JP2013247303A - Method and device for printing minute patterns in large area and functional electronic apparatus - Google Patents
Method and device for printing minute patterns in large area and functional electronic apparatus Download PDFInfo
- Publication number
- JP2013247303A JP2013247303A JP2012121450A JP2012121450A JP2013247303A JP 2013247303 A JP2013247303 A JP 2013247303A JP 2012121450 A JP2012121450 A JP 2012121450A JP 2012121450 A JP2012121450 A JP 2012121450A JP 2013247303 A JP2013247303 A JP 2013247303A
- Authority
- JP
- Japan
- Prior art keywords
- pattern
- printing
- paint
- fine
- transfer plate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Printing Methods (AREA)
- Manufacturing Of Printed Wiring (AREA)
Abstract
Description
本発明は、基体表面上に選択的に微細紋様を直接に形成する方法であり、特に昨今盛んに研究が進められている実装基板などに応用される機能性電子装置に期待されているダイレクトプリンティング技術分野に属している。益々微細化し高度化する機能性紋様の形成や、電子電気装置、プリンテッドエレクトロニクスやバイオ素子などの製造に向けて新たな手段や装置を提供し、併せてその電気電子装置の品質や信頼性を向上、コスト低減を実現し、更に環境に優しく、省資源省エネルギーに大いに寄与する。 INDUSTRIAL APPLICABILITY The present invention is a method for selectively forming fine patterns directly on the surface of a substrate, and in particular, direct printing which is expected for functional electronic devices applied to mounting substrates and the like that have been actively researched recently. It belongs to the technical field. Providing new means and devices for the formation of functional patterns that are becoming increasingly finer and more sophisticated, and for the manufacture of electronic and electrical devices, printed electronics, bio-elements, etc. Achieves improvement and cost reduction, and is environmentally friendly, contributing greatly to resource and energy savings.
基体上に複雑な紋様や金属配線を形成した製品は数多く、種々の形成方法、工法が提案され、広く使用されている。中でも付加価値の高く量も多い電子電気デバイスの実装基板には、実に様々な配線形成技術が開発されている。 There are many products in which complex patterns and metal wirings are formed on a substrate, and various forming methods and construction methods have been proposed and widely used. In particular, various wiring forming techniques have been developed for mounting boards for electronic and electrical devices with high added value and a large amount.
スクリーン印刷、グラビア印刷、インクジェットなどや、全面に金属箔を蒸着、めっき、貼り付けなどした後に露光法などの方法で所望の紋様や配線を得る工法が広く使われている。先端的な実装基板においては、伝統的なスクリーン印刷やグラビア印刷技術もある程度応用されているが、微細化には限界があり、以下のような高コストの露光法などの手法が主に使われている。例えば、めっき法では基板の下地処理を先ず行い樹脂全表面を軽く粗面化して、次いでその粗面にPdなどの金属触媒を析出させてから無電解めっきで銅などの金属を薄くめっきして、さらに電気メッキなどで厚く金属を成長させる。更に、無電解めっきで厚くする事も有る。その他に、所謂、接着法で極薄の銅薄膜を樹脂基板に密着接合させ、また、蒸着法で真空化で銅金属層を形成、金属薄膜を樹脂基板全面に金属膜を形成する。このようにして得られた銅張り樹脂基板に感光性レジスト塗布し、露光、金属膜を酸などで浸蝕除去してパターンを形成する。これらの方法では上述のように工程が長く、精緻で高価な精密機器を多数使い、省資源省エネなど環境面からも課題が多い。 There are widely used methods such as screen printing, gravure printing, ink-jet printing, etc., and obtaining a desired pattern or wiring by a method such as an exposure method after depositing, plating, or affixing a metal foil on the entire surface. In advanced mounting boards, traditional screen printing and gravure printing technologies are applied to some extent, but miniaturization is limited and the following high-cost exposure methods are mainly used. ing. For example, in the plating method, the substrate is first treated to lightly roughen the entire surface of the resin, and then a metal catalyst such as Pd is deposited on the rough surface, and then a metal such as copper is thinly plated by electroless plating. Further, thicken the metal by electroplating. Furthermore, it may be thickened by electroless plating. In addition, an extremely thin copper thin film is closely bonded to the resin substrate by a so-called adhesion method, a copper metal layer is formed by vacuuming by a vapor deposition method, and a metal film is formed on the entire surface of the resin substrate. The copper-clad resin substrate thus obtained is coated with a photosensitive resist, exposed, and the metal film is eroded and removed with an acid or the like to form a pattern. In these methods, as described above, the process is long, and many precise and expensive precision instruments are used, and there are many problems from the environmental aspect such as resource saving and energy saving.
最近ではダイレクトライティング技術が注目され、例えばナノ銀ペーストを印刷後、焼成して導電性パターンを画く技術:例えば、インクジェットプリンターで直接パターンを描画形成する技術などが広く研究開発されている。しかし、印刷速度が極端に遅く、非常に高コストであるなど基本的な課題が多く残っている。未だに研究開発段階から脱していない。以下本発明では、先端的な実装基板を代表例として詳細な説明を行う。 Recently, direct writing technology has attracted attention. For example, a technology for printing a nano silver paste and baking it to draw a conductive pattern: for example, a technology for directly drawing and forming a pattern with an ink jet printer has been widely researched and developed. However, many basic problems remain such as extremely low printing speed and very high cost. I haven't left the R & D stage yet. Hereinafter, the present invention will be described in detail using a leading mounting board as a representative example.
樹脂基体表面上への微細紋様形成では、背景技術に示されるように、全面に金属層を形成した後に、フォトリソ過程などで作成した開口部を腐食して所望の紋様を得ている。この時、腐食液によって金属と樹脂の接合界面が浸蝕され所謂アンダーエッチが生じることが知られている。このサブ〜数ミクロンの界面浸蝕は、接合強度の低下を招き剥離の原因になっているだけで無く、種々の不良の原因となっていることが知られている。更に、この浸蝕部は使用と共に伝播し成長するので長期信頼性に無視し得ない影響を及ぼす。
更に、紋様の幅が数十ミクロンと精緻になってくると、このサブ〜数ミクロンの界面浸蝕は無視できない大きさであり、その影響は甚大であることは容易に想像できる。
特に次世代電気電子素子では、線幅20―50ミクロンを目指しており、このような界面浸蝕による初期劣化や経年劣化、特性変化は大きな課題となっている。また、露光機の大きさに制約があり、本発明例で示されるような数十cm以上になる大型の微細紋様の製作はほぼ不可能と云える。
In the formation of a fine pattern on the surface of a resin substrate, as shown in the background art, after forming a metal layer on the entire surface, an opening formed by a photolithography process or the like is corroded to obtain a desired pattern. At this time, it is known that the bonding interface between the metal and the resin is eroded by the corrosive liquid and so-called underetching occurs. It is known that this interfacial erosion of sub to several microns not only causes a decrease in bonding strength and causes peeling, but also causes various defects. In addition, the eroded portion propagates and grows with use, so it has a negligible effect on long-term reliability.
Furthermore, when the width of the pattern becomes as fine as several tens of microns, this interfacial erosion of sub to several microns is not negligible, and it can be easily imagined that the effect is enormous.
In particular, the next-generation electric and electronic devices aim at a line width of 20 to 50 microns, and initial deterioration, aging deterioration, and characteristic change due to such interface erosion are major issues. Further, the size of the exposure machine is limited, and it can be said that it is almost impossible to produce a large fine pattern having a size of several tens of cm or more as shown in the present invention example.
また、上記のいずれの方法においても、残す紋様部分、回路パターンなどの所要全面積は小さく、めっきした金属の殆どを除去しているのが現実である。さらに、大量の腐蝕液などの廃液処理に伴う環境コストや、省資源省エネの観点からも大きな課題となっている。この課題は、昨今のダイレクトライティング研究開発に力が入っている一要因でもある。 In any of the above-described methods, the total area required for the pattern portions and circuit patterns to be left is small, and it is a reality that most of the plated metal is removed. Furthermore, it is a major issue from the viewpoint of environmental costs associated with the treatment of waste liquids such as a large amount of corrosive liquid, and resource saving and energy saving. This issue is also one of the factors that have put emphasis on recent direct writing research and development.
その代表例のインクジェット法では、残念ながら微細な線を引く事は困難であるし、速度が非常に遅く全く実用的で無い。大面積の素子や電子装置への応用などは全く考えられないのが現状である。更にナノインプリント技術は非常に微細な紋様に印刷には向いているが、極小面積の印刷に限られている。未だに芸術的と云え基礎的研究レベルである。 Unfortunately, it is difficult to draw a fine line in the ink jet method as a representative example, and the speed is very slow and it is not practical at all. The present situation is that the application to the element of a large area and an electronic device is not considered at all. Furthermore, the nanoimprint technology is suitable for printing very fine patterns, but is limited to printing in a very small area. It is still a basic research level that is artistic.
本発明は、大量生産に向く微細導電線大面積印刷法、同装置及び機能性電子装置に関する。 The present invention relates to a fine conductive wire large-area printing method suitable for mass production, the same apparatus, and a functional electronic device.
その要旨は、網目状やほぼ平行線状の紋様を形成する微細繊維よりなる印刷転写版に、当該微細繊維に沿って塗料を保持せしめる工程、当該塗料を保持した印刷転写版を印刷面に押圧し、当該網目状やほぼ平行線状の紋様を転写する工程、当該塗料よりなる当該紋様印刷面を定着処理する工程を少なくとも経る事を特徴としている。以下、電子素子などで広く使われ、良く知られている実装基板の例に倣って具体的な説明を行なう。 The gist of the process is to hold the paint along the fine fibers on a printing transfer plate made of fine fibers that form a net-like or almost parallel line pattern, and press the printing transfer plate holding the paint against the printing surface. In addition, it is characterized in that at least a step of transferring the mesh-like or substantially parallel line-like pattern and a step of fixing the pattern printing surface made of the paint are performed. Hereinafter, a detailed description will be given by following a well-known example of a mounting board that is widely used in electronic devices and the like.
図1に基づいて、本発明の骨子を説明する。図1―Aに示すように、径Dを有する単繊維や複合繊維、ナノ異形複合繊維1の周りに塗料(導電性金属や基板樹脂腐食剤などを含む特殊塗料など)2を染み込ませ保持する。なお、同図の複合繊維の例では、剰余の塗料を掻き取った断面状態3を示している。
Based on FIG. 1, the gist of the present invention will be described. As shown in FIG. 1-A, a paint (such as a special paint containing a conductive metal or a substrate resin corrosive agent) 2 is soaked and held around a single fiber, composite fiber, or nano-shaped
この塗料を有した微細繊維3よりなる印刷転写版を印刷基体4押し当て、必要に応じて前後左右に微小に動かして応力を加えることで効率的に塗料2を転写する。これを乾燥、加熱などの定着操作を行い、紋様2bを完成する。この結果、印刷転写版3の構成や塗布条件によって、L=D+2〜6t、P=L+Sでほぼ決まる所望の導電性紋様を得る。従って、極細ナノ繊維より為る5ミクロンの繊維で、10ミクロン以下の紋様を印刷出来る。
The printing transfer plate composed of the
以上の説明で明らかなように、網目に形成した紋様通りに塗料が網目を通過して印刷面に紋様を形成するスクリーン印刷の機構とは全く概念が異なっている。即ち、本発明では当該繊維に絡んだ塗料を転写して紋様を形成している。従って、本発明では塗料が滲み易く絡み易いように、当該印刷転写版を形成する微細繊維にナノ繊維複合繊維、異形断面形状繊維、表面活性繊維の少なくとも一つの特異性を付与するのは効果的である。増えた塗料の分だけ転写された紋様の厚さが増す。また、電気めっきで導電紋様部を厚く出来る。
さらに図2に示すように、印刷転写版3が印刷面4に対して相対的に上下5、前後/左右方向6の微細運動などで応力を加えて、当該塗料ないしは当該導電塗料の転写を補強、また、印刷転写版3を印刷面4に押し付ける押圧部を具備して当該塗料ないしは当該導電塗料を転写するのも非常に効果的である。
As is apparent from the above description, the concept is completely different from the screen printing mechanism in which the paint passes through the mesh according to the pattern formed on the mesh and forms the pattern on the printing surface. That is, in the present invention, a pattern is formed by transferring a paint entangled with the fibers. Therefore, in the present invention, it is effective to impart at least one specificity of the nanofiber composite fiber, the modified cross-sectional shape fiber, and the surface active fiber to the fine fiber forming the printing transfer plate so that the paint is easily spread and entangled. It is. The thickness of the transferred pattern increases by the increased amount of paint. Also, the conductive pattern can be thickened by electroplating.
Further, as shown in FIG. 2, the
また、塗料2として樹脂基板4を腐食などする特殊な塗料を用いて、上述のように紋様を形成した後に、Pd、Ag、Zn等を含む溶液に含浸させてその触媒金属を腐食形成された紋様に析出させた後に、無電界めっきなどでその紋様通りに銅紋様を形成する。更に必要に応じて、電気めっきなどで更に厚みを増やすことも出来る。以上の方法で明らかなように金属紋様を金属を腐食除去することなく直接基板上に形成できる。
Further, using a special paint that corrodes the
転写される紋様の幅や高さなどの形状は、主に塗料の表面張力、親和性、粘度、時間などの要因に従い当該繊維に絡む塗料の量が決まる。一般的に粘度は10〜106cp、望ましくは100〜105cp程度が望ましく、表面張力は界面活性剤などを添加して低下させたほうが好ましい。また、転写印刷部の厚さtを厚く、微細な印刷で紋様間の隙間Sが詰まってくると網目が塗料で詰まることが生じ易くなる。この時には、当該印刷転写版を形成する微細繊維からなる紋様の目詰まり防止や余剰塗料の除去は重要である。目詰まり防止としては、気流で詰まりを吹き飛ばす、罫書き針、掻き取りよう治具やローラーで余分の塗料を取り去るのは非常に有効である。
なお、腐食性塗料を使用する場合は、粘度を上述の粘度より略一桁低くても効果がある。
The shape of the transferred pattern, such as the width and height, mainly determines the amount of paint entangled with the fiber according to factors such as the surface tension, affinity, viscosity, and time of the paint. In general, the viscosity is desirably 10 to 10 6 cp, desirably about 100 to 10 5 cp, and the surface tension is preferably decreased by adding a surfactant or the like. Further, when the thickness t of the transfer printing portion is increased and the gap S between the patterns is clogged with fine printing, the mesh is likely to clog with the paint. At this time, it is important to prevent clogging of the pattern made of fine fibers forming the printing transfer plate and to remove excess paint. In order to prevent clogging, it is very effective to remove clogging with an air current, to remove excess paint with a scribing needle, a scraping jig or a roller.
In the case of using a corrosive paint, it is effective even if the viscosity is approximately one order of magnitude lower than the above-mentioned viscosity.
連続した微細繊維で印刷転写版が形成されている為に、上記の説明で明らかなように基本的には連続した繊維紋様が出来る。この時、図3のように印刷面に予め被覆部23を設けておき、その上に塗料を転写した後に被覆部を除去すれば、その形状通りの紋様が得られる。大きな印刷転写版を幾つかに分割使用出来る他に、色々な応用が考えられる。なお、同図では、印刷面に被覆部を設置しているが、印刷転写版の対応する部分に被覆部を設けても同じ効果を得ることが出来る。例えば、塗料が乗らないように塗料をはじく表面処理をしておく事も効果がある。
Since the printing transfer plate is formed of continuous fine fibers, basically, a continuous fiber pattern can be formed as is apparent from the above description. At this time, as shown in FIG. 3, if the covering
以上の微細紋様大面積印刷法
に基づいた形成装置の一例を図4に示す。先ず、塗料溜め17に浸かった塗料供給部18に微細繊維よりなる印刷転写版13が接して塗料を載せ、必要に応じて余剰塗料除去部19を通して、過剰な塗料を落として所定の紋様通りに塗料を残す。尚この時、塗料供給部18と余剰塗料除去部19を一体化しても同様に効率的に塗料を残すことが出来る。
次に、引き出し部20の作用により印刷転写版13を印刷基体4上に移動して押圧し、更に必要に応じて前後動16や上下動5を行い、転写を促進する。転写が終わった印刷基体4を加熱して塗料を固着して紋様を完成する。なお、印刷転写版13を引き出し部20から折り返して塗料供給部18へ戻して連続使用することも出来る。また、印刷基体4を長尺のシート状として、印刷転写版13に押圧密着させて送ることで、ロールツロールの効率的な印刷が実現する。この時、上記の転写促進として超音波振動を転写面に与える事は効果的である。
このようにして完成した紋様を有し作成された機能性電子装置は、紋様形成時に酸などの腐食剤を使用しておらず、アンダーエッチや酸残り等に拠る不良などが無く、信頼性が高い。しかも、上述のように環境に優しく省資源省エネルギーの機能性電子装置である。
An example of a forming apparatus based on the above-described fine pattern large area printing method is shown in FIG. First, the
Next, the
The functional electronic device created with the completed pattern in this way does not use an acid or other corrosive agent during pattern formation, has no defects due to underetching or acid residue, etc., and has high reliability. high. Moreover, as described above, it is a functional electronic device that is environmentally friendly and saves resources and energy.
本発明は、微細な紋様の大量生産に向く低コストの、特に従来に無い大面積に対応する微細紋様印刷法であり、安定で信頼性の高い微細な紋様を有する機能性商品や微細な回路パターンを有する電子電気装置を提供できる。電子電気装置に使われる微細な回路パターンにおいては、特に微細線の形成のために生じるアンダーカットや界面劣化で剥離強度の低下や信頼性の低下が問題となっていたが、本発明によって、このような弊害が解消する。 The present invention is a low-cost fine pattern printing method suitable for mass production of fine patterns, particularly for a large area that has not been heretofore, and a functional product or a fine circuit having a fine pattern that is stable and highly reliable. An electro-electrical device having a pattern can be provided. In a fine circuit pattern used for an electronic / electrical device, a decrease in peel strength and a decrease in reliability are caused by an undercut or interface deterioration caused by the formation of fine lines. Such harmful effects are resolved.
また、従来工程では腐食工程を含む多くの処理工程を経て、各種設備、各種機器の維持管理や調整コストが嵩み、その上処理工程の度に表面を汚したり傷つけたりする欠点や、歩留まりや信頼性低下が有ったが、本発明では直接に紋様形成する為に全工程が大幅に簡略化され、これらの課題が一挙に解消された。更にプロセスが簡単で操業度が向上したのみならず、歩留まりの向上など生産性の大幅な向上が図られるなどの副次的な効果も認められた。 In addition, the conventional process goes through many treatment processes including a corrosion process, which increases the maintenance and adjustment costs of various facilities and various equipment, and also has the drawbacks of soiling and scratching the surface each time the treatment process is performed. Although there was a decrease in reliability, in the present invention, the entire process was greatly simplified to form a pattern directly, and these problems were solved at once. Furthermore, not only the process was simple and the operation rate was improved, but also secondary effects such as a significant improvement in productivity such as an increase in yield were recognized.
さらに本発明では、直接に紋様を形成する為に省資源であり、全面めっきした金属を除去する余計な腐食液なども不要であることから、一層の省資源省エネとなっている。これらによるコスト低減効果も大きく、その上環境にも優しい。 Furthermore, in the present invention, the resources are saved because the pattern is directly formed, and an extra corrosive solution for removing the metal plated on the entire surface is not necessary. The cost reduction effect by these is great, and it is also environmentally friendly.
本発明の基本的な微細導電紋様の印刷形成法を、代表的な応用例である先端的な実装基板に倣って以下に詳細な説明を行う。なお、基体や塗料、さらに様々な部材の組み合わせで多用な応用が展開出来ることは云うまでも無い。
絶縁性基体として厚さ50ミクロンから1mm、1mX2mのガラスシート上に500ミクロン間隔で30ミクロン幅の平行銀線を端から端まで全面に形成する本発明のごく単純な一例を以って基本的な本発明の要項を説明する。
The basic fine conductive pattern printing method of the present invention will be described in detail below in accordance with a leading mounting board as a typical application example. Needless to say, a variety of applications can be developed by combining the substrate, the paint, and various members.
Basically, using a very simple example of the present invention, a parallel silver wire having a width of 30 microns is formed over an entire surface of a glass sheet having a thickness of 50 to 1 mm and 1 m × 2 m as an insulating substrate at intervals of 500 microns. The essential points of the present invention will be described.
先ず、その表面を脱脂、清浄化し(一般的なプラズマ処理やオゾン処理などによる清浄化処理)、図2に示すように緩やかな凸面を持つ基板に乗せた。次いで、無数の20ミクロン径の微細繊維を500ミクロン間隔でピンと張った印刷転写版を図4に示すような印刷形成装置に付け、導電銀塗料を塗布した後に、印刷面に対して押し付けて相対的に前後、左右に約5ミクロンの微細運動を行い、導電銀塗料を転写した。その後、塗料を定着する為に250度で加熱して導電紋様の形成を完了、所望の完成品を得た。 First, the surface was degreased and cleaned (cleaning by general plasma treatment or ozone treatment), and placed on a substrate having a gentle convex surface as shown in FIG. Next, a printing transfer plate in which countless fine fibers having a diameter of 20 microns are stretched at intervals of 500 microns is attached to a printing forming apparatus as shown in FIG. 4, and after applying a conductive silver paint, it is pressed against the printing surface. The conductive silver paint was transferred by performing a fine movement of about 5 microns from front to back and from side to side. Thereafter, in order to fix the paint, it was heated at 250 degrees to complete the formation of the conductive pattern, and a desired finished product was obtained.
なお、塗料の濃度や粘度により線幅が変化し、濃度や粘度が高いと太くなる傾向が認められた。この時には、微細運動を小さくする事で線幅の太さを一定に保つことが出来た。
また、途切れ目を形成するために、図3に示すようにテープを基体上に貼り付けて被覆部を形成して、上述のように転写印刷した後に被覆を取り除いて熱処理して完成品を得た。この結果、平行した銀の直線の平行線紋様を分離分割できた。
以下に代表的な実施例の一部を示す。
In addition, the line width changed with the density | concentration and viscosity of a coating material, and when the density | concentration and viscosity were high, the tendency to become thick was recognized. At this time, the thickness of the line width could be kept constant by reducing the fine movement.
Also, in order to form a break, as shown in FIG. 3, a tape is affixed on the substrate to form a coating portion, and after the transfer printing as described above, the coating is removed and heat treatment is performed to obtain a finished product. It was. As a result, parallel line patterns of parallel silver lines could be separated and divided.
Some typical examples are shown below.
絶縁性基体として厚さ約0.4mm、1m幅X2m長のガラスシート上に500ミクロン間隔で30ミクロン幅の平行銀線を端から端まで全面に形成する事を狙い、先ず、その表面を脱脂、一般的なプラズマ処理やオゾン処理などによって清浄化し、印刷用の基板に乗せた。次いで、無数の20ミクロン径の微細繊維を500ミクロン毎にピンと張った印刷転写版を図4に示すような印刷形成装置に張り、導電銀塗料を塗布した後に、印刷面に対して押し付けて塗料を転写した。その後、250度で加熱して導電紋様を定着し完成品を得た。この時、印刷転写の際に条件1:平板基板、条件2:図2に示すように中央部が約1cm端部より高い緩やかな凸面を持つ基板を用いた場合、条件3/条件4:各々条件1/条件2において印刷面を長手方向に約5ミクロンの微細運動を併用した場合について検討、得られた結果を表1に示す。
Aiming at forming parallel silver wires with a width of 30 microns at intervals of 500 microns on a glass sheet having a thickness of about 0.4mm and a length of 1m x 2m as an insulating substrate, the surface is first degreased. Then, it was cleaned by general plasma treatment or ozone treatment and placed on a substrate for printing. Next, a printing transfer plate in which countless fine fibers having a diameter of 20 microns are stretched every 500 microns is stretched on a printing forming apparatus as shown in FIG. Was transcribed. Thereafter, the conductive pattern was fixed by heating at 250 degrees to obtain a finished product. At this time, in the case of printing transfer, condition 1: flat substrate, condition 2: when using a substrate having a gentle convex surface whose central part is higher than the end part by about 1 cm as shown in FIG. 2,
凸面や微細運動の効果で塗料の転写量が増えて太めになっているのが見られた。塗料に応力が加わる微細運動下では運動時の振動や装置の遊びも加わって若干太めになったと推定された。尚、条件1でも10cmレベルの小面積では良好であった。
It was observed that the amount of paint transferred increased due to the effect of the convex surface and fine movement. It was estimated that the film became slightly thicker due to vibrations during the movement and play of the equipment under the fine movement in which the paint was stressed. Note that even in
実施例1において、印刷面に約2ミクロンの段差を付けた基板に転写印刷を試みた。
表2に条件1〜4に対応する結果をそれぞれ条件5〜8に示す。
凸面や微細運動の大きな効果が見られた。
In Example 1, transfer printing was attempted on a substrate having a printed surface with a step of about 2 microns.
Table 2 shows the results corresponding to
A large effect of convex surface and fine movement was observed.
実施例1条件1において、微細繊維を次のように変えて導電紋様の形成を行った。
条件9:微細繊維の表面をプラズマ照射して塗料の載りを改善、条件10:図1A左図に示すようなナノ構造を有するナノ複合繊維を使用した結果を表3に示す。いずれも改善が見られ、悪い条件下でも良好な作用がある事が実証された。
Example 1 In
Condition 9: The surface of the fine fiber is plasma-irradiated to improve the placement of the paint. Condition 10: The results of using the nanocomposite fiber having the nanostructure as shown in the left figure of FIG. 1A are shown in Table 3. In all cases, improvement was observed, and it was proved that there was a good effect even under bad conditions.
実施例1条件4において、部分的に20ミクロン径の微細繊維を200ミクロン毎にピンと張った印刷転写版を用いて、導電紋様の形成を行った。この時、希釈剤や増粘剤で塗料の粘度を調整して、その変化や効果を調べた結果を表4に示す。
In Example 4
実施例4において、図4に示す余剰塗料除去部を用いて、導電紋様の形成を試みた。その効果を調べた結果を表5に示す。図1A左図に示すように過剰な塗料が除去されて、印刷版の目詰まりが防止されたと推定された。いずれの条件でも改善が見られた。 In Example 4, an attempt was made to form a conductive pattern using the surplus paint removing portion shown in FIG. The results of examining the effect are shown in Table 5. As shown in the left figure of FIG. 1A, it was estimated that the excessive coating material was removed and the clogging of the printing plate was prevented. Improvement was seen in all conditions.
実施例5において、図4に示す余剰塗料除去部に気流を吹き付けて、ないしは、罫書き針を設置し用いて、余剰の塗料の除去や目詰まりの解消を試みた。その効果を調べた結果を表6に示す。いずれの条件でも実施例5とほぼ同レベルに改善されていた。 In Example 5, an attempt was made to remove excess paint or eliminate clogging by blowing an air current to the surplus paint removing unit shown in FIG. 4 or installing a scribing needle. The results of examining the effect are shown in Table 6. Under any condition, the level was improved to almost the same level as in Example 5.
実施例2条件1と条件4において、平行に張った微細繊維に替えて無数の20ミクロン径の微細繊維を織った500ミクロン角の網目の印刷転写版をピンと張って印刷転写を実施した。長手方向には張力が働いているが横方向には弱いので、版の両端部に高張力繊維を配して横方向にも強い版を作成した。
この結果、張力が全印刷版の長手横方向に伝わる網目紋様が出来たと推定される。この特徴を活かす為に長手方向に加えて横方向にも5ミクロンの振動を与えた。その結果を表7に示す。横方向にも効果的に動きがあることから線幅が太めになっている。
Example 2 In
As a result, it is presumed that a mesh pattern in which the tension is transmitted in the longitudinal and transverse directions of the entire printing plate is formed. In order to take advantage of this feature, a vibration of 5 microns was given in the lateral direction in addition to the longitudinal direction. The results are shown in Table 7. The line width is thick because there is also effective movement in the horizontal direction.
実施例1条件4に従い、その時5Nの苛性カリを含む腐食性塗料2を用い、基板4としてポリイミド膜を適用した。その結果、紋様に沿った腐食部が形成された。更に通常使われている無電解銅析出法を適用して、無電解めっきを行い紋様通りの銅析出を得た。即ち、腐食したポリイミド膜を塩化Pdを含む液に浸漬して水洗後、還元してナノPd粒子を析出させ、これを核として無電解銅を析出した。その線幅は平均22ミクロンであった。
更に、電気めっきにより3ミクロン厚の銅膜を追加形成した。その結果、線幅は太くなっており、概略28ミクロンになっていた。
(比較例1)
According to
Furthermore, a 3 micron thick copper film was additionally formed by electroplating. As a result, the line width was thick and was approximately 28 microns.
(Comparative Example 1)
実施例1と同様にして、従来のスクリーン印刷を行った。印刷版は可能であったが、印刷はうまく出来なかった。30ミクロンに替えて70ミクロンの印刷版で試行した処、所定の良好な印刷が出来た。
インクジェット法での試行では、約50ミクロンの線幅を何とか実現できたが、形成速度は極端に遅く、10cm角の小型でも時間が掛かり、実施例のような大型の印刷は不可能であった。グラビア印刷法では大型や長尺の印刷は得意としているが、線幅は実用的に100ミクロン級である。50ミクロンを切る印刷は当面困難とされている。
表8に各工法の特徴をまとめている。
Conventional screen printing was performed in the same manner as in Example 1. A printing plate was possible, but printing failed. As a result of trial using a printing plate of 70 microns instead of 30 microns, predetermined good printing was achieved.
In the trial using the ink jet method, a line width of about 50 microns could be somehow realized, but the formation speed was extremely slow, and it took time even for a small 10 cm square, and large printing as in the example was impossible. . The gravure printing method is good at large and long printing, but the line width is practically 100 microns. Printing below 50 microns is considered difficult for the time being.
Table 8 summarizes the characteristics of each method.
また、上記の説明で明らかなように単に大面積、高速転写印刷が可能なだけでなく、長尺のフィルムを使用するとエンドレスの転写/印刷ができる特徴がある。 In addition, as is clear from the above description, not only can a large area and high-speed transfer printing be possible, but also there is a feature that endless transfer / printing can be achieved by using a long film.
本発明は、昨今盛んに研究が進められている基体表面上に選択的な機能性紋様を直接に形成する方法、マイクロコンタクトプリンティング技術分野に属しており、更に微細な紋様を大面積長尺の転写印刷を廉価で可能とする。
特に、他の方法では作成が非常に困難である大型の電子電気装置などに応用される。益々微細化し高度化し大型の機能性紋様の形成やその電子電気装置などの製造に新たな手段を提供し、併せてその品質や信頼性を大幅に向上すると共に、更なる省資源省エネルギーと特段のコスト低減を実現する。
The present invention belongs to the field of microcontact printing technology, a method for directly forming a selective functional pattern on the surface of a substrate, which has been actively researched recently. Transfer printing is possible at a low price.
In particular, the present invention is applied to large-sized electronic and electrical devices that are very difficult to produce by other methods. It has become increasingly refined and sophisticated, providing new means for the formation of large-scale functional patterns and the manufacture of electronic and electrical devices, and at the same time, greatly improves its quality and reliability, while further saving resources and energy. Realize cost reduction.
1 塗料を載せた微細繊維(単繊維、ナノ異形繊維の例)
2a 繊維上の塗料
2b 印刷面に転写された塗料
3 塗料を載せた印刷転写版の微細繊維部分
4 印刷基体
5 微小上下動、押圧
6 左右、前後動
13 塗料を載せた微細繊維よりなる印刷転写版
16 前後動
17 塗料溜め
18 塗料供給部
19 余剰塗料除去部
20 引き出し部
23 切れ目を形成する被覆部の例
1 Fine fiber with paint (example of single fiber, nano-shaped fiber)
2a Paint on
4
16 Back and forth
18
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012121450A JP2013247303A (en) | 2012-05-29 | 2012-05-29 | Method and device for printing minute patterns in large area and functional electronic apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012121450A JP2013247303A (en) | 2012-05-29 | 2012-05-29 | Method and device for printing minute patterns in large area and functional electronic apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2013247303A true JP2013247303A (en) | 2013-12-09 |
Family
ID=49846837
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012121450A Pending JP2013247303A (en) | 2012-05-29 | 2012-05-29 | Method and device for printing minute patterns in large area and functional electronic apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2013247303A (en) |
-
2012
- 2012-05-29 JP JP2012121450A patent/JP2013247303A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5721007A (en) | Process for low density additive flexible circuits and harnesses | |
JP6250903B2 (en) | Manufacturing method of three-dimensional conductive pattern structure and three-dimensional molding material used therefor | |
CN101695219B (en) | Selective immersion process of PCB | |
JP2015523235A (en) | Ink composition for producing high-definition conductive pattern | |
JP5835947B2 (en) | Resin base material with metal film pattern | |
US20140083748A1 (en) | Conductive pattern formation | |
TWI707928B (en) | Laminates, printed wiring boards, flexible printed wiring boards and molded products using them | |
WO2012122684A1 (en) | Method for manufacturing flexible printed circuit board for producing pattern of bank card | |
KR100634221B1 (en) | Method of providing conductive tracks on a printed circuit and apparatus for use in carrying out the method | |
CN107072039A (en) | The method for preparing conducting wire | |
KR101298746B1 (en) | Metallization process of non-conductive polymer substrates using wet surface treatment technology | |
JP2008294308A (en) | Ink jet printing method | |
KR20140108770A (en) | Flexible printed circuit board by laser processing and printing process, and method for manufacturing the same | |
JP2013247303A (en) | Method and device for printing minute patterns in large area and functional electronic apparatus | |
JP2013123836A (en) | Letterpress printing apparatus | |
CN1850687A (en) | Method for conducting metal located-sedimentation on glass base material | |
US20140248443A1 (en) | Screen stencil and method for coating screen stencils | |
JP2009220386A (en) | Two-layer copper clad laminated sheet and manufacturing process of the same | |
KR101411821B1 (en) | Flexible pattern forming method | |
JP5304664B2 (en) | Continuous electrolytic plating apparatus, continuous electrolytic plating method and metallized resin film manufacturing method | |
CN109435443A (en) | A kind of solar battery sheet plating patterns halftone and its plating patterns production method | |
CN100428871C (en) | Method for forming plain conductor pattern by means of ink-jet | |
JP5775684B2 (en) | Conductive metal pattern forming method and electronic / electric element | |
KR102575905B1 (en) | plating apparatus | |
JP5775683B2 (en) | Conductive metal pattern forming method and electronic / electrical device |