50% IACS or more, Comparative Examples 1 to 4 smaller than those were used.
It can be seen that the breaking performance is improved as compared with No. 3. According to the theory of solid state properties, the thermal conductivity and the electrical conductivity (electric conductivity) of a metal are in a proportional relationship (Wiedemann-Franz law). Therefore, as in the case of the thermal conductivity, it is considered that the blocking performance is improved when the conductivity is large.

【0022】なお、表1では、Crを25重量%含有す
るCu−Cr系材料について示しているが、Crの含有
率はこれに限るものではなく、20重量%〜60重量%
においても同様の効果が得られる。Crの含有率が20
重量%より少ないと、アークによる浸食を受けやすくな
り遮断可能回数が少なくなる、溶着しやすくなる、とい
う欠点がある。また、60重量%より多いとかたくても
ろいという性質をもつようになり、加工性が悪い、閉極
時の衝撃などで割れやすくなるという欠点がある。また
さらに、Crの他に、Si、Mn、Ti、Al、Zn、
Cなどを含有していてもよい。
Table 1 shows a Cu-Cr-based material containing 25% by weight of Cr, but the content of Cr is not limited to this, and is 20% to 60% by weight.
The same effect can be obtained in Cr content of 20
When the amount is less than the weight%, there are disadvantages that the erosion is apt to be caused by the arc, the number of interruptable times is reduced, and welding is easily performed. Further, when the content is more than 60% by weight, the material has a property of being hard and brittle, and has disadvantages such as poor workability and liability to be broken by an impact at the time of closing. Furthermore, in addition to Cr, Si, Mn, Ti, Al, Zn,
C and the like may be contained.

【0023】さらに、本実施の形態によれば、風車形電
極の少なくとも他方の風車形電極と接触する部分を、熱
伝導率が195W/mK以上、熱拡散率が0.6cm
/s以上、または導電率が50%IACS以上であるC
uCr系材料によって形成したので、遮断直後の耐圧が
向上する、すなわち、高い再起電圧に耐えられるように
なるという効果があり、より定格電圧の高い遮断器に対
して本真空バルブを適用することが可能となる。すなわ
ち、上述したように(第20段落で述べたように)、電
極材料の熱伝導率を高くすることにより金属蒸気の発生
量が減るため、遮断可能電流が増加するだけでなく、電
流ゼロ点での再起電圧に対する耐電圧が向上する。
Further, according to the present embodiment, at least a portion of the windmill-shaped electrode which is in contact with the other windmill-shaped electrode has a thermal conductivity of 195 W / mK or more and a thermal diffusivity of 0.6 cm 2.
/ S or C having a conductivity of 50% IACS or more
Since it is formed of a uCr-based material, the withstand voltage immediately after the interruption is improved, that is, it has the effect of being able to withstand a high re-motive voltage, and the present vacuum valve can be applied to a circuit breaker having a higher rated voltage. It becomes possible. That is, as described above (as described in the twentieth paragraph), by increasing the thermal conductivity of the electrode material, the amount of generated metal vapor is reduced, so that not only the interruptable current increases but also the current zero point. The withstand voltage against the re-motive voltage at the time is improved.

【0024】なお、本実施の形態では、本発明と同一出
願人による特開2001−052576号公報に詳細に
記載されているように、風車形電極の周縁の羽根の外周
部3にアークを発生させ、アークに対して駆動力として
作用する磁束密度のうち、一方の電極1の腕部4を介し
てアークに流れ込む電流によって発生し、アークの足部
の自電極の接触面から0.5mmの範囲に対してアーク
駆動力として作用する磁束密度の前記接触面に平行な成
分が、前記接触面のどの位置においても電流1kAに対
して0.01テスラ以上となるように構成した。すなわ
ち、具体的には、風車形電極1の外径をD、接触部の内
径をDi 、電極棒の接合部の径をdとした場合に、Di
≧0.4D、かつd≦0.6Diで、しかも、接触部の
突出高さhを5mm以下となるようにした。風車形電極
をこのように構成することにより、アークが発生してか
ら回転を開始するまでの時間を短縮でき、その結果、よ
り高い遮断能力を得ることができるという効果が得られ
る。
In this embodiment, as described in detail in Japanese Patent Application Laid-Open No. 2001-052576 filed by the same applicant as the present invention, an arc is generated at the outer peripheral portion 3 of the peripheral blade of the windmill-shaped electrode. Of the magnetic flux density acting as a driving force for the arc, the magnetic flux density is generated by a current flowing into the arc through the arm 4 of one of the electrodes 1 and is 0.5 mm from the contact surface of the own electrode of the foot of the arc. The component of the magnetic flux density acting as the arc driving force in the range parallel to the contact surface is set to be 0.01 tesla or more at a current of 1 kA at any position on the contact surface. That is, specifically, when the outer diameter of the windmill-shaped electrode 1 is D, the inner diameter of the contact portion is Di, and the diameter of the joint portion of the electrode rod is d, Di
.Gtoreq.0.4D and d.ltoreq.0.6Di, and the projecting height h of the contact portion is set to 5 mm or less. By configuring the windmill-shaped electrode in this manner, the time from when an arc is generated to when the arc is started can be reduced, and as a result, an effect that a higher breaking ability can be obtained can be obtained.

【0025】また、本実施の形態では、本発明と同一出
願人による特願2000−174143号明細書に詳細
に記載されているように、風車形電極1の中心部と羽根
部(羽根の中心部4および羽根の外周部3)とを一体に
形成し、かつ、一対の風車形電極1が開極された際に発
生するアークに、一方の電極1の中心部から腕部4を介
して流れ込む電流によって発生し、アークの足部の、自
電極の接触面から1mmの範囲に対して、回転方向の駆
動力を生じさせる磁束密度の径方向で、かつ前記接触面
に平行な成分が、アークが前記接触面上の腕部4との境
界付近にある時に、電流1kAに対して6.5ミリテス
ラ(mTesla)以上となるように構成した。風車形
電極をこのように構成することにより、特にアークが接
触面上の腕部4との境界付近に発弧した時の、アークが
発生してから回転を開始するまでの時間が短縮され、そ
の結果、高い遮断能力を得ることができるという効果が
得られる。
In the present embodiment, as described in detail in Japanese Patent Application No. 2000-174143 filed by the same applicant as the present invention, the center of the windmill-shaped electrode 1 and the blade (the center of the blade) Part 4 and the outer peripheral part 3) of the blade are integrally formed, and an arc generated when the pair of windmill-shaped electrodes 1 is opened is opened from the center of one of the electrodes 1 via the arm 4. A component that is generated by the flowing current and has a component parallel to the contact surface in the radial direction of the magnetic flux density that generates the driving force in the rotational direction for a range of 1 mm from the contact surface of the own electrode of the foot portion of the arc, When the arc was near the boundary with the arm 4 on the contact surface, the current was set to be 6.5 milliTesla (mTesla) or more for 1 kA of current. By configuring the windmill-shaped electrode in this way, particularly when the arc is fired near the boundary with the arm 4 on the contact surface, the time from the occurrence of the arc to the start of rotation is reduced, As a result, an effect that a high blocking ability can be obtained is obtained.

【0026】但し、風車形電極を、必ずしも特開200
1−052576号公報や特願2000−174143
号明細書に記載されているように構成しなくても、電極
1を、熱伝導率が195W/mK以上、熱拡散率が0.
6cm/s以上、または導電率が50%IACS以上
であるCuCr系材料によって形成することにより、遮
断性能の向上した真空バルブを得ることができる。
However, the windmill-shaped electrode is not necessarily
No. 1-052576 and Japanese Patent Application No. 2000-174143.
The electrode 1 has a thermal conductivity of 195 W / mK or more and a thermal diffusivity of 0.1 even without being configured as described in the specification.
By forming the vacuum valve with a CuCr-based material having a conductivity of 6 cm 2 / s or more or a conductivity of 50% IACS or more, a vacuum valve with improved shutoff performance can be obtained.

【0027】なお、本実施の形態では、電極1の全てを
上記のような所定の熱伝導率、熱拡散率、または導電率
を有するCuCr系材料で形成した場合について説明し
たが、風車形電極の少なくとも他方の風車形電極と接触
する部分を、熱伝導率が195W/mK以上、熱拡散率
が0.6cm/s以上、または導電率が50%IAC
S以上であるCuCr系材料によって形成すればよく、
遮断性能がより向上した真空バルブが得られる。但し、
特願2000−174143号明細書でも記載している
ように、同一の材料によって一体に形成することによっ
て、異なる材料を接合するばあいのように接合部が弱点
となることもない。
In this embodiment, the case where all the electrodes 1 are formed of the above-mentioned CuCr-based material having a predetermined thermal conductivity, thermal diffusivity, or electrical conductivity has been described. At least a portion in contact with the other windmill-shaped electrode has a thermal conductivity of 195 W / mK or more, a thermal diffusivity of 0.6 cm 2 / s or more, or a conductivity of 50% IAC.
What is necessary is just to form with CuCr-type material which is S or more,
A vacuum valve with more improved shutoff performance is obtained. However,
As described in Japanese Patent Application No. 2000-174143, by integrally forming the same material, the joint does not become a weak point as in the case of joining different materials.

【0028】また、本実施の形態では溝2を4本とした
場合を例として示したが、4本に限るものではなく、複
数本であればよい。但し、特願2000−174143
号明細書でも記載しているように、例えば6本や8本な
ど、4本以上がアーク駆動力として作用する時速密度の
径方向成分の増加を図り、高い遮断能力を得るという観
点からより望ましい。
Further, in the present embodiment, the case where four grooves 2 are used has been described as an example, but the number is not limited to four, and a plurality of grooves may be used. However, Japanese Patent Application 2000-174143
As described in the specification, for example, four or more wires, such as six wires or eight wires, are more preferable from the viewpoint of increasing the radial component of an hourly speed density acting as an arc driving force and obtaining a high breaking ability.

【0029】実施の形態2.図4は本発明の実施の形態
2による真空バルブの風車形電極の構造およびその作用
を説明するための図であり、(a)は平面図、(b)は
(a)のA−A´線における断面図である。なお、図4
(b)では、エネルギーの拡散する方向を示す矢印が分
かりやすいようにハッチングを省略している。上記実施
の形態1では、羽根はその外周部3側が中心部4側より
も対向電極の方に突出し、閉極時に対向電極と接触する
ように構成されていたが、本実施の形態では、羽根の中
心部4側が外周部3側よりも対向電極の方に突出し、閉
極時に対向電極と接触する接触部となっている。このよ
うな構成を有する風車形電極を備えた真空バルブは例え
ば特開昭55−30174号公報に記載されており、こ
の場合においても、実施の形態1の場合と同様に、風車
形電極の少なくとも他方の風車形電極と接触する部分
(羽根の中心部4)を、熱伝導率が195W/mK以
上、熱拡散率が0.6cm/s以上、または導電率が
50%IACS以上であるCuCr系材料によって形成
することにより、遮断性能がより向上した真空バルブが
得られる。
Embodiment 2 4A and 4B are views for explaining the structure and operation of a windmill-shaped electrode of a vacuum valve according to Embodiment 2 of the present invention, wherein FIG. 4A is a plan view, and FIG. It is sectional drawing in a line. FIG.
In (b), hatching is omitted so that the arrow indicating the direction in which the energy is diffused is easy to understand. In the first embodiment, the blade is configured so that the outer peripheral portion 3 side projects toward the counter electrode from the center portion 4 side, and comes into contact with the counter electrode when the electrode is closed. However, in the present embodiment, the blade is The central part 4 side projects toward the counter electrode more than the outer peripheral part 3 side, and serves as a contact part that comes into contact with the counter electrode when closing the electrode. A vacuum valve provided with a windmill-shaped electrode having such a configuration is described in, for example, JP-A-55-30174. In this case, as in the case of the first embodiment, at least the windmill-shaped electrode is provided. The portion that contacts the other windmill-shaped electrode (central portion 4 of the blade) is made of CuCr having a thermal conductivity of 195 W / mK or more, a thermal diffusivity of 0.6 cm 2 / s or more, or a conductivity of 50% IACS or more. By forming the vacuum valve from a system material, a vacuum valve with further improved shutoff performance can be obtained.

【0030】本実施の形態の場合、図4(a)に示すよ
うに、固定電極と可動電極の接触面である羽根の中心部
4側でアーク9が発弧する。その後、停滞期間および加
速期間を経ながら外周部3側に移動し、外周部3に到達
すると高速回転する(高速期間)。従って、他方の風車
形電極と接触する部分である羽根の中心部4側だけを熱
伝導率の高い材料としても、停滞期間に電極表面に注入
されたエネルギーの電極1内部へ拡散する速度が上昇
し、遮断性能が向上する効果がある。ただし、外周部も
熱伝導率の高い材料とすると一層効果が高いのは、実施
の形態1で説明したのと同様である。
In the case of this embodiment, as shown in FIG. 4A, an arc 9 is emitted on the center 4 side of the blade, which is the contact surface between the fixed electrode and the movable electrode. Thereafter, it moves toward the outer peripheral portion 3 while passing through a stagnation period and an acceleration period, and when it reaches the outer peripheral portion 3, it rotates at high speed (high-speed period). Therefore, even if only the central portion 4 of the blade, which is the portion in contact with the other windmill-shaped electrode, is made of a material having high thermal conductivity, the speed at which the energy injected into the electrode surface during the stagnation period is diffused into the electrode 1 increases. This has the effect of improving the blocking performance. However, it is the same as described in the first embodiment that the effect is further enhanced if the outer peripheral portion is made of a material having a high thermal conductivity.

【0031】次に、図4(a)(b)、図2および図2
のB−B´線における断面図である図5を参考に、実施
の形態1と2を比較する。なお、図5では、エネルギー
の拡散する方向を示す矢印が分かりやすいようにハッチ
ングを省略している。図4(b)および図5において、
矢印は発弧直後に電極表面に注入されたエネルギーが拡
散する方向を示すものである。図から明らかなように、
実施の形態1における方が、発弧直後に電極表面に注入
されたエネルギーが拡散する方向が限定されている。さ
らに、実施の形態1の場合、図2に示したように、アー
ク9の発弧と高速回転が同じ接触面上で起るので、発弧
点に再びアークが到達しエネルギーの再注入が起こる。
従って、実施の形態1における方が、電極を熱伝導率
(または熱拡散率または導電率)の高い材料によって構
成しエネルギー拡散を早めることによる、遮断性能向上
効果が大きい。
Next, FIGS. 4 (a) and 4 (b), FIGS.
Embodiment 1 and Embodiment 2 are compared with reference to FIG. 5 which is a cross-sectional view taken along line BB ′ of FIG. In FIG. 5, hatching is omitted so that the arrow indicating the direction in which the energy is diffused is easy to understand. 4 (b) and FIG.
The arrow indicates the direction in which the energy injected into the electrode surface immediately after the firing is diffused. As is clear from the figure,
In the first embodiment, the direction in which the energy injected to the electrode surface immediately after firing is diffused is more limited. Further, in the case of the first embodiment, as shown in FIG. 2, the arc 9 and the high-speed rotation occur on the same contact surface, so that the arc reaches the arc point again and the energy is re-injected. .
Therefore, in the first embodiment, the effect of improving the blocking performance by forming the electrode from a material having a high thermal conductivity (or thermal diffusivity or conductivity) and accelerating the energy diffusion is greater.

【0032】なお、上記各実施の形態では、羽根の外周
部3側(または中心部4側)が羽根の中心部4側(また
は外周部3側)よりも対向電極の方に突出し、羽根の外
周部3側(または中心部4側)が閉極時に対向電極と接
触する場合について説明したが、羽根の中心部4側と外
周部3側とが同一面上にある場合でもよく、いわゆる風
車形電極であれば、電極部を熱伝導率が195W/mK
以上、熱拡散率が0.6cm/s以上、または導電率
が50%IACS以上であるCuCr系材料によって形
成することにより、遮断性能の向上した真空バルブを得
ることができる。
In each of the above embodiments, the outer peripheral portion 3 (or the central portion 4 side) of the blade protrudes toward the counter electrode more than the central portion 4 (or the outer peripheral portion 3 side) of the blade. Although the case where the outer peripheral portion 3 side (or the central portion 4 side) is in contact with the counter electrode at the time of closing the electrode is described, the case where the central portion 4 side of the blade and the outer peripheral portion 3 side are on the same plane may be used. In the case of a shaped electrode, the electrode part has a thermal conductivity of 195 W / mK.
As described above, a vacuum valve with improved shut-off performance can be obtained by forming a heat diffusion coefficient of at least 0.6 cm 2 / s or a CuCr-based material having a conductivity of at least 50% IACS.

【0033】[0033]

【発明の効果】以上のように、本発明の第1の真空バル
ブは、電極棒と接合される中心部と、前記中心部から延
びる複数の溝によって分画されて前記中心部から外周部
に指向する円弧状に湾曲する複数の羽根からなる羽根部
とを有する少なくとも1対の風車形電極を、真空容器内
に接離可能に配置してなる真空バルブにおいて、前記風
車形電極の少なくとも他方の風車形電極と接触する部分
を、熱伝導率が195W/mK以上、熱拡散率が0.6
cm/s以上、または導電率が50%IACS以上で
あるCuCr系材料によって形成したので、遮断性能が
より向上した真空バルブが得られる。
As described above, the first vacuum valve of the present invention is divided from the center portion to be joined to the electrode rod and the plurality of grooves extending from the center portion, from the center portion to the outer peripheral portion. A vacuum valve in which at least one pair of windmill-shaped electrodes having a plurality of blades that are directed to be curved in an arc shape is disposed so as to be capable of coming and going in a vacuum vessel; A portion having a thermal conductivity of 195 W / mK or more and a thermal diffusivity of 0.6
Since it is formed of a CuCr-based material having a conductivity of not less than cm 2 / s or a conductivity of not less than 50% IACS, it is possible to obtain a vacuum valve having more improved shutoff performance.

【0034】本発明の第2の真空バルブは、第1の真空
バルブにおいて、羽根はその外周部側が中心部側よりも
対向電極の方に突出し、閉極時に対向電極と接触するよ
うに構成されているので、第1の真空バルブの効果がよ
り顕著となる。
A second vacuum valve according to the present invention, in the first vacuum valve, is configured such that the outer peripheral side of the blade protrudes toward the opposing electrode from the central side and is in contact with the opposing electrode when the electrode is closed. Therefore, the effect of the first vacuum valve becomes more remarkable.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の実施の形態1による真空バルブの風
車形電極の構造を示す斜視図である。
FIG. 1 is a perspective view showing a structure of a windmill-shaped electrode of a vacuum valve according to Embodiment 1 of the present invention.

【図2】 本発明の実施の形態1による真空バルブの風
車形電極の構造を示す平面図である。
FIG. 2 is a plan view showing a structure of a windmill-shaped electrode of the vacuum valve according to the first embodiment of the present invention.

【図3】 図2のA−A´線における断面図である。FIG. 3 is a sectional view taken along line AA ′ of FIG. 2;

【図4】 本発明の実施の形態2による真空バルブの風
車形電極の構造およびその作用を説明するための図であ
り、(a)は平面図、(b)は(a)のA−A´線にお
ける断面図である。
4A and 4B are diagrams for explaining the structure and operation of a windmill-shaped electrode of a vacuum valve according to a second embodiment of the present invention, wherein FIG. 4A is a plan view, and FIG. It is sectional drawing in the 'line.

【図5】 本発明の実施の形態1による真空バルブの風
車形電極の作用を説明するための断面図である。
FIG. 5 is a cross-sectional view for explaining the operation of the windmill-shaped electrode of the vacuum valve according to the first embodiment of the present invention.

【図6】 真空バルブの全体構成を示す断面図である。FIG. 6 is a cross-sectional view showing the overall configuration of the vacuum valve.

【符号の説明】 1 風車形電極、2 溝、3 羽根の外周部、4 羽根
の中心部、5 補強板、6 電極棒、7 接合穴。
[Description of Signs] 1 Windmill-shaped electrode, 2 grooves, 3 blade outer periphery, 4 blade center, 5 reinforcing plate, 6 electrode rod, 7 joint hole.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 古賀 博美 東京都千代田区丸の内二丁目2番3号 三 菱電機株式会社内 (72)発明者 矢野 知孝 東京都千代田区丸の内二丁目2番3号 三 菱電機株式会社内 (72)発明者 伊藤 武文 東京都千代田区丸の内二丁目2番3号 三 菱電機株式会社内 (72)発明者 村上 省自 東京都千代田区丸の内二丁目2番3号 三 菱電機株式会社内 (72)発明者 佐藤 伸治 東京都千代田区丸の内二丁目2番3号 三 菱電機株式会社内 Fターム(参考) 5G026 DA02 DA03 DB06 5G050 AA12 AA13 BA01 CA01 DA03 FA10  ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Hiromi Koga 2-3-2 Marunouchi, Chiyoda-ku, Tokyo Mitsui Electric Co., Ltd. (72) Tomotaka Yano 2-3-2 Marunouchi, Chiyoda-ku, Tokyo 3 Within Rishi Electric Co., Ltd. (72) Inventor Takefumi Ito 2-3-2 Marunouchi, Chiyoda-ku, Tokyo Sanritsu Electric Co., Ltd. Inside Electric Co., Ltd. (72) Inventor Shinji Sato 2-3-2 Marunouchi, Chiyoda-ku, Tokyo Mitsubishi Electric Co., Ltd. F-term (reference) 5G026 DA02 DA03 DB06 5G050 AA12 AA13 BA01 CA01 DA03 FA10

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 電極棒と接合される中心部と、前記中心
部から延びる複数の溝によって分画されて前記中心部か
ら外周部に指向する円弧状に湾曲する複数の羽根からな
る羽根部とを有する少なくとも1対の風車形電極を、真
空容器内に接離可能に配置してなる真空バルブにおい
て、前記風車形電極の少なくとも他方の風車形電極と接
触する部分を、熱伝導率が195W/mK以上、熱拡散
率が0.6cm/s以上、または導電率が50%IA
CS以上であるCuCr系材料によって形成したことを
特徴とする真空バルブ。
1. A wing portion comprising a center portion joined to an electrode bar, and a plurality of wing portions divided by a plurality of grooves extending from the center portion and curved in an arc shape extending from the center portion to an outer peripheral portion. In a vacuum valve in which at least one pair of windmill-shaped electrodes having the following structure is detachably arranged in a vacuum vessel, at least a portion of the windmill-shaped electrode that contacts the other windmill-shaped electrode has a thermal conductivity of 195 W / mK or more, thermal diffusivity of 0.6 cm 2 / s or more, or conductivity of 50% IA
A vacuum valve formed of a CuCr-based material of CS or higher.
【請求項2】 羽根はその外周部側が中心部側よりも対
向電極の方に突出し、閉極時に対向電極と接触するよう
に構成されていることを特徴とする請求項1記載の真空
バルブ。
2. The vacuum valve according to claim 1, wherein the blade is configured such that an outer peripheral portion thereof protrudes toward the counter electrode from a central portion thereof, and comes into contact with the counter electrode when the electrode is closed.
JP2001137359A 2001-05-08 2001-05-08 Vacuum valve Pending JP2002334639A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001137359A JP2002334639A (en) 2001-05-08 2001-05-08 Vacuum valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001137359A JP2002334639A (en) 2001-05-08 2001-05-08 Vacuum valve

Publications (1)

Publication Number Publication Date
JP2002334639A true JP2002334639A (en) 2002-11-22

Family

ID=18984473

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001137359A Pending JP2002334639A (en) 2001-05-08 2001-05-08 Vacuum valve

Country Status (1)

Country Link
JP (1) JP2002334639A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009289660A (en) * 2008-05-30 2009-12-10 Mitsubishi Electric Corp Vacuum valve

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS617519A (en) * 1984-06-21 1986-01-14 株式会社明電舎 Vacuum interrupter
JPH0552783A (en) * 1991-08-28 1993-03-02 Tokuyama Soda Co Ltd Thermoelectric characteristic measuring device
JPH05128883A (en) * 1991-10-30 1993-05-25 Sharp Corp Non-volatile recorder
JPH05223762A (en) * 1991-11-01 1993-08-31 Mitsui Toatsu Chem Inc Thermal analysis method and device using temperature wave
JPH0890249A (en) * 1994-09-20 1996-04-09 Kobe Steel Ltd Resistance spot welding method of aluminum
JPH09164449A (en) * 1995-12-13 1997-06-24 Honda Motor Co Ltd Die and its production
JPH11340522A (en) * 1998-05-22 1999-12-10 Ube Ind Ltd Heat exchanger using thermoelectric module
JP2001052576A (en) * 1999-06-04 2001-02-23 Mitsubishi Electric Corp Vacuum valve

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS617519A (en) * 1984-06-21 1986-01-14 株式会社明電舎 Vacuum interrupter
JPH0552783A (en) * 1991-08-28 1993-03-02 Tokuyama Soda Co Ltd Thermoelectric characteristic measuring device
JPH05128883A (en) * 1991-10-30 1993-05-25 Sharp Corp Non-volatile recorder
JPH05223762A (en) * 1991-11-01 1993-08-31 Mitsui Toatsu Chem Inc Thermal analysis method and device using temperature wave
JPH0890249A (en) * 1994-09-20 1996-04-09 Kobe Steel Ltd Resistance spot welding method of aluminum
JPH09164449A (en) * 1995-12-13 1997-06-24 Honda Motor Co Ltd Die and its production
JPH11340522A (en) * 1998-05-22 1999-12-10 Ube Ind Ltd Heat exchanger using thermoelectric module
JP2001052576A (en) * 1999-06-04 2001-02-23 Mitsubishi Electric Corp Vacuum valve

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009289660A (en) * 2008-05-30 2009-12-10 Mitsubishi Electric Corp Vacuum valve

Similar Documents

Publication Publication Date Title
US8426754B2 (en) Electrical contact for vacuum valve
JP2007018835A (en) Electric contact for vacuum circuit breaker and its manufacturing method
US6479778B1 (en) Vacuum switch including windmill-shaped electrodes
EP1528581A1 (en) Electrical contact, method of manufacturing the same, electrode for vacuum interrupter, and vacuum circuit breaker
US3514559A (en) Vacuum type circuit interrupter
JP6051142B2 (en) Electrical contact for vacuum valve and manufacturing method thereof
JP2002334639A (en) Vacuum valve
US11456123B2 (en) Switching device
JP2001052576A (en) Vacuum valve
JP2011108380A (en) Electric contact for vacuum valve, and vacuum interrupter using the same
JP5614721B2 (en) Vacuum circuit breaker electrode
JP3955702B2 (en) Circuit breaker
JP2009289660A (en) Vacuum valve
KR101947937B1 (en) Protective element
CN104362054B (en) A kind of combination auxiliary switch on breaker mechanism
JP4939918B2 (en) Vacuum valve
JP5159947B2 (en) Electrical contact for vacuum valve and vacuum circuit breaker using the same
JP4140204B2 (en) Current limiting mechanism and circuit breaker having the same
JPH11144575A (en) Vacuum interrupter and its manufacture
Li et al. Interruption property of vacuum interrupter with four different contact materials
JPS596449B2 (en) Vacuum cutter
JP2003092050A (en) Contactor for vacuum interrupter and vacuum interrupter
JPS6313634Y2 (en)
JPH0511621Y2 (en)
JPS635846B2 (en)

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040708

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070823

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100402

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100803