JP2013250001A - Drying device and drying method for coating film - Google Patents

Drying device and drying method for coating film Download PDF

Info

Publication number
JP2013250001A
JP2013250001A JP2012124516A JP2012124516A JP2013250001A JP 2013250001 A JP2013250001 A JP 2013250001A JP 2012124516 A JP2012124516 A JP 2012124516A JP 2012124516 A JP2012124516 A JP 2012124516A JP 2013250001 A JP2013250001 A JP 2013250001A
Authority
JP
Japan
Prior art keywords
drying
coating film
coating
substrate
condensation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012124516A
Other languages
Japanese (ja)
Other versions
JP5900164B2 (en
Inventor
Shinichi Kurakata
慎一 蔵方
Hiroshi Yamashita
大志 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP2012124516A priority Critical patent/JP5900164B2/en
Publication of JP2013250001A publication Critical patent/JP2013250001A/en
Application granted granted Critical
Publication of JP5900164B2 publication Critical patent/JP5900164B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To previously raise a temperature of a substrate before drying by condensation, so that temperature unevenness in a costing film surface during drying can be reduced, and uniformity of drying can be improved.SOLUTION: A drying device 1 for a coating film has a condensation drying device B and a condensation plate 11 faced to a coating film on a substrate f1, and condenses vapor of a solvent from the coating film by the condensation plate 11, for drying. Further, the drying device 1 for the coating film has a heating device A disposed after coating of the coating film and during up to drying by the condensation drying device B, and preliminary heating the substrate f1 and the coating film.

Description

本発明は、塗布膜の乾燥装置及び乾燥方法に関する。   The present invention relates to a coating film drying apparatus and a drying method.

有機エレクトロルミネッセンス(EL:Electro Luminescence)素子や有機薄膜太陽電池等における有機薄膜の成膜方法として、真空プロセスを必要とせず、連続生産が容易であることから、スピンコート法、キャスト法、インクジェット法、スプレー法、印刷法等のウェットプロセスによる塗布方法が注目されている。しかしながら、ウェットプロセスによれば、塗布膜を乾燥する工程において乾燥ムラが生じることがあり、均一な膜厚を得ることが難しい。要因の1つとして、溶解度を上げるために、塗布液の溶媒として揮発性の高い有機溶剤が用いられることが挙げられる。   As a method for forming an organic thin film in an organic electroluminescence (EL) element or an organic thin film solar cell, a vacuum process is not required and continuous production is easy. Attention has been focused on application methods by wet processes such as spraying and printing. However, according to the wet process, drying unevenness may occur in the step of drying the coating film, and it is difficult to obtain a uniform film thickness. One of the factors is that a highly volatile organic solvent is used as a solvent for the coating solution in order to increase the solubility.

従来、均一な乾燥が可能な乾燥方法として、塗布膜面に凝縮板を対面させ、凝縮板により塗布膜中の溶媒を凝縮させる乾燥方法が開示されている(例えば、特許文献1参照)。この乾燥方法によれば、対流を用いずに、凝縮板と塗布膜間の距離とそれぞれの表面温度とを制御することによって、精密な乾燥が可能である。   Conventionally, as a drying method capable of uniform drying, a drying method in which a condensing plate faces a coating film surface and a solvent in the coating film is condensed by the condensing plate has been disclosed (for example, see Patent Document 1). According to this drying method, precise drying is possible by controlling the distance between the condenser plate and the coating film and the respective surface temperatures without using convection.

上記特許文献1によれば、加熱ドラムにより基板を加熱し、塗布膜から溶媒を蒸発させる記載があるが、加熱ドラム自体の設備が大きいため、レイアウトが制約されやすい。
これに対し、基板の品質を損ねることなく、コンパクトな設備で加熱するため、塗布前に基板を予備加熱することにより、塗布後の乾燥効率を上げる方法が開示されている(例えば、特許文献2参照)。
According to Patent Document 1, there is a description that the substrate is heated by the heating drum and the solvent is evaporated from the coating film, but the layout of the heating drum itself is likely to be restricted because the equipment of the heating drum itself is large.
On the other hand, in order to heat with the compact equipment without impairing the quality of the substrate, a method of increasing the drying efficiency after coating by preheating the substrate before coating is disclosed (for example, Patent Document 2). reference).

特表2003−524847号公報Special table 2003-524847 特開2003−170102号公報JP 2003-170102 A

しかしながら、塗布前に基板を加熱すると、基板に皺が生じることがあり、この皺の影響によって塗布ムラが生じやすくなる。ひいては、乾燥ムラも生じやすく、有機EL素子等の電子デバイスに求められるような膜厚の均一性が得られる保証がなかった。   However, if the substrate is heated before coating, wrinkles may occur on the substrate, and coating unevenness is likely to occur due to the influence of the wrinkles. As a result, drying unevenness was likely to occur, and there was no guarantee that film thickness uniformity required for electronic devices such as organic EL elements could be obtained.

本発明の課題は、塗布膜の乾燥の均一性を向上させることである。   An object of the present invention is to improve the uniformity of drying of a coating film.

請求項1に記載の発明によれば、
基板上の塗布膜と対面する凝縮板を備え、当該凝縮板により塗布膜からの溶媒の蒸気を凝縮し、乾燥する凝縮乾燥装置と、
前記塗布膜の塗布後、前記凝縮乾燥装置による乾燥までの間に配置され、前記基板及び塗布膜を予備的に加熱する加熱装置と、
を備える塗布膜の乾燥装置が提供される。
According to the invention of claim 1,
A condensing plate that faces the coating film on the substrate, condensing the solvent vapor from the coating film by the condensing plate, and drying,
A heating device that is disposed between the application of the coating film and the drying by the condensation drying device, and preliminarily heats the substrate and the coating film;
An apparatus for drying a coating film is provided.

請求項2に記載の発明によれば、
前記加熱装置が、赤外線の輻射熱により前記基板及び塗布膜を加熱する請求項1に記載の塗布膜の乾燥装置が提供される。
According to invention of Claim 2,
The coating film drying apparatus according to claim 1, wherein the heating device heats the substrate and the coating film by infrared radiation heat.

請求項3に記載の発明によれば、
前記加熱装置による加熱後の塗布膜の粘度が、5mPa・s以下である請求項1又は2に記載の塗布膜の乾燥装置が提供される。
According to invention of Claim 3,
The coating film drying apparatus according to claim 1, wherein the coating film after being heated by the heating device has a viscosity of 5 mPa · s or less.

請求項4に記載の発明によれば、
前記凝縮乾燥装置による溶媒の乾燥量が、前記塗布膜が含有する溶媒の全体積に対し、10〜80体積%の範囲内である請求項1〜3の何れか一項に記載の塗布膜の乾燥装置が提供される。
According to invention of Claim 4,
The amount of the solvent dried by the condensation drying device is in the range of 10 to 80% by volume with respect to the total volume of the solvent contained in the coating film. The coating film according to any one of claims 1 to 3. A drying device is provided.

請求項5に記載の発明によれば、
基板上の塗布膜と凝縮板を対面させ、当該凝縮板により塗布膜からの溶媒の蒸気を凝縮し、乾燥する塗布膜の乾燥方法において、
前記塗布膜の塗布後、前記凝縮による乾燥前に、前記基板及び塗布膜を予備的に加熱する工程を含む塗布膜の乾燥方法が提供される。
According to the invention of claim 5,
In the drying method of the coating film, the coating film on the substrate and the condensing plate face each other, the vapor of the solvent from the coating film is condensed by the condensing plate, and dried.
There is provided a method for drying a coating film, which includes a step of preheating the substrate and the coating film after coating the coating film and before drying by the condensation.

本発明によれば、凝縮により乾燥する前に、基板の温度を予め上昇させて、乾燥時における塗布膜面内の温度ムラを減じることができ、乾燥の均一性を向上させることができる。   According to the present invention, before drying by condensation, the temperature of the substrate is raised in advance to reduce temperature unevenness in the coating film surface during drying, and the uniformity of drying can be improved.

本実施の形態に係る塗布膜の乾燥装置が用いられた製造ライン例を示している。The example of the production line where the drying apparatus of the coating film which concerns on this Embodiment was used is shown. 基板の搬送方向から見た図1の凝縮乾燥装置の正面図である。It is the front view of the condensation drying apparatus of FIG. 1 seen from the conveyance direction of the board | substrate.

以下、図面を参照して本発明の塗布膜の乾燥装置及び乾燥方法の実施の形態について説明する。   Embodiments of a coating film drying apparatus and drying method of the present invention will be described below with reference to the drawings.

図1は、本実施の形態に係る塗布膜の乾燥装置1が用いられた製造ライン例を示している。
図1に示す製造ラインは、ローラー22、23によって把持され、搬送される基板f1上に、塗布装置3により有機層の塗布液を塗布し、乾燥装置1によりその塗布膜を乾燥する。
なお、乾燥装置1より後に、残留溶媒の除去等を目的として、後処理用の乾燥装置を設置してもよい。その乾燥方法としては、特に限定されず、例えば熱風、赤外線、平面加熱等の固体伝熱乾燥、マイクロ波等を用いた内部発熱乾燥、真空乾燥、超臨界乾燥、超音波乾燥等の固定非加熱系乾燥、吸湿乾燥、冷却乾燥、凝縮乾燥等の気体乾燥のような公知の方法を選択することができる。
FIG. 1 shows an example of a production line in which a coating film drying apparatus 1 according to the present embodiment is used.
In the production line shown in FIG. 1, an organic layer coating solution is applied by a coating device 3 on a substrate f <b> 1 held and transported by rollers 22 and 23, and the coating film is dried by a drying device 1.
In addition, you may install the drying apparatus for post-processing after the drying apparatus 1 for the purpose of the removal of a residual solvent, etc. The drying method is not particularly limited. For example, solid heat transfer drying such as hot air, infrared rays and plane heating, internal heat generation drying using microwaves, vacuum drying, supercritical drying, ultrasonic drying, etc. Known methods such as gas drying such as system drying, moisture absorption drying, cooling drying, and condensation drying can be selected.

基板f1は、塗膜の対象物である。基板f1として、金属、ガラス基板、樹脂フィルム等の可撓性材料からなる基材や、基材自体を塗膜するときは基材の支持体等が用いられる。基板f1上にはいくつかの有機層が既に形成されていてもよい。
基板f1は、アンワインダー21によって塗布装置3に送り出され、塗布、乾燥後に、ワインダー24によって巻き取られる。
The substrate f1 is a coating object. As the substrate f1, a base material made of a flexible material such as a metal, a glass substrate or a resin film, or a base material support when the base material itself is coated is used. Some organic layers may already be formed on the substrate f1.
The substrate f1 is sent out to the coating device 3 by the unwinder 21 and wound by the winder 24 after coating and drying.

塗布装置3は、スピンコート法、キャスト法、インクジェット法、スプレー法、印刷法に代表されるようなウェットプロセスの他、スリット型ダイコーターを用いたスロット法、ESD(Electro Spray Deposition)法、ESDUS(Evaporative Spray Deposition from Ultra-ditule Solution)法等によって、塗布液を塗布する。溶媒を含む塗布液を塗布できるのであれば、塗布装置3の塗布方法は特に限定されない。   In addition to wet processes such as spin coating, casting, ink-jet, spraying, and printing, the coating apparatus 3 is a slot method using a slit-type die coater, an ESD (Electro Spray Deposition) method, ESDUS. Apply the coating solution by the Evaporative Spray Deposition from Ultra-ditule Solution method. If the coating liquid containing a solvent can be apply | coated, the coating method of the coating device 3 will not be specifically limited.

連続的に搬送される基板f1上に塗布する方法として、必要な膜厚の塗布膜を形成するのに必要な量より余分に塗布液を塗布し、その後、余剰分を除去する後計量型と、必要な量だけ塗布液を塗布する前計量型とが知られている。何れの塗布方法も適用可能であるが、塗布の高精度、高速化、薄膜化、塗布膜の品質向上、積層への適性等の観点から、前計量型が好ましい。また、塗布液の暴露抑制、濃度変化の抑制、クリーン度の維持、異物の混入防止という観点から、閉じた系であることが好ましい。そのため、上記塗布方法のなかでも、スリット型ダイコーターを用いたスロット法、スプレー法、インクジェット法が好ましい。   As a method of coating on the substrate f1 that is continuously transported, a post-weighing type in which an application liquid is applied in excess of the amount necessary to form a coating film having a required film thickness, and then the excess is removed. A pre-weighing type in which a coating solution is applied in a necessary amount is known. Any coating method can be applied, but the pre-weighing type is preferable from the viewpoints of high accuracy of coating, high speed, thin film, improved coating film quality, suitability for lamination, and the like. Moreover, a closed system is preferable from the viewpoints of suppressing the exposure of the coating liquid, suppressing the change in concentration, maintaining the cleanliness, and preventing the contamination of foreign matters. Therefore, among the above coating methods, a slot method using a slit type die coater, a spray method, and an ink jet method are preferable.

塗布液は、有機材料を溶媒に溶解又は分散させて調製することができる。
陽極と陰極間に、正孔輸送層、発光層、電子輸送層等の有機層が順に積層された有機EL素子の場合、正孔輸送層の有機材料として、例えばトリアゾール誘導体、オキサゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体、ピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、アニリン系共重合体、チオフェンオリゴマー等の導電性高分子オリゴマーが挙げられる。
The coating solution can be prepared by dissolving or dispersing an organic material in a solvent.
In the case of an organic EL device in which organic layers such as a hole transport layer, a light-emitting layer, and an electron transport layer are sequentially stacked between an anode and a cathode, examples of organic materials for the hole transport layer include triazole derivatives, oxazole derivatives, and oxazines. Azole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives, pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amino-substituted chalcone derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives, stilbene derivatives, silazane derivatives, aniline-based co-weights Examples thereof include conductive polymer oligomers such as coalescence and thiophene oligomers.

発光層の有機材料としては、繰り返し単位を持たない低分子化合物でも、繰り返し単位を持つ高分子化合物でもよく、ビニル基やエポキシ基等の重合性基を有する低分子化合物でもよい。
具体的には、発光層の有機材料として、カルバゾール誘導体、トリアリールアミン誘導体、芳香族ボラン誘導体、含窒素複素環化合物、チオフェン誘導体、フラン誘導体、オリゴアリーレン化合物等の基本骨格を有する化合物、カルボリン誘導体、ジアザカルバゾール誘導体(ここで、ジアザカルバゾール誘導体とは、カルボリン誘導体のカルボリン環を構成する炭化水素環の少なくとも一つの炭素原子が窒素原子で置換された誘導体を表す。)等が挙げられる。
また、発光層の有機材料として燐光性化合物も挙げられる。燐光性化合物は、元素の周期表で8族〜10族の金属を含有する錯体系化合物であり、イリジウム化合物、オスミウム化合物、白金化合物、希土類錯体等が挙げられる。
The organic material for the light emitting layer may be a low molecular compound having no repeating unit, a high molecular compound having a repeating unit, or a low molecular compound having a polymerizable group such as a vinyl group or an epoxy group.
Specifically, compounds having a basic skeleton such as carbazole derivatives, triarylamine derivatives, aromatic borane derivatives, nitrogen-containing heterocyclic compounds, thiophene derivatives, furan derivatives, oligoarylene compounds, and carboline derivatives as organic materials for the light-emitting layer And diazacarbazole derivatives (herein, diazacarbazole derivatives are derivatives in which at least one carbon atom of the hydrocarbon ring constituting the carboline ring of the carboline derivative is substituted with a nitrogen atom).
Moreover, a phosphorescent compound is also mentioned as an organic material of a light emitting layer. The phosphorescent compound is a complex compound containing a group 8 to group 10 metal in the periodic table of elements, and examples thereof include iridium compounds, osmium compounds, platinum compounds, and rare earth complexes.

電子輸送層の有機材料としては、例えばニトロ置換フルオレン誘導体、ジフェニルキノン誘導体、チオピランジオキシド誘導体、カルボジイミド、フレオレニリデンメタン誘導体、アントラキノジメタン、アントロン誘導体、オキサジアゾール誘導体等が挙げられる。   Examples of the organic material for the electron transport layer include nitro-substituted fluorene derivatives, diphenylquinone derivatives, thiopyrandioxide derivatives, carbodiimides, fluorenylidenemethane derivatives, anthraquinodimethane, anthrone derivatives, oxadiazole derivatives, and the like.

有機EL素子以外にも、塗布装置3は、太陽電池、トランジスター、メモリー、センサー等の有機層を形成することができる。そのような有機材料としては、ポリチオフェン等の導電性高分子の他、ペンタセン、ナフタレン誘導体等が挙げられる。   In addition to the organic EL element, the coating apparatus 3 can form organic layers such as a solar cell, a transistor, a memory, and a sensor. Examples of such an organic material include conductive polymers such as polythiophene, pentacene, naphthalene derivatives, and the like.

塗布液に用いられる溶媒としては、溶質である有機材料にもよるが、例えば純水、2−エトキシエタノール、2−メトキシエタノール等のアルコール類、クロロホルム、塩化メチレン、テトラクロロエチレン、ジクロロエタン、テトラヒドロフラン等のハロゲン系、キシレン、トルエン、へキサン、シクロヘキシルベンゼン、アニソール等の芳香族炭化水素系、アセトン、メチルエチルケトン等のケトン系、酢酸、酢酸メチル、酢酸エチル、酢酸ブチル、酢酸ノルマルプロピル、アセトニトリル等のエステル系、ジエチルエーテル、ジメチルスルホスキド等が挙げられる。   The solvent used in the coating solution depends on the organic material that is a solute. For example, pure water, alcohols such as 2-ethoxyethanol and 2-methoxyethanol, and halogens such as chloroform, methylene chloride, tetrachloroethylene, dichloroethane, and tetrahydrofuran System, aromatic hydrocarbons such as xylene, toluene, hexane, cyclohexylbenzene, anisole, ketones such as acetone, methyl ethyl ketone, esters such as acetic acid, methyl acetate, ethyl acetate, butyl acetate, normal propyl acetate, acetonitrile, Examples include diethyl ether and dimethyl sulfoxide.

塗布液は、塗布範囲を制御する目的や、塗布後の表面張力勾配に伴う液流動(例えば、コーヒーリングと呼ばれる現象を引き起こす液流動)を抑制する目的に応じて、界面活性剤や複数種の溶媒を含有することができる。
界面活性剤としては、溶媒に含まれる水分の影響、レベリング性、基板f1への濡れ性等の観点から、例えばアニオン性又はノニオン性の界面活性剤等が挙げられる。具体的には、含フッ素系活性剤等、国際公開第08/146681パンフレット、特開平2−41308号公報等に挙げられた界面活性剤を用いることができる。
Depending on the purpose of controlling the application range and the purpose of controlling the liquid flow accompanying the surface tension gradient after application (for example, the liquid flow causing a phenomenon called coffee ring) A solvent can be contained.
Examples of the surfactant include an anionic or nonionic surfactant from the viewpoint of the influence of moisture contained in the solvent, leveling properties, wettability to the substrate f1, and the like. Specifically, surfactants listed in International Publication No. 08/146661, JP-A-2-41308, etc., such as fluorine-containing activator, can be used.

塗布膜の膜厚は、有機層として必要とされる機能と有機材料の溶解度又は分散性により、適宜選択することができる。膜厚が大きいほど流動による乾燥ムラが発生しやすく、均一な乾燥が可能な乾燥装置1の有用性は大きい。
塗布膜の膜厚としては、具体的には1〜90μmの範囲内であることが好ましい。
The thickness of the coating film can be appropriately selected depending on the function required for the organic layer and the solubility or dispersibility of the organic material. As the film thickness is larger, drying unevenness due to flow is more likely to occur, and the usefulness of the drying apparatus 1 capable of uniform drying is greater.
Specifically, the thickness of the coating film is preferably in the range of 1 to 90 μm.

塗布膜の粘度についても、膜厚と同様に、有機層として必要とされる機能と有機材料の溶解度又は分散性により、適宜選択することができる。粘度が小さいほど流動による乾燥ムラが発生しやすく、均一な乾燥が可能な乾燥装置1の有用性は大きい。
塗布膜の粘度としては、具体的には0.3〜100mPa・sの範囲内であることが好ましく、0.5〜10mPa・sの範囲内であることが好ましい。
Similarly to the film thickness, the viscosity of the coating film can be appropriately selected depending on the function required for the organic layer and the solubility or dispersibility of the organic material. As the viscosity is smaller, drying unevenness due to flow tends to occur, and the usefulness of the drying apparatus 1 capable of uniform drying is great.
Specifically, the viscosity of the coating film is preferably in the range of 0.3 to 100 mPa · s, and more preferably in the range of 0.5 to 10 mPa · s.

〔乾燥装置〕
塗布膜の乾燥装置1は、図1に示すように凝縮乾燥装置Bを備え、当該凝縮乾燥装置Bにより基板f1上の塗布膜を乾燥する。また、乾燥装置1は加熱装置Aを備え、凝縮乾燥装置Bによる乾燥前に、加熱装置Aにより基板f1を予備的に加熱する。
[Drying equipment]
The coating film drying apparatus 1 includes a condensation drying apparatus B as shown in FIG. 1, and the coating film on the substrate f1 is dried by the condensation drying apparatus B. Further, the drying device 1 includes a heating device A, and the substrate f1 is preliminarily heated by the heating device A before being dried by the condensing drying device B.

乾燥装置1は、塗膜後すぐに乾燥できるように、塗布装置3の直後に設置されることが好ましい。塗膜から乾燥までの間、周囲の気流や乾燥装置1において生じる自然対流の影響があるが、塗膜後すぐに乾燥することにより、気流の影響による乾燥ムラを防ぐことができる。搬送速度にもよるが、塗膜から乾燥までの時間は、30秒以内であることが好ましく、10秒以内であることがより好ましい。なお、塗布装置3から乾燥装置1までの間、周囲の気流を遮断する遮断板を設けるか、塗布膜上で気流が生じないように周囲の気流を整流する整流板や整流用のファンを設けることもできる。   The drying apparatus 1 is preferably installed immediately after the coating apparatus 3 so that it can be dried immediately after the coating film. During the period from the coating to drying, there is an influence of the surrounding airflow and natural convection generated in the drying apparatus 1, but drying immediately after the coating can prevent drying unevenness due to the influence of the airflow. Although it depends on the conveyance speed, the time from the coating film to drying is preferably within 30 seconds, and more preferably within 10 seconds. In addition, between the coating device 3 and the drying device 1, a blocking plate that blocks the surrounding airflow is provided, or a rectifying plate that rectifies the surrounding airflow and a rectifying fan are provided so that no airflow is generated on the coating film. You can also.

〔加熱装置〕
加熱装置Aは、塗布装置3による塗布膜の塗布後、凝縮乾燥装置Bによる乾燥前に配置されている。加熱装置Aは、基板f1及び塗布膜を加熱する。加熱装置Aは、図1に示すように基板f1上の塗布膜と対面して配置してもよいし、基板f1と対面して配置してもよい。基板及び塗布膜を予め加熱することにより、凝縮乾燥装置Bの乾燥時において塗布膜面内の温度ムラを減じることができ、塗布膜の乾燥の均一性を向上させることができる。また、凝縮乾燥装置Bにおいて塗布膜から溶媒を蒸発させやすく、乾燥の効率も向上する。
[Heating device]
The heating device A is disposed after the coating film is applied by the coating device 3 and before drying by the condensation drying device B. The heating device A heats the substrate f1 and the coating film. As shown in FIG. 1, the heating device A may be disposed so as to face the coating film on the substrate f1, or may be disposed so as to face the substrate f1. By heating the substrate and the coating film in advance, the temperature unevenness in the coating film surface can be reduced when the condensation drying apparatus B is dried, and the uniformity of drying of the coating film can be improved. Further, in the condensation drying apparatus B, the solvent is easily evaporated from the coating film, and the drying efficiency is improved.

加熱装置Aは、加熱方法として対流、輻射を用いることができる。対流の場合、ドライヤーにより基板f1上の塗布膜に熱風を吹きつける等して加熱することができる。
乾燥の均一性を高める観点からすれば、加熱装置Aが赤外線ヒーター51を備え、赤外線ヒーター51からの輻射熱により基板f1及び塗布膜を加熱することが好ましい。
The heating device A can use convection and radiation as a heating method. In the case of convection, heating can be performed by blowing hot air on the coating film on the substrate f1 with a dryer.
From the viewpoint of increasing the uniformity of drying, it is preferable that the heating device A includes the infrared heater 51 and the substrate f1 and the coating film are heated by radiant heat from the infrared heater 51.

赤外線ヒーター51の赤外線の波長は、加熱対象の吸収波長に応じて選択することができる。
例えば、ITO(Indium Tin Oxide;酸化インジウムスズ)の吸収波長が1.50μm以上、ポリエチレンテレフタレートの吸収波長が8.0、6.0、3.3、2.9μm付近、ポリエチレンナフタレートの吸収波長が8.0、3.3μm付近であることが知られている。また、溶媒として用いられる酢酸ノルマルプロピルの吸収波長は、8.0、6.0、3.3、2.9μm付近であることが知られている。
ポリエチレンテレフタラートは酢酸ノルマルプロピルに比べ、2.9μm付近の吸収が比較的少なく、溶媒を選択的に加熱するのであれば、赤外線ヒーター51が、最大エネルギー波長が2.50〜4.00μmの範囲内にある中波長の赤外線を輻射することが好ましい。
The infrared wavelength of the infrared heater 51 can be selected according to the absorption wavelength of the heating target.
For example, the absorption wavelength of ITO (Indium Tin Oxide) is 1.50 μm or more, the absorption wavelength of polyethylene terephthalate is around 8.0, 6.0, 3.3, 2.9 μm, the absorption wavelength of polyethylene naphthalate Is known to be around 8.0, 3.3 μm. Further, it is known that the absorption wavelength of normal propyl acetate used as a solvent is around 8.0, 6.0, 3.3, 2.9 μm.
Polyethylene terephthalate has relatively little absorption around 2.9 μm compared to normal propyl acetate, and if the solvent is selectively heated, the infrared heater 51 has a maximum energy wavelength in the range of 2.50 to 4.00 μm. It is preferable to radiate infrared light having a medium wavelength.

赤外線ヒーター51は、球状でもよいし、ライン状でもよい。上述のように、中波長とともに短波長の赤外線を輻射する場合、短波長の赤外線ヒーター51と、中波長の赤外線ヒーター51を、交互に配置してそれぞれの波長の赤外線を同時に輻射する。   The infrared heater 51 may be spherical or line-shaped. As described above, when radiating short wavelength infrared rays together with medium wavelengths, short wavelength infrared heaters 51 and medium wavelength infrared heaters 51 are alternately arranged to simultaneously radiate infrared rays of respective wavelengths.

凝縮乾燥装置Bによる乾燥の均一性を向上させるという観点から、加熱装置Aによる加熱後の塗布膜の粘度が、5mPa・s以下であることが好ましい。
塗布膜の粘度が大きいほど流動による乾燥ムラが減少するため、5mPa・s以下の粘度に至るまで加熱しておくことにより、凝縮乾燥装置Bにおける乾燥ムラを抑え、乾燥の均一性をより向上させることができる。
From the viewpoint of improving the uniformity of drying by the condensation drying apparatus B, the viscosity of the coating film after heating by the heating apparatus A is preferably 5 mPa · s or less.
As the viscosity of the coating film increases, drying unevenness due to flow decreases. By heating to a viscosity of 5 mPa · s or less, drying unevenness in the condensing dryer B is suppressed and drying uniformity is further improved. be able to.

加熱条件は、加熱が塗布膜の乾燥ムラに及ぼす影響、基板f1の変形等に対する影響を考慮して、適宜選択することができる。例えば、加熱による塗布膜の表面温度は、20〜200℃の範囲内で選択することができる。また、赤外線ヒーター51と塗布膜間の距離は、1〜500mmの範囲内で選択することができる。
また、加熱を緩和するため、赤外線ヒーター51と塗布膜間にセラミックスを配置してもよいし、赤外線ヒーター51を空冷又は水冷してもよい。
The heating conditions can be appropriately selected in consideration of the effect of heating on the drying unevenness of the coating film, the deformation of the substrate f1, and the like. For example, the surface temperature of the coating film by heating can be selected within a range of 20 to 200 ° C. The distance between the infrared heater 51 and the coating film can be selected within a range of 1 to 500 mm.
In order to alleviate the heating, ceramics may be disposed between the infrared heater 51 and the coating film, or the infrared heater 51 may be air-cooled or water-cooled.

〔凝縮乾燥装置〕
図2は、凝縮乾燥装置B内部を基板f1の搬送方向yから見た正面図である。
凝縮乾燥装置Bは、図1及び図2に示すように、基板f1上の塗布膜f2と対面する凝縮板11を備え、当該凝縮板11により塗布膜f2からの溶媒の蒸気を凝縮し、乾燥する。凝縮板11は固定的に配置されてもよいし、ローラーにより搬送される構成でもよい。
また、凝縮乾燥装置Bは、溶媒の蒸発を促すため、基板f1を加熱する加熱装置12を備えている。加熱方法は特に限定されず、例えば熱風(加熱ガス)、赤外線、UV、平面加熱等の伝熱による加熱、マイクロ波による電気抵抗を用いた内部加熱等の加熱方法が挙げられる。
[Condensation drying equipment]
FIG. 2 is a front view of the inside of the condensing and drying apparatus B viewed from the conveyance direction y of the substrate f1.
As shown in FIGS. 1 and 2, the condensing and drying apparatus B includes a condensing plate 11 facing the coating film f2 on the substrate f1, and condenses the vapor of the solvent from the coating film f2 by the condensing plate 11 to dry it. To do. The condensing plate 11 may be fixedly arranged or may be transported by a roller.
In addition, the condensing and drying apparatus B includes a heating device 12 that heats the substrate f1 in order to promote evaporation of the solvent. The heating method is not particularly limited, and examples thereof include heating methods such as heating by hot air (heating gas), infrared rays, UV, and plane heating, and internal heating using electric resistance by microwaves.

凝縮板11の材質は特に限定されないが、溶媒の吸収材であることが好ましい。吸収材であることにより、凝縮面11a上で凝縮した溶媒を凝縮板11が吸収して、凝縮面11aから溶媒を排出することができ、さらなる溶媒の凝縮を促進することができる。なお、凝縮面11aとは、塗布膜面f2aと対面し、塗布膜f2からの溶媒が凝縮する凝縮板11の表面をいう。塗布膜面f2aは、塗布膜f2の表面である。   The material of the condenser plate 11 is not particularly limited, but is preferably a solvent absorber. By being an absorbent material, the condensing plate 11 absorbs the solvent condensed on the condensing surface 11a, the solvent can be discharged from the condensing surface 11a, and further condensation of the solvent can be promoted. The condensing surface 11a refers to the surface of the condensing plate 11 that faces the coating film surface f2a and condenses the solvent from the coating film f2. The coating film surface f2a is the surface of the coating film f2.

そのような吸収材としては、例えば多孔質材、ハイシリカゼオライト、活性炭等が挙げられる。また、吸収材からなるシートを樹脂フィルムやアルミ材等に貼り合せて凝縮板11を構成することもできる。例えば、特開2005−232308号公報に記載されている溶媒吸収材や、特開2003−191598号公報に記載されている溶媒吸収層を備えた樹脂フィルム等を凝縮板11として用いることができる。   Examples of such absorbent materials include porous materials, high silica zeolite, activated carbon, and the like. Further, the condensing plate 11 can be configured by bonding a sheet made of an absorbent material to a resin film, an aluminum material, or the like. For example, a solvent absorbing material described in JP-A-2005-232308, a resin film including a solvent-absorbing layer described in JP-A-2003-191598, and the like can be used as the condensing plate 11.

また、凝縮の鈍化を防ぐ観点から、熱容量が大きい材料を用いることが好ましい。溶媒を凝縮させるためには、凝縮面11aを塗布膜面f2aより低温に維持する必要がある。熱容量が大きい凝縮板11を用いることにより、加熱装置12の加熱によって塗布膜f2から輻射熱が生じた場合でも、輻射熱による凝縮面11aの温度上昇を抑制し、凝縮の鈍化を防ぐことができる。
具体的には、熱容量が2700kJ/m・K以上であることが好ましく、大きいほどよい。
Moreover, it is preferable to use a material with a large heat capacity from the viewpoint of preventing condensation from slowing down. In order to condense the solvent, it is necessary to maintain the condensing surface 11a at a lower temperature than the coating film surface f2a. By using the condensing plate 11 having a large heat capacity, even when radiant heat is generated from the coating film f2 by the heating of the heating device 12, the temperature rise of the condensing surface 11a due to the radiant heat can be suppressed, and the slowing of condensation can be prevented.
Specifically, the heat capacity is preferably 2700 kJ / m 3 · K or more, and the larger the better.

そのような熱容量を持つ材料としては、ジルコニア、鋳鉄、アルミナ等が挙げられ、加工性や熱伝導率を考慮して適宜選択することができる。特に、凝縮板11は、温度制御の容易性からある程度の熱伝導率が求められ、熱伝導率が大きいほど凝縮板11の温度を所望の温度の定常状態に移行させることが容易となる。   Examples of the material having such a heat capacity include zirconia, cast iron, alumina, and the like, and can be appropriately selected in consideration of workability and thermal conductivity. In particular, the condenser plate 11 is required to have a certain degree of thermal conductivity from the ease of temperature control, and the higher the thermal conductivity, the easier it is to shift the temperature of the condenser plate 11 to a steady state at a desired temperature.

凝縮板11は、凝縮した溶媒を凝縮面11aから排出し、さらなる凝縮を促進するため、凝縮面11aに複数のスリットを有することができる。スリットが形成される方向は、幅手方向x又は搬送方向yの何れであってもよい。スリットの毛管力によって凝縮面11a上に凝縮した溶媒を幅手方向x又は搬送方向yの端部へと搬送し、排出する。   The condensing plate 11 can have a plurality of slits in the condensing surface 11a in order to discharge the condensed solvent from the condensing surface 11a and promote further condensation. The direction in which the slit is formed may be either the width direction x or the conveyance direction y. The solvent condensed on the condensing surface 11a by the capillary force of the slit is transported to the end in the width direction x or the transport direction y and discharged.

凝縮板11を基板f1に対して傾斜させて配置し、凝縮面11a上に凝縮した溶媒を、重力により、傾斜した凝縮面11aに沿って排出させてもよい。例えば、凝縮面11aと塗布膜面f2a間の距離が、幅手方向xの一端から他端に向かうほど大きくなるように設置することができる。   The condensing plate 11 may be arranged to be inclined with respect to the substrate f1, and the solvent condensed on the condensing surface 11a may be discharged along the inclined condensing surface 11a by gravity. For example, it can be installed such that the distance between the condensation surface 11a and the coating film surface f2a increases from one end to the other end in the width direction x.

スリットを設ける場合、凝縮板11の側面から垂下する側面板や溶媒回収用の容器を設置し、スリットによって排出された溶媒を回収することもできる。   When the slit is provided, a side plate hanging from the side surface of the condensing plate 11 or a container for collecting the solvent can be installed to collect the solvent discharged by the slit.

凝縮板11は、凝縮面11aが表面処理されていてもよい。
例えば、汚れ防止又は凝縮した溶媒の効率的な排出のため、凝縮面11aを撥水処理又は親水処理することができる。
撥水処理としては、特開2005−343016号公報、特開2000−254582号公報に記載されているように、フルオロアルキル基、アルキル基等を有するシラン化合物等の撥水性材料を、フローコーティング法、ディップコーティング法等によって塗布する処理が挙げられる。また、特開2005−23122号公報に記載されているように、撥水撥油性を持つポリフロオロアルキル基を有する重合体を用いて作製されたハニカム構造又はピラー構造のフィルムを凝縮面に貼付してもよい。
他の表面処理としては、乾燥ムラを防ぐためのラビング処理が挙げられる。また、濡れ性を向上させるため、凝縮面11aを粗く仕上げることもできる。
その他、ベルト、ワイプ、ポンプ等の機械力によって、凝縮面11a上の溶媒を排出してもよい。
The condensing plate 11 may be subjected to a surface treatment on the condensing surface 11a.
For example, the condensation surface 11a can be subjected to a water repellent treatment or a hydrophilic treatment in order to prevent contamination or to efficiently discharge the condensed solvent.
As the water repellent treatment, as described in JP-A-2005-343016 and JP-A-2000-254582, a water-repellent material such as a silane compound having a fluoroalkyl group, an alkyl group or the like is used as a flow coating method. And a treatment applied by a dip coating method or the like. In addition, as described in JP-A-2005-23122, a honeycomb structure or pillar structure film manufactured using a polymer having a polyfluoroalkyl group having water and oil repellency is applied to the condensation surface. May be.
Examples of other surface treatment include rubbing treatment to prevent drying unevenness. Moreover, in order to improve wettability, the condensation surface 11a can also be finished rough.
In addition, the solvent on the condensation surface 11a may be discharged by a mechanical force such as a belt, a wipe, or a pump.

凝縮乾燥装置Bの乾燥速度は、凝縮面11aの温度Tcと、塗布膜面f2aの温度Th(Th>Tc)を調整することにより、制御することができる。
凝縮板11の温度制御方法としては、特に限定されず、例えば熱風(加熱ガス)、赤外線、UV、平面加熱等の伝熱による加熱、マイクロ波による電気抵抗を用いた内部加熱等の加熱方法と、冷媒を用いた冷却、送風による空冷、ペルチェ素子を用いた電気的な冷却等の冷却方法とを組み合わせて、温度Tcを制御することができる。
また、必要に応じて、加熱装置12に上述の冷却方法による冷却装置を併用し、塗布膜面f2aの温度Thを制御することが可能である。
The drying speed of the condensing dryer B can be controlled by adjusting the temperature Tc of the condensing surface 11a and the temperature Th (Th> Tc) of the coating film surface f2a.
The temperature control method of the condensing plate 11 is not particularly limited. For example, heating by heat transfer such as hot air (heating gas), infrared rays, UV, and plane heating, heating methods such as internal heating using electric resistance by microwaves, The temperature Tc can be controlled in combination with cooling methods such as cooling using a refrigerant, air cooling using air blowing, and electrical cooling using a Peltier element.
Moreover, if necessary, the temperature Th of the coating film surface f2a can be controlled by using the cooling device according to the above-described cooling method in combination with the heating device 12.

凝縮面11aの温度Tcは、塗布膜面f2aの温度Thより低ければ、室温より高くても低くてもよいが、5〜30℃の範囲内であることが好ましく、10〜20℃の範囲内であることがより好ましい。上記範囲内に制御することにより、加熱に要するコストの上昇を抑えることができる。また、凝縮面11a全体の均一な温度制御が容易となって、温度ムラに起因する乾燥ムラ、塗布膜f2の膜厚ムラを抑制しやすい。同様の観点から、凝縮面11a内の温度ムラは、2℃以内であることが好ましい。   The temperature Tc of the condensing surface 11a may be higher or lower than room temperature as long as it is lower than the temperature Th of the coating film surface f2a, but is preferably in the range of 5 to 30 ° C, and in the range of 10 to 20 ° C. It is more preferable that By controlling within the above range, an increase in cost required for heating can be suppressed. Further, uniform temperature control of the entire condensation surface 11a is facilitated, and drying unevenness due to temperature unevenness and film thickness unevenness of the coating film f2 are easily suppressed. From the same viewpoint, the temperature unevenness in the condensing surface 11a is preferably within 2 ° C.

凝縮面11aに、溶媒以外の物質、例えば大気中の水分等が凝縮することを防ぐため、大気の露点を下げるか、凝縮面11aと塗布膜面f2a間を減圧することが好ましい。
また、凝縮板11以外の凝縮乾燥装置Bの部材、例えば筐体等に溶媒が凝縮することを防ぐため、凝縮板11以外の部材の温度を、凝縮面11aの温度Tc以上に調整することが好ましい。
In order to prevent substances other than the solvent such as moisture in the atmosphere from condensing on the condensation surface 11a, it is preferable to lower the dew point of the atmosphere or reduce the pressure between the condensation surface 11a and the coating film surface f2a.
In addition, in order to prevent the solvent from condensing in a member of the condensing drying apparatus B other than the condensing plate 11, such as a housing, the temperature of the member other than the condensing plate 11 may be adjusted to be equal to or higher than the temperature Tc of the condensing surface 11a. preferable.

塗布膜面f2aの温度Thは、凝縮面11aの温度Tcより高ければ、室温より高くても低くてもよいが、30〜100℃の範囲内であることが好ましく、30〜70℃の範囲内であることがより好ましい。30℃以上とすることにより、溶媒以外の大気中の水分等が凝縮し、乾燥効率が低下することを抑制しやすい。100℃以下とすることにより、高温化によるコストの上昇、基板f1の変性による搬送不良等を抑制しやすい。また、基板f1全体の均一な温度制御が容易となり、温度ムラに起因する乾燥ムラ、ひいては塗布膜f2の膜厚ムラを抑制しやすい。同様の観点から、塗布膜面f2a内の温度ムラは、2℃以内であることが好ましい。   The temperature Th of the coating film surface f2a may be higher or lower than room temperature as long as it is higher than the temperature Tc of the condensing surface 11a, but is preferably within a range of 30 to 100 ° C, and within a range of 30 to 70 ° C. It is more preferable that By setting it as 30 degreeC or more, it is easy to suppress that the water | moisture content etc. in air | atmosphere other than a solvent condense, and drying efficiency falls. By setting the temperature to 100 ° C. or lower, it is easy to suppress an increase in cost due to a high temperature and a conveyance failure due to the modification of the substrate f1. In addition, uniform temperature control of the entire substrate f1 is facilitated, and drying unevenness due to temperature unevenness, and consequently film thickness unevenness of the coating film f2, can be easily suppressed. From the same viewpoint, the temperature unevenness in the coating film surface f2a is preferably within 2 ° C.

凝縮乾燥装置Bの乾燥速度は、凝縮面11aと塗布膜面f2a間の距離dを調整することによっても、制御することができる。距離dは、小さいほど溶媒が凝縮しやすく、乾燥速度が上がるが、好ましくは0.1〜10mmの範囲内であり、より好ましくは0.1〜4mmの範囲内である。0.1mm以上とすることにより、基板f1のばたつきによる塗布膜f2と凝縮板11との接触が回避しやすいとともに、凝縮板11の配置の高精度化に伴うコストを削減できる。また、凝縮した溶媒の塗布膜f2への付着を回避しやすく、付着による乾燥ムラを抑制することができる。また、10mm以内とすることにより、周囲の対流の影響を減じて乾燥ムラを防ぎ、乾燥速度を上げて生産性を向上させることができる。   The drying speed of the condensing dryer B can also be controlled by adjusting the distance d between the condensing surface 11a and the coating film surface f2a. As the distance d is smaller, the solvent is more easily condensed and the drying speed is increased, but is preferably in the range of 0.1 to 10 mm, and more preferably in the range of 0.1 to 4 mm. By setting the thickness to 0.1 mm or more, it is easy to avoid contact between the coating film f2 and the condensing plate 11 due to flapping of the substrate f1, and it is possible to reduce the cost associated with high accuracy of the arrangement of the condensing plate 11. Moreover, it is easy to avoid adhesion of the condensed solvent to the coating film f2, and drying unevenness due to adhesion can be suppressed. Moreover, by being within 10 mm, the influence of the surrounding convection can be reduced, drying unevenness can be prevented, the drying speed can be increased, and productivity can be improved.

凝縮乾燥装置Bによる溶媒の乾燥量が、塗布膜f2が含有する溶媒の全体積に対し、10〜80体積%の範囲内であることが好ましい。
加熱装置Aの予備加熱によっても溶媒が蒸発し、乾燥されるが、加熱装置Aよりも乾燥の均一性に優れた凝縮乾燥装置Bにより、上記範囲内の溶媒を乾燥することにより、乾燥工程全体としての乾燥の均一性を高めることができる。
It is preferable that the amount of solvent dried by the condensing dryer B is in the range of 10 to 80% by volume with respect to the total volume of the solvent contained in the coating film f2.
Although the solvent evaporates and is dried by preheating the heating device A, the entire drying process is performed by drying the solvent within the above range by the condensing drying device B that is superior in drying uniformity to the heating device A. As a result, the uniformity of drying can be improved.

〔乾燥方法〕
上記塗布膜の乾燥装置1による塗布膜の乾燥方法は、塗布装置3による塗布工程の後、加熱装置Aにより基板f1及び塗布膜f2を予備的に加熱する工程と、加熱後、凝縮乾燥装置Bにより、基板f1上の塗布膜f2と凝縮板11を対面させ、当該凝縮板11により塗布膜f2からの溶媒の蒸気を凝縮し、乾燥する工程と、を含む。
[Drying method]
The coating film drying method by the coating film drying apparatus 1 includes a step of preliminarily heating the substrate f1 and the coating film f2 by the heating apparatus A after the coating process by the coating apparatus 3, and a heating and condensation drying apparatus B after the heating. Then, the coating film f2 on the substrate f1 and the condensing plate 11 are made to face each other, the vapor of the solvent from the coating film f2 is condensed by the condensing plate 11 and dried.

以下、実施例をあげて本発明を具体的に説明するが、本発明はこれらに限定されない。   Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto.

〔乾燥装置K1の試作〕
アルミ部材(幅手方向の長さ0.4m、搬送方向の長さ2.0m、厚さ10mm)を凝縮板として用いて、図1及び図2に示す凝縮乾燥装置Bと同じ構成の凝縮乾燥装置を作製した。次に、赤外線ヒーターBSG500/300(ヘレウス社製、最大エネルギー波長2.50μm)を搬送方向に複数配列して加熱装置を作製した。図1に示すように、作製した加熱装置を、塗布装置の直後において基板上の塗布膜と対面するように配置し、加熱装置の直後に上記凝縮乾燥装置を配置して、塗布膜の乾燥装置K1を試作した。
[Prototype of drying device K1]
Condensation drying with the same configuration as the condensation drying apparatus B shown in FIGS. 1 and 2 using an aluminum member (length in the width direction 0.4 m, length in the conveyance direction 2.0 m, thickness 10 mm) as a condensing plate A device was made. Next, a plurality of infrared heaters BSG500 / 300 (manufactured by Heraeus Co., Ltd., maximum energy wavelength 2.50 μm) were arranged in the transport direction to prepare a heating device. As shown in FIG. 1, the produced heating device is disposed so as to face the coating film on the substrate immediately after the coating device, and the condensation drying device is disposed immediately after the heating device, so as to dry the coating film. Prototype K1.

〔乾燥装置K3の試作〕
上記乾燥装置K1の試作において、赤外線ヒーターを用いた加熱装置に代えて、エアノズルDX−300(キクチ社製)を有するドライヤーを配置し、乾燥装置K3を試作した。ドライヤーは、熱風の温度、風速を選択できる。
[Prototype of drying device K3]
In the trial production of the drying device K1, instead of a heating device using an infrared heater, a dryer having an air nozzle DX-300 (manufactured by Kikuchi Co., Ltd.) was arranged, and a drying device K3 was prototyped. The dryer can select hot air temperature and wind speed.

〔有機EL素子1の作製〕
ポリエチレンテレフタレートフィルム(帝人・デュポン社製、幅手方向の長さ0.33m、搬送方向の長さ40m、厚さ100μm)の基板上に、スパッター装置を用いて厚さ100nmのITO膜を陽極として形成した。
[Production of Organic EL Element 1]
On a substrate of polyethylene terephthalate film (manufactured by Teijin-DuPont, length 0.33 m in the width direction, length 40 m in the transport direction, thickness 100 μm), an ITO film having a thickness of 100 nm is used as an anode using a sputtering apparatus. Formed.

さらに、Baytron P Al 4083(ポリ(3,4−エチレンジオキシチオフェン)−ポリスチレンスルホネート)、Bayer社製)を、純水で70%に希釈した溶液を、後述する発光層と同じ塗布条件でスロット塗布法により塗布し、幅手方向の長さ0.3mの正孔注入層を形成した。塗布後、基板の表面温度80℃にて1時間乾燥した。別途用意した基板にて、同条件にて塗布し、形成された正孔注入層の膜厚を測定したところ、30nmであった。   Further, a solution obtained by diluting Baytron P Al 4083 (poly (3,4-ethylenedioxythiophene) -polystyrene sulfonate), Bayer Co.) to 70% with pure water under the same coating conditions as those of the light emitting layer to be described later is used. Coating was performed by a coating method to form a hole injection layer having a length of 0.3 m in the width direction. After coating, the substrate was dried at a surface temperature of 80 ° C. for 1 hour. It was 30 nm when it apply | coated on the conditions prepared on the board | substrate prepared separately and the film thickness of the formed positive hole injection layer was measured.

この基板を、窒素雰囲気下、JIS B 9920に準拠し、測定した清浄度がクラス100で、露点温度が−80℃以下、酸素濃度0.8ppmのグローブボックスへ移した。次に、下記正孔輸送層の塗布液を調製し、後述する発光層と同じ塗布条件でスロット塗布法により、グローブボックス内で基板上に塗布して、幅手方向の長さ0.3mの正孔輸送層を形成した。塗布後、基板の表面温度80℃で30分間加熱乾燥した。別途用意した基板にて、同条件にて塗布し、形成された正孔輸送層の膜厚を測定したところ、20nmであった。
(正孔輸送層の塗布液)
モノクロロベンゼン 100.0g
ADS254BE(ポリ−(N,N′−ビス(4−ブチルフェニル)−N,N′−ビス(フェニル)ベンジジン、アメリカン・ダイ・ソース社製) 0.5g
This substrate was transferred to a glove box under a nitrogen atmosphere in accordance with JIS B 9920, the measured cleanliness was class 100, the dew point temperature was −80 ° C. or lower, and the oxygen concentration was 0.8 ppm. Next, the following hole transport layer coating solution is prepared and coated on the substrate in the glove box by the slot coating method under the same coating conditions as those of the light emitting layer described later. A hole transport layer was formed. After coating, the substrate was dried by heating at a surface temperature of 80 ° C. for 30 minutes. It was 20 nm when it apply | coated on the board | substrate prepared separately on the same conditions and the film thickness of the formed positive hole transport layer was measured.
(Hole transport layer coating solution)
Monochlorobenzene 100.0g
ADS254BE (Poly- (N, N′-bis (4-butylphenyl) -N, N′-bis (phenyl) benzidine, manufactured by American Die Source)) 0.5 g

次いで、窒素雰囲気下で、下記発光層の塗布液を調製した。この塗布液の固形分濃度は0.01質量%、粘度は0.6mPa・sであった。粘度は、JIS Z 8803に従い、粘度計DV−II+Pro(ブルックフィールド社製)を用いて、温度25℃の環境下で測定した。
(発光層の塗布液)
酢酸ノルマルプロピル 10.0000g
H−A 0.1000g
D−A 0.0110g
D−B 0.0002g
D−C 0.0002g
Subsequently, the following light emitting layer coating liquid was prepared under nitrogen atmosphere. The coating solution had a solid content concentration of 0.01% by mass and a viscosity of 0.6 mPa · s. The viscosity was measured in an environment at a temperature of 25 ° C. using a viscometer DV-II + Pro (manufactured by Brookfield) in accordance with JIS Z 8803.
(Light emitting layer coating solution)
Normal propyl acetate 10.00000g
H-A 0.1000g
D-A 0.0110 g
D-B 0.0002g
D-C 0.0002g

上記有機材料H−A、D−A、D−B、D−Cは、下記化合物を表している。

Figure 2013250001
The organic materials HA, DA, DB, and DC represent the following compounds.
Figure 2013250001

調製した発光層の塗布液を、スリット型ダイコーターを用いてスロット塗布法により基板上に塗布した。スリット型ダイコーターの幅手方向の長さは0.17mであり、スリット間隔は100μmであった。塗布条件は、以下の通りである。
(塗布条件)
塗布速度:10m/min
塗布時の環境温度:25℃
塗布した幅手方向の長さ: 0.1m
塗布した搬送方向の長さ:40.0m
ウェット膜厚:4μm
なお、塗布速度は、レーザードップラー速度計LV203により測定した。
また、ウェット膜厚は、下記式により算出した。
ウェット膜厚=塗布液の供給量/(塗布した幅手方向の長さ×塗布速度)
The prepared light emitting layer coating solution was applied onto a substrate by a slot coating method using a slit type die coater. The length of the slit type die coater in the width direction was 0.17 m, and the slit interval was 100 μm. The application conditions are as follows.
(Application conditions)
Application speed: 10 m / min
Environmental temperature during application: 25 ° C
Applied length in width direction: 0.1m
Applied length in transport direction: 40.0m
Wet film thickness: 4μm
The coating speed was measured with a laser Doppler velocimeter LV203.
Moreover, the wet film thickness was computed by the following formula.
Wet film thickness = supply amount of coating solution / (length in the width direction applied x coating speed)

上記スリット型ダイコーターの塗布直後の位置に、試作の乾燥装置K1を配置し、塗布後すぐに乾燥装置K1により乾燥した。加熱装置の加熱条件、凝縮乾燥装置の乾燥条件は、下記の通りである。
(加熱装置の加熱条件)
加熱時の塗布膜面の温度 :120℃
赤外線ヒーターと塗布膜面間の距離 :20mm
(凝縮乾燥装置の乾燥条件)
凝縮面の温度Tc :20℃、
塗布膜面の温度Th :25℃
凝縮面と塗布膜面間の距離 :2.00mm
A prototype drying device K1 was placed at a position immediately after application of the slit type die coater, and was dried by the drying device K1 immediately after the application. The heating conditions of the heating device and the drying conditions of the condensation drying device are as follows.
(Heating condition of heating device)
Temperature of coating film surface during heating: 120 ° C
Distance between infrared heater and coating film surface: 20mm
(Condensation drying equipment drying conditions)
Condensing surface temperature Tc: 20 ° C.
Temperature Th of coating film surface: 25 ° C.
Distance between condensation surface and coating film surface: 2.00 mm

加熱装置による加熱後の塗布膜の粘度を、次のようにして求めたところ、0.5mPa・sであった。
発光層に用いた塗布液と同じ塗布液を容器に入れ、上記加熱時の塗布膜面の温度と同じ120℃で加熱して、加熱中の粘度をデジタル粘度計HV-50(ブルックフィールド社製)で測定した。塗布膜面の温度は、デジタル放射温度センサーFT-H10(キーエンス社製)で測定した。
また、塗布膜の膜厚を、塗布直後及び凝縮乾燥の前後でLT−9000(キーエンス社製)を用いて測定し、測定された膜厚から、下記式により凝縮乾燥による乾燥量(体積%)を求めたところ、70体積%であった。
凝縮乾燥による乾燥量(体積%)=(凝縮乾燥直前の膜厚−凝縮乾燥直後の膜厚)/塗布直後の膜厚
When the viscosity of the coating film after heating by the heating device was determined as follows, it was 0.5 mPa · s.
The same coating solution as the coating solution used for the light emitting layer is put in a container and heated at 120 ° C. which is the same as the temperature of the coating film surface during the above heating. ). The temperature of the coating film surface was measured with a digital radiation temperature sensor FT-H10 (manufactured by Keyence Corporation).
Moreover, the film thickness of the coating film was measured using LT-9000 (manufactured by Keyence Corporation) immediately after coating and before and after condensation drying. From the measured film thickness, the drying amount (volume%) by condensation drying according to the following formula: Was found to be 70% by volume.
Drying amount by condensation drying (volume%) = (film thickness immediately before condensation drying−film thickness immediately after condensation drying) / film thickness immediately after coating

次に、窒素雰囲気下、下記電子輸送層の塗布液を調製した。
(電子輸送層の塗布液)
2,2,3,3−テトラフルオロ−1−プロパノール 100.00g
ET−A 0.75g
ET−Aは、下記化合物を表している。

Figure 2013250001
Next, the following electron transport layer coating solution was prepared under a nitrogen atmosphere.
(Coating liquid for electron transport layer)
2,2,3,3-tetrafluoro-1-propanol 100.00 g
ET-A 0.75g
ET-A represents the following compound.
Figure 2013250001

調製した電子輸送層の塗布液を、上記発光層と同じ塗布条件により塗布し、基板の表面温度80℃で30分加熱乾燥して、電子輸送層を形成した。別途用意した基板にて同条件にて塗布し、形成された電子輸送層の膜厚を測定したところ、膜厚は40nmであった。   The prepared coating solution for the electron transport layer was coated under the same coating conditions as those for the light emitting layer, and was dried by heating at a substrate surface temperature of 80 ° C. for 30 minutes to form an electron transport layer. The film thickness was 40 nm when it apply | coated on the conditions prepared on the board | substrate prepared separately and the film thickness of the formed electron carrying layer was measured.

電子輸送層まで形成すると、基板を大気曝露せずに蒸着機に移動し、4×10−4Paまで減圧した。なお、フッ化カリウム及びアルミニウムをそれぞれタンタル製抵抗加熱ボートに入れ、蒸着機に取り付けておいた。
まず、フッ化カリウムの入った抵抗加熱ボートを通電して加熱し、基板上にフッ化カリウムからなる電子注入層を3nm形成した。次いで、アルミニウムの入った抵抗加熱ボートを通電、加熱し、蒸着速度1〜2nm/sで、アルミニウムからなる膜厚100nmの陰極を形成した。
When the electron transport layer was formed, the substrate was moved to the vapor deposition machine without being exposed to the atmosphere, and the pressure was reduced to 4 × 10 −4 Pa. Note that potassium fluoride and aluminum were each placed in a tantalum resistance heating boat and attached to a vapor deposition machine.
First, a resistance heating boat containing potassium fluoride was energized and heated to form a 3 nm electron injection layer made of potassium fluoride on the substrate. Next, a resistance heating boat containing aluminum was energized and heated to form a cathode having a thickness of 100 nm made of aluminum at a deposition rate of 1 to 2 nm / s.

陰極が形成された基板を、大気曝露させることなく、窒素雰囲気下、JIS B9920に準拠して測定された清浄度がクラス100で、露点温度が−80℃以下、酸素濃度0.8ppmのグローブボックスへ移動した。グローブボックス内で、捕水剤である酸化バリウムを添付したガラス製の封止缶にて封止し、有機EL素子1を得た。なお、捕水剤である酸化バリウムは、アルドリッチ社製の高純度酸化バリウム粉末を、粘着剤付きのフッ素系半透過膜(ミクロテックスS−NTF8031Q、日東電工製)でガラス製封止缶に貼り付けたものを予め準備して使用した。封止缶と有機EL素子1の接着には、紫外線硬化型の接着剤を用い、紫外線を照射することで両者を接着し封止素子を作製した。   A glove box having a cleanliness of class 100, a dew point temperature of -80 ° C. or less, and an oxygen concentration of 0.8 ppm measured in accordance with JIS B9920 in a nitrogen atmosphere without exposing the substrate on which the cathode is formed to the atmosphere. Moved to. In the glove box, it sealed with the glass sealing can which attached the barium oxide which is a water catching agent, and the organic EL element 1 was obtained. Barium oxide, a water-absorbing agent, is a high-purity barium oxide powder manufactured by Aldrich, which is attached to a glass sealing can with a fluorine-based semipermeable membrane (Microtex S-NTF8031Q, manufactured by Nitto Denko) with an adhesive. The attached one was prepared and used in advance. For adhesion between the sealing can and the organic EL element 1, an ultraviolet curable adhesive was used, and both were adhered by irradiating ultraviolet rays to produce a sealing element.

〔有機EL素子2〜5の作製〕
有機EL素子1の作製において、乾燥装置K1の凝縮乾燥装置の凝縮板と基板間の距離、凝縮面と塗布膜面の温度差を調整し、凝縮乾燥装置による乾燥量を下記表1に示すように変更した以外は、有機EL素子1と同様にして有機EL素子2〜5を作製した。
[Production of organic EL elements 2 to 5]
In the production of the organic EL element 1, the distance between the condensing plate and the substrate of the condensing drying device of the drying device K1 and the temperature difference between the condensing surface and the coating film surface are adjusted, and the drying amount by the condensing drying device is shown in Table 1 below. Organic EL elements 2 to 5 were produced in the same manner as the organic EL element 1 except that the organic EL elements 1 and 2 were changed.

〔有機EL素子6〜9の作製〕
有機EL素子1の作製において、発光層の塗布液にプロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノメチルエーテル分散シリカゾルを添加し、その添加量を調整して、加熱後の塗布膜の粘度を下記表1に示すように異ならせた以外は、有機EL素子1と同様にして有機EL素子6〜9を作製した。
[Production of organic EL elements 6 to 9]
In the production of the organic EL element 1, propylene glycol monomethyl ether acetate and propylene glycol monomethyl ether-dispersed silica sol are added to the coating solution of the light emitting layer, and the addition amount is adjusted, and the viscosity of the coating film after heating is shown in Table 1 below. Organic EL elements 6 to 9 were produced in the same manner as the organic EL element 1 except that the differences were shown.

〔有機EL素子10の作製〕
有機EL素子1の作製において、発光層の乾燥に、乾燥装置K1に代えて乾燥装置K3を用いた以外は、有機EL素子1と同様にして有機EL素子10を作製した。乾燥装置K3のドライヤーの加熱条件は下記の通りである。
(ドライヤーの加熱条件)
風速 :1.5m/s
熱風の温度 :120℃
[Production of Organic EL Element 10]
In the production of the organic EL element 1, the organic EL element 10 was produced in the same manner as the organic EL element 1 except that the drying device K3 was used instead of the drying device K1 for drying the light emitting layer. The heating conditions of the dryer of the drying device K3 are as follows.
(Dryer heating conditions)
Wind speed: 1.5m / s
Hot air temperature: 120 ° C

〔有機EL素子11の作製〕
乾燥装置K3に用いたドライヤーと凝縮乾燥装置を分離し、塗布装置の直前にドライヤーを配置して発光層の塗布液の塗布前に基板を加熱し、塗布装置の直後に凝縮乾燥装置を配置して発光層の乾燥を行った以外は、有機EL素子1と同様にして有機EL素子11を作製した。ドライヤーの乾燥条件は下記の通りである。
(ドライヤーの乾燥条件)
風速 :1.5m/s
熱風の温度 :120℃
[Production of Organic EL Element 11]
Separate the dryer and the condensing dryer used for the drying device K3, arrange the dryer just before the coating device to heat the substrate before coating the light emitting layer coating solution, and place the condensing drying device just after the coating device. Then, an organic EL element 11 was produced in the same manner as the organic EL element 1 except that the light emitting layer was dried. The drying conditions of the dryer are as follows.
(Dryer drying conditions)
Wind speed: 1.5m / s
Hot air temperature: 120 ° C

<評価>
〔乾燥の均一性〕
有機EL素子の輝度は、発光層の膜厚と相関関係があり、発光層の膜厚は乾燥の均一性と相関関係があることから、各有機EL素子1〜11の輝度を測定し、そのばらつきを発光層の膜厚の均一性、すなわち乾燥の均一性として評価した。まず、輝度計CS2000(コニカミノルタセンシング社製)を用いて、各有機EL素子1〜11の輝度を、幅手方向に0.01m間隔で搬送方向の位置を変えて300点測定した。300点の測定値のうち、最大輝度値、最小輝度値、平均輝度値を求めて、下記式により輝度のばらつきを求めた。
輝度のばらつき={(最大輝度値−最小輝度値)/平均輝度}×100
<Evaluation>
[Dryness uniformity]
Since the luminance of the organic EL element has a correlation with the film thickness of the light emitting layer, and the film thickness of the light emitting layer has a correlation with the uniformity of drying, the luminance of each of the organic EL elements 1 to 11 is measured. The variation was evaluated as the uniformity of the light emitting layer thickness, that is, the uniformity of drying. First, using a luminance meter CS2000 (manufactured by Konica Minolta Sensing Co., Ltd.), the luminance of each of the organic EL elements 1 to 11 was measured at 300 points by changing the position in the transport direction at intervals of 0.01 m in the width direction. Among the 300 measured values, the maximum luminance value, the minimum luminance value, and the average luminance value were obtained, and the luminance variation was obtained by the following equation.
Variation in luminance = {(maximum luminance value−minimum luminance value) / average luminance} × 100

求めた輝度のばらつきから、乾燥の均一性を下記のように評価した。
◎:輝度のばらつきが0.5未満であり、非常に均一な乾燥ができている。
○:輝度のばらつきが0.5以上1.0未満であり、均一な乾燥ができている。
△:輝度のばらつきが1.0以上5.0未満であり、膜厚にばらつきはみられるが、実用可能な程度に均一な乾燥ができている。
×:輝度のばらつきが5.0以上であり、均一に乾燥できていない。
From the obtained variation in luminance, the uniformity of drying was evaluated as follows.
(Double-circle): The dispersion | variation in a brightness | luminance is less than 0.5, and it has performed very uniform drying.
A: The variation in luminance is 0.5 or more and less than 1.0, and uniform drying is achieved.
(Triangle | delta): The dispersion | variation in brightness | luminance is 1.0 or more and less than 5.0, and although the dispersion | variation is seen in a film thickness, it has dried uniformly as much as it is practical.
X: The variation in luminance is 5.0 or more, and it cannot be uniformly dried.

下記表1は、評価結果を示している。

Figure 2013250001
Table 1 below shows the evaluation results.
Figure 2013250001

表1に示すように、実施例に係る有機EL素子1〜10によれば、高い乾燥の均一性が得られている。一方、比較例に係る有機EL素子11によれば、塗布前の加熱によって塗布膜の膜厚ムラが生じたと推測され、その後の凝縮乾燥によっても均一に乾燥できていないことが分かる。   As shown in Table 1, according to the organic EL elements 1 to 10 according to the examples, high drying uniformity is obtained. On the other hand, according to the organic EL element 11 which concerns on a comparative example, it is estimated that the film thickness nonuniformity of the coating film had arisen by the heating before application | coating, and it turns out that it cannot be dried uniformly also by subsequent condensation drying.

1 塗布膜の乾燥装置
A 加熱装置
51 赤外線ヒーター
B 凝縮乾燥装置
11 凝縮板
11a 凝縮面
12 加熱装置
3 塗布装置
f1 基板
f2 塗布膜
f2a 塗布膜面
DESCRIPTION OF SYMBOLS 1 Coating film drying apparatus A Heating apparatus 51 Infrared heater B Condensation drying apparatus 11 Condensing plate 11a Condensing surface 12 Heating apparatus 3 Coating apparatus f1 Substrate f2 Coating film f2a Coating film surface

Claims (5)

基板上の塗布膜と対面する凝縮板を備え、当該凝縮板により塗布膜からの溶媒の蒸気を凝縮し、乾燥する凝縮乾燥装置と、
前記塗布膜の塗布後、前記凝縮乾燥装置による乾燥までの間に配置され、前記基板及び塗布膜を予備的に加熱する加熱装置と、
を備える塗布膜の乾燥装置。
A condensing plate that faces the coating film on the substrate, condensing the solvent vapor from the coating film by the condensing plate, and drying,
A heating device that is disposed between the application of the coating film and the drying by the condensation drying device, and preliminarily heats the substrate and the coating film;
A coating film drying apparatus comprising:
前記加熱装置が、赤外線の輻射熱により前記基板及び塗布膜を加熱する請求項1に記載の塗布膜の乾燥装置。   The coating film drying apparatus according to claim 1, wherein the heating device heats the substrate and the coating film with infrared radiation heat. 前記加熱装置による加熱後の塗布膜の粘度が、5mPa・s以下である請求項1又は2に記載の塗布膜の乾燥装置。   The apparatus for drying a coating film according to claim 1 or 2, wherein the viscosity of the coating film after being heated by the heating device is 5 mPa · s or less. 前記凝縮乾燥装置による溶媒の乾燥量が、前記塗布膜が含有する溶媒の全体積に対し、10〜80体積%の範囲内である請求項1〜3の何れか一項に記載の塗布膜の乾燥装置。   The amount of the solvent dried by the condensation drying device is in the range of 10 to 80% by volume with respect to the total volume of the solvent contained in the coating film. The coating film according to any one of claims 1 to 3. Drying equipment. 基板上の塗布膜と凝縮板を対面させ、当該凝縮板により塗布膜からの溶媒の蒸気を凝縮し、乾燥する塗布膜の乾燥方法において、
前記塗布膜の塗布後、前記凝縮による乾燥前に、前記基板及び塗布膜を予備的に加熱する工程を含む塗布膜の乾燥方法。
In the drying method of the coating film, the coating film on the substrate and the condensing plate face each other, the vapor of the solvent from the coating film is condensed by the condensing plate, and dried.
A method for drying a coating film, comprising: a step of preheating the substrate and the coating film after coating the coating film and before drying by the condensation.
JP2012124516A 2012-05-31 2012-05-31 Coating film drying apparatus and drying method Expired - Fee Related JP5900164B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012124516A JP5900164B2 (en) 2012-05-31 2012-05-31 Coating film drying apparatus and drying method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012124516A JP5900164B2 (en) 2012-05-31 2012-05-31 Coating film drying apparatus and drying method

Publications (2)

Publication Number Publication Date
JP2013250001A true JP2013250001A (en) 2013-12-12
JP5900164B2 JP5900164B2 (en) 2016-04-06

Family

ID=49848862

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012124516A Expired - Fee Related JP5900164B2 (en) 2012-05-31 2012-05-31 Coating film drying apparatus and drying method

Country Status (1)

Country Link
JP (1) JP5900164B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016195965A (en) * 2015-04-02 2016-11-24 新日鐵住金株式会社 Manufacturing method of coating base material
JP2018066552A (en) * 2016-03-18 2018-04-26 株式会社リコー Dryer and printer
US11014379B2 (en) 2016-03-18 2021-05-25 Ricoh Company, Ltd. Drying device and printing apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01321994A (en) * 1988-04-25 1989-12-27 Valmet Paper Mach Inc Drying of moving web and combined dryer
JPH09153217A (en) * 1995-11-29 1997-06-10 Fuji Photo Film Co Ltd Production of magnetic recording medium and its producing device
JP2003170102A (en) * 2001-09-27 2003-06-17 Fuji Photo Film Co Ltd Method and apparatus drying coating film
JP2004243172A (en) * 2003-02-12 2004-09-02 Fuji Photo Film Co Ltd Drying method for liquid coating composition
JP2007253107A (en) * 2006-03-24 2007-10-04 Nitto Denko Corp Method of applying coating solution, applicator used therefor and its designing process

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01321994A (en) * 1988-04-25 1989-12-27 Valmet Paper Mach Inc Drying of moving web and combined dryer
JPH09153217A (en) * 1995-11-29 1997-06-10 Fuji Photo Film Co Ltd Production of magnetic recording medium and its producing device
JP2003170102A (en) * 2001-09-27 2003-06-17 Fuji Photo Film Co Ltd Method and apparatus drying coating film
JP2004243172A (en) * 2003-02-12 2004-09-02 Fuji Photo Film Co Ltd Drying method for liquid coating composition
JP2007253107A (en) * 2006-03-24 2007-10-04 Nitto Denko Corp Method of applying coating solution, applicator used therefor and its designing process

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016195965A (en) * 2015-04-02 2016-11-24 新日鐵住金株式会社 Manufacturing method of coating base material
JP2018066552A (en) * 2016-03-18 2018-04-26 株式会社リコー Dryer and printer
US11014379B2 (en) 2016-03-18 2021-05-25 Ricoh Company, Ltd. Drying device and printing apparatus
US11312156B2 (en) 2016-03-18 2022-04-26 Ricoh Company, Ltd. Drying device and printing apparatus
JP7065568B2 (en) 2016-03-18 2022-05-12 株式会社リコー Drying equipment, printing equipment

Also Published As

Publication number Publication date
JP5900164B2 (en) 2016-04-06

Similar Documents

Publication Publication Date Title
JP4313026B2 (en) Manufacturing apparatus and manufacturing method of organic EL panel using coating nozzle by capillary action
JP5727478B2 (en) Methods and materials for making confinement layers and devices made thereby
TW201016325A (en) Apparatus and method for solution coating thin layers
JP5900164B2 (en) Coating film drying apparatus and drying method
US20130248848A1 (en) Process and materials for making contained layers and devices made with same
WO2018210042A1 (en) Method for vacuum drying of film and display device
JP6358446B2 (en) Vapor deposition apparatus and control method thereof, vapor deposition method using vapor deposition apparatus, and device manufacturing method
WO2014192685A1 (en) Drying apparatus and drying method
KR20120078721A (en) Method and device for locally depositing a material on a substrate
JP5861705B2 (en) Method for manufacturing organic electroluminescence element
JP5457337B2 (en) Method for manufacturing confinement layer
JP6003241B2 (en) Coating film drying apparatus and drying method
JP2013249999A (en) Drying device and drying method for coating film
Chang et al. General application of blade coating to small-molecule hosts for organic light-emitting diode
JP2013249998A (en) Drying device and drying method for coating film
JP2014009880A (en) Drying apparatus and method for coating film
JP2013250000A (en) Drying device and drying method for coating film
JP5600444B2 (en) Coating film drying apparatus and coating film drying method
JP2007307474A (en) Method, unit and apparatus for forming film
WO2013105534A1 (en) Thin film-forming method and thin film-forming device
WO2014192667A1 (en) Drying apparatus and drying method
JP2012514299A (en) Electroforming nozzle device and solution coating method
WO2012002423A1 (en) Method for formation of organic thin film layer, and method for production of organic electroluminescent element
JP2011258684A (en) Method of manufacturing non-contact taking-up device, and organic electroluminescent element manufactured by method of manufacturing non-contact taking-up device
JP2009070905A (en) Coating liquid for forming organic electroluminescence layer, and manufacturing method for organic electroluminescence display device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151023

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151027

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160209

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160222

R150 Certificate of patent or registration of utility model

Ref document number: 5900164

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees