JP3955702B2 - Circuit breaker - Google Patents

Circuit breaker Download PDF

Info

Publication number
JP3955702B2
JP3955702B2 JP34418999A JP34418999A JP3955702B2 JP 3955702 B2 JP3955702 B2 JP 3955702B2 JP 34418999 A JP34418999 A JP 34418999A JP 34418999 A JP34418999 A JP 34418999A JP 3955702 B2 JP3955702 B2 JP 3955702B2
Authority
JP
Japan
Prior art keywords
arc
mover
contact
current
fixed contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP34418999A
Other languages
Japanese (ja)
Other versions
JP2001160348A (en
Inventor
孝夫 三橋
満 月間
征浩 伏見
茂樹 幸本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP34418999A priority Critical patent/JP3955702B2/en
Publication of JP2001160348A publication Critical patent/JP2001160348A/en
Application granted granted Critical
Publication of JP3955702B2 publication Critical patent/JP3955702B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Breakers (AREA)
  • Arc-Extinguishing Devices That Are Switches (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は遮断動作時に優れた限流機能を有する回路遮断器に関するものである。
【0002】
【従来の技術】
図21は、例えば特公平1―43973号公報に示された従来の回路遮断器を示す部分断面図であり、図において、130は導体290により遮断器部140と電気的直列接続され限流素子部、1は可動接点2と磁性材料からなる支持体71を有する上記限流素子部130の可動子、5は固定接点6を有する上記限流素子部130の固定子で、上記可動子1と上記固定子5により接触子対が構成されている。280は上記接触子対と電気的直列に接続され励磁コイル、11は上記接触子対に適切な接触圧力を発生させるバネである。図22は図21の右側面図である。
【0003】
次に動作を説明する。通常通電時、回路遮断器には遮断器部140、導体290、励磁コイル280、可動子1、固定子5、端子部15の経路で電流が流れる。限流素子部130が限流動作を行うべき大きさの電流が流れると、可動接点2と固定接点6との間の電磁反発力により接点が開極しアークが発生する。このアークにより接点間の圧力が上昇するので、可動子1のピストン135がバネ11の力に抗して押し動かされる。さらに、可動子1の一部は磁性材料の支持体71により構成されているので、コイルプランジャを構成する励磁コイル280からも同時にその開極を支援する力を受ける。この可動子1が開極方向に移動するときに、可動接点背面側の気体が排気穴110より排気され、アークにより上昇した圧力が付加的に排出される。そして、バネ11の力に抗して開極を保持するのに十分な圧力を維持できなくなるまで開極が保持される。
【0004】
続いて、限流素子部130を通過する電流が減少し、アークの圧力がある値以下に減少すると、バネ11の力により可動子1は閉極動作を開始する。この時、閉極過程を遅延させるために、排気穴110は閉極方向に対して鋭角をなすように設けられており、排気の流体抵抗を大きくしている。また、この排気穴110の方向は、開極動作時の排気の流体抵抗が小さくなる傾斜となる。上記のように構成した限流素子部130では、主に接点2、6間に発生する電気抵抗と励磁コイル280のインダクタンスとにより、回路を流れる事故電流が限流される。この接触子対はシリンダー状の狭い空間に設けられているので、限流動作時に発生するアークの圧力が上昇し、アークの抵抗率が高くなる。従って、限流に必要な高いアーク電圧が得られる。上記のように限流された電流は、最終的に限流素子部130と直列接続されている遮断器部140により遮断される。
【0005】
【発明が解決しようとする課題】
従来の回路遮断器の限流素子部では、可動接点が常に狭い筒状の空間内にあるため、アーク発生に伴い上記空間内に充満する電極金属蒸気により電流遮断時の接点間の絶縁回復が十分得られない。また、可動子のブレにより可動接点が筒状の壁面に接触しやすく、壁面での絶縁破壊の可能性が高い。このような理由により、上記限流素子部単独では電流の遮断機能を有することが困難であり、別途電流を遮断する機能を有する遮断部を設ける必要がある。そのため、回路遮断器全体のサイズが大きくなり、構造が複雑になり、コストが高くなるという問題がある。
【0006】
さらに、前述のように限流素子部と遮断部を直列に接続すると、遮断器全体のインピーダンスが大きくなる。特に、限流素子部には限流動作時の可動子の開極を助けるために励磁コイルを設けており、インピーダンスが高い構成となっている。このような高インピーダンスの回路遮断器では、大きな通電ロスや通電による異常温度上昇が発生しやすい。従って、大きな通電容量を必要とする場合、この従来の回路遮断器を用いることができないという問題点があった。
【0007】
さらに、従来の回路遮断器の限流素子部では、可動子の開極動作が直線的に行われるため、接点開離距離の確保ために可動子が開閉動作する方向(接点の開閉動作方向)のサイズが大きくなりやすい。図21に示すように、上記方向のサイズは、端子部、固定子、可動子、可動子が移動する空間、可とう導体を収納する空間、および、筐体壁厚の合計となる。因って、可動子が直動する方向のサイズに制限がある場合には、十分な開離距離を確保できず、高圧力を効果的にアーク電圧上昇に結び付けられないという問題がある。
【0008】
さらに、上記のように高圧力を効果的にアーク電圧上昇に結び付けられないと、不必要な圧力上昇が生じ、これを押さえ込むため、非常に大きな筐体強度が必要となりコストが高くなるという問題が生じる。
【0009】
さらに、従来の回路遮断器の限流素子部では、限流動作中、常に、アークスポットが両接点にあるので、短絡遮断時の大電流アークによる接点の消耗が多くなるという問題がある。
【0010】
この発明は上記のような問題点を解消するためになされたもので、一つの消弧装置にて優れた限流機能を有し、定格通電電流等の小電流から短絡電流等の大電流までの広い電流範囲での遮断動作可能回数を増やし、低コスト、小形、且つ、比較的大きな通電容量を必要とする回路へも適用できる回路遮断器を得ることを目的としている。
【0011】
さらに、この発明は、固定接点のアークによる消耗量を減らして、回路遮断器の繰り返し遮断動作可能回数を増加させることを目的としている。
【0012】
さらに、この発明は、短絡電流遮断時の限流性能をより向上させ、且つ、短絡電流遮断時の固定接点のアークによる消耗量を減らすことを目的としている。
【0013】
さらに、この発明は、短絡遮断時の可動子に働く電磁開極力を強化して開極速度を向上させ、且つ、固定子接点の消耗を低減することを目的としている。
【0014】
さらに、この発明は、固定接点の位置決めを簡単に行うことを目的としている。
【0015】
さらに、この発明は、比較的小電流、多回数の遮断動作時の固定接点のアークによる消耗量を減らすことを目的としている。
【0016】
さらに、この発明は、可動接点のアークによる消耗量を減らし、且つ、消弧板によるアーク冷却、分断作用を有効に利用することを目的としている。
【0017】
さらに、この発明は、アークを消弧する空間のアークランナが伸びる方向の寸法が小さい場合においても、短絡電流遮断時の固定接点のアークによる消耗量を減らして繰り返し遮断動作が行える回路遮断器を得ることを目的としている。
【0018】
さらに、この発明は、電源電圧が比較的高い回路においても、事故電流を確実に遮断できる信頼性の高い回路遮断器を得ることを目的としている。
【0019】
【課題を解決するための手段】
この発明に係る回路遮断器は、アーム水平部と可動接点とを有し可動子回転軸を中心として回動する可動子、上記可動接点と接点対をなす固定接点と閉成状態において上記可動子のアームの一部とほぼ平行で且つ反対方向に電流が流れる電路とを有すると共に一端が上記可動子回転軸から遠い側の端子部に引き出される固定子、この固定子に電気的に接続され上記固定接点近傍から反可動子回転軸方向へ延びるアークランナ、上記接点対に接触圧を発生させる付勢手段、上記可動接点の反可動子回転軸側に配置された消弧板、上記固定接点の上方を開放し周囲を筒状に取り囲む絶縁物、および上記各構成部材を収納する絶縁物筐体を備え、上記接点対の閉成状態において上記可動接点の接触面が上記絶縁物が囲む筒状空間内に位置し、開成状態において上記可動子の上記可動接点を有する端部が上記絶縁物が囲む筒状空間外に位置するように構成し、かつ上記絶縁物の上記固定接点の反アークランナ側の壁面は上記固定接点に隣接して配置され、上記アーム水平部の反可動子回転軸側の端部に上記可動接点が一端部に固着されたアーム垂直部の他端部を固着して上記可動子を略L字状に構成したものである。
【0020】
また、固定子は、導体をほぼU字形状に曲げてその一端を反可動子回転軸側の端子部に接続すると共に、そのU字形状の他端の内側に固定接点が設けられたものからなり、且つ、可動子のアーム水平部と反対方向の電流が流れる、上記固定接点を設けた固定子電路の一部を、閉成状態の可動子のアーム水平部に近接するように屈曲させ、また、上記固定接点に向かい合う固定子電路には可動子の回転軌跡と交差する部位に可動子の開閉を許すスリットを設けたものである。
【0021】
また、固定接点の反アークランナ側で発生直後の接点間のアークに直接触れる位置に配置された絶縁物部位を、他の3方に配置された絶縁物部位よりアークに触れた時に蒸気を発生しやすい材質にしたものである。
【0022】
また、固定接点の固定子回転軸側に配置された絶縁物部位を黒色にしたものである。
【0025】
また、固定は、一端に固定接点を有し、可動子のアーム水平部と反対方向に電流が流れる電路と、この電路の他端に接続されこの電路の両側を通り端子部に至る左右対称の電路と、この電路と端子部とを接続し、可動子回転軌跡面を含む面にスリットを有する2叉に分かれた垂直電路とからなり、上記固定接点を設けた電路には上記左右対称の電路より上記可動子のアーム水平部側に突出するように屈曲した部位を設けたものである。
【0026】
また、固定接点が、可動子のアーム側に突出した部位により位置決めされて伝路に固着されているものである。
【0028】
また、 固定は、一端に固定接点を有し、閉成状態の可動アーム水平部と対向して反対方向電流成分が流れる電路と、この電路の他端に接続されこの電路の両側を通り端子部に至る左右対称の電路と、この電路と端子部とを接続し、可動子回転軌跡面を含む面にスリットを有する2叉に分かれた垂直電路とからなり、上記固定接点を有する電路の上記固定接点が固着された部位を上記左右対称の電路より下方(可動子のアーム水平部から遠い方向)に位置させるように上記固定接点を固着した電路の一部を下方に屈曲させたものである。
【0030】
また、アークランナを反可動子回転軸側へ延長した線とほぼ直交するようセラミック板を配置し、上記アークランナの先端部から見て上記セラミック板背面に位置する絶縁物にアークが触れないようにしたものである。
【0031】
また、固定接点を設けた固定子電路の両側に、可動子の開閉軌跡を含む面に平行な一対の絶縁板を配置し、上記絶縁板のアークランナ先端部側端部と上記アークランナ先端部と対向する部材との間に空隙を設け、且つ、上記空隙と連通する流路を固定接点からみて上記絶縁板の背面に設けたものである。
【0032】
【発明の実施の形態】
実施の形態1.
以下、この発明の実施の形態1を図について説明する。図1は、実施の形態1に係る回路遮断器の開成状態の消弧ユニット25の内部構造を示す部分断面斜視図であり、内部構成が分かるように絶縁物8とロータ22の一部を切り取っている。消弧ユニット25の構成部品は、図2に示すように、端子部15a、15bを除き、消弧ユニット筐体本体23と消弧ユニット筐体蓋24に収納されている。さらに、図3に示すように、複数の消弧ユニット25をクロスバー27により連結し、クロスバー27を介して接点を開閉させる機構部28、異常電流を検出し機構部28を動作させるリレー部29、および、機構部28を手動で動作させるハンドル32を付加し、これらをベース30とカバー31にて収納すれば配線用遮断器となる。
【0033】
図1において、1は、可動接点2とこの可動接点2が固着されている可動アーム垂直部3とこの可動アーム垂直部3とほぼ直交する可動アーム水平部4により構成されるほぼL字状の可動子である。この可動子1は、固定接点6、第1導体部7a、第2導体部7bおよび第3導体部7cとにより構成されるほぼU字状の固定子5と1対の接触子対をなしており、可動子1はバネ11により固定子5方向に付勢されている。また、可動子1は、可動子回動軸13を中心に回動自在に支持されており、摺動接触子10を介して端子15bと電気的に接続されている。
【0034】
一方、固定子5は、第1導体部7aの一端で端子部15aと接続されており、固定接点6を固着している第3導体部7cの端部にアークランナ9が延設されている。さらに、可動子1の開閉を妨げないように、第1導体部7aおよび第2導体部7bにスリット21が設けられている。また、固定子5は、固定接点6を除いて、開成状態の可動接点2の接触面から見渡せる部位が絶縁物8によって覆われている。
【0035】
この絶縁物8は、主に第1導体部7aと第2導体部7bの可動子側の面を覆う絶縁カバー部8aと、固定接点6の左右両側面側と反端子15a側の3方向を囲む第1の絶縁物部位8bと、アークランナ9の上部空間を端子部15a側から囲み且つスリット21内面を覆うほぼU字状の第2の絶縁物の部位8cとにより構成されており、上記第1の絶縁物部位8bと上記第2の絶縁物部位8cとによりほぼ筒状の空間が形成されている。この筒状空間を開成状態の可動接点2より見渡すと、固定接点およびアークランナ9が露出して配置されている。
【0036】
また、閉成状態において、可動アーム水平部4の電流と第3導体部7cの電流は、ほぼ平行且つ反対方向になるように配置され、接点対2、6は上記第1の絶縁物部位8bに囲まれた空間内に配置される。一方、開成時には、可動接点2が上記筒状空間外に移動し、可動子先端部が最上部の消弧板19aに近接する。
【0037】
本実施の形態では、通常の開閉動作はハンドル32を手動にて操作することにより行う。ハンドル32の操作により、機構部28とクロスバー27を介してロータ22が回動し、可動子1が開閉動作する。また、過負荷電流遮断時には、リレー部29が異常電流を検出し、リレー部29よりトリップ信号が機構部28へ伝わり、機構部28が動作してロータ22が回動し、可動子1が引き上げられ接点が開極する。
【0038】
しかし、短絡事故等の大電流遮断時には、ロータ22の回動に先立ち、接点接触部への電流集中による電磁反発力F1と、可動アーム水平部4の電流と第3導体部7cのほぼ平行且つ反対方向の電流による電磁反発力F2と、第1導体部7aおよび第2導体部7bの電流が可動子1に発生させる電磁力の可動子開極方向の電磁力F3とにより、バネ11による接圧に抗して接点が開極し、接点間にアークが発生する。
【0039】
これら開極力F1、F2、F3について、図4(a)、図4(b)、図4(c)、および図4(d)にてさらに詳細に説明する。図4(b)に示すように、可動接点2と固定接点6との接触はこれら両接点の接触面の一部にて行われる。そのため、上記両接点には、同図中、im、ifで示すように、接点接触面に電流が集中することにより両接点間に近接したほぼ平行且つ反対方向の電流成分が発生するので、可動接点2を有する可動子1には開極方向の電磁力F1が働く。また、同図中に示すように、遮断動作初期においては、第3導体部7cを流れる電流Icと可動アーム水平部4を流れる電流Imとはほぼ平行且つ反対方向となり、可動アーム水平部4を有する可動子1には開極方向に電磁力F2が働く。さらに、遮断動作初期には、可動アーム水平部4の電流Imが第1導体部7aの電流Iaより固定接点6側に位置して電流Imと電流Iaとがほぼ平行且つほぼ同方向となり、可動アーム水平部4は第1導体部7aに吸引される。
【0040】
図4(c)は、図4(b)のC−C線に沿う断面を示しており、第1導体部7aと可動アーム水平部4との間に働く電磁吸引力Fa1、Fa2を矢印で示している。第1導体部7aは可動子1が開閉動作時に通過するスリットを有しているので、第1導体部7aの電路は可動子開極軌跡を含む平面から左右にずれた位置にあり、第1導体部の電流Ia1、Ia2と可動アーム水平部4の電流Im間に各々働く吸引力Fa1、Fa2は斜め上方となる。従って、上記吸引力Fa1、Fa2の上向きの分力F31 、F32 の和F3’が可動子1に働く開極力となる。
【0041】
これ以外に、図4(b)に示した第2導体部7bを流れる電流Ibが固定接点6側空間につくる磁場Bbが、可動アーム水平部4の第2導体部より固定接点側の部位の電流に作用して、上記部位に開極方向の電磁力F3”が生じる。図4(b)ではこのF3”と先述のF3’の和をF3として示している。アークの発生にともない、上記接点接触面での電流集中による電磁反発力F1は消滅するが、電磁反発力F2および電磁力F3は引き続き可動子1を開極方向へと回動させる。
【0042】
また、アーク発生にともない、アークの熱により筒状空間を形成する絶縁物8内面から大量の蒸気が発生し、絶縁物8と可動子1と囲まれた空間に高圧雰囲気が発生する。上記空間での高圧の発生により、可動子1は圧力差による開極力Fpを受ける。この状態を示したのが図4(d)である。同図は、アーク発生直後における図4(b)のC−C断面に相当する位置の固定子5、可動子1、および絶縁物8の断面図であり、可動子1と絶縁物8に囲まれる空間内でアークが発生している。これにより、可動子1の固定接点6側空間の方が開極方向側の空間より高圧となり、圧力差による開極力Fpが可動子1に作用する。これらの電磁力F1、F2、F3および圧力差による力Fpにより、可動子1が高速に回動し、接点が高速開極する。この高速開極によりアーク長が高圧雰囲気中にて急激に伸びるのでアーク電圧が急速に立ち上がり、事故電流がピーク値をむかえる。
【0043】
ここで、回路遮断器内で限流遮断動作時に発生する比較的短ギャップの大電流アークの高圧力下でのアーク電圧上昇条件について述べる。図6に示す実験装置において、400は電極、401は密閉容器、402は交流電源、403は投入スイッチ、404は加圧用ボンベである。この実験装置にて、密閉容器401内で、数cm以下の短ギャップ大電流アークの雰囲気圧Pを変化させてアーク電圧変化を測定した結果を図7のグラフに示す。図6の実験装置では、丸棒状の電極400を対向させてアークを発生させているので、電極間距離はアーク長Lと等しくなる。
【0044】
図7(a)より明らかなように、アーク電流値が比較的小さい場合、アーク雰囲気圧Pが高くなるとアーク電圧は殆どのアーク長Lにおいてアーク雰囲気圧Pが低い場合より高くなる。一方、図7(b)に示すように、アーク電流値が比較的大きい場合、アーク雰囲気圧Pが高くなってもアーク電圧はアーク長Lが比較的長い場合を除いてアーク雰囲気圧Pが低い場合に対して殆ど変化しない。図7に示した雰囲気圧Pが高い場合のアーク電圧V(p=高)と雰囲気圧Pが低い場合のアーク電圧V(p=低)との比Rをとり、グラフ化すると図8に示すようになる。
【0045】
図8より明らかなように、アーク電流値が比較的小さい場合のアーク電圧上昇率Rは、アーク長が長いほど高い。一方、アーク電流値が比較的大きい場合のアーク電圧上昇率Rは、アーク長がある値以上にならないと殆ど増加しないことが分かる。以上より、短ギャップ大電流アークにおいて、アーク雰囲気圧を上げることによりアーク電圧を効果的に上げるための条件とは、(a)アーク電流が比較的小さい、(b)アーク長が長い、という2つを同時に満足する必要がある。
【0046】
短絡等の事故が発生した場合、事故発生直後から回路電流は急激に増大する。従って、上記2つの条件を満たして高い雰囲気圧にてアーク電圧を上げて事故電流を限流するには、(1)少なくともアーク発生直後(事故発直後)に高圧雰囲気をつくる、(2)アーク電流が比較的小さい時(事故発生直後)にアーク長を長くする、必要がある。事故電流が増大した後では、雰囲気圧を上げてもあまり限流性能は向上しない。さらに、事故電流が増大した後の高圧雰囲気は、限流性能向上にあまり寄与しないだけでなく、筐体等の破損の原因となる。
【0047】
この発明では、先述のように、閉成状態の接点対の周りに筒状空間を形成する絶縁物8を配置し、事故発生直後に接点間に発生したアークの熱により絶縁物8より大量の蒸気を発生させて高圧雰囲気を形成するとともに、電磁力と圧力による高速開極にてアーク長を急速に引き伸して、アーク電圧を高めている。
【0048】
図9は、(a)高速開極手段を用いない場合と、(b)高速開極手段を用いた場合の筒状の絶縁物を用いた効果を示している。同図において、tsは事故発生時刻、t0は接点開極時刻、V0は接点間の電極降下電圧、破線は電源電圧波形である。図9(a)は、高速開極手段を用いない場合であり、アーク電圧が電源電圧に追い付いた時刻t1(筒状絶縁物有の時)、t2(筒状絶縁物無しの時)に電流ピークIp1、Ip2をそれぞれむかえる。高速開極手段を用いないと、事故電流の立上りに比べアーク長さの立上りが遅いので、筒状の絶縁物にて高圧雰囲気を作り出しても、アーク長が短く、アーク電圧が上昇する上記条件を満たすことが難しい。
【0049】
従って、図9(a)では、筒状絶縁物を用いても、電流ピークIpの改善の度合いΔIp= Ip2- Ip1は小さい。一方、図9(b)に示す高速開極手段を用いた場合では、事故電流が大きくなる前にアーク長が十分長くなるので、高圧雰囲気にてアーク電圧が上昇する上記条件を満たすことができる。アーク電圧が電源電圧に追い付いた時刻t1’(筒状絶縁物有の時)、t2’(筒状絶縁物無しの時)の電流ピークIpをそれぞれIp1’、Ip2’とすると、電流ピークIpの改善の度合いΔIp’=Ip2’−Ip1’は、高速開極手段を用いなかった場合の電流ピークIpの改善の度合いΔIpより劇的に大きいことが分かる。
【0050】
先述の電流ピーク後、可動子1はさらに回動し接点間距離が増大する。この接点間距離の増大により、アーク電圧がさら大きくなり事故電流は急速に零へと向かう。事故電流が小さく絞られると、アークは鉄製の消弧板19、19aに引き込まれ、アークが分断、冷却され消弧される。このとき可動接点2は上記筒状空間外にあり、たとえ筒状空間を形成する絶縁物8の沿面での絶縁耐力が低下していたとしても、接点間の絶縁は十分回復しているので、電極間に電源電圧が印加されても電流が再び流れることはない。この時点までには、リレー部29からの信号によって機構部28が動作しており、この可動接点2が上記筒状空間外の位置にて保持され、遮断動作が完了する。上記電流ピーク以降の長い接点間距離による高いアーク電圧により遮断時間は大幅に短くなる。従って、限流性能を示す指標の一つである通過エネルギーI2 t(電流の二乗の時間積分)が小さくなる。
【0051】
ところで、アークを筒状空間内で発生させることにより高圧力雰囲気を発生させる場合、上記筒状空間を小さくするほど、アークと絶縁物壁の距離が小さくなり絶縁物蒸気発生量が増えるとともに、可動接点2と絶縁物8との間隙が小さくなり上記蒸気が筒状空間から逃げ難くなり、且つ、圧力をあげる空間の容積がより小さくなるので、アーク雰囲気圧力の上昇の度合いがより大きくなる。そのため、アーク電圧がより急激に立ち上がり、限流性能が大幅に向上する。
【0052】
このとき、上記筒状空間を取り囲む絶縁物8の筒状部に作用する圧力差による力は、筒状空間内の圧力と絶縁物8の筒状部の周りの圧力の差であり、絶縁物8の筒状部が脹らむ方向である。この力はスリット21の両側の固定子を形成する導体や、消弧ユニット筐体23、蓋24にて受けることができ、一般的に用いられている樹脂(例えば、ナイロン樹脂等)にて絶縁物8を形成したとしても、圧力により絶縁物8が破損することが問題となることは少ない。
【0053】
一方、消弧ユニット筐体23、蓋24は絶縁物8の筒状部と比べて内面積が大きく、筒状空間で発生して筐体内空間に広がった圧力と大気圧との差が力として作用するので、絶縁物8に比べて非常に大きな力が加わり、筐体破損が生じることがある。これを防ぐため、筐体には強化繊維にて強化された高価なモールド材を用いたり、筐体を金属部品(例えば、ネジとナット、リベット等)にて強化しているので、遮断器が高価となっている。
【0054】
また、上記筒状空間をほぼ固定接点6と同じ筒断面まで小さくしてしまうと、固定子側アークスポットは遮断動作中常に固定接点6上にあるので、定格通電電流等の比較的小電流の多回数通電開閉による接点消耗が多くなり、さらに、短絡遮断時においても、固定接点6上にあるアークスポットでの電流密度が上昇して接点損耗が大きくなる。これらの固定接点消耗により、再通電不能が生じることがある。
【0055】
さらに、固定接点6上にアークスポットが拘束されることにより、アークが消弧板19、19aに触れ難い構成となるので、定格電流遮断、過負荷電流遮断等の比較的電流値が小さい遮断電流領域(アーク径が小さく絶縁物からの蒸気発生が少ないので、絶縁物蒸気流による電流遮断作用を得られない領域)では、消弧板19、19aによるアーク分断、冷却効果を利用できず、上記電流領域での遮断性能を確保できないという問題が発生することがある。
【0056】
そこで、この発明では、筒状空間の大きさを固定接点6とアークランナ9の上部空間とを含む大きさとし、固定子側アークスポットが固定接点6からアークランナ9へと移動するように構成している。このように比較的大きな筒形状を用いても、絶縁物8をアークに触れた時に大量の蒸気を発生する樹脂等の素材にて成形すれば、アーク電圧を上昇させるのに充分な圧力上昇を生じさせることができる。
【0057】
図4(a)は、開極直後の可動子1および固定子5近傍の状態を示した主要部の部分断面図であり、接点間に発生したアークAは、図中白抜きの矢印で示した第2導体部7bと第3導体部7cを流れる電流により電磁駆動力を受ける。さらに、固定接点6近傍のアークは、第1の絶縁物部位8bにより、アークランナ9側を除いて取り囲まれているので、アークの可動子回転軸13側の圧力が、端子部15a側の圧力より大きくなり、アークはアークランナ9側へと圧力差による駆動力(図4(a)中、黒塗りの矢印にて示す)を受ける。これらの駆動力の内、定格電流遮断時等の電流が小さい領域においては電磁駆動力の方がより有効であり、過負荷電流遮断、短絡電流遮断など遮断電流が大きくなるに従って圧力差による力がより有効となる。この発明では、電磁駆動力と圧力差による駆動力が同時にアークに働くので、電流領域に関わらず開極直後に固定子側アークスポットをアークランナ9へと移動させることができる。
【0058】
アークランナ9に移動した固定子側アークスポットは、アークランナ9を流れる電流等によりアークランナ9先端部へと駆動される。短絡電流遮断時のアーク電流瞬時値が大きい間は、端子部15a側へと駆動されたアークが、筒状空間の端子部15a側の壁8d面から発生する蒸気流により可動子回転軸13側へと逆方向の駆動力を受けるので、上記電磁駆動力と上記逆方向の駆動力の関係で、固定子側アークスポットがアークランナ9先端部へ到達するとは限らない。しかし、可動子1の開極動作が進み、事故電流が小さく絞られてくると、アークが発生する熱量が減少し、上記逆方向の圧力差による駆動力が相対的に小さくなるので、固定子側アークスポットはアークランナ9先端部へと達する。この状態を示したのが、図5である。アークランナ9先端部と可動子1間のアークAは、絶縁物8の上部に設けられた複数の消弧板19、19aにて分断、冷却されて消弧される。
【0059】
ところで、前述のように、ほぼL字状の可動子1を用いた場合、可動接点2のアークスポットが可動子1先端部の消弧板と対向する面へ移動し難い。そのため、複数の消弧板の内、可動子側に位置する上部の消弧板にアークが触れ難く、消弧板によるアーク分断、冷却効果が充分発揮できない場合がある。そこで、本実施の形態では、最上部の鉄製の消弧板19aの容積を他の消弧板19より大きくし、且つ、馬蹄形の足の部分(中央にスリットを有する部分)を可動接点2を挟み込む位置まで延ばして、最大開極位置の可動接点2近傍アークへの磁性体による電磁吸引力を強化し、可動子側アークスポットが確実に可動子1先端部へと移動するように構成している。
【0060】
また、本実施の形態では、筒状空間の端子部15a側の壁高さを可動子回転軸13側の壁高さより高くしている。遮断動作時に接点間に発生するアークには、主に第2導体部7b、第3導体部7c、および可動アーム水平部4を流れる電流により、端子部15a側に電磁駆動力が発生する。従って、筒状空間内にあるアークは端子部15a側の壁により強く触れる。また、可動子1を高速開極するためには可動子1の慣性モーメントを小さくした方が有利であるが、筒状空間の可動子回転軸13側の壁高さにより決まる可動アーム垂直部3が長くなると、可動子慣性モーメントは増加する。そこで、本実施の形態では、端子部15a側の壁高さを可動子回転軸13側の壁高さより高くすることにより、可動アーム垂直部3の長さを短くして慣性モーメントを低減し、且つ、十分な絶縁物蒸気を発生させて十分な高圧雰囲気を作る構成としている。
【0061】
また、本実施の形態では、排気口26が接点2、6間からみて消弧板19側のみに設けられている。このような配置をとると、電流遮断動作時において、アーク電流の増加にともない筐体内のアークよりロータ22側の空間に圧力が蓄積される。アーク電流がピークをむかえアーク電流値が減少していくと、上記蓄積された圧力により電極間ではロータ22側から排気口26側へと気流が生じ、アークを消弧板19へと引き伸ばす。さらに、電流零点近傍では、上記流れによる接点間の荷電粒子を吹き飛ばす作用で、接点間の絶縁回復が大幅に改善される。従って、高電圧の回路に用いても遮断失敗が起こり難い、信頼性の高い回路遮断器を得ることができる。
【0062】
この蓄積圧による気流の絶縁回復作用は、電流遮断時の上記気流の流速が大きいほど大きい。流速を大きくするには、蓄積圧を上げるか流路断面を小さくすればよく、そのために排気口面積を小さくする必要がある。本実施の形態では、比較的面積の小さい排気口26を開成状態の可動接点2側に設けている。筒状の絶縁物8を用いて限流性能を向上させる場合、固定接点側アークスポット近傍のアークは筒状の絶縁物8にて動きが制限されるので、上記ロータ側空間の蓄積圧による気流にてアークを構成する金属粒子を吹き飛ばすことはできない。一方、可動子側アークスポット近傍のアークは、電流遮断時には筒状空間外に位置しており、上記気流の作用を受けやすい。因って、比較的面積の小さい排気口26を開成状態の可動接点2側に設けることにより、効果的に電流遮断時の電極間の絶縁回復を確保できる。
【0063】
また、前述のように本実施の形態では、消弧装置を消弧ユニット筐体23、蓋24内に収納しているので、遮断動作時の遮断器内の圧力上昇をベース30およびカバー31で直接受けることがなくなる。消弧ユニット筐体23、蓋24の受圧面積は、ベース30およびカバー31の受圧面積より小さい。そのため、たとえベース30およびカバー31と同一材料、同一肉厚の消弧ユニット筐体23、蓋24を用いても、より大きな内圧上昇に耐えることができ、アーク雰囲気圧を上げてアーク電圧を上昇させる限流手法を用いるのに適している。また、従来、遮断動作時の内圧上昇に耐えるため、機械的強度の大きな高価なモールド材にてベース30およびカバー31を構成していたが、消弧ユニット筐体23、蓋24を用いることにより、圧力を受ける筐体の材料の量を減らすことができコスト低減が可能となる。
【0064】
また、前述のように本実施の形態では、消弧装置を構成する部品を消弧ユニット筐体本体23と消弧ユニット筐体蓋24により収納し、全体で消弧ユニット25を構成している。また、機構部28、リレー部29等の各構成部品をユニット化しており、これらを組み合わせて配線用遮断器を構成するので、組立が簡単となりコスト低減が可能となる。
【0065】
また、本実施の形態では、図21に示した従来例と異なり、可動子1の開極を助けるための励磁コイルを設ける必要がないので、低インピーダンスの限流性能に優れた限流器が得られ、大きな通電容量が求められる回路への適用が可能となる。
【0066】
さらに、可動子1を回動させて開極するため、可動接点2が開閉する方向の必要寸法は、固定子5の導体厚さ、固定接点6の厚さ、可動子1が移動する空間、可動接点2の厚さ、および、可動アーム垂直部3の和となり、従来の直動型限流器より上記方向の必要寸法を小さくすることができる。従って、外形寸法に制限がある場合でも、高圧力を効果的にアーク電圧上昇に結び付けるのに必要な開極距離を容易に確保できる。
【0067】
なお、図1では、筒状空間を、固定子5の可動接点2側の面を覆う絶縁物8の一部である第1の絶縁物部位8bと第2の絶縁物部位8cと構成したが、例えば、第2の絶縁物部位8cを絶縁物8の一部とせず、固定子5近傍に配置される消弧ユニット筐体本体23および消弧ユニット筐体24の部位にて構成しても同様な効果が得られる。
【0068】
実施の形態2.
この発明の実施の形態2を図10、図11に示す。図10は、本実施の形態の固定子5を示す斜視図であり、実施の形態1の固定子の第2導体部7bの一部を水平方向の電路7c’と上下方向の電路7b’に置き換えている。図11は、閉成状態の可動子1、図10に示した固定子5、絶縁物8を示した部分断面図であり、図中、矢印にて電流方向を示している。同図から明らかなように、図10の固定子形状を用いることにより、可動アーム水平部4と固定子5の電路7c’が大幅に近付き、事故電流の遮断時の電磁開極力が実施の形態1より増大する。これにより、アーク電圧の立ち上がりがより早くなり、限流性能が向上する。
【0069】
実施の形態3.
図12は、この発明の実施の形態3に係る固定子5と絶縁物8を示す斜視図であり、固定接点6を3方向から取り囲む絶縁物8bの上記固定接点6より反アークランナ9側に位置する部位8eを、アークが発生する光を吸収しやすいように黒色としている。アークから外部に放出されるエネルギーの一部は放射によって放出されており、特に、短絡遮断時等に発生する大電流短ギャップアークでは、その割合が大きい。そこで、このように固定子接点6のアークランナ9と反対側の絶縁物の部位8eを黒色とすると、絶縁物の部位8eでのアークからの放射エネルギーの吸収が高まり、蒸気発生量が増大する。これにともない、固定接点側のアークスポットのアークランナ9への移動およびアークランナ先端部への走行が早まる。
【0070】
また、上記8eに相当する部位を、固定接点近傍の絶縁物部位8eを除く絶縁物の部位よりアークに触れたときに蒸気を発生しやすい材料(例えば、比較的分解温度の低い樹脂材)にて構成しても、アークランナ側へ走行するアークの背面圧と前面圧の圧力差が生じるので、絶縁物の部位8eを黒色とした場合と同様に、固定接点側のアークスポットのアークランナ9への移動およびアークのアークランナ先端部への走行が早まる。これにより、アーク発生時の固定接点損耗が低減され、回路遮断器の繰り返し遮断動作可能回数を増加させることができる。
【0071】
実施の形態4.
図13(a)は、この発明の実施の形態4に係る固定子5と絶縁物8を示す斜視図であり、主要構成部が分かるよう一部を切り欠いている。また、図13(b)は、図13(a)の固定接点6を固着した第3導体部7cおよびアークランナ9近傍を示す図である。図13では、第3導体部7cの固定接点6を固着した面の固定接点以外の部位と、アークランナ9の可動接点2(図示せず)と対向する面の固定接点6側の一部とを絶縁物14にて覆っている。図13(b)に示すように、アークランナ9の可動接点側面の露出部は、固定接点6側の固定接点の左右方向の幅より狭い幅の走行路と、アークランナ先端側の上記走行路より広い幅のアーク保持部にてほぼT字状に形成されている。
【0072】
定格電流遮断等の比較的電流の小さな遮断動作時には、接点間に発生するアークスポット径は電流ピーク時においても充分小さく、固定子5を流れる電流による電磁駆動力にて容易に上記走行路を走行し、アークランナ9先端部へと移行する。一方、短絡電流遮断時等の大電流遮断では、事故電流の立ち上がりにともなってアークスポットが急激に大きくなるので、上記幅の狭い走行路にてアークを可動子先端部へと移行させるためには、事故電流が増大する前にアークを走行させる必要がある。そこでこの実施の形態では、先述の第2導体部7bと第3導体部7cを流れる電流による電磁力と筒状の絶縁物の一部8bが発生させる圧力差による力にて、開極直後の比較的電流の小さなアークを駆動し、アークランナ9先端部側へと移行させる。その後の電流増加により、アークランナ9先端部に移行した固定子側アークスポットの径が増大し、アークスポットの一部は固定子6側へと戻ろうとするが、上記幅の狭い走行路にてアークスポット径の増大が阻止され、アークはほぼ安定してアークランナ9先端部に留まる。
【0073】
このようにアークスポット径が制限されることにより、アーク抵抗が上昇し限流性能が向上する。また、遮断動作中の比較的電流が大きな期間中も固定子側アークスポットがアークランナ9先端部に安定して留まるので、固定接点6のアークによる消耗が低減できる。さらに、先述の図5に示したようなアーク状態が、遮断直前だけでなく遮断動作中の比較的電流が大きな期間においても実現できるので、消弧板のアーク冷却作用を最大限に利用できる。
【0074】
実施の形態5.
図14は、この発明の実施の形態5に係る接触子対近傍の主要部を示す部分断面図(a)およびこの実施の形態で使用される金属板を示す斜視図(b)である。本実施の形態では、絶縁物8に囲まれる筒状空間内の端子部15a側にアークと直交する向きに金属板17を設けている。遮断動作では、慣性モーメントの大きい可動子1の移動速度よりアークの移動速度が速く、可動子1が最大開離距離に到達する時刻より固定子側アークスポットがアークランナ9先端に移行する時刻の方が早い。従って、固定子側アークスポットがアークランナ9先端部へ移行しても、可動子1の開離距離が増大するまでは、絶縁物8の上部に設けられた消弧板19のアーク冷却、分断の効果は利用されない。そこで、本実施の形態では、筒状空間内に金属板17を設けることにより、可動子1の開離距離の増大を待たず、金属板17によりアークを冷却、分断し、筐体内圧の上昇を低減している。
【0075】
実施の形態6.
図15は、この発明の実施の形態6に係る固定子5と一対のコア34を示す斜視図であり、固定子5の形状が分かるように手前側のコアを省略している。また、図16は、図15の固定子5および一対のコア34に絶縁物8を被せた図であり、絶縁物8の一部を切り欠いている。この絶縁物8は筒状空間を形成し、開成状態の可動接点2よりこの筒状空間内部を見渡すと固定接点6およびアークランナ9が配置されていることは、実施の形態1と同様であるが、本実施の形態では、コア34の絶縁も兼ねている。
【0076】
固定子5の電路は、端子部15a、電路7f、7e、7c”、7b”、固定接点6の順で構成されており、可動子1が回転する軌跡を含む面に対して面対称である。この固定子5には、電路7e、7fの電流が発生する可動子1の開極を妨げる磁場成分を少なくするため、スリット33が設けられており、電路7e、7fは、可動子1が回転する軌跡を含む面から左右にずれた位置に配置される。電路7c”と電路7b”には固定接点6が固着され、端子部15a側へと延びる舌片の根元部を打上げることにより成形されており、上記舌片は、電路7c”、電路7b”、固定接点6固着部位およびアークランナ9とによって構成される。
【0077】
また、固定接点6は、上記電路7b”と固定接点固着部位との境界である屈曲部にて位置決めされ、ロウ付けにて固着されている。電路7c”と電路7b”で形成される打上げ部は、閉成状態で上記舌片と対向してほぼ平行に配置される可動アーム水平部4との距離が近づくように打上げられており、開極初期の可動アーム水平部4に働く電磁反発力が強化される。また、固定接点6近傍に位置する電路7b”には、接点開極方向(上下方向)成分の電流が流れ、この電流の上下方向成分は、接点間に発生したアークと逆方向となり、アークを端子部15a側へと押し出す。従って、接点間に発生したアークは素早くアークランナ9へと移行するので、接点消耗が改善される。
【0078】
ところで、電路7eの上部に設けられた一対のコア34は、鉄などの磁性体にて構成されており、絶縁物8により接点間に発生するアークに直接触れないよう配置されている。このコアは、電路7c”、7b”の電流が作る可動子1を開極させる磁場成分を強化するとともに、電路7eを流れる電流がつくる可動子1の開極を妨げ且つアークを反端子部15a側へ押し戻す作用をする磁束を遮蔽する役割をになっている。また、コア34の端子部15a側端部が電路7fに近接するように構成されており、上記端部に電路7fの電流がつくる可動子1の開極を妨げ且つアークを反端子部15a側へ押し戻す作用をする磁束が吸収される。なお、図15では、コア34をほぼL字状の2枚の磁性体板に構成したが、2枚の磁性体板をL字の最も上部にて接続して一体化したコアを用いてもよい。このようにコアを一体化することより、磁性体コアによる可動子1の開極を促進する効果が向上する。
【0079】
実施の形態7.
図17は、この発明の実施の形態7に係る固定子5と馬蹄形アークランナ18を示す斜視図であり、図示していないが、筒状空間を形成する絶縁物8が、固定接点6近傍を除く固定子5の可動接点側の面を覆うことは、実施の形態1と同様である。また、固定子5の導体7f、7e、7c”、7b”および固定接点6の配置は基本的に実施の形態6と同様である。本実施の形態では、鉄製の馬蹄形アークランナ18を端子部15a側から固定接点6を囲むように配置しており、馬蹄形アークランナ18は馬蹄形アークランナの足18aにて導体7eと電気的に接続されている。
【0080】
接点間に発生したアークが、固定接点6近傍に位置する電路7b”の接点開極方向(上下方向)成分の電流により、端子部15a側へと押し出されることは実施の形態6と同様であるが、本実施の形態では、それに加え馬蹄形アークランナ18による磁気吸引力が働く。この磁性体によるアークを端子部15a側へと吸引する作用は、磁性体の磁気飽和が発生しない比較的小電流領域でより有効である。また、上記馬蹄形アークランナ18は、電路7e、7fの電流によるアークを接点側へおしもどす磁場成分を遮蔽する効果があるので、アークのアークランナ18への移行が早くなる。因って、定格電流の多頻度開閉時の接点消耗を低減させることできる。また、アークが消弧板19に触れる時刻を早めることができ、消弧板のアーク冷却、分断作用を有効に利用できる。
【0081】
実施の形態8.
この発明の実施の形態8を図について説明する。図18は、本実施の形態に係る固定子5と一対のコア34と鉄製の遮蔽板35を示す斜視図であり。固定子5の形状が分かるように、固定接点6の左右に設けられている電路7eの一方と遮蔽板35の一部を切り欠いている。その他の部品については、図示していないが、基本的に実施の形態6と同様の構成である。図18の固定子形状は、図15に示したものと比較して、電路7eの配置が異なり、電路7eが電路7cより上方に設けられている。電路7eの中心線は固定接点6接触面より上方に位置する。
【0082】
このような構成とすると、電路7c’が閉成状態の可動アーム水平部4と近付き電磁開極力が強化されること、および電路7b”の電流の上下方向成分によりアークがアークランナ9側へと駆動され、消弧板19によるアーク冷却、分断作用が向上することは実施の形態6と同様であるが、電路7eが固定接点接触面より上方に位置することから、電路7eの電流による電磁駆動力により固定接点側のアークスポットがアークランナ9側へより移動しやすくなる。また、電路7eを上方へ配置することにより、可動子1の開極を妨げ且つアークを可動子回転中心側へと押し戻す作用をする電路7fが必然的に短くなるので、アークランナ9へ移行したアークが固定接点6側へと戻ることを防止できる。
【0083】
ところで、図18には、一部断面をとった遮蔽板35と電路7eの上部に設けられた一対のコア34の一方を示している。遮蔽板35およびコア34は鉄などの磁性体にて構成されており、絶縁物8により接点間に発生するアークに直接触れないよう配置されている。遮蔽板35は、主に、電路7fを流れる電流が発生する磁束(可動子1の開極を妨げ、且つ、アークを可動子回転中心側へと押し戻す作用をする)を遮蔽する役割をはたしている。一方、コア34は、電路7c’、7b”、7cの電流が作る可動子1を開極させる磁場成分を強化するとともに、電路7eを流れる電流がつくる可動子1の開極を妨げる磁束を遮蔽する役割をになっている。
【0084】
実施の形態9.
この発明の実施の形態9を図について説明する。図19は、本実施の形態に係る可動子1の先端部36を示す図であり、図19(a)が可動子先端部36を上方(可動接点2が固定接点6から開極する方向)から見た図、図19(b)が可動子先端部36を左右方向(可動子1が回動する軌跡を含む面に直交する方向)から見た図である。本実施の形態では、可動子1の可動接点2より先端部寄りの部位を扇形とし、先端部端面に近づくほど左右方向の幅が狭くなるよう構成されている。
【0085】
先述のように、この発明ではほぼL字状の可動子1を用いるため、可動子側アークスポットが可動接点2から可動子先端部の消弧板19と対向する面へと移行し難く、複数の消弧板の内、上部に配置された消弧板はアークに触れず、アーク冷却、分断に寄与しない。そこで本実施の形態では、可動接点2から可動子先端部へのアークスポットの移行を促進するため、可動子先端部の消弧板19と対向する面を可動接点2接触面から垂直に切り上げるのではなく、可動接点2と近接する部分では上記接触面とほぼ平行とし、可動子先端になるに従い徐々に可動接点接触面と直交するよう、可動子先端部形状をほぼ扇形としている。
【0086】
さらに、図19(a)に示すように、可動子先端部36を尖鋭化することにより、先端部の電界強度を上げ、アークの接点から先端部への移行を促進している。このような可動子先端形状を用いることにより、ほぼL字状の可動子1においても、アークスポットを確実に可動子先端部36へ移行できるので、可動接点2の消耗を減らし、且つ、消弧板19によりアーク冷却、分断作用を有効に利用できる。
【0087】
実施の形態10.
この発明の実施の形態10を図について説明する。図20は、本実施の形態の消弧ユニット内の主要部を示す部分断面図であり、図20(a)は図20(b)のC1−C1線に沿う断面図、図20(b)は図20(a)のC2−C2線に沿う断面図である。本実施の形態の固定子5およびコア34の形状は、実施の形態6で示したものと基本的に同じあり、接点間に発生したアークが、固定子5を流れる電流による電磁力と絶縁物の一部8bによる圧力効果にて、アークランナ9先端部へと駆動されることは同様である。
【0088】
しかし、実施の形態6では、アークランナ9先端部へ駆動されたアークが、電路7fを覆う絶縁物の部位8dが発生する蒸気により接点間側へと押し戻される作用を受ける。そこで、本実施の形態では、上記絶縁物の部位8dをセラミック化して蒸気発生量を減らすことにより、アークを接点間に押し戻す力を低減している。このようにアークを接点間に押し戻す力が小さいと、回路遮断器を小形化するために消弧空間のアークランナ9が伸びる方向の寸法を短くした場合においても、短絡遮断時に固定接点6へアークスポットが広がることがなく、アークによる固定接点6の消耗量が減り、回路遮断器の繰り返し遮断動作可能な回数が増える。
【0089】
また、本実施の形態では、一対のコア34と絶縁物の部位8dとの間、および、一対のコア34と消弧ユニット筐体本体23および消弧ユニット筐体蓋24との間にそれぞれ間隙を設けて流路39を構成している。この流路39には、アークランナ9先端側へのアークの移動にともない、図20(a)に白抜き矢印で示した流れが生じ、走行するアークの前面側の圧力上昇が低減され、アーク走行速度が速まる効果がある。また、絶縁物8に囲まれた空間に充満する金属蒸気等を上記空間外へと排気できるので、接点間の絶縁回復が促進される。従って、電源電圧が比較的高い回路においても事故電流を確実に遮断でき、信頼性の高い回路遮断器を得ることができる。
【0090】
【発明の効果】
以上のように、この発明によれば、1つの消弧装置にて優れた限流機能を有し、定格通電電流等の小電流から短絡電流等の大電流までの広い電流範囲での遮断動作可能回数を増やし、低コスト、小形、且つ、比較的大きな通電容量を必要とする回路へも適用できる回路遮断器が得られる効果がある。
【0091】
また、固定接点の反アークランナ側に配置された絶縁物を、他の2方に配置された絶縁物よりアークに触れた時に蒸気を発生しやすいようにしたので、固定接点のアークによる消耗量を減らして、回路遮断器の繰り返し遮断動作可能回数を増やす効果がある。
【0092】
また、アークランナの可動接点側の面の一部を、上記面でのアークランナ露出部がほぼT字状となるように絶縁物で覆い、上記露出部の内、固定接点に近接する部位の可動子の軌跡を含む面に直交する方向の幅が上記固定接点の幅より狭く、上記固定接点に近接する部位の上記方向の幅よりアークランナ先端部での露出部の上記方向の幅を広くしたので、短絡電流遮断時の限流性能をより向上させ、且つ、短絡電流遮断時の固定接点のアークによる消耗量を減らす効果がある。
【0093】
また、短絡遮断時の可動子に働く電磁開極力を強化して開極速度を向上し、且つ、固定子接点の消耗を低減できる効果がある。
【0094】
また、固定接点が可動アーム側に突出した部位のアークランナ側屈曲部にて位置決めされるので、新たな固定接点位置決めための加工の必要なく、固定接点が容易に位置決めできる効果がある。
【0095】
また、比較的小電流、多回数の遮断動作時の固定接点のアークによる消耗量を低減できる効果がある。
【0096】
また、消弧板と対向する上記可動アームの先端部を可動子の軌跡を含む面と直交する方向から見てほぼ扇形としたので、可動接点の消耗量を減らし、且つ、消弧板によるアーク冷却、分断作用を有効に利用できる効果がある。
【0097】
また、アークを消弧する空間のアークランナが伸びる方向の寸法が小さい場合においても、短絡電流遮断時の固定接点のアークによる消耗量を減らして繰り返し遮断動作が行える回路遮断器が得られる効果がある。
【0098】
また、固定接点が固着した接点板の左右に、可動子の開閉軌跡を含む面に平行な一対の絶縁板を配置し、上記絶縁板のアークランナ先端部側端部と上記アークランナ先端部と対向する部材との間に空隙を設け、且つ、上記空隙と連通する流路を固定接点からみて上記絶縁板の背面に設けたので、電源電圧が比較的高い回路においても、事故電流を確実に遮断できる信頼性の高い回路遮断器が得られる効果がある。
【図面の簡単な説明】
【図1】 この発明の実施の形態1に係る開成状態の消弧ユニット内部構造を示す部分断面斜視図である。
【図2】 実施の形態1の開成状態の消弧ユニット内部構造を示す斜視図である。
【図3】 実施の形態1の回路遮断器の構成を示す斜視図である。
【図4】 実施の形態1の動作を説明する主要部の部分断面図(a)、およびその動作を説明するための要部断面図(b)(c)(d)である。
【図5】 実施の形態1の動作を説明する主要部の部分断面図である。
【図6】 アーク電圧の基礎的特性測定した実験装置を示す構成図である。
【図7】 雰囲気圧力のアーク電圧への影響を示したグラフである。
【図8】 電流値のアーク電圧上昇率への影響を示したグラフである。
【図9】 実施の形態1の効果を説明するグラフである。
【図10】 この発明の実施の形態2に係る固定子形状を示す斜視図である。
【図11】 実施の形態2の動作を説明する主要部の部分断面図である。
【図12】 この発明の実施の形態3に係る固定子と絶縁物の形状を示す斜視図である。
【図13】 この発明の実施の形態4に係る固定子の主要部を示す部分断面斜視図(a)、および実施の形態4の固定接点板近傍を示す部分断面図(b)である。
【図14】 この発明の実施の形態5に係る可動子および固定子の主要部を示す部分断面図(a)、および金属板の斜視図(b)である。
【図15】 この発明の実施の形態6に係る固定子側電路とコアを示す斜視図である。
【図16】 実施の形態6の固定子側電路と絶縁物を示す部分断面斜視図である。
【図17】 この発明の実施の形態7に係る固定子とアークランナを示す斜視図である。
【図18】 この発明の実施の形態8に係る固定子近傍の主要部の構成を示す部分断面斜視図である。
【図19】 この発明の実施の形態9に係る可動子先端部を示す上面図(a)、および実施の形態9の可動子先端部を示す正面図(b)である。
【図20】 この発明の実施の形態10に係る回路遮断器の主要部を示す図20(b)のC1−C1線に沿う断面図(a)、および図20(a)のC2−C2線に沿う断面図(b)である。
【図21】 従来の限流機能付き遮断器を示す部分断面正面図である。
【図22】 図21の右側面図である。
【符号の説明】
A アーク、 1 可動子、
2 可動接点、 3 可動アーム垂直部、
4 可動アーム水平部、 5 固定子、
6 固定接点、 7a 第1導体部、
7b 第2導体部、 7c 第3導体部、
7b’、7b”、7c’、7c”、7e、7f 電路、
8 絶縁物、 8a 絶縁カバー部、
8b 第1の絶縁物部位、 8c 第2の絶縁物部位、
8d 第2の絶縁物部位の一部、 8e 第1の絶縁物部位の一部、
9 アークランナ、 10 摺動接触子、
11 バネ、 12 バネ掛け、
13 可動子回転軸、 14 絶縁物、
15a、15b、16 端子部、 17 金属板、
18 馬蹄形アークランナ、 18a 馬蹄形アークランナの一部、
19、19a 消弧板、 20 消弧側板、
21 スリット、 22 ロータ、
23 消弧ユニット筐体本体、 24 消弧ユニット筐体蓋、
25 消弧ユニット、 26 排気口、
27 クロスバー、 28 機構部、
29 リレー部、 30 ベース、
31 カバー、 32 ハンドル、
33 スリット、 34 コア、
35 遮蔽板、 36 可動子先端部、
37 セラミック、 38 絶縁物、
39 流路、 400 電極、
401 密閉容器、 402 交流電源、
403 投入スイッチ、 404 加圧ボンベ。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a circuit breaker having an excellent current limiting function during a breaking operation.
[0002]
[Prior art]
FIG. 21 is a partial cross-sectional view showing a conventional circuit breaker disclosed in, for example, Japanese Patent Publication No. 1-43973. In the figure, 130 is electrically connected to the breaker unit 140 by a conductor 290. In Connected in series The Current limiting element unit 1 is a movable element of the current limiting element unit 130 having a movable contact 2 and a support 71 made of a magnetic material, and 5 is a stator of the current limiting element unit 130 having a fixed contact 6. so, By the mover 1 and the stator 5 Contact pair Composed ing. 280 is electrically connected to the above contact pair In Connected in series The An exciting coil 11 is a spring that generates an appropriate contact pressure for the contact pair. 22 is a right side view of FIG.
[0003]
Next, the operation will be described. During normal energization, the circuit breaker includes a circuit breaker section 140, a conductor 290, an exciting coil 280, a mover 1, a stator 5, and a terminal section. 15 Current flows through the path. When a current of a magnitude that should cause the current-limiting element unit 130 to perform a current-limiting operation flows, the contact is opened due to the electromagnetic repulsive force between the movable contact 2 and the fixed contact 6 to generate an arc. Since the pressure between the contacts increases due to this arc, the piston 135 of the mover 1 is pushed against the force of the spring 11. Further, since a part of the mover 1 is composed of a support 71 made of a magnetic material, it receives a force for supporting the opening simultaneously from the exciting coil 280 constituting the coil plunger. When the mover 1 moves in the opening direction, the gas on the back side of the movable contact is exhausted from the exhaust hole 110, and the pressure increased by the arc is additionally discharged. The opening is held until a pressure sufficient to hold the opening against the force of the spring 11 cannot be maintained.
[0004]
Subsequently, when the current passing through the current limiting element unit 130 decreases and the arc pressure decreases below a certain value, the mover 1 starts closing operation by the force of the spring 11. At this time, in order to delay the closing process, the exhaust hole 110 is provided so as to form an acute angle with respect to the closing direction, thereby increasing the fluid resistance of the exhaust. The direction of the exhaust hole 110 is inclined so that the fluid resistance of the exhaust during the opening operation is small. In the current limiting element unit 130 configured as described above, the fault current flowing through the circuit is limited mainly by the electrical resistance generated between the contacts 2 and 6 and the inductance of the exciting coil 280. Since this contact pair is provided in a narrow cylindrical space, the pressure of the arc generated during the current limiting operation increases, and the arc resistivity increases. Therefore, a high arc voltage necessary for current limiting can be obtained. The current limited as described above is finally interrupted by the circuit breaker unit 140 connected in series with the current limiting element unit 130.
[0005]
[Problems to be solved by the invention]
In the current limiting element part of the conventional circuit breaker, since the movable contact is always in a narrow cylindrical space, the insulation between the contacts at the time of current interruption is restored by the electrode metal vapor that fills the space as the arc occurs. Not enough. In addition, the movable contact tends to come into contact with the cylindrical wall surface due to the movement of the mover, and the possibility of dielectric breakdown on the wall surface is high. For these reasons, it is difficult for the current limiting element unit alone to have a current blocking function, and it is necessary to provide a separate blocking unit having a function of blocking current. Therefore, there is a problem that the size of the entire circuit breaker is increased, the structure is complicated, and the cost is increased.
[0006]
Furthermore, when the current limiting element portion and the breaking portion are connected in series as described above, the impedance of the entire breaker increases. In particular, the current limiting element portion is provided with an exciting coil to assist the opening of the mover during the current limiting operation, and has a high impedance configuration. In such a high-impedance circuit breaker, large energization loss and abnormal temperature rise due to energization are likely to occur. Therefore, there is a problem that this conventional circuit breaker cannot be used when a large energization capacity is required.
[0007]
Furthermore, in the current limiting element part of the conventional circuit breaker, the opening movement of the mover is performed linearly, ensuring the contact opening distance. of For this reason, the size in the direction in which the mover opens and closes (the contact opening and closing direction) tends to increase. As shown in FIG. 21, the size in the above direction is the sum of the terminal portion, the stator, the mover, the space in which the mover moves, the space in which the flexible conductor is accommodated, and the casing wall thickness. Therefore, when the size in the direction in which the mover moves linearly is limited, there is a problem that a sufficient separation distance cannot be secured and high pressure cannot be effectively linked to an increase in arc voltage.
[0008]
Furthermore, if high pressure cannot be effectively linked to an increase in arc voltage as described above, an unnecessary increase in pressure occurs, and this is suppressed. Arise.
[0009]
Further, in the current limiting element portion of the conventional circuit breaker, since the arc spot is always present at both contacts during the current limiting operation, there is a problem that the contact is consumed due to a large current arc when the short circuit is interrupted.
[0010]
The present invention has been made to solve the above problems, and has an excellent current limiting function in one arc extinguishing device, from a small current such as a rated current to a large current such as a short circuit current. An object of the present invention is to obtain a circuit breaker that can be applied to a circuit that increases the number of times that a breaking operation can be performed in a wide current range, and that requires a low cost, a small size, and a relatively large current carrying capacity.
[0011]
Another object of the present invention is to increase the number of times that a circuit breaker can be repeatedly interrupted by reducing the amount of consumption due to arcing of a fixed contact.
[0012]
Furthermore, an object of the present invention is to further improve the current-limiting performance when a short-circuit current is interrupted, and to reduce the amount of consumption due to arcing of a fixed contact when the short-circuit current is interrupted.
[0013]
Another object of the present invention is to enhance the electromagnetic opening force acting on the mover at the time of short-circuit interruption to improve the opening speed and reduce the consumption of the stator contact.
[0014]
Furthermore, an object of the present invention is to easily perform the positioning of the fixed contact.
[0015]
Another object of the present invention is to reduce the amount of consumption due to arcing of the fixed contact during a relatively small current and many interruption operations.
[0016]
Another object of the present invention is to reduce the amount of wear of the movable contact due to the arc, and to effectively use the arc cooling and dividing action by the arc extinguishing plate.
[0017]
Furthermore, the present invention provides a circuit breaker capable of repeatedly performing a breaking operation by reducing the amount of consumption due to the arc of a fixed contact at the time of breaking a short-circuit current even when the dimension of the arc runner extending in the space where the arc is extinguished is small. The purpose is that.
[0018]
Another object of the present invention is to provide a highly reliable circuit breaker that can reliably cut off an accident current even in a circuit having a relatively high power supply voltage.
[0019]
[Means for Solving the Problems]
The circuit breaker according to the present invention includes a movable element having a horizontal arm part and a movable contact, and rotating about a movable element rotation axis, and a fixed contact forming a contact pair with the movable contact and the movable element in a closed state. A stator that is substantially parallel to a part of the arm of the arm and through which an electric current flows in the opposite direction, and one end of which is drawn out to the terminal portion on the side far from the movable shaft, and is electrically connected to the stator and is connected to the stator An arc runner extending in the direction of the anti-mover rotation axis from the vicinity of the fixed contact, an urging means for generating contact pressure on the contact pair, an arc-extinguishing plate disposed on the anti-mover rotation axis side of the movable contact, and above the fixed contact And a cylindrical space in which the contact surface of the movable contact is surrounded by the insulator when the contact pair is closed. Located in the opening End with the movable contact of said movable member is configured to be located outside the cylindrical space in which the insulator surrounds the And the wall surface of the insulator on the side opposite to the arc runner of the fixed contact is disposed adjacent to the fixed contact, and the movable contact is fixed to one end of the horizontal arm portion on the side opposite to the rotary axis of the armature. The other end of the arm vertical part was fixed, and the mover was configured in a substantially L shape. Is.
[0020]
In addition, the stator is formed by bending the conductor into a substantially U shape and connecting one end thereof to the terminal portion on the side opposite to the rotary shaft of the anti-moveable element, and having a fixed contact inside the other end of the U shape. And a part of the stator electric circuit provided with the fixed contact, in which a current in the direction opposite to the arm horizontal part of the mover flows, is bent so as to be close to the arm horizontal part of the closed mover, The stator electric circuit facing the fixed contact is provided with a slit that allows the mover to be opened and closed at a portion that intersects the rotation locus of the mover.
[0021]
In addition, the fixed contact on the non-arc runner side In the position where you can directly touch the arc between the contacts The disposed insulator portion is made of a material that is liable to generate steam when it touches the arc from the other three insulator portions.
[0022]
Further, the insulator portion arranged on the stator rotating shaft side of the fixed contact is made black.
[0025]
Also fixed Child Has a fixed contact at one end, an electric circuit through which current flows in the opposite direction to the arm horizontal part of the mover, a symmetrical electric circuit connected to the other end of the electric circuit and passing through both sides of the electric circuit to the terminal part, This electric circuit is connected to the terminal part, and is composed of a bifurcated vertical electric circuit having a slit on the surface including the mover rotation locus surface. From the above symmetrical circuit Projects to the arm horizontal part of the mover Bent like A part is provided.
[0026]
Further, the fixed contact is positioned by a portion protruding to the arm side of the mover and is fixed to the transmission path.
[0028]
Also fixed Child Has a fixed contact at one end, Closed With movable arm horizontal part Opposite Opposite direction of Current component The electric circuit through which the current flows, the symmetrical electric circuit connected to the other end of the electric circuit and passing through the both sides of the electric circuit to the terminal part, and the electric circuit and the terminal part are connected. Of the electric circuit having the above-mentioned fixed contact. Fixed above Position the part where the contact is fixed below the symmetrical electric circuit (in the direction far from the arm horizontal part of the mover). As shown in the figure, a part of the electric circuit to which the fixed contact was fixed was bent downward. Is.
[0030]
In addition, a ceramic plate is disposed so as to be substantially orthogonal to a line extending the arc runner to the anti-mover rotation axis side, and is located on the back surface of the ceramic plate as viewed from the tip of the arc runner. Insulator The arc is not touched.
[0031]
In addition, a pair of insulating plates parallel to the plane including the open / close locus of the mover are arranged on both sides of the stator circuit provided with the fixed contact, and the arc runner tip side end of the insulation plate and the arc runner tip are opposed to each other. A gap is provided between the insulating plate and a flow path communicating with the gap is provided on the back surface of the insulating plate as viewed from the fixed contact.
[0032]
DETAILED DESCRIPTION OF THE INVENTION
Embodiment 1 FIG.
Embodiment 1 of the present invention will be described below with reference to the drawings. FIG. 1 is a partial cross-sectional perspective view showing the internal structure of the arc-extinguishing unit 25 in the open state of the circuit breaker according to the first embodiment, and a part of the insulator 8 and the rotor 22 are cut out so that the internal structure can be understood. ing. As shown in FIG. 2, the components of the arc-extinguishing unit 25 are accommodated in the arc-extinguishing unit casing body 23 and the arc-extinguishing unit casing lid 24 except for the terminal portions 15a and 15b. Further, as shown in FIG. 3, a plurality of arc extinguishing units 25 are connected by a cross bar 27, a mechanism unit 28 that opens and closes contacts via the cross bar 27, and a relay unit that detects an abnormal current and operates the mechanism unit 28. 29 and a handle 32 for manually operating the mechanism portion 28 are added, and if these are housed in the base 30 and the cover 31, a circuit breaker for wiring is obtained.
[0033]
In FIG. 1, reference numeral 1 denotes a substantially L-shape composed of a movable contact 2, a movable arm vertical portion 3 to which the movable contact 2 is fixed, and a movable arm horizontal portion 4 substantially orthogonal to the movable arm vertical portion 3. It is a mover. The mover 1 forms a pair of contact with a substantially U-shaped stator 5 composed of a fixed contact 6, a first conductor portion 7a, a second conductor portion 7b, and a third conductor portion 7c. The mover 1 is biased toward the stator 5 by a spring 11. The mover 1 is supported so as to be rotatable about a mover rotating shaft 13 and is electrically connected to a terminal 15 b via a sliding contact 10.
[0034]
On the other hand, the stator 5 is connected to the terminal portion 15a at one end of the first conductor portion 7a, and an arc runner 9 is extended to the end portion of the third conductor portion 7c to which the fixed contact 6 is fixed. Furthermore, the slit 21 is provided in the 1st conductor part 7a and the 2nd conductor part 7b so that opening and closing of the needle | mover 1 may not be prevented. In addition, the stator 5 is covered with an insulator 8 except for the fixed contact 6, and the part that can be seen from the contact surface of the opened movable contact 2.
[0035]
This insulator 8 is mainly composed of an insulating cover portion 8a that covers the surface on the mover side of the first conductor portion 7a and the second conductor portion 7b, and the three directions of the left and right side surfaces of the fixed contact 6 and the opposite terminal 15a side. The first insulator part 8b that surrounds and a substantially U-shaped second insulator part 8c that surrounds the upper space of the arc runner 9 from the terminal portion 15a side and covers the inner surface of the slit 21 are configured as described above. A substantially cylindrical space is formed by the one insulator portion 8b and the second insulator portion 8c. When this cylindrical space is looked over from the movable contact 2 in the open state, the fixed contact 6 And the arc runner 9 is exposed and arranged.
[0036]
In the closed state, the current of the movable arm horizontal portion 4 and the current of the third conductor portion 7c are arranged so as to be substantially parallel and in opposite directions, and the contact pairs 2 and 6 are connected to the first insulator portion 8b. It is arranged in the space surrounded by. On the other hand, at the time of opening, the movable contact 2 moves out of the cylindrical space, and the tip of the movable element comes close to the uppermost arc extinguishing plate 19a.
[0037]
In the present embodiment, the normal opening / closing operation is performed by manually operating the handle 32. By operating the handle 32, the rotor 22 is rotated via the mechanism portion 28 and the cross bar 27, and the movable element 1 is opened and closed. When the overload current is interrupted, the relay unit 29 detects an abnormal current, and a trip signal is transmitted from the relay unit 29 to the mechanism unit 28. The mechanism unit 28 operates to rotate the rotor 22, and the mover 1 is pulled up. Contact is opened.
[0038]
However, when a large current is interrupted due to a short circuit accident or the like, prior to the rotation of the rotor 22, the electromagnetic repulsive force F1 due to the current concentration on the contact contact portion, the current of the movable arm horizontal portion 4 and the third conductor portion 7c are substantially parallel and The contact by the spring 11 is caused by the electromagnetic repulsive force F2 caused by the current in the opposite direction and the electromagnetic force F3 in the armature opening direction of the electromagnetic force generated by the current in the first conductor portion 7a and the second conductor portion 7b. The contact opens against the pressure, and an arc is generated between the contacts.
[0039]
These opening forces F1, F2, and F3 will be described in more detail with reference to FIGS. 4 (a), 4 (b), 4 (c), and 4 (d). As shown in FIG. 4B, the contact between the movable contact 2 and the fixed contact 6 is performed on a part of the contact surface of these both contacts. For this reason, as shown by im and if in the drawing, currents in the parallel and opposite directions that are close to each other are generated by concentrating the current on the contact surface. Electromagnetic force F1 in the opening direction acts on the mover 1 having the contact 2. As shown in the figure, at the beginning of the breaking operation, the current Ic flowing through the third conductor portion 7c and the current Im flowing through the movable arm horizontal portion 4 are substantially parallel and opposite to each other. An electromagnetic force F2 acts on the movable element 1 in the opening direction. Furthermore, at the initial stage of the breaking operation, the current Im of the movable arm horizontal portion 4 is located closer to the fixed contact 6 than the current Ia of the first conductor portion 7a, and the current Im and the current Ia are substantially parallel and substantially in the same direction. The arm horizontal part 4 is attracted to the first conductor part 7a.
[0040]
FIG. 4C shows a cross section taken along the line CC of FIG. 4B, and electromagnetic attraction forces Fa1 and Fa2 acting between the first conductor portion 7a and the movable arm horizontal portion 4 are indicated by arrows. Show. Since the first conductor portion 7a has a slit through which the mover 1 passes during the opening / closing operation, the electric path of the first conductor portion 7a is shifted to the left and right from the plane including the mover opening locus, The attractive forces Fa1 and Fa2 acting between the currents Ia1 and Ia2 of the conductor part and the current Im of the movable arm horizontal part 4 are obliquely upward. Therefore, the upward component force F3 of the suction forces Fa1 and Fa2 1 , F3 2 Is the opening force that acts on the mover 1.
[0041]
In addition to this, the current flowing through the second conductor portion 7b shown in FIG. Ib The magnetic field Bb produced in the space on the fixed contact 6 side acts on the current in the portion on the fixed contact side from the second conductor portion of the movable arm horizontal portion 4, and an electromagnetic force F3 ″ in the opening direction is generated in the portion. In FIG. 4B, the sum of F3 ″ and the above-mentioned F3 ′ is shown as F3. As the arc is generated, the electromagnetic repulsion force F1 due to the current concentration on the contact contact surface disappears, but the electromagnetic repulsion force F2 and the electromagnetic force F3 continue to rotate the mover 1 in the opening direction.
[0042]
Further, along with the generation of the arc, a large amount of steam is generated from the inner surface of the insulator 8 forming the cylindrical space by the heat of the arc, and the insulator 8 and the mover 1 so A high-pressure atmosphere is generated in the enclosed space. Due to the generation of high pressure in the space, the mover 1 receives an opening force Fp due to a pressure difference. This state is shown in FIG. This figure is a cross-sectional view of the stator 5, the mover 1 and the insulator 8 at a position corresponding to the CC cross section of FIG. 4B immediately after the occurrence of the arc, and is surrounded by the mover 1 and the insulator 8. Arc in the space A Has occurred. As a result, the space on the fixed contact 6 side of the mover 1 has a higher pressure than the space on the opening direction side, and the opening force Fp due to the pressure difference acts on the mover 1. By these electromagnetic forces F1, F2, F3 and the force Fp due to the pressure difference, the mover 1 rotates at a high speed, and the contact opens at high speed. Due to this high-speed opening, the arc length rapidly increases in a high-pressure atmosphere, so that the arc voltage rises rapidly and the accident current reaches its peak value.
[0043]
Here, the arc voltage increase condition under a high pressure of a relatively short gap high current arc generated during the current limiting interruption operation in the circuit breaker will be described. In the experimental apparatus shown in FIG. 6, 400 is an electrode, 401 is a sealed container, 402 is an AC power source, 403 is a closing switch, and 404 is a pressurizing cylinder. The graph of FIG. 7 shows the results of measuring the arc voltage change by changing the atmospheric pressure P of a short gap high current arc of several centimeters or less in this sealed apparatus 401 in this experimental apparatus. In the experimental apparatus of FIG. 6, since the arc is generated by making the round bar-shaped electrodes 400 face each other, the distance between the electrodes becomes equal to the arc length L.
[0044]
As is clear from FIG. 7A, when the arc current value is relatively small, the arc voltage is almost equal to the arc length L when the arc atmospheric pressure P is increased. Than when the arc atmosphere pressure P is low Get higher. On the other hand, as shown in FIG. 7 (b), when the arc current value is relatively large, the arc voltage is high except when the arc length L is relatively long even when the arc atmospheric pressure P is high. For the case where the arc atmosphere pressure P is low Almost no change. FIG. 8 is a graph showing the ratio R of the arc voltage V (p = high) when the atmospheric pressure P is high and the arc voltage V (p = low) when the atmospheric pressure P is low, as shown in FIG. It becomes like this.
[0045]
As is clear from FIG. 8, the arc voltage increase rate R when the arc current value is relatively small is higher as the arc length is longer. On the other hand, it can be seen that the arc voltage increase rate R when the arc current value is relatively large hardly increases unless the arc length exceeds a certain value. From the above, in a short gap high current arc, the conditions for effectively increasing the arc voltage by increasing the arc atmospheric pressure are (a) a relatively small arc current and (b) a long arc length. It is necessary to satisfy one at the same time.
[0046]
When an accident such as a short circuit occurs, the circuit current rapidly increases immediately after the accident occurs. Therefore, to satisfy the above two conditions and increase the arc voltage at a high atmospheric pressure to limit the accident current, (1) at least immediately after the occurrence of the arc (accident occurrence) Living It is necessary to create a high-pressure atmosphere immediately after (2), and to increase the arc length when the arc current is relatively small (immediately after the accident). After the accident current increases, the current limiting performance is not improved much even if the atmospheric pressure is increased. Furthermore, the high-pressure atmosphere after the increase in the accident current not only contributes to the improvement in the current limiting performance, but also causes damage to the housing and the like.
[0047]
In the present invention, as described above, the insulator 8 that forms the cylindrical space is disposed around the contact pair in the closed state, and a larger amount than the insulator 8 due to the heat of the arc generated between the contacts immediately after the accident occurs. Steam is generated to create a high-pressure atmosphere, and the arc voltage is increased by rapidly extending the arc length by high-speed opening with electromagnetic force and pressure.
[0048]
FIG. 9 shows the effect of using a cylindrical insulator when (a) the high-speed opening means is not used and (b) when the high-speed opening means is used. In the figure, ts is the accident occurrence time, t0 is the contact opening time, V0 is the electrode drop voltage between the contacts, and the broken line is the power supply voltage waveform. FIG. 9 (a) shows a case where the high-speed opening means is not used, and the current at time t1 (when the cylindrical insulator is present) and t2 (when the cylindrical insulator is absent) when the arc voltage catches up with the power supply voltage. The peaks Ip1 and Ip2 are respectively changed. If high-speed opening means is not used, the rise of the arc length is slower than the rise of the accident current, so even if a high pressure atmosphere is created with a cylindrical insulator, the arc length is short and the arc voltage rises. It is difficult to meet.
[0049]
Therefore, in FIG. 9A, even if a cylindrical insulator is used, the degree of improvement ΔIp = Ip2−Ip1 of the current peak Ip is small. On the other hand, in the case of using the high-speed electrode opening means shown in FIG. 9B, the arc length becomes sufficiently long before the accident current becomes large, so that the above condition that the arc voltage rises in a high-pressure atmosphere can be satisfied. . Assuming that the current peaks Ip at times t1 ′ (when the cylindrical insulator is present) and t2 ′ (when there is no cylindrical insulator) when the arc voltage catches up with the power supply voltage are Ip1 ′ and Ip2 ′, respectively, It can be seen that the degree of improvement ΔIp ′ = Ip2′−Ip1 ′ is dramatically larger than the degree of improvement ΔIp of the current peak Ip when the high-speed opening means is not used.
[0050]
After the above-described current peak, the mover 1 further rotates and the distance between the contacts increases. As the distance between the contacts is increased, the arc voltage is further increased, and the fault current rapidly goes to zero. When the fault current is reduced, the arc is drawn into the iron arc extinguishing plates 19 and 19a, and the arc is divided, cooled and extinguished. At this time, the movable contact 2 is outside the cylindrical space, and even if the dielectric strength at the creeping surface of the insulator 8 forming the cylindrical space is reduced, the insulation between the contacts has sufficiently recovered, Even if the power supply voltage is applied between the electrodes, the current does not flow again. Up to this point, the mechanism portion 28 has been operated by a signal from the relay portion 29, the movable contact 2 is held at a position outside the cylindrical space, and the interruption operation is completed. The interruption time is significantly shortened by the high arc voltage due to the long distance between the contacts after the current peak. Therefore, the passing energy I, which is one of the indexes indicating the current limiting performance 2 t (time integration of square of current) becomes small.
[0051]
By the way, when generating a high-pressure atmosphere by generating an arc in a cylindrical space, the smaller the cylindrical space, the smaller the distance between the arc and the insulator wall, and the more the amount of insulator vapor generated, the more movable Since the gap between the contact 2 and the insulator 8 is reduced, the vapor is less likely to escape from the cylindrical space, and the volume of the space in which the pressure is increased is reduced, so that the degree of increase in the arc atmosphere pressure is increased. Therefore, the arc voltage rises more rapidly and the current limiting performance is greatly improved.
[0052]
At this time, the force due to the pressure difference acting on the cylindrical portion of the insulator 8 surrounding the cylindrical space is the difference between the pressure in the cylindrical space and the pressure around the cylindrical portion of the insulator 8. This is the direction in which the 8 cylindrical portion expands. This force can be received by the conductor forming the stator on both sides of the slit 21, the arc extinguishing unit housing 23, and the lid 24, and is insulated with a commonly used resin (for example, nylon resin). Even if the object 8 is formed, it is unlikely that the insulator 8 is damaged by pressure.
[0053]
On the other hand, the arc extinguishing unit housing 23 and the lid 24 have a larger inner area than the cylindrical portion of the insulator 8, and the difference between the pressure generated in the cylindrical space and spreading in the inner space of the casing is the force. Since it acts, a very large force is applied as compared with the insulator 8, and the casing may be damaged. In order to prevent this, an expensive mold material reinforced with reinforcing fibers is used for the casing, or the casing is reinforced with metal parts (for example, screws and nuts, rivets, etc.). It is expensive.
[0054]
Further, if the cylindrical space is reduced to substantially the same cylinder cross section as the fixed contact 6, the stator side arc spot is always on the fixed contact 6 during the breaking operation, so that a relatively small current such as a rated energization current is reduced. Contact consumption due to frequent energization switching increases, and even when a short circuit is interrupted, the current density at the arc spot on the fixed contact 6 increases and contact wear increases. Due to the consumption of these fixed contacts, re-energization may occur.
[0055]
Further, since the arc spot is constrained on the fixed contact 6 so that the arc is difficult to touch the arc extinguishing plates 19 and 19a, the breaking current having a relatively small current value such as rated current interruption and overload current interruption is obtained. In the region (the region where the arc diameter is small and the generation of steam from the insulator is small, the current blocking action due to the insulator vapor flow cannot be obtained), the arc division by the arc extinguishing plates 19 and 19a, and the cooling effect cannot be used. There may be a problem that the interruption performance in the current region cannot be secured.
[0056]
Therefore, in the present invention, the size of the cylindrical space is set to include the fixed contact 6 and the upper space of the arc runner 9 so that the stator-side arc spot moves from the fixed contact 6 to the arc runner 9. . Even if a relatively large cylindrical shape is used in this way, if the insulator 8 is formed of a material such as a resin that generates a large amount of steam when it touches the arc, a sufficient pressure increase to increase the arc voltage can be obtained. Can be generated.
[0057]
FIG. 4A is a partial cross-sectional view of the main part showing a state in the vicinity of the mover 1 and the stator 5 immediately after opening, and an arc A generated between the contacts is indicated by a white arrow in the figure. Further, an electromagnetic driving force is received by the current flowing through the second conductor portion 7b and the third conductor portion 7c. Furthermore, since the arc in the vicinity of the fixed contact 6 is surrounded by the first insulator portion 8b except for the arc runner 9 side, the pressure of the arc on the mover rotating shaft 13 side is greater than the pressure on the terminal portion 15a side. The arc becomes larger, and the arc receives a driving force (indicated by a black arrow in FIG. 4A) due to a pressure difference toward the arc runner 9 side. Of these driving forces, the electromagnetic driving force is more effective in the region where the current is small, such as when the rated current is cut off, and the force due to the pressure difference increases as the breaking current increases, such as overload current interruption and short-circuit current interruption. It becomes more effective. In the present invention, since the electromagnetic driving force and the driving force due to the pressure difference simultaneously act on the arc, the stator-side arc spot can be moved to the arc runner 9 immediately after the opening regardless of the current region.
[0058]
The stator-side arc spot that has moved to the arc runner 9 is driven to the tip of the arc runner 9 by a current flowing through the arc runner 9 or the like. While the instantaneous value of the arc current when the short-circuit current is interrupted is large, the arc driven to the terminal portion 15a side is moved toward the mover rotating shaft 13 by the steam flow generated from the wall 8d surface on the terminal portion 15a side of the cylindrical space. Therefore, the stator-side arc spot does not always reach the tip of the arc runner 9 because of the relationship between the electromagnetic driving force and the reverse driving force. However, when the opening operation of the mover 1 proceeds and the accident current is reduced, the amount of heat generated by the arc decreases, and the driving force due to the pressure difference in the reverse direction becomes relatively small. The side arc spot reaches the tip of the arc runner 9. FIG. 5 shows this state. The arc A between the tip of the arcrunner 9 and the mover 1 is divided by a plurality of arc extinguishing plates 19, 19 a provided on the top of the insulator 8, cooled and extinguished.
[0059]
By the way, as described above, when the substantially L-shaped mover 1 is used, the arc spot of the movable contact 2 is difficult to move to the surface facing the arc extinguishing plate at the tip of the mover 1. For this reason, it is difficult for the arc to touch the upper arc extinguishing plate located on the movable element side among the plurality of arc extinguishing plates, and there are cases in which the arc division and cooling effect by the arc extinguishing plate cannot be sufficiently exhibited. Therefore, in the present embodiment, the volume of the uppermost iron arc extinguishing plate 19a is made larger than that of the other arc extinguishing plates 19, and the horseshoe-shaped foot portion (the portion having a slit in the center) is used as the movable contact 2. Extending to the pinching position, the magnetic attracting force by the magnetic material to the arc near the movable contact 2 at the maximum opening position is strengthened, and the movable element side arc spot is surely moved to the tip of the movable element 1 Yes.
[0060]
Moreover, in this Embodiment, the wall height by the side of the terminal part 15a of cylindrical space is made higher than the wall height by the side of the needle | mover rotating shaft 13. FIG. In the arc generated between the contacts during the interruption operation, an electromagnetic driving force is generated on the terminal portion 15a side mainly by the current flowing through the second conductor portion 7b, the third conductor portion 7c, and the movable arm horizontal portion 4. Therefore, the cylinder Empty The arc in the space touches the wall on the terminal portion 15a side strongly. In order to open the mover 1 at high speed, it is advantageous to reduce the moment of inertia of the mover 1, but the movable arm vertical portion 3 determined by the wall height on the mover rotating shaft 13 side of the cylindrical space. As becomes longer, the moment of inertia of the mover increases. Therefore, in the present embodiment, by making the wall height on the terminal portion 15a side higher than the wall height on the mover rotating shaft 13 side, the length of the movable arm vertical portion 3 is shortened to reduce the moment of inertia, And it is set as the structure which generate | occur | produces sufficient insulator vapor | steam and produces sufficient high-pressure atmosphere.
[0061]
In the present embodiment, the exhaust port 26 is provided only on the arc-extinguishing plate 19 side when viewed from between the contacts 2 and 6. With such an arrangement, pressure is accumulated in the space closer to the rotor 22 than the arc in the housing as the arc current increases during the current interruption operation. When the arc current reaches its peak and the arc current value decreases, an air flow is generated between the electrodes from the rotor 22 side to the exhaust port 26 side due to the accumulated pressure, and the arc is stretched to the arc extinguishing plate 19. Furthermore, in the vicinity of the current zero point, the insulation recovery between the contacts is greatly improved by the action of blowing off charged particles between the contacts due to the above flow. Therefore, it is possible to obtain a highly reliable circuit breaker in which breakage failure hardly occurs even when used in a high voltage circuit.
[0062]
The insulation recovery action of the airflow due to the accumulated pressure is greater as the flow velocity of the airflow at the time of current interruption is larger. In order to increase the flow velocity, it is only necessary to increase the accumulated pressure or to reduce the cross section of the flow path. For this purpose, it is necessary to reduce the exhaust port area. In the present embodiment, the exhaust port 26 having a relatively small area is provided on the movable contact 2 side in the opened state. When the current limiting performance is improved by using the cylindrical insulator 8, the movement of the arc in the vicinity of the fixed contact side arc spot is restricted by the cylindrical insulator 8, so that the air flow caused by the accumulated pressure in the rotor side space is used. The metal particles constituting the arc cannot be blown away. On the other hand, the arc in the vicinity of the mover side arc spot is located outside the cylindrical space when the current is interrupted, and is easily affected by the airflow. Therefore, by providing the exhaust port 26 having a relatively small area on the movable contact 2 side in the opened state, it is possible to effectively ensure insulation recovery between the electrodes when the current is interrupted.
[0063]
Further, as described above, in the present embodiment, the arc extinguishing device is housed in the arc extinguishing unit casing 23 and the lid 24, so that the pressure increase in the circuit breaker during the breaking operation is caused by the base 30 and the cover 31. You will not receive it directly. The pressure receiving areas of the arc extinguishing unit housing 23 and the lid 24 are smaller than the pressure receiving areas of the base 30 and the cover 31. Therefore, even if the arc extinguishing unit housing 23 and the lid 24 having the same material and the same thickness as the base 30 and the cover 31 are used, it is possible to withstand a larger increase in internal pressure, and the arc voltage is increased to increase the arc voltage. It is suitable to use the current limiting method. Conventionally, the base 30 and the cover 31 are made of an expensive mold material having high mechanical strength in order to withstand an increase in internal pressure during the shut-off operation. However, by using the arc extinguishing unit housing 23 and the lid 24, The amount of the housing material that receives pressure can be reduced, and the cost can be reduced.
[0064]
Further, as described above, in the present embodiment, the parts constituting the arc extinguishing device are accommodated by the arc extinguishing unit casing main body 23 and the arc extinguishing unit casing lid 24 to constitute the arc extinguishing unit 25 as a whole. . Further, each component such as the mechanism section 28 and the relay section 29 is unitized, and these are combined to configure a circuit breaker for wiring, so that assembly is simplified and cost reduction is possible.
[0065]
Further, in the present embodiment, unlike the conventional example shown in FIG. 21, there is no need to provide an exciting coil for helping to open the mover 1, so that a current limiting device with low impedance and excellent current limiting performance is provided. As a result, it can be applied to a circuit requiring a large current carrying capacity.
[0066]
Further, since the movable element 1 is rotated and opened, the required dimensions in the direction in which the movable contact 2 opens and closes are the conductor thickness of the stator 5, the thickness of the fixed contact 6, the space in which the movable element 1 moves, It becomes the sum of the thickness of the movable contact 2 and the movable arm vertical portion 3, and the required dimension in the above direction can be made smaller than that of the conventional linear motion type current limiting device. Therefore, even when the outer dimensions are limited, it is possible to easily secure the opening distance necessary for effectively connecting the high pressure to the increase of the arc voltage.
[0067]
In FIG. 1, the cylindrical space is divided into a first insulator portion 8 b and a second insulator portion 8 c that are part of the insulator 8 that covers the surface of the stator 5 on the movable contact 2 side. so Although configured, for example, the second insulator portion 8 c is not part of the insulator 8, and is configured by the arc extinguishing unit housing body 23 and the arc extinguishing unit housing 24 disposed in the vicinity of the stator 5. However, the same effect can be obtained.
[0068]
Embodiment 2. FIG.
A second embodiment of the present invention is shown in FIGS. FIG. 10 is a perspective view showing the stator 5 of the present embodiment, and a part of the second conductor portion 7b of the stator of the first embodiment is connected to the horizontal electric circuit 7c ′ and the vertical electric circuit 7b ′. Replaced. FIG. 11 is a partial sectional view showing the movable element 1 in the closed state, the stator 5 and the insulator 8 shown in FIG. 10, and the current direction is indicated by an arrow in the figure. As is apparent from FIG. 10, by using the stator shape of FIG. 10, the electric arm 7c ′ of the movable arm horizontal portion 4 and the stator 5 is greatly brought close, and the electromagnetic opening force at the time of interruption of the accident current is the embodiment. Increase from 1. Thereby, the rise of the arc voltage becomes faster and the current limiting performance is improved.
[0069]
Embodiment 3 FIG.
FIG. 12 is a perspective view showing the stator 5 and the insulator 8 according to Embodiment 3 of the present invention, and is located on the side opposite to the arc runner 9 from the fixed contact 6 of the insulator 8b surrounding the fixed contact 6 from three directions. The part 8e to be performed is black so as to easily absorb light generated by the arc. Part of the energy released to the outside from the arc is released by radiation, and particularly in a large current short gap arc generated when a short circuit is interrupted, the ratio is large. Thus, when the insulator portion 8e on the opposite side of the arc runner 9 of the stator contact 6 is black, the absorption of radiation energy from the arc at the insulator portion 8e is increased, and the amount of steam generated is increased. Accordingly, the movement of the arc spot on the fixed contact side to the arc runner 9 and the traveling to the tip end of the arc runner are accelerated.
[0070]
Further, the portion corresponding to 8e is made of a material that easily generates vapor when it touches the arc from an insulating portion excluding the insulating portion 8e in the vicinity of the fixed contact (for example, a resin material having a relatively low decomposition temperature). Even if configured, there is a pressure difference between the back pressure and the front pressure of the arc traveling to the arc runner side, so that the arc spot on the fixed contact side to the arc runner 9 is the same as when the insulating portion 8e is black. The movement and traveling of the arc to the tip of the arc runner are accelerated. Thereby, the fixed contact wear at the time of arc generation is reduced, and the number of times that the circuit breaker can be repeatedly interrupted can be increased.
[0071]
Embodiment 4 FIG.
FIG. 13A is a perspective view showing a stator 5 and an insulator 8 according to Embodiment 4 of the present invention, and a part is cut away so that the main components can be seen. FIG. 13B is a view showing the vicinity of the third conductor portion 7c and the arc runner 9 to which the fixed contact 6 of FIG. 13A is fixed. In FIG. 13, a portion other than the fixed contact on the surface where the fixed contact 6 of the third conductor portion 7 c is fixed, and a part on the fixed contact 6 side of the surface facing the movable contact 2 (not shown) of the arc runner 9. It is covered with an insulator 14. As shown in FIG. 13B, the exposed portion of the side surface of the movable contact of the arc runner 9 is wider than the width of the fixed contact on the fixed contact 6 side in the left-right direction and wider than the travel path on the tip end side of the arc runner. It is formed in a substantially T shape at the arc holding portion having a width.
[0072]
During a breaking operation with a relatively small current, such as rated current breaking, the diameter of the arc spot generated between the contacts is sufficiently small even at the peak of the current, and it easily travels on the above-mentioned traveling path by the electromagnetic driving force generated by the current flowing through the stator 5. Then, it moves to the tip of the arc runner 9. On the other hand, when a large current is interrupted, such as when a short circuit current is interrupted, the arc spot suddenly increases with the rise of the accident current, so in order to transfer the arc to the tip of the mover on the narrow travel path. It is necessary to run the arc before the accident current increases. Therefore, in this embodiment, the electromagnetic force due to the current flowing through the second conductor portion 7b and the third conductor portion 7c described above and the force due to the pressure difference generated by the part 8b of the cylindrical insulator immediately after opening the electrode. An arc having a relatively small current is driven to shift to the tip end side of the arc runner 9. Due to the subsequent increase in current, the diameter of the stator-side arc spot that has moved to the tip of the arc runner 9 increases, and a part of the arc spot tends to return to the stator 6 side. The increase in the spot diameter is prevented, and the arc remains almost stably at the tip of the arc runner 9.
[0073]
By limiting the arc spot diameter in this way, the arc resistance is increased and the current limiting performance is improved. Further, since the stator side arc spot remains stably at the tip of the arc runner 9 even during a period when the current is relatively large during the breaking operation, the consumption of the fixed contact 6 due to the arc can be reduced. Furthermore, since the arc state as shown in FIG. 5 can be realized not only immediately before the interruption but also in a period in which the current is relatively large during the interruption operation, the arc cooling action of the arc extinguishing plate can be utilized to the maximum.
[0074]
Embodiment 5 FIG.
FIG. 14: is the fragmentary sectional view (a) which shows the principal part of the contact pair vicinity which concerns on Embodiment 5 of this invention, and a perspective view (b) which shows the metal plate used by this embodiment. In the present embodiment, the metal plate 17 is provided on the terminal portion 15a side in the cylindrical space surrounded by the insulator 8 in a direction orthogonal to the arc. In the breaking operation, the moving speed of the arc is faster than the moving speed of the mover 1 having a large moment of inertia, and the time at which the stator side arc spot shifts to the tip of the arc runner 9 than the time at which the mover 1 reaches the maximum separation distance. Is early. Therefore, even if the stator-side arc spot moves to the tip of the arc runner 9, arc cooling and separation of the arc extinguishing plate 19 provided on the top of the insulator 8 are continued until the separation distance of the mover 1 increases. The effect is not used. Therefore, in the present embodiment, by providing the metal plate 17 in the cylindrical space, the arc is cooled and divided by the metal plate 17 without waiting for an increase in the separation distance of the mover 1, thereby increasing the internal pressure of the housing. Is reduced.
[0075]
Embodiment 6 FIG.
FIG. 15 is a perspective view showing the stator 5 and the pair of cores 34 according to Embodiment 6 of the present invention, and the front core is omitted so that the shape of the stator 5 can be seen. FIG. 16 is a diagram in which the insulator 5 and the pair of cores 34 in FIG. 15 are covered with the insulator 8, and a part of the insulator 8 is cut away. The insulator 8 forms a cylindrical space, and when the inside of the cylindrical space is looked over from the opened movable contact 2, the fixed contact 6 and the arc runner 9 are arranged as in the first embodiment. In this embodiment, the core 34 is also insulated.
[0076]
The electric path of the stator 5 is composed of the terminal portion 15a, the electric paths 7f, 7e, 7c ″, 7b ″, and the fixed contact 6 in this order, and is plane-symmetric with respect to the plane including the locus of rotation of the mover 1. . The stator 5 is provided with a slit 33 in order to reduce a magnetic field component that hinders the opening of the mover 1 in which electric currents of the electric paths 7e and 7f are generated. The electric paths 7e and 7f are rotated by the mover 1. It is arranged at a position shifted to the left and right from the plane including the locus to be moved. The fixed contact 6 is fixed to the electric circuit 7c ″ and the electric circuit 7b ″, and is formed by driving up the base of the tongue piece extending toward the terminal portion 15a. The tongue pieces are formed by the electric circuit 7c ″ and the electric circuit 7b ″. The fixed contact 6 is attached to the fixed portion and the arc runner 9.
[0077]
The fixed contact 6 is positioned at a bent portion which is a boundary between the electric path 7b ″ and the fixed contact fixing portion, and is fixed by brazing. A launch portion formed by the electric path 7c ″ and the electric path 7b ″. Is launched so that the distance between the movable arm horizontal portion 4 and the movable arm horizontal portion 4 arranged substantially in parallel with each other in the closed state is closer to the electromagnetic arm. In addition, a current in the contact opening direction (vertical direction) component flows in the electric circuit 7b ″ located in the vicinity of the fixed contact 6. The vertical component of this current is opposite to the arc generated between the contacts. Direction and pushes the arc toward the terminal portion 15a. Therefore, since the arc generated between the contacts quickly moves to the arc runner 9, contact wear is improved.
[0078]
By the way, the pair of cores 34 provided on the upper portion of the electric circuit 7e is made of a magnetic material such as iron, and is disposed so as not to directly touch the arc generated between the contacts by the insulator 8. This core reinforces the magnetic field component that opens the movable element 1 generated by the electric currents of the electric paths 7c ″ and 7b ″, prevents the opening of the movable element 1 generated by the current flowing through the electric path 7e, and prevents the arc from the anti-terminal portion 15a. It serves to shield the magnetic flux that acts to push back to the side. Moreover, the terminal part 15a side edge part of the core 34 is comprised so that it may adjoin to the electric circuit 7f, and the opening of the needle | mover 1 which the electric current of the electric circuit 7f produces in the said edge part is prevented, and an arc is counter terminal part 15a side. The magnetic flux acting to push back is absorbed. In FIG. 15, the core 34 is composed of two substantially L-shaped magnetic plates, but a core in which the two magnetic plates are connected at the top of the L-shape may be used. Good. By integrating the cores in this way, the effect of promoting the opening of the mover 1 by the magnetic core is improved.
[0079]
Embodiment 7 FIG.
FIG. 17 is a perspective view showing the stator 5 and the horseshoe-shaped arc runner 18 according to Embodiment 7 of the present invention. Although not shown, the insulator 8 forming the cylindrical space excludes the vicinity of the fixed contact 6. Covering the surface of the stator 5 on the movable contact side is the same as in the first embodiment. The arrangement of the conductors 7f, 7e, 7c ″, 7b ″ and the fixed contact 6 of the stator 5 is basically the same as that of the sixth embodiment. In the present embodiment, an iron horseshoe-shaped arc runner 18 is arranged so as to surround the fixed contact 6 from the terminal portion 15a side, and the horseshoe-shaped arc runner 18 is electrically connected to the conductor 7e by the legs 18a of the horseshoe-shaped arc runner. .
[0080]
The arc generated between the contacts is pushed out toward the terminal portion 15a side by the current in the contact opening direction (vertical direction) component of the electric circuit 7b ″ positioned in the vicinity of the fixed contact 6 as in the sixth embodiment. However, in this embodiment, in addition to this, a magnetic attraction force is exerted by the horseshoe-shaped arc runner 18. The action of attracting the arc by the magnetic material toward the terminal portion 15a is a relatively small current region in which magnetic saturation of the magnetic material does not occur. Further, the horseshoe-shaped arc runner 18 has an effect of shielding a magnetic field component that returns the arc caused by the currents in the electric paths 7e and 7f to the contact side, so that the transition of the arc to the arc runner 18 is accelerated. Therefore, contact consumption during frequent switching of the rated current can be reduced, and the time when the arc touches the arc-extinguishing plate 19 can be shortened, so that arc cooling of the arc-extinguishing plate can be achieved. It can be effectively utilized the divided action.
[0081]
Embodiment 8 FIG.
Embodiment 8 of the present invention will be described with reference to the drawings. FIG. 18 is a perspective view showing the stator 5, the pair of cores 34, and the iron shielding plate 35 according to the present embodiment. In order to understand the shape of the stator 5, one of the electric paths 7 e provided on the left and right sides of the fixed contact 6 and a part of the shielding plate 35 are cut out. Other components are not shown, but basically have the same configuration as that of the sixth embodiment. The stator shape in FIG. 18 differs from the one shown in FIG. 15 in the arrangement of the electric circuit 7e, and the electric circuit 7e is provided above the electric circuit 7c. The center line of the electric circuit 7e is located above the contact surface of the fixed contact 6.
[0082]
With such a configuration, the electromagnetic arm opening force is strengthened by approaching the movable arm horizontal portion 4 in the closed state of the electric circuit 7c ′, and the arc is driven to the arc runner 9 side by the vertical component of the electric current of the electric circuit 7b ″. The arc cooling and dividing action by the arc extinguishing plate 19 is improved as in the sixth embodiment, but since the electric circuit 7e is located above the fixed contact surface, the electromagnetic driving force due to the electric current of the electric circuit 7e This makes it easier for the arc spot on the fixed contact side to move toward the arc runner 9. Further, by arranging the electric path 7e upward, the opening of the mover 1 is prevented and the arc is pushed back toward the mover rotation center. Since the electric circuit 7f for performing the above is inevitably shortened, it is possible to prevent the arc transferred to the arc runner 9 from returning to the fixed contact 6 side.
[0083]
Incidentally, FIG. 18 shows one of a shielding plate 35 having a partial cross section and a pair of cores 34 provided on the upper portion of the electric circuit 7e. The shielding plate 35 and the core 34 are made of a magnetic material such as iron, and are arranged so as not to directly touch the arc generated between the contacts by the insulator 8. The shielding plate 35 mainly serves to shield the magnetic flux generated by the current flowing through the electric path 7f (which prevents the opening of the mover 1 and pushes the arc back toward the mover rotation center). . On the other hand, the core 34 reinforces the magnetic field component that opens the movable element 1 generated by the currents of the electric paths 7c ′, 7b ″, and 7c, and shields the magnetic flux that prevents the opening of the movable element 1 generated by the current flowing through the electric path 7e. Have a role to play.
[0084]
Embodiment 9 FIG.
Embodiment 9 of the present invention will be described with reference to the drawings. FIG. 19 is a view showing the distal end portion 36 of the mover 1 according to the present embodiment, and FIG. 19 (a) is above the mover distal end portion 36 (the direction in which the movable contact 2 opens from the fixed contact 6). FIG. 19B is a view of the mover tip 36 viewed from the left-right direction (a direction perpendicular to the plane including the trajectory where the mover 1 rotates). In the present embodiment, the portion closer to the tip than the movable contact 2 of the mover 1 is formed in a fan shape, and the width in the left-right direction becomes narrower as it approaches the end surface of the tip.
[0085]
As described above, since the substantially L-shaped mover 1 is used in the present invention, the mover-side arc spot hardly shifts from the movable contact 2 to the surface facing the arc extinguishing plate 19 at the tip of the mover. Among the arc extinguishing plates, the arc extinguishing plate arranged at the top does not touch the arc and does not contribute to arc cooling or division. Therefore, in this embodiment, in order to promote the transition of the arc spot from the movable contact 2 to the tip of the mover, the surface facing the arc extinguishing plate 19 at the tip of the mover is vertically rounded up from the contact surface of the movable contact 2. Rather, the shape of the tip of the mover is substantially fan-shaped so that the portion close to the movable contact 2 is substantially parallel to the contact surface and gradually becomes perpendicular to the contact surface of the movable contact as the tip of the mover is reached.
[0086]
Further, as shown in FIG. 19A, the tip of the mover 36 is sharpened to increase the electric field strength at the tip, and promote the transition from the arc contact point to the tip. By using such a mover tip shape, even in the substantially L-shaped mover 1, the arc spot can be reliably transferred to the mover tip 36, so that the consumption of the movable contact 2 is reduced and the arc is extinguished. The plate 19 can effectively use the arc cooling and the dividing action.
[0087]
Embodiment 10 FIG.
Embodiment 10 of the present invention will be described with reference to the drawings. 20 is a partial cross-sectional view showing the main part in the arc extinguishing unit of the present embodiment, FIG. 20 (a) is a cross-sectional view taken along line C1-C1 of FIG. 20 (b), and FIG. 20 (b). These are sectional drawings which follow the C2-C2 line of Fig.20 (a). The shapes of the stator 5 and the core 34 according to the present embodiment are basically the same as those shown in the sixth embodiment, and an arc generated between the contacts causes an electromagnetic force and an insulator due to a current flowing through the stator 5. It is the same that the arc runner 9 is driven to the tip by the pressure effect of the part 8b.
[0088]
However, in the sixth embodiment, the arc driven to the tip of the arc runner 9 is subjected to an action of being pushed back to the contact side by the steam generated by the insulating portion 8d covering the electric path 7f. Therefore, in the present embodiment, the force of pushing back the arc between the contacts is reduced by converting the insulating portion 8d into a ceramic to reduce the amount of steam generated. Thus, if the force for pushing back the arc between the contacts is small, even if the dimension in the direction in which the arc runner 9 extends in the arc extinguishing space is shortened in order to reduce the size of the circuit breaker, Is not spread, the amount of consumption of the fixed contact 6 due to arc is reduced, and the number of times the circuit breaker can be repeatedly interrupted increases.
[0089]
In the present embodiment, a gap is provided between the pair of cores 34 and the insulating portion 8d, and between the pair of cores 34 and the arc-extinguishing unit housing body 23 and the arc-extinguishing unit housing lid 24, respectively. The flow path 39 is configured by providing the above. As the arc moves toward the tip end side of the arc runner 9 in the flow path 39, the flow indicated by the white arrow in FIG. 20A is generated, and the pressure rise on the front side of the traveling arc is reduced, and the arc traveling It has the effect of speeding up. In addition, since metal vapor or the like that fills the space surrounded by the insulator 8 can be exhausted out of the space, recovery of insulation between the contacts is promoted. Therefore, even in a circuit having a relatively high power supply voltage, an accident current can be reliably interrupted, and a highly reliable circuit breaker can be obtained.
[0090]
【The invention's effect】
As described above, according to the present invention, a single arc-extinguishing device has an excellent current limiting function, and a breaking operation in a wide current range from a small current such as a rated current to a large current such as a short-circuit current. There is an effect that a circuit breaker that can be applied to a circuit that increases the number of possible times, is low-cost, small-sized, and requires a relatively large current-carrying capacity is obtained.
[0091]
In addition, since the insulator arranged on the anti-arc runner side of the fixed contact is more likely to generate steam when it touches the arc than the other two arranged insulators, the consumption of the fixed contact by the arc is reduced. This has the effect of increasing the number of times that the circuit breaker can be repeatedly interrupted.
[0092]
Further, a part of the surface of the arc runner on the movable contact side is covered with an insulator so that the arc runner exposed portion on the surface is substantially T-shaped, and the movable element in the exposed portion in the vicinity of the fixed contact Since the width in the direction perpendicular to the plane including the locus of the fixed contact is narrower than the width of the fixed contact, the width of the exposed portion at the tip of the arc runner is wider than the width in the direction of the portion adjacent to the fixed contact. The current-limiting performance at the time of short-circuit current interruption is further improved, and the amount of consumption due to arcing of the fixed contact at the time of short-circuit current interruption is reduced.
[0093]
In addition, there is an effect that the electromagnetic opening force acting on the mover at the time of short-circuit interruption is enhanced to improve the opening speed and reduce the consumption of the stator contacts.
[0094]
In addition, since the fixed contact is positioned at the arc runner-side bent portion that protrudes toward the movable arm, there is an effect that the fixed contact can be easily positioned without the need for a new process for positioning the fixed contact.
[0095]
In addition, there is an effect that it is possible to reduce the amount of wear due to the arc of the fixed contact at the time of relatively small current and many interruption operations.
[0096]
In addition, since the tip of the movable arm facing the arc-extinguishing plate is substantially fan-shaped when viewed from the direction perpendicular to the plane including the trajectory of the moving element, the consumption of the movable contact is reduced and the arc by the arc-extinguishing plate is used. There is an effect that the cooling and dividing action can be effectively used.
[0097]
Moreover, even when the dimension of the arc runner extending direction of the space where the arc is extinguished is small, it is possible to obtain a circuit breaker that can repeatedly perform a breaking operation by reducing the amount of consumption due to the arc of the fixed contact at the time of breaking the short-circuit current .
[0098]
In addition, a pair of insulating plates parallel to the plane including the opening / closing locus of the mover are arranged on the left and right sides of the contact plate to which the fixed contact is fixed, and the arc runner tip side end of the insulating plate and the arc runner tip are opposed to each other. Since an air gap is provided between the members and a flow path communicating with the air gap is provided on the back surface of the insulating plate as viewed from the fixed contact, the accident current can be reliably interrupted even in a circuit having a relatively high power supply voltage. There is an effect that a highly reliable circuit breaker can be obtained.
[Brief description of the drawings]
FIG. 1 is a partial cross-sectional perspective view showing an internal structure of an arc extinguishing unit in an open state according to Embodiment 1 of the present invention.
FIG. 2 is a perspective view showing the internal structure of the arc extinguishing unit in the open state according to the first embodiment.
FIG. 3 is a perspective view showing a configuration of a circuit breaker according to the first embodiment.
4 is a partial cross-sectional view (a) of a main part for explaining the operation of the first embodiment, and main part cross-sectional views (b), (c), and (d) for explaining the operation. FIG.
FIG. 5 is a partial cross-sectional view of the main part for explaining the operation of the first embodiment.
FIG. 6 is a block diagram showing an experimental apparatus for measuring basic characteristics of arc voltage.
FIG. 7 is a graph showing the influence of the atmospheric pressure on the arc voltage.
FIG. 8 is a graph showing the influence of the current value on the rate of increase in arc voltage.
FIG. 9 is a graph illustrating the effect of the first embodiment.
FIG. 10 is a perspective view showing a stator shape according to Embodiment 2 of the present invention.
FIG. 11 is a partial cross-sectional view of the main part for explaining the operation of the second embodiment.
FIG. 12 is a perspective view showing shapes of a stator and an insulator according to Embodiment 3 of the present invention.
FIG. 13 is a partial cross-sectional perspective view (a) showing the main part of the stator according to Embodiment 4 of the present invention, and a partial cross-sectional view (b) showing the vicinity of the fixed contact plate of Embodiment 4.
FIG. 14 is a partial cross-sectional view (a) showing main parts of a mover and a stator according to Embodiment 5 of the present invention, and a perspective view (b) of a metal plate.
FIG. 15 is a perspective view showing a stator side electric circuit and a core according to Embodiment 6 of the present invention;
FIG. 16 is a partial cross-sectional perspective view showing a stator side electric circuit and an insulator according to the sixth embodiment.
FIG. 17 is a perspective view showing a stator and an arc runner according to Embodiment 7 of the present invention.
FIG. 18 is a partial cross-sectional perspective view showing a configuration of a main part near a stator according to Embodiment 8 of the present invention.
FIG. 19 is a top view (a) showing the tip of the mover according to the ninth embodiment of the present invention, and a front view (b) showing the tip of the mover according to the ninth embodiment.
20 is a cross-sectional view (a) taken along line C1-C1 in FIG. 20 (b) and showing a main part of a circuit breaker according to Embodiment 10 of the present invention, and C2-C2 line in FIG. 20 (a). It is sectional drawing (b) which follows this.
FIG. 21 is a partial cross-sectional front view showing a conventional circuit breaker with a current limiting function.
22 is a right side view of FIG. 21. FIG.
[Explanation of symbols]
A arc, 1 mover,
2 movable contact, 3 movable arm vertical part,
4 horizontal part of movable arm, 5 stator,
6 fixed contact, 7a 1st conductor part,
7b 2nd conductor part, 7c 3rd conductor part,
7b ', 7b ", 7c', 7c", 7e, 7f Electric circuit,
8 Insulator, 8a Insulation cover,
8b first insulator part, 8c second insulator part,
8d part of the second insulator part, 8e part of the first insulator part,
9 Arcrunner, 10 Sliding contact,
11 spring, 12 spring hook,
13 mover rotation shaft, 14 insulator,
15a, 15b, 16 terminal part, 17 metal plate,
18 Horseshoe Arcrunner, 18a Part of Horseshoe Arcrunner,
19, 19a arc extinguishing plate, 20 arc extinguishing side plate,
21 slits, 22 rotors,
23 arc extinguishing unit housing body, 24 arc extinguishing unit housing lid,
25 arc extinguishing unit, 26 exhaust port,
27 Crossbar, 28 Mechanical part,
29 relay section, 30 base,
31 cover, 32 handle,
33 slits, 34 cores,
35 shielding plate, 36 mover tip,
37 ceramics, 38 insulators,
39 channels, 400 electrodes,
401 airtight container, 402 AC power supply,
403 input switch, 404 pressure cylinder.

Claims (9)

アーム水平部と可動接点とを有し可動子回転軸を中心として回動する可動子、上記可動接点と接点対をなす固定接点と閉成状態において上記可動子のアームの一部とほぼ平行で且つ反対方向に電流が流れる電路とを有すると共に一端が上記可動子回転軸から遠い側の端子部に引き出される固定子、この固定子に電気的に接続され上記固定接点近傍から反可動子回転軸方向へ延びるアークランナ、上記接点対に接触圧を発生させる付勢手段、上記可動接点の反可動子回転軸側に配置された消弧板、上記固定接点の上方を開放し周囲を筒状に取り囲む絶縁物、および上記各構成部材を収納する絶縁物筐体を備え、上記接点対の閉成状態において上記可動接点の接触面が上記絶縁物が囲む筒状空間内に位置し、開成状態において上記可動子の上記可動接点を有する端部が上記絶縁物が囲む筒状空間外に位置するように構成し、かつ上記絶縁物の上記固定接点の反アークランナ側の壁面は上記固定接点に隣接して配置され、上記アーム水平部の反可動子回転軸側の端部に上記可動接点が一端部に固着されたアーム垂直部の他端部を固着して上記可動子を略L字状に構成したことを特徴とする回路遮断器。A movable element having a horizontal part of the arm and a movable contact and rotating around a rotation axis of the movable element, a fixed contact forming a contact pair with the movable contact, and being substantially parallel to a part of the arm of the movable element in a closed state. A stator having an electric path through which current flows in the opposite direction and having one end pulled out to a terminal portion on the side farther from the movable element rotation shaft, and an anti-mover rotation shaft from the vicinity of the fixed contact that is electrically connected to the stator Arc runner extending in the direction, urging means for generating contact pressure on the contact pair, an arc extinguishing plate disposed on the anti-movement rotor shaft side of the movable contact, and opening the upper side of the fixed contact to surround the periphery in a cylindrical shape And an insulator housing for housing each of the constituent members, and the contact surface of the movable contact is located in a cylindrical space surrounded by the insulator in the closed state of the contact pair. The above mover is allowed End having contacts is configured to be located outside the cylindrical space in which the insulator surrounds and the wall surface of the counter-arc runner side of the fixed contacts of the insulating material is positioned adjacent to said stationary contact, said arm The movable element is configured in a substantially L shape by fixing the other end of the arm vertical part with the movable contact fixed to one end to the end of the horizontal part opposite to the rotary axis of the movable element. Circuit breaker. 固定子は、導体をほぼU字形状に曲げてその一端を反可動子回転軸側の端子部に接続すると共に、そのU字形状の他端の内側に固定接点が設けられたものからなり、且つ、可動子のアーム水平部と反対方向の電流が流れる、上記固定接点を設けた固定子電路の一部を、閉成状態の可動子のアーム水平部に近接するように屈曲させ、また、上記固定接点に向かい合う固定子電路には可動子の回転軌跡と交差する部位に可動子の開閉を許すスリットを設けたことを特徴とする請求項1記載の回路遮断器。  The stator is composed of a conductor bent in a substantially U shape and having one end connected to the terminal portion on the anti-mover rotating shaft side and a fixed contact provided inside the other end of the U shape, In addition, a part of the stator electric circuit provided with the fixed contact, in which a current in a direction opposite to the arm horizontal part of the mover flows, is bent so as to be close to the arm horizontal part of the closed mover, 2. The circuit breaker according to claim 1, wherein the stator electric circuit facing the fixed contact is provided with a slit that allows opening and closing of the mover at a portion intersecting with the rotation locus of the mover. 固定接点の反アークランナ側で発生直後の接点間のアークに直接触れる位置に配置された絶縁物部位を、他の3方に配置された絶縁物部位よりアークに触れた時に蒸気を発生しやすい材質にしたこと特徴とする請求項1記載の回路遮断器。A material that is likely to generate steam when it touches the arc from the insulator part arranged in the other three sides , where the insulator part placed directly in contact with the arc between the contacts immediately after the occurrence on the anti-arc runner side of the fixed contact circuit breaker according to claim 1, characterized in that the. 固定接点の可動子回転軸側に配置された絶縁物部位を黒色にしたこと特徴とする請求項1記載の回路遮断器。Circuit breaker according to claim 1, wherein an insulator portion disposed to the movable member rotary shaft side of the fixed contact, characterized in that the black. 固定子は、一端に固定接点を有し、可動子のアーム水平部と反対方向に電流が流れる電路と、この電路の他端に接続されこの電路の両側を通り端子部に至る左右対称の電路と、この電路と端子部とを接続し、可動子回転軌跡面を含む面にスリットを有する2叉に分かれた垂直電路とからなり、上記固定接点を設けた電路には上記左右対称の電路より上記可動子のアーム水平部側に突出するように屈曲した部位を設けたことを特徴とする請求項1記載の回路遮断器。The stator has a fixed contact at one end, an electric circuit through which current flows in the opposite direction to the arm horizontal part of the mover, and a symmetrical electric circuit that is connected to the other end of the electric circuit and passes through both sides of the electric circuit to reach the terminal part And a bifurcated vertical electric circuit having a slit on the surface including the mover rotation trajectory plane, and the electric circuit provided with the fixed contact from the symmetrical electric circuit. 2. The circuit breaker according to claim 1, wherein a portion bent so as to protrude toward the arm horizontal portion of the mover is provided. 固定接点が、可動子のアーム側に突出した屈曲部位により位置決めされて電路に固着されていることを特徴とする請求項記載の回路遮断器。6. The circuit breaker according to claim 5 , wherein the fixed contact is positioned by a bent portion protruding toward the arm side of the mover and fixed to the electric circuit. 固定子は、一端に固定接点を有し、閉成状態の可動アーム水平部と対向して反対方向電流成分が流れる電路と、この電路の他端に接続されこの電路の両側を通り端子部に至る左右対称の電路と、この電路と端子部とを接続し、可動子回転軌跡面を含む面にスリットを有する2叉に分かれた垂直電路とからなり、上記固定接点を有する電路の上記固定接点が固着された部位を上記左右対称の電路より下方(可動子のアーム水平部から遠い方向)に位置させるように上記固定接点を固着した電路の一部を下方に屈曲させたことを特徴とする請求項1記載の回路遮断器。The stator has a fixed contact at one end, an electric circuit through which a current component in the opposite direction flows opposite to the movable arm horizontal part in the closed state, and a terminal part connected to the other end of the electric circuit and passing through both sides of the electric circuit and path symmetrical leading to, and coupling the electrical path and the terminal section consists of a vertical path, divided into 2 or having a slit on the surface including the movable member rotation trajectory plane, the fixed path with the fixed contact characterized in that the site contacts are secured by bending a portion of the path which is fixed to the fixed contacts so that is positioned below the path of the symmetric (direction away from the arm horizontal portion of the movable element) downward The circuit breaker according to claim 1. アークランナを反可動子回転軸側へ延長した線とほぼ直交するようセラミック板を配置し、上記アークランナの先端部から見て上記セラミック板背面に位置する絶縁物にアークが触れないようにしたことを特徴とする請求項1記載の回路遮断器。The ceramic plate was placed so that it was almost perpendicular to the line extending the arcrunner to the anti-movement rotor axis , and the arc was not touched by the insulator located on the back of the ceramic plate when viewed from the tip of the arc runner. The circuit breaker according to claim 1, wherein: 固定接点を設けた固定子電路の両側に、可動子の開閉軌跡を含む面に平行な一対の絶縁板を配置し、上記絶縁板のアークランナ先端部側端部と上記アークランナ先端部と対向する部材との間に空隙を設け、且つ、上記空隙と連通する流路を固定接点からみて上記絶縁板の背面に設けたことを特徴とする請求項1記載の回路遮断器。  A pair of insulating plates parallel to the plane including the open / close locus of the mover are arranged on both sides of the stator electrical circuit provided with the fixed contacts, and the arc runner tip side end of the insulating plate and the arc runner tip are opposed to each other 2. A circuit breaker according to claim 1, wherein a gap is provided between the insulating plate and a flow path communicating with the gap is provided on a back surface of the insulating plate as viewed from a fixed contact.
JP34418999A 1999-12-03 1999-12-03 Circuit breaker Expired - Fee Related JP3955702B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34418999A JP3955702B2 (en) 1999-12-03 1999-12-03 Circuit breaker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34418999A JP3955702B2 (en) 1999-12-03 1999-12-03 Circuit breaker

Publications (2)

Publication Number Publication Date
JP2001160348A JP2001160348A (en) 2001-06-12
JP3955702B2 true JP3955702B2 (en) 2007-08-08

Family

ID=18367327

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34418999A Expired - Fee Related JP3955702B2 (en) 1999-12-03 1999-12-03 Circuit breaker

Country Status (1)

Country Link
JP (1) JP3955702B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4506212B2 (en) * 2004-03-10 2010-07-21 富士電機機器制御株式会社 Circuit breaker
JP4725276B2 (en) * 2005-10-05 2011-07-13 三菱電機株式会社 Circuit breaker
FR2950476B1 (en) * 2009-09-18 2011-09-16 Schneider Electric Ind Sas ASSEMBLY OF MULTIPOLAR CUTTING DEVICE WITH DOUBLE ENVELOPE AND CIRCUIT BREAKER COMPRISING SAME
WO2020054580A1 (en) * 2018-09-14 2020-03-19 パナソニックIpマネジメント株式会社 Breaker device
JP7031083B1 (en) * 2021-06-08 2022-03-07 三菱電機株式会社 DC circuit breaker

Also Published As

Publication number Publication date
JP2001160348A (en) 2001-06-12

Similar Documents

Publication Publication Date Title
JP4265725B2 (en) Current limiting device and circuit breaker having current limiting function
JP5992603B2 (en) Switchgear
US20020056705A1 (en) Current-limiting contact arrangement
JPS5878335A (en) Power breaker
JP4360013B2 (en) Circuit breaker
JP2965025B1 (en) Circuit breaker
KR101598672B1 (en) Switch
JP3955702B2 (en) Circuit breaker
US5734547A (en) Power switchgear
JP3997818B2 (en) Circuit breaker for wiring
US5761025A (en) Low cost power switchgear
JP2633959B2 (en) Circuit breaker
JP4140204B2 (en) Current limiting mechanism and circuit breaker having the same
US5313031A (en) Electric switch gear with improved stationary contact configuration
JP2005285547A (en) Arc-extinguishing device of circuit breaker
KR880001790Y1 (en) Circuit breaker
JPH0620550A (en) Switch
KR880000702B1 (en) Circuit breaker
JP2925869B2 (en) Switch
JPH10269923A (en) Current limitation device
JPH04315728A (en) Circuit breaker
JP2013012504A (en) Circuit breaker
EP0268194B1 (en) Electrical switching device
JP2851189B2 (en) Short-circuit current suppression device and short-circuit current interruption device
JPH06139907A (en) Switch

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060915

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061003

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070417

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070507

R151 Written notification of patent or utility model registration

Ref document number: 3955702

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100511

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110511

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110511

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120511

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120511

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130511

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140511

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees