JP2013246002A - Temperature measuring device for plate to be measured and method for correcting measured temperature - Google Patents

Temperature measuring device for plate to be measured and method for correcting measured temperature Download PDF

Info

Publication number
JP2013246002A
JP2013246002A JP2012118791A JP2012118791A JP2013246002A JP 2013246002 A JP2013246002 A JP 2013246002A JP 2012118791 A JP2012118791 A JP 2012118791A JP 2012118791 A JP2012118791 A JP 2012118791A JP 2013246002 A JP2013246002 A JP 2013246002A
Authority
JP
Japan
Prior art keywords
temperature
plate
radiation thermometer
measured
radiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012118791A
Other languages
Japanese (ja)
Other versions
JP5767606B2 (en
Inventor
Ryota Nakanishi
良太 中西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2012118791A priority Critical patent/JP5767606B2/en
Publication of JP2013246002A publication Critical patent/JP2013246002A/en
Application granted granted Critical
Publication of JP5767606B2 publication Critical patent/JP5767606B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Radiation Pyrometers (AREA)

Abstract

PROBLEM TO BE SOLVED: To accurately measure the temperature of a plate to be measured without requiring a wide space for installation or a complicated device configuration.SOLUTION: A temperature measuring device 1 for a plate W to be measured comprises a reference plate 8, first and second radiation thermometers 9 and 10, a correction coefficient determination means 12, and a temperature calculation means 13. The reference plate 8 is installed while being opposed to one side of the plate W to be measured and a temperature of the reference plate 8 is adjusted to be equal to that of the plate W to be measured. The first and second radiation thermometers 9 and 10 are installed to be oriented from angles which are different from each other, to a measuring point M on one side of the plate W to be measured and are capable of measuring a radiation temperature at the measuring point M, respectively. Based on output from the first radiation thermometer 9 and output from the second radiation thermometer 10, the correction coefficient determination means 12 determines a correction coefficient for correcting a temperature measurement error with shaking of the plate W to be measured. Based on the correction coefficient determined by the correction coefficient determination means 12, the temperature calculation means 13 corrects the output of the first radiation thermometer 9 and the second radiation thermometer 10 and calculates the temperature at the measuring point from corrected output.

Description

本発明は、圧延材のように板状に形成された被測定板の表面温度を非接触で測定する温度測定装置、及びこの温度測定装置で測定した温度の補正方法に関するものである。   The present invention relates to a temperature measuring device that measures the surface temperature of a plate to be measured formed like a rolled material in a non-contact manner, and a method for correcting the temperature measured by the temperature measuring device.

帯状の鋼板(被測定板)を通板したまま加熱・冷却する連続式の熱処理設備には、鋼板の温度を測定する温度測定装置が設けられている。このような温度測定装置では非接触式の放射温度計が利用されている。
放射温度計は、被測定板の測定点から放射される放射エネルギを計測し、計測された放射エネルギから、ステファン−ボルツマンの法則などに基づいて測定点の表面温度を求める構成となっている。ただし、放射温度計で正確な温度を計測するためには、被測定板の放射率を知る必要がある。この放射率は被計測板の表面に異物が残っていたり表面の状態が変化するとその値が変動することが知られている。
A continuous heat treatment facility that heats and cools a strip-shaped steel plate (plate to be measured) is provided with a temperature measuring device that measures the temperature of the steel plate. In such a temperature measuring device, a non-contact type radiation thermometer is used.
The radiation thermometer is configured to measure the radiant energy radiated from the measurement point of the plate to be measured and obtain the surface temperature of the measurement point from the measured radiant energy based on the Stefan-Boltzmann law. However, in order to measure an accurate temperature with a radiation thermometer, it is necessary to know the emissivity of the plate to be measured. It is known that this emissivity fluctuates when foreign matter remains on the surface of the plate to be measured or the state of the surface changes.

そこで、焼鈍設備や溶融亜鉛めっき設備など現場での温度計測では、「測定点から直接放射される放射エネルギ(放射率:ε)」と、「測定点から放射される放射エネルギが、被測定板と同じ温度とされたロール表面や参照板で反射し、反射放射エネルギとして放射温度計に入力するもの(放射率:1−ε)」とを同時に計測し、放射率を相殺させて、見かけの放射率を1として温度を求める多重反射方式が採用されている。   Therefore, in on-site temperature measurement such as annealing equipment and hot dip galvanizing equipment, "radiant energy radiated directly from the measurement point (emissivity: ε)" and "radiant energy radiated from the measurement point are the measured plate. , Which is reflected on the roll surface and the reference plate at the same temperature as that and input to the radiation thermometer as the reflected radiant energy (emissivity: 1-ε) "at the same time, canceling the emissivity, A multiple reflection method is used in which the emissivity is 1 and the temperature is obtained.

ところで、ロールや参照板を用いた多重反射方式で、実際に放射エネルギを計測し温度を求める際には、参照板以外の部材から放射された放射エネルギ(背景放射)が誤差成分として計測される。特に、被測定板が振動などする状況下では、参照板に対する被測定板の位置(レイアウト)が変動すると、誤差の原因となる背景放射の量が大きく変動するため、放射温度計に大きな測定誤差が生じる。   By the way, in the multiple reflection method using a roll or a reference plate, when actually measuring the radiant energy and obtaining the temperature, the radiant energy (background radiation) radiated from a member other than the reference plate is measured as an error component. . In particular, under conditions where the plate to be measured vibrates, if the position (layout) of the plate to be measured changes with respect to the reference plate, the amount of background radiation that causes the error will vary greatly, resulting in large measurement errors in the radiation thermometer. Occurs.

そこで、特許文献1には、鋼板の表面と裏面とに参照板をそれぞれ1枚ずつ設置し、表裏の参照板が鋼板を挟んで面対称となるように配置しておいて、両面で得られた放射温度信号を用いて被処理板の振れによる測定誤差を排除する技術が開示されている。   Therefore, in Patent Document 1, one reference plate is installed on each of the front and back surfaces of a steel plate, and the front and back reference plates are arranged so as to be symmetrical with respect to the steel plate. A technique for eliminating a measurement error due to a shake of a plate to be processed by using a radiant temperature signal is disclosed.

特開2010−38562号公報JP 2010-38562 A

ところで、上述した特許文献1の放射温度計を用いる場合、鋼板の表面と裏面との両面に参照板をそれぞれ設置することが必要となる。しかしながら、上述した熱処理設備では参照板を設置するスペースが十分に確保できないことがあり、特許文献1のような放射温度計は利用できないことがある。また、鋼板の表裏両面に参照板を設置する測定装置とするとその構造が複雑になるばかりか、装置の価格を高騰させる原因ともなる。   By the way, when using the radiation thermometer of patent document 1 mentioned above, it is necessary to each install a reference board on both surfaces of the surface and the back surface of a steel plate. However, in the heat treatment equipment described above, a sufficient space for installing the reference plate may not be secured, and the radiation thermometer as in Patent Document 1 may not be used. In addition, if the measuring device is provided with reference plates on both the front and back sides of the steel plate, not only the structure becomes complicated, but also the price of the device increases.

本発明は、上述の問題に鑑みてなされたものであり、大きな設置スペースや複雑な装置構成を必要とすることなく、背景放射の影響を確実に排除して被測定板の温度を精確に計測することができる被測定板の温度測定装置、及びこの温度測定装置で測定した測定温度の補正方法を提供することを目的とする。   The present invention has been made in view of the above-mentioned problems, and accurately measures the temperature of the plate to be measured by reliably eliminating the influence of background radiation without requiring a large installation space or a complicated apparatus configuration. It is an object of the present invention to provide a temperature measuring device for a plate to be measured, and a method for correcting a measured temperature measured by the temperature measuring device.

上記課題を解決するため、本発明の被測定板の温度測定装置は以下の技術的手段を講じている。
即ち、本発明の被測定板の温度測定装置は、被測定板の片面に対面して設置されると共に、前記被測定板と同じ温度になるように温度調整された参照板と、前記被測定板の片面の測定点に対して互いに異なる角度から指向するように設置されて、前記測定点の放射温度をそれぞれ計測可能とされた第1の放射温度計及び第2の放射温度計と、前記第1の放射温度計からの出力と第2の放射温度計からの出力とに基づいて、被測定板の振れに伴う温度計測誤差を補正する補正係数を決定する補正係数決定手段と、前記補正係数決定手段
で決定された補正係数に基づいて、前記第1の放射温度計及び第2の放射温度計の出力を補正すると共に、補正後の出力から測定点の温度を算出する温度算出手段と、を備えることを特徴とするものである。
In order to solve the above problems, the temperature measuring device for a plate to be measured according to the present invention employs the following technical means.
That is, the temperature measuring device for a plate to be measured according to the present invention is installed so as to face one side of the plate to be measured, and the reference plate whose temperature is adjusted to the same temperature as the plate to be measured, and the device to be measured A first radiation thermometer and a second radiation thermometer installed so as to be directed from different angles with respect to the measurement point on one side of the plate and capable of measuring the radiation temperature at the measurement point; Correction coefficient determining means for determining a correction coefficient for correcting a temperature measurement error due to a shake of the plate to be measured, based on the output from the first radiation thermometer and the output from the second radiation thermometer, and the correction Temperature calculating means for correcting the outputs of the first radiation thermometer and the second radiation thermometer based on the correction coefficient determined by the coefficient determining means, and calculating the temperature of the measurement point from the corrected output; Are provided.

好ましくは、前記補正係数決定手段は、前記第1の放射温度計からの出力と、第2の放射温度計からの出力との比に基づいて前記補正係数を決定しているとよい。
好ましくは、前記第1の放射温度計及び第2の放射温度計は、前記測定点に対する指向角度が平面視で互いに異なっているとよい。
好ましくは、前記第1の放射温度計及び第2の放射温度計は、前記測定点に対する指向角度が側面視で互いに異なっているとよい。
Preferably, the correction coefficient determining means may determine the correction coefficient based on a ratio between an output from the first radiation thermometer and an output from the second radiation thermometer.
Preferably, the first radiation thermometer and the second radiation thermometer may have different directivity angles with respect to the measurement point in plan view.
Preferably, the first radiation thermometer and the second radiation thermometer may have different directivity angles with respect to the measurement point in a side view.

好ましくは、前記被測定板は長尺材であって、前記長尺材の被測定板の幅方向中央から見て一方側に前記第1の放射温度計が設けられると共に、他方側に第2の放射温度計が設けられているとよい。
なお、本発明の放射温度計による測定温度の補正方法は、被測定板の片面に対向して設置されると共に前記被測定板と同じ温度になるように温度調整された参照板と、前記被測定板の片面の測定点に対して互いに異なる角度から指向するように設置されて、前記測定点の放射温度をそれぞれ計測可能とされた第1の放射温度計及び第2の放射温度計と、を備えた温度測定装置を用いて計測された温度を補正するに際しては、前記第1の放射温度計からの出力及び第2の放射温度計からの出力に基づいて、被測定板の振れに伴う温度計測誤差を補正する補正係数を決定し、決定された補正係数に基づいて、前記第1の放射温度計及び第2の放射温度計の出力を補正することを特徴とするものである。
Preferably, the plate to be measured is a long material, and the first radiation thermometer is provided on one side when viewed from the center in the width direction of the plate to be measured of the long material, and the second on the other side. A radiation thermometer is preferably provided.
The method for correcting the measurement temperature by the radiation thermometer according to the present invention includes a reference plate that is installed facing one side of the plate to be measured and is temperature-adjusted so as to have the same temperature as the plate to be measured. A first radiation thermometer and a second radiation thermometer installed so as to be directed from different angles with respect to the measurement point on one side of the measurement plate, respectively, and capable of measuring the radiation temperature at the measurement point; When correcting the temperature measured using the temperature measuring device provided with the above, it follows that the measured plate is shaken based on the output from the first radiation thermometer and the output from the second radiation thermometer. A correction coefficient for correcting a temperature measurement error is determined, and outputs of the first radiation thermometer and the second radiation thermometer are corrected based on the determined correction coefficient.

本発明の被測定板の温度測定装置及び放射温度計による測定温度の補正方法によれば、大きな設置スペースや複雑な装置構成を必要とすることなく、背景放射の影響を確実に排除して被測定板の温度を精確に計測することができる。   According to the temperature measuring device for a plate to be measured and the method for correcting the temperature measured by the radiation thermometer according to the present invention, the influence of background radiation is reliably eliminated without requiring a large installation space or a complicated device configuration. The temperature of the measuring plate can be accurately measured.

本発明の温度測定装置が設けられた溶融亜鉛めっき設備を示した図である。It is the figure which showed the hot dip galvanization installation provided with the temperature measuring apparatus of this invention. 第1実施形態の温度測定装置を示したものであり、(a)は被測定板が振動する前の状態を示した図であり、(b)は被測定板が振動した後の状態を示した図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 shows a temperature measuring apparatus according to a first embodiment, wherein (a) shows a state before the plate to be measured vibrates, and (b) shows a state after the plate to be measured vibrates. It is a figure. 第1実施形態の温度測定装置で測定された放射温度の計測値と補正係数との関係を示す図である。It is a figure which shows the relationship between the measured value of the radiation temperature measured with the temperature measuring apparatus of 1st Embodiment, and a correction coefficient. 第1実施形態の測定温度の補正方法の手順を示した図である。It is the figure which showed the procedure of the correction method of the measured temperature of 1st Embodiment. 第2実施形態の温度測定装置を示したものであり、(a)は被測定板が振動する前の状態を示した図であり、(b)は被測定板が振動した後の状態を示した図である。FIG. 2 shows a temperature measuring apparatus according to a second embodiment, in which (a) shows a state before the plate to be measured vibrates, and (b) shows a state after the plate to be measured vibrates. It is a figure.

[第1実施形態]
以下、第1実施形態に係る被測定板Wの温度測定装置1を図に基づいて説明する。
図1は、第1実施形態の温度測定装置1が設けられた溶融亜鉛めっき設備2を例示している。なお、溶融亜鉛めっき設備2は例示であり、第1実施形態の温度測定装置1は他の装置に設置されていてもよい。
[First Embodiment]
Hereinafter, the temperature measuring device 1 of the plate W to be measured according to the first embodiment will be described with reference to the drawings.
FIG. 1 illustrates a hot dip galvanizing facility 2 provided with the temperature measuring device 1 of the first embodiment. In addition, the hot dip galvanizing equipment 2 is an example, and the temperature measuring device 1 of the first embodiment may be installed in another device.

この溶融亜鉛めっき設備2は、前工程で圧延などを終えた鋼板W(被測定板)を連続的に通過させて溶融亜鉛めっきを行うものであり、亜鉛めっき鋼板Wを製造するために用いられる。溶融亜鉛めっき設備2は、この設備の入側にめっき前の鋼板Wを熱処理する焼鈍炉3を備えている。この焼鈍炉3の内部には鋼板Wを上下に通板させるロール搬送機構4が設けられており、鋼板Wに対してめっきの前処理を兼ねた熱処理を施せるようになっている。   The hot dip galvanizing equipment 2 is used for continuously hot-dip galvanizing by passing a steel plate W (measurement plate) that has been rolled in the previous step, and is used to manufacture the galvanized steel plate W. . The hot dip galvanizing facility 2 includes an annealing furnace 3 that heat-treats the steel plate W before plating on the entry side of the facility. Inside the annealing furnace 3, a roll transport mechanism 4 for passing the steel plate W up and down is provided so that the steel plate W can be subjected to heat treatment that also serves as a pretreatment for plating.

焼鈍炉3の下流側には熱処理後の鋼板Wを冷却する冷却帯5が設けられており、冷却帯5で冷却された後の鋼板Wはスナウトを介してめっきポット6へ送られる。このめっきポット6内には溶融した亜鉛めっき浴が収容されており、めっきポット6内で溶融亜鉛めっき処理された鋼板Wは、めっきポット6の上方に位置する空冷部7で冷却され、次工程に送られる。   A cooling zone 5 for cooling the steel plate W after the heat treatment is provided on the downstream side of the annealing furnace 3, and the steel plate W after being cooled in the cooling zone 5 is sent to the plating pot 6 through the snout. A molten galvanizing bath is accommodated in the plating pot 6, and the hot-dip galvanized steel plate W in the plating pot 6 is cooled by an air cooling unit 7 located above the plating pot 6, and the next step. Sent to.

上述した冷却帯5や空冷部7では、鋼板W(被測定板W)の温度を精確に把握する必要があり、何らかの温度測定装置1、例えば、非接触型の放射温度計が設けられるのが一般的である。
ところで、上述したような放射温度計で、溶融亜鉛めっき設備2内を通板する鋼板Wの温度を計測しようとすると、鋼板Wの振れが原因で大きな温度計測誤差が発生する場合がある。例えば、溶融亜鉛めっき設備2には、上流側のガイドロールから1つ下流側に位置するガイドロールまでの距離が離れている場所があり、このような場所で鋼板Wの温度を計測しようとすると、鋼板Wが大きく振れて温度計測が困難になってしまうことがある。
In the cooling zone 5 and the air cooling unit 7 described above, it is necessary to accurately grasp the temperature of the steel plate W (measured plate W), and some temperature measuring device 1, for example, a non-contact type radiation thermometer is provided. It is common.
By the way, when trying to measure the temperature of the steel plate W passing through the hot dip galvanizing facility 2 with the radiation thermometer as described above, a large temperature measurement error may occur due to the shake of the steel plate W. For example, in the hot dip galvanizing equipment 2, there is a place where the distance from the upstream guide roll to the one guide roll located on the downstream side is long, and when the temperature of the steel sheet W is to be measured in such a place. The steel plate W may shake greatly and temperature measurement may become difficult.

つまり、上述したような場所では、鋼板Wが厚み方向に沿って振れる「振動」、鋼板Wが板幅方向に沿って振れる「蛇行」、鋼板Wが搬送方向に沿った軸回りにねじれる「ねじり」などが発生しやすい。これらの種類の振れが鋼板Wに起こると、放射温度計から見た鋼板Wの位置が変化し、温度を測定しようとする測定点の位置も変動するため、放射温度計で計測される温度に温度計測誤差が発生する可能性が大きくなる。   That is, in the place as described above, “vibration” in which the steel plate W swings along the thickness direction, “meandering” in which the steel plate W swings in the plate width direction, and “twist” in which the steel plate W twists around the axis in the transport direction. ”Etc. are likely to occur. When these types of vibrations occur in the steel sheet W, the position of the steel sheet W as viewed from the radiation thermometer changes, and the position of the measurement point at which the temperature is to be measured also fluctuates. There is a greater possibility of temperature measurement errors.

このような温度計測誤差を補正するために、本願出願人は、特許文献1(特開2010−38562号公報)に開示した温度測定装置、すなわち、鋼板の表裏両面に、参照板と放射温度計をそれぞれ配備したものを開発しているが、この装置は比較的大がかりなものとなっていて、溶融亜鉛めっき設備などの量産設備には放射温度計を鋼板の表裏両面に設置しうるスペースがない場合も多い。   In order to correct such a temperature measurement error, the applicant of the present application has disclosed a temperature measurement device disclosed in Patent Document 1 (Japanese Patent Laid-Open No. 2010-38562), that is, a reference plate and a radiation thermometer on both the front and back surfaces of a steel plate. However, this equipment is relatively large, and mass production equipment such as hot dip galvanizing equipment does not have enough space to install radiation thermometers on both sides of the steel sheet. There are many cases.

そこで、第1実施形態の温度測定装置1では、鋼板Wの片面に対面して、被測定板Wと同じ温度になるように温度調整された参照板8を設け、放射率の影響を相殺するようにしている。さらに、第1実施形態の温度測定装置1では、鋼板Wの片面(一方側表面)の測定点Mに対して互いに異なる角度から指向するように第1の放射温度計9及び第2の放射温度計10を設置している。そして、第1の放射温度計9からの出力及び第2の放射温度計10からの出力に基づいて、鋼板Wの振れに伴う温度計測誤差を補正する演算手段11、を設けているのである。   Therefore, in the temperature measuring apparatus 1 of the first embodiment, the reference plate 8 that is temperature-adjusted so as to face the one surface of the steel plate W so as to have the same temperature as the plate W to be measured is provided to cancel the influence of emissivity. I am doing so. Furthermore, in the temperature measuring device 1 of the first embodiment, the first radiation thermometer 9 and the second radiation temperature are directed from different angles with respect to the measurement point M on one side (one side surface) of the steel plate W. A total of 10 are installed. Then, based on the output from the first radiation thermometer 9 and the output from the second radiation thermometer 10, there is provided a calculation means 11 that corrects a temperature measurement error due to the shake of the steel plate W.

この演算手段11は、温度計測誤差を補正するための補正係数を決定する補正係数決定手段12と、補正係数決定手段12で決定された補正係数に基づいて、第1の放射温度計9及び第2の放射温度計10の出力を補正すると共に、補正後の出力から測定点Mの温度を求める温度算出手段13とを備えるものとなっている。
以下、第1実施形態の温度測定装置1の詳細を説明する。
The calculation means 11 includes a correction coefficient determination means 12 for determining a correction coefficient for correcting the temperature measurement error, and the first radiation thermometer 9 and the first radiation thermometer 9 based on the correction coefficient determined by the correction coefficient determination means 12. And a temperature calculation means 13 for correcting the output of the radiation thermometer 2 and calculating the temperature of the measurement point M from the corrected output.
Hereinafter, details of the temperature measuring apparatus 1 of the first embodiment will be described.

図2は、第1実施形態の温度測定装置1を拡大して示したものである。詳しくは、図2(a)は、鋼板Wが振動する前の状態を示したものであり、図2(b)は、鋼板Wが振動した後の状態を拡大して示したものである。なお、図2(a)及び図2(b)は、いずれも上下2つの図から成っており、上図が水平に置かれた鋼板Wの表面を上面から見たもの(平面視)、また下図が鋼板Wを側面視したものである。   FIG. 2 is an enlarged view of the temperature measuring apparatus 1 according to the first embodiment. Specifically, FIG. 2A shows a state before the steel plate W vibrates, and FIG. 2B shows an enlarged state after the steel plate W vibrates. 2 (a) and 2 (b) are both composed of two upper and lower views, and the upper view is a top view of the surface of the steel plate W placed horizontally (plan view), and The figure below is a side view of the steel sheet W.

鋼板Wは長尺な帯板状に形成されており、図2(a)では紙面の右側から左側に向かって通板する鋼板Wが記載されている。図2(a)の下図から明らかなように、鋼板Wの上面には温度を計測しようとする測定点M(実線の丸印で示された点)が位置しており、図例の温度測定装置1は鋼板Wの上面の温度を計測する構成となっている。さらに、この鋼板Wの上方には、鋼板Wより搬送方向に短尺で且つ幅方向に広い参照板8が配備されている。   The steel plate W is formed in a long strip shape, and FIG. 2A shows the steel plate W that passes through from the right side to the left side of the drawing. As is apparent from the lower diagram of FIG. 2A, a measurement point M (a point indicated by a solid circle) at which the temperature is to be measured is located on the upper surface of the steel plate W. The apparatus 1 is configured to measure the temperature of the upper surface of the steel plate W. Further, above the steel plate W, a reference plate 8 that is shorter in the transport direction than the steel plate W and wider in the width direction is provided.

参照板8は、鋼板W(被測定板)の片面(図例では上面)から上方に向かって一定の距離をあけて、鋼板Wに対して平行乃至は所定の傾きとなるように配備されている。この参照板8は、鋼などで形成された平担な板材などが用いられる。参照板8は、図示しない温度調整装置を用いて鋼板Wと同じ温度(放射温度計で測定した温度)となるように制御されている。   The reference plate 8 is disposed so as to be parallel to the steel plate W or at a predetermined inclination with a certain distance upward from one side (upper surface in the illustrated example) of the steel plate W (measurement plate). Yes. The reference plate 8 is a flat plate made of steel or the like. The reference plate 8 is controlled to have the same temperature as the steel plate W (temperature measured with a radiation thermometer) using a temperature adjusting device (not shown).

なお、参照板8には、背景放射の影響を小さくできるように、鋼板Wの測定点Mから見て参照板8以外の背景放射が可能な限り小さくなるように、鋼板Wよりも十分に大きな面
積のものを採用するのが好ましい。
第1の放射温度計9、第2の放射温度計10は、鋼板Wと参照板8との間の隙間であって、鋼板W及び参照板8の双方から一定の距離だけ離れた位置に配備されている。そして、これら2つの放射温度計は、鋼板Wの表面上の測定点Mに対して傾斜した方向に設置されており、測定点Mから放射される放射エネルギ(電磁波エネルギ)を計測可能とされている。この放射温度計には、放射エネルギを感知可能なセンサ、例えば赤外線センサなどが用いられている。
The reference plate 8 is sufficiently larger than the steel plate W so that the background radiation other than the reference plate 8 is as small as possible when viewed from the measurement point M of the steel plate W so that the influence of background radiation can be reduced. It is preferable to adopt an area.
The first radiation thermometer 9 and the second radiation thermometer 10 are provided between the steel plate W and the reference plate 8 at a certain distance from the steel plate W and the reference plate 8. Has been. And these two radiation thermometers are installed in the direction inclined with respect to the measurement point M on the surface of the steel plate W, and can measure the radiant energy (electromagnetic wave energy) radiated from the measurement point M. Yes. For this radiation thermometer, a sensor capable of sensing radiant energy, such as an infrared sensor, is used.

次に、本発明の温度測定装置1の特徴である、第1の放射温度計9、第2の放射温度計10の設置状況(レイアウト)、及び演算手段11について説明する。
図2(a)に示すように、本発明の放射温度計には、鋼板Wの幅方向の中央を挟んで一方側に配備された第1の放射温度計9と、他方側に配備された第2の放射温度計10とがあり、測定点Mの幅方向左右両側から同一の測定点Mの表面温度を計測できるようになっている。
Next, the installation status (layout) of the first radiation thermometer 9 and the second radiation thermometer 10 and the calculation means 11 which are the features of the temperature measuring device 1 of the present invention will be described.
As shown in FIG. 2 (a), in the radiation thermometer of the present invention, the first radiation thermometer 9 disposed on one side across the center in the width direction of the steel plate W and the other radiation thermometer are disposed. There is a second radiation thermometer 10, and the surface temperature of the same measurement point M can be measured from the left and right sides of the measurement point M in the width direction.

これらの第1の放射温度計9及び第2の放射温度計10は、測定点Mに対する指向角度が側面視では同じであるが、平面視では互いに異なっている。つまり、第1の放射温度計9及び第2の放射温度計10の指向角度には、鋼板Wの表面に対する仰角と、通板ライン方向に対する傾斜角との2つがあり、第1実施形態では2つの放射温度計の仰角は同じ(θs1=θs2)であるが傾斜角は互いに異なっている(θ≠θ)。 The first radiation thermometer 9 and the second radiation thermometer 10 have the same directivity angle with respect to the measurement point M in a side view, but are different from each other in a plan view. That is, there are two directivity angles of the first radiation thermometer 9 and the second radiation thermometer 10, that is, an elevation angle with respect to the surface of the steel plate W and an inclination angle with respect to the sheet passing line direction. The elevation angles of the two radiation thermometers are the same (θ s1 = θ s2 ), but the inclination angles are different from each other (θ 1 ≠ θ 2 ).

演算手段11は、第1の放射温度計9からの出力(測定温度の指示値)及び第2の放射温度計10からの出力(測定温度の指示値)に基づいて、被測定板Wの振れに伴う温度計測誤差を補正するものである。
この演算手段11は、具体的には、補正係数を決定する補正係数決定手段12と、補正係数決定手段12で決定された補正係数に基づいて、それぞれの放射温度計で計測された温度指示値を補正する温度算出手段13とを有している。なお、演算手段11は、実際にはパソコン上で動作するソフトウエアで構成されている。
Based on the output from the first radiation thermometer 9 (indicated value of the measured temperature) and the output from the second radiation thermometer 10 (indicated value of the measured temperature), the calculating means 11 shakes the plate W to be measured. This is to correct the temperature measurement error associated with.
Specifically, the calculation means 11 includes a correction coefficient determination means 12 for determining a correction coefficient, and a temperature indication value measured by each radiation thermometer based on the correction coefficient determined by the correction coefficient determination means 12. Temperature calculating means 13 for correcting the above. The computing means 11 is actually composed of software that operates on a personal computer.

補正係数決定手段12は、第1の放射温度計9からの出力及び第2の放射温度計10からの出力に基づいて、被測定板Wの振れに伴う温度計測誤差を補正する補正係数を決定するものである。この補正係数決定手段12に入力される放射温度計からの出力には、それぞれの放射温度計で計測された温度指示値の結果だけでなく、放射温度計で計測された放射エネルギの強度などを用いることもできる。   The correction coefficient determination means 12 determines a correction coefficient for correcting a temperature measurement error due to the shake of the plate W to be measured based on the output from the first radiation thermometer 9 and the output from the second radiation thermometer 10. To do. The output from the radiation thermometer input to the correction coefficient determination means 12 includes not only the result of the temperature indication value measured by each radiation thermometer but also the intensity of the radiation energy measured by the radiation thermometer. It can also be used.

補正係数決定手段12には、第1の放射温度計9からの出力と第2の放射温度計10からの出力とが入力されており、入力された両出力の値の比を取るか、又は、両出力の差を一旦算出し、算出された比や差の値に基づいて補正係数を決定しており、決定された補正係数を温度算出手段13に送っている。なお、補正係数の決定に出力の比や差を用いる理由については、後ほど詳述する。   The output from the first radiation thermometer 9 and the output from the second radiation thermometer 10 are inputted to the correction coefficient determination means 12, and the ratio of the inputted two outputs is taken, or The difference between the outputs is once calculated, the correction coefficient is determined based on the calculated ratio and the difference value, and the determined correction coefficient is sent to the temperature calculation means 13. The reason why the output ratio or difference is used to determine the correction coefficient will be described in detail later.

温度算出手段13は、補正係数決定手段12で決定された補正係数に基づいて、第1の放射温度計9及び第2の放射温度計10の出力を補正している。そして、温度算出手段13では、決定された補正係数に基づいて補正を行った後の測定温度の値を「補正後の測定温度」として出力している。
ところで、上述した補正係数決定手段12で放射温度計からの出力の比や差を用いるのは、以下のような理由からである。
The temperature calculation means 13 corrects the outputs of the first radiation thermometer 9 and the second radiation thermometer 10 based on the correction coefficient determined by the correction coefficient determination means 12. Then, the temperature calculating means 13 outputs the measured temperature value after correction based on the determined correction coefficient as “corrected measured temperature”.
By the way, the reason why the ratio or difference of the output from the radiation thermometer is used in the correction coefficient determination means 12 described above is as follows.

例えば、図2(a)に示すように、第1の放射温度計9及び第2の放射温度計10が互いに鋼板Wに対する指向角度が異なる位置に設置されている場合を考える。このとき、図2(a)では、それぞれの放射温度計の仰角θは同じであるが、通板ライン方向に対する傾斜角が異なっていて、第1の放射温度計9の傾斜角はθ、第2の放射温度計10の傾斜角はθ(θ>θ)となっている。 For example, as shown in FIG. 2A, consider a case where the first radiation thermometer 9 and the second radiation thermometer 10 are installed at positions where the directivity angles with respect to the steel plate W are different from each other. At this time, in FIG. 2A, the elevation angles θ s of the respective radiation thermometers are the same, but the inclination angles with respect to the plate line direction are different, and the inclination angle of the first radiation thermometer 9 is θ 1. The inclination angle of the second radiation thermometer 10 is θ 22 > θ 1 ).

斯かる装置レイアウトのもと、図2(b)に示すように、鋼板Wが振動によりδだけ下方に移動した場合、図中に点線の丸印で示すように第1の放射温度計9の測定点Mの位置は実線の丸印の位置から右上に、また第2の放射温度計10の測定点Mの位置は右下に移動する。この測定点Mの移動距離は、第1の放射温度計9の場合、鋼板Wの送り方向にδ
/tanθ×cosθ、板幅方向にδ/tanθ×sinθとなる。また、第2の放射温度計10の測定点Mの移動距離は、鋼板Wの送り方向にδ/tanθ×cosθ、板幅方向にδ/tanθ×sinθとなり、測定点Mの移動距離は両温度計で互いに異なっている。
Under such an apparatus layout, as shown in FIG. 2 (b), when the steel plate W is moved downward by δ due to vibration, the first radiation thermometer 9 of the first radiation thermometer 9 is shown as indicated by a dotted circle in the figure. The position of the measurement point M moves from the position of the solid circle to the upper right, and the position of the measurement point M of the second radiation thermometer 10 moves to the lower right. In the case of the first radiation thermometer 9, the moving distance of the measurement point M is δ in the feed direction of the steel plate W.
/ tanθ s × cosθ 1 and δ / tanθ s × sinθ 1 in the plate width direction. The moving distance of the measuring point of the second radiation thermometer 10 M sends direction δ / tanθ s × cosθ 2 of the steel sheet W, δ / tanθ s × sinθ 2 next to the plate width direction, the movement of the measuring point M The distance is different for both thermometers.

特に、第1実施形態では参照板8の面積を可能な限り小さくできるように、上述した参照板8は鋼板Wの板幅方向に長く、送り方向に短く形成されている。そのため、測定点Mが板幅方向へ移動しても温度計測値は殆ど変化しないが、測定点Mが長手方向に移動した場合には温度計測値に大きな変化が出やすくなる。つまり、第1実施形態では、測定点Mが長手方向に移動した場合に温度計測値が大きな影響を受けやすい。   In particular, in the first embodiment, the reference plate 8 described above is formed long in the plate width direction of the steel plate W and short in the feed direction so that the area of the reference plate 8 can be made as small as possible. For this reason, even if the measurement point M moves in the plate width direction, the temperature measurement value hardly changes, but when the measurement point M moves in the longitudinal direction, the temperature measurement value tends to change greatly. That is, in the first embodiment, when the measurement point M moves in the longitudinal direction, the temperature measurement value is easily affected.

それゆえ、図2(a)に示されるような放射温度計、参照板8及び鋼板Wの配置(以降、単にレイアウトという)としておけば、鋼板Wの振れ幅(振幅)に対してそれぞれの放射温度計で計測される測定温度の計算結果も異なったものとなる。
つまり、図3(a)に示されるように、第1の放射温度計9の温度指示値も、第2の放射温度計10の温度指示値も、振幅が大きくなるに連れて緩やかにカーブを描いて増加するような変化傾向を示す。傾斜角がθと小さい第1の放射温度計9の指示値の変化は、傾斜角がθと大きい第2の放射温度計10の指示値の変化よりも、振幅が負の領域では大きく変化する。このように、第1の放射温度計9の温度指示値の曲線と、第2の放射温度計10の温度指示値の曲線とが異なるのは、設置角度θ、θの違いに伴う背景放射量の変化や参照板8の形態係数の変化によるものである。
Therefore, if the radiation thermometer, the reference plate 8 and the steel plate W are arranged as shown in FIG. 2A (hereinafter simply referred to as a layout), each radiation is radiated with respect to the deflection width (amplitude) of the steel plate W. The calculation result of the measured temperature measured by the thermometer is also different.
That is, as shown in FIG. 3A, both the temperature indication value of the first radiation thermometer 9 and the temperature indication value of the second radiation thermometer 10 gradually curve as the amplitude increases. It shows a change trend that increases as you draw. The change in the indicated value of the first radiation thermometer 9 having a small inclination angle θ 1 is larger in the region where the amplitude is negative than the change in the indicated value of the second radiation thermometer 10 having a large inclination angle θ 2. Change. In this way, the temperature indication value curve of the first radiation thermometer 9 and the temperature indication value curve of the second radiation thermometer 10 are different from each other because of the difference between the installation angles θ 1 and θ 2. This is due to a change in the amount of radiation and a change in the form factor of the reference plate 8.

ところで、実際の温度測定装置1では、鋼板Wが実際にどの程度振れているか、言い換えれば鋼板Wの移動距離δを計測することが困難であり、図3(a)の横軸で示される振幅を得ることが不可能な場合も多い。それゆえ、図3(a)のようなグラフを用いて、温度計測値の指示値を補正することは現実的ではない。
そこで、第1実施形態の温度測定装置1では、第1の放射温度計9の温度指示値と、第2の放射温度計10の温度指示値との双方の値に対して、これらの値の比を求め、求められた比(放射温度計指示値比)と鋼板Wの移動距離δとの関係を求めている。
By the way, in the actual temperature measuring apparatus 1, it is difficult to measure how much the steel plate W is actually shaken, in other words, the moving distance δ of the steel plate W, and the amplitude shown on the horizontal axis of FIG. It is often impossible to obtain Therefore, it is not realistic to correct the indicated value of the temperature measurement value using the graph as shown in FIG.
Therefore, in the temperature measuring device 1 of the first embodiment, these values are obtained with respect to both the temperature indication value of the first radiation thermometer 9 and the temperature indication value of the second radiation thermometer 10. The ratio is obtained, and the relationship between the obtained ratio (radiation thermometer instruction value ratio) and the moving distance δ of the steel sheet W is obtained.

つまり、まず第2の放射温度計10の温度指示値(図3(a)の実線の結果)を、第1の放射温度計9の温度指示値(図3(a)の点線の結果)で除した値を、振幅に対する変化としてまとめると、図3(b)に示すような関係が得られる。この図3(b)では、振幅の増加に対して温度指示値の比は徐々に減少するような変化傾向が示される。
以上のようにして得られた図3(b)と図3(a)の関係を基にすれば、図3(c)に示すように、放射温度計指示値比に対する補正係数の関係を示す曲線を得ることができる。この曲線は、第1の放射温度計9、第2の放射温度計10のそれぞれについて決定される。
That is, first, the temperature indication value of the second radiation thermometer 10 (result of the solid line in FIG. 3A) is the temperature indication value of the first radiation thermometer 9 (result of the dotted line in FIG. 3A). When the divided values are summarized as changes with respect to the amplitude, the relationship shown in FIG. 3B is obtained. FIG. 3B shows a change tendency in which the ratio of the temperature indication value gradually decreases with respect to the increase in amplitude.
Based on the relationship between FIG. 3B and FIG. 3A obtained as described above, as shown in FIG. 3C, the relationship of the correction coefficient to the radiation thermometer indicated value ratio is shown. A curve can be obtained. This curve is determined for each of the first radiation thermometer 9 and the second radiation thermometer 10.

図3(c)に示すように、第1の放射温度計9及び第2の放射温度計10の補正係数は、いずれも「放射温度指示値比=第1の放射温度計9の温度指示値/第2の放射温度計10の温度指示値」に対して略比例関係にあり、「放射温度指示値比」を算出しておけば、容易に第1の放射温度計9及び第2の放射温度計10の補正係数を精度良く且つ容易に求めることができる。   As shown in FIG. 3C, the correction coefficients of the first radiation thermometer 9 and the second radiation thermometer 10 are both “radiation temperature instruction value ratio = temperature instruction value of the first radiation thermometer 9”. If the "radiation temperature instruction value ratio" is calculated, the first radiation thermometer 9 and the second radiation can be easily obtained. The correction coefficient of the thermometer 10 can be obtained accurately and easily.

また、図3(c)を用いることで、鋼板Wの振幅δを知らなくても、放射温度計に対する補正係数を算出することができ、鋼板Wが実際にどの程度振れているかを知ることが困難な実際の温度測定装置1でも採用が可能となる。
なお、図3(c)に示すように、放射温度計指示値比が1以下の場合、言い換えれば鋼板Wが参照板8に近づいて来る場合は、補正係数は殆ど1前後の値のまま変化しない。それゆえ、実際の補正に際しては、放射温度計指示値比が1以下となる場合は、補正係数を1として補正を行ってもよい。
Further, by using FIG. 3C, the correction coefficient for the radiation thermometer can be calculated without knowing the amplitude δ of the steel plate W, and it is possible to know how much the steel plate W is actually shaken. Even a difficult actual temperature measuring apparatus 1 can be adopted.
As shown in FIG. 3 (c), when the radiation thermometer indicated value ratio is 1 or less, in other words, when the steel plate W approaches the reference plate 8, the correction coefficient changes with a value of about 1 almost. do not do. Therefore, in actual correction, when the radiation thermometer indicated value ratio is 1 or less, the correction may be performed by setting the correction coefficient to 1.

次に、図4を用いて、上述した演算手段11で行われる信号処理、言い換えれば本発明の放射温度計による測定温度の補正方法を説明する。
まず、ステップ1(S1)では、鋼板Wの片側に、鋼板Wと略平行となるように対向状に参照板8を設置する。この参照板8には、参照板8の温度を鋼板Wの温度に合わせるように温度調整可能な温度調整装置が設けられている。また、参照板8の温度を測定する温
度センサも別途用意されている。
Next, with reference to FIG. 4, a signal processing performed by the above-described calculation means 11, in other words, a method for correcting the measured temperature by the radiation thermometer of the present invention will be described.
First, in step 1 (S1), the reference plate 8 is installed on one side of the steel plate W so as to be substantially parallel to the steel plate W. The reference plate 8 is provided with a temperature adjusting device capable of adjusting the temperature so that the temperature of the reference plate 8 matches the temperature of the steel plate W. A temperature sensor for measuring the temperature of the reference plate 8 is also prepared separately.

ステップ2(S2)では、第1の放射温度計9及び第2の放射温度計10を、鋼板Wに対してそれぞれ異なる角度となるように取り付ける。そして、第1の放射温度計9及び第2の放射温度計10で鋼板W表面の測定点Mの温度を計測する。
ステップ3(S3)では、第1の放射温度計9の指示値に対して、第2の放射温度計10の指示値が変動しているかどうかを判断する。ここで第2の放射温度計10の指示値が第1の放射温度計9の指示値に対して十分に変動している(両指示値の差が所望の値を超える)と判断された場合は、被測定板Wの振れに伴う温度計測誤差が大きいものと考えて、ステップ4に進んで補正を行う。一方、変動していないと判断された場合は、温度計測誤差は無視できる程度である(指示値の補正は必要ない)と考えてステップ7に進む。
In step 2 (S2), the first radiation thermometer 9 and the second radiation thermometer 10 are attached to the steel sheet W at different angles. Then, the first radiation thermometer 9 and the second radiation thermometer 10 measure the temperature at the measurement point M on the surface of the steel sheet W.
In step 3 (S3), it is determined whether or not the indication value of the second radiation thermometer 10 is fluctuating with respect to the indication value of the first radiation thermometer 9. Here, when it is determined that the indication value of the second radiation thermometer 10 has sufficiently fluctuated with respect to the indication value of the first radiation thermometer 9 (the difference between both indication values exceeds a desired value) Is considered to have a large temperature measurement error due to the shake of the plate W to be measured, and proceeds to step 4 for correction. On the other hand, if it is determined that there is no fluctuation, the temperature measurement error is negligible (correction of the indicated value is not necessary), and the process proceeds to step 7.

ステップ4(S4)では、第1の放射温度計9で計測された測定温度の指示値Tm1で、第2の放射温度計10で計測された測定温度の指示値Tm2を除して、両指示値の信号比m(=Tm2/Tm1)を算出する。なお、鋼板Wに対する角度が小さい放射温度計が第1の放射温度計9であり、鋼板Wに対する角度が大きい放射温度計が第2の放射温度計10とされている。   In step 4 (S4), both instructions are obtained by dividing the measured temperature instruction value Tm2 measured by the second radiation thermometer 10 by the measured temperature instruction value Tm1 measured by the first radiation thermometer 9. The value signal ratio m (= Tm2 / Tm1) is calculated. The radiation thermometer having a small angle with respect to the steel plate W is the first radiation thermometer 9, and the radiation thermometer having a large angle with respect to the steel plate W is the second radiation thermometer 10.

ステップ5(S5)では、上述したステップ4で求められた信号比m、及び図3(c)を用いて、この信号比mに対応する第1の放射温度計9の補正係数R1(m)、第2の放射温度計10の補正係数R2(m)を決定する。また、決定された補正係数R1(m)及びR2(m)を用いて、測定対象である鋼板Wの振動の影響を排除した第1の放射温度計9の計測値Tm01及び第2の放射温度計10の計測値Tm02を求める。   In step 5 (S5), using the signal ratio m obtained in step 4 described above and FIG. 3C, the correction coefficient R1 (m) of the first radiation thermometer 9 corresponding to this signal ratio m. The correction coefficient R2 (m) of the second radiation thermometer 10 is determined. Further, the measured value Tm01 and the second radiation temperature of the first radiation thermometer 9 excluding the influence of the vibration of the steel plate W as the measurement object using the determined correction factors R1 (m) and R2 (m). A total of ten measurement values Tm02 are obtained.

次に、ステップ5で求められた第1の放射温度計9の計測値Tm01及び第2の放射温度計10の計測値Tm02の平均値を求め(S6)、求められた平均値を補正後の指示値Tmとして、板温Tsを求める(S8)。
なお、ステップ3において、両指示値の間に大きな変動がないと判断された場合も、第1の放射温度計9の計測値Tm01及び第2の放射温度計10の計測値Tm02の平均値を求め(S7)、求められた平均値を補正後の指示値Tmとして、多重反射方式に基づいた手法(例えば、特許文献1に開示の手法)に拠り、板温Tsを求める(S8)。
Next, an average value of the measured value Tm01 of the first radiation thermometer 9 and the measured value Tm02 of the second radiation thermometer 10 obtained in step 5 is obtained (S6), and the obtained average value is corrected. The plate temperature Ts is obtained as the instruction value Tm (S8).
Even when it is determined in step 3 that there is no significant fluctuation between the two indication values, the average value of the measurement value Tm01 of the first radiation thermometer 9 and the measurement value Tm02 of the second radiation thermometer 10 is calculated. Obtaining (S7), and using the obtained average value as the corrected instruction value Tm, the plate temperature Ts is obtained based on a method based on the multiple reflection method (for example, the method disclosed in Patent Document 1) (S8).

上述した被測定板Wの温度測定装置1及び放射温度計による測定温度の補正方法によれば、参照板8の設置数が鋼板Wの片面だけで済むため、温度測定装置1の設置に大きなスペースを必要としないし、複雑な装置構成を必要とすることもない。それゆえ、簡単な構成でありながら背景放射の影響を確実に且つ容易に排除して鋼板Wの放射温度を精確に計測することができる。
「第2実施形態」
次に、第2実施形態の被測定板Wの温度測定装置1について説明する。
According to the temperature measuring device 1 for the plate W to be measured and the method for correcting the temperature measured by the radiation thermometer, the number of reference plates 8 to be installed is only one side of the steel plate W, so that a large space is required for installing the temperature measuring device 1. Is not required, and a complicated apparatus configuration is not required. Therefore, it is possible to accurately measure the radiation temperature of the steel sheet W by reliably and easily eliminating the influence of the background radiation while having a simple configuration.
“Second Embodiment”
Next, the temperature measuring device 1 for the measurement target plate W according to the second embodiment will be described.

図5に示すように、第2実施形態の温度測定装置1は、測定点Mに対する第1の放射温度計9及び第2の放射温度計10の指向角度が平面視で同じであり、側面視で互いに異なっている。
つまり、図5(a)に示すように、第1の放射温度計9及び第2の放射温度計10はいずれも鋼板Wの送り方向に対して同じ角度θであるが、第1の放射温度計9の仰角はθs1、第2の放射温度計10の仰角はθs2(θs2>θs1)となり、それぞれの傾斜角は互いに異なっている。
As shown in FIG. 5, in the temperature measuring apparatus 1 of the second embodiment, the directivity angles of the first radiation thermometer 9 and the second radiation thermometer 10 with respect to the measurement point M are the same in a plan view, and a side view. Are different from each other.
That is, as shown in FIG. 5A, the first radiation thermometer 9 and the second radiation thermometer 10 are both at the same angle θ 1 with respect to the feeding direction of the steel plate W, but the first radiation The elevation angle of the thermometer 9 is θ s1 , the elevation angle of the second radiation thermometer 10 is θ s2s2 > θ s1 ), and the respective inclination angles are different from each other.

それゆえ、図5(b)の下図に示すように、鋼板Wが振動によりδだけ下方に移動した場合には、図中に点線で示すように第1の放射温度計9の測定点Mの位置は、第2の放射温度計10の測定点Mの位置よりも遠方側(通板ラインに沿って離れた位置で、幅方向で縁端側)にずれる。具体的には、この測定点Mの移動距離は、第1の放射温度計9の場合、鋼板Wの送り方向にδ/tanθs1×cosθ、板幅方向にδ/tanθs1×sinθとなる。また、第2の放射温度計10の測定点Mの移動距離は、鋼板Wの送り方向にδ/tanθs2×cosθ、板幅方向にδ/tanθs2×sinθとなる。 Therefore, as shown in the lower diagram of FIG. 5B, when the steel sheet W moves downward by δ due to vibration, the measurement point M of the first radiation thermometer 9 is measured as indicated by the dotted line in the drawing. The position is shifted farther than the position of the measurement point M of the second radiation thermometer 10 (the position away from the plate line and the edge in the width direction). Specifically, in the case of the first radiation thermometer 9, the moving distance of the measurement point M is δ / tanθ s1 × cosθ 1 in the feed direction of the steel plate W and δ / tanθ s1 × sinθ 1 in the plate width direction. Become. Further, the moving distance of the measurement point M of the second radiation thermometer 10 is δ / tanθ s2 × cosθ 1 in the feeding direction of the steel plate W and δ / tanθ s2 × sinθ 1 in the sheet width direction.

つまり、上述した第2実施形態のレイアウトの場合でも、仰角が互いに異なるため第1の放射温度計9と第2の放射温度計10とは測定点Mに対して互いに異なる角度から指向
するようになる。その結果、鋼板Wが距離δだけ移動した際には、それぞれの放射温度計の測定温度は全く異なった変化傾向を示す。それゆえ、第2実施形態でも、第1実施形態で説明したような演算手段11、言い換えればそれぞれの放射温度計からの出力比に基づいて決定された補正係数を用いて測定温度の補正を行って、鋼板Wの放射温度を精確に計測することができる。
That is, even in the layout of the second embodiment described above, since the elevation angles are different from each other, the first radiation thermometer 9 and the second radiation thermometer 10 are directed at different angles with respect to the measurement point M. Become. As a result, when the steel sheet W moves by the distance δ, the measured temperatures of the respective radiation thermometers show completely different changing trends. Therefore, in the second embodiment as well, the measurement temperature is corrected using the correction means determined based on the output means from the calculation means 11 described in the first embodiment, in other words, the respective radiation thermometers. Thus, the radiation temperature of the steel sheet W can be accurately measured.

なお、第1の放射温度計9と第2の放射温度計10との配置に関しては、第1実施形態と第2実施形態とを組み合わせたレイアウトにしてもよい。すなわち、測定点Mに対するそれぞれの放射温度計の指向角度が平面視で異なっていて(θ≠θ)、加えて、側面視でも互いに異なっている(θs1≠θs2)ようにしてもよい。この場合であっても、鋼板Wの移動距離δに対する測定温度の変化はそれぞれの放射温度計で全く異なったものとなり、上述したような補正が可能となる。 Note that the arrangement of the first radiation thermometer 9 and the second radiation thermometer 10 may be a layout in which the first embodiment and the second embodiment are combined. That is, the directivity angles of the respective radiation thermometers with respect to the measurement point M are different in a plan view (θ 1 ≠ θ 2 ), and in addition, they are also different from each other in a side view (θ s1 ≠ θ s2 ). Good. Even in this case, the change in the measured temperature with respect to the moving distance δ of the steel plate W is completely different for each radiation thermometer, and the correction as described above is possible.

また、本発明の温度測定装置1は、第1の放射温度計9及び第2の放射温度計10の双方が、鋼板Wの幅方向の中央を挟んで一方側のみ(例えば右側)に配備されていても良い。鋼板Wの右側に2つの放射温度計が配置されていて左側には配備されていなくても、測定点Mに対するそれぞれの放射温度計の指向角度が平面視で異なっていたり(θ≠θ)、側面視でも互いに異なっていれば(θs1≠θs2)、鋼板Wの移動距離δに対する測定温度の変化はそれぞれの放射温度計で全く異なったものとなり、上述したような補正が可能となるからである。 In the temperature measuring apparatus 1 of the present invention, both the first radiation thermometer 9 and the second radiation thermometer 10 are provided only on one side (for example, the right side) with the center in the width direction of the steel plate W interposed therebetween. May be. Even if two radiation thermometers are arranged on the right side of the steel plate W and not arranged on the left side, the directivity angles of the respective radiation thermometers with respect to the measurement point M are different in plan view (θ 1 ≠ θ 2). ), If they are different from each other in the side view (θ s1 ≠ θ s2 ), the change in the measured temperature with respect to the moving distance δ of the steel plate W becomes completely different in each radiation thermometer, and the correction as described above is possible. Because it becomes.

なお、今回開示された実施形態はすべての点で例示であって制限的なものではないと考えられるべきである。特に、今回開示された実施形態において、明示的に開示されていない事項、例えば、運転条件や操業条件、各種パラメータ、構成物の寸法、重量、体積などは、当業者が通常実施する範囲を逸脱するものではなく、通常の当業者であれば、容易に想定することが可能な値を採用している。   The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. In particular, in the embodiment disclosed this time, matters that are not explicitly disclosed, for example, operating conditions and operating conditions, various parameters, dimensions, weights, volumes, and the like of a component deviate from a range that a person skilled in the art normally performs. Instead, values that can be easily assumed by those skilled in the art are employed.

1 温度測定装置
2 溶融亜鉛めっき設備
3 焼鈍炉
4 ロール搬送機構
5 冷却帯
6 めっきポット
7 空冷部
8 参照板
9 第1の放射温度計
10 第2の放射温度計
11 演算手段
12 補正係数決定手段
13 温度算出手段
M 測定点
W 鋼板(被測定板)
DESCRIPTION OF SYMBOLS 1 Temperature measuring device 2 Hot-dip galvanization equipment 3 Annealing furnace 4 Roll conveyance mechanism 5 Cooling zone 6 Plating pot 7 Air cooling part 8 Reference board 9 1st radiation thermometer 10 2nd radiation thermometer 11 Calculation means 12 Correction coefficient determination means 13 Temperature calculation means M Measuring point W Steel plate (measurement plate)

Claims (7)

被測定板の片面に対面して設置されると共に、前記被測定板と同じ温度になるように温度調整された参照板と、
前記被測定板の片面の測定点に対して互いに異なる角度から指向するように設置されて、前記測定点の放射温度をそれぞれ計測可能とされた第1の放射温度計及び第2の放射温度計と、
前記第1の放射温度計からの出力と第2の放射温度計からの出力とに基づいて、被測定板の振れに伴う温度計測誤差を補正する補正係数を決定する補正係数決定手段と、
前記補正係数決定手段で決定された補正係数に基づいて、前記第1の放射温度計及び第2の放射温度計の出力を補正すると共に、補正後の出力から測定点の温度を算出する温度算出手段と、
を備えることを特徴とする被測定板の温度測定装置。
A reference plate that is installed to face one side of the plate to be measured and is temperature-adjusted to be the same temperature as the plate to be measured,
A first radiation thermometer and a second radiation thermometer installed so as to be directed from different angles with respect to the measurement point on one side of the plate to be measured, and capable of measuring the radiation temperature at the measurement point, respectively. When,
Correction coefficient determining means for determining a correction coefficient for correcting a temperature measurement error due to the shake of the plate to be measured, based on the output from the first radiation thermometer and the output from the second radiation thermometer;
Based on the correction coefficient determined by the correction coefficient determining means, the temperature calculation for correcting the output of the first radiation thermometer and the second radiation thermometer and calculating the temperature of the measurement point from the corrected output. Means,
A temperature measuring device for a plate to be measured, comprising:
前記補正係数決定手段は、前記第1の放射温度計の出力と第2の放射温度計の出力との比に基づいて、前記補正係数を決定していることを特徴とする請求項1に記載の被測定板の温度測定装置。   The correction coefficient determination unit determines the correction coefficient based on a ratio between an output of the first radiation thermometer and an output of a second radiation thermometer. Temperature measuring device for the plate to be measured. 前記第1の放射温度計及び第2の放射温度計は、前記測定点に対する指向角度が平面視で互いに異なっていることを特徴とする請求項1または2に記載の被測定板の温度測定装置。   3. The temperature measuring device for a measured plate according to claim 1, wherein the first radiation thermometer and the second radiation thermometer have different directivity angles with respect to the measurement point in plan view. . 前記第1の放射温度計及び第2の放射温度計は、前記測定点に対する指向角度が側面視で互いに異なっていることを特徴とする請求項1〜3のいずれかに記載の被測定板の温度測定装置。   4. The measurement target plate according to claim 1, wherein the first radiation thermometer and the second radiation thermometer have different directivity angles with respect to the measurement point in a side view. 5. Temperature measuring device. 前記被測定板は長尺材であって、前記長尺材の被測定板の幅方向中央から見て一方側に前記第1の放射温度計が設けられると共に、他方側に第2の放射温度計が設けられていることを特徴とする請求項1〜4のいずれかに記載の被測定板の温度測定装置。   The measured plate is a long material, and the first radiation thermometer is provided on one side when viewed from the center in the width direction of the measured plate of the long material, and the second radiation temperature is provided on the other side. A temperature measuring device for a plate to be measured according to any one of claims 1 to 4, wherein a meter is provided. 前記参照板の温度を被測定板と同じ温度になるように温度調整する温度調整手段が備えられたことを特徴とする請求項1〜5のいずれかに記載の被測定板の温度測定装置。   6. The temperature measuring device for a measured plate according to claim 1, further comprising temperature adjusting means for adjusting the temperature of the reference plate so that the temperature of the reference plate is the same as that of the measured plate. 被測定板の片面に対面して設置されると共に前記被測定板と同じ温度になるように温度調整された参照板と、前記被測定板の片面の測定点に対して互いに異なる角度から指向するように設置されて、前記測定点の放射温度をそれぞれ計測可能とされた第1の放射温度計及び第2の放射温度計と、を備えた温度測定装置を用いて測定された温度を補正するに際しては、
前記第1の放射温度計の出力及び第2の放射温度計の出力に基づいて、被測定板の振れに伴う温度計測誤差を補正する補正係数を決定し、決定された補正係数に基づいて、前記第1の放射温度計及び第2の放射温度計の出力を補正することを特徴とする測定温度の補正方法。
A reference plate that is placed facing one side of the plate to be measured and is temperature-adjusted so that it has the same temperature as the plate to be measured, and is directed from different angles with respect to the measurement point on one side of the plate to be measured The temperature measured using a temperature measuring device provided with a first radiation thermometer and a second radiation thermometer each capable of measuring the radiation temperature at the measurement point is corrected. On the occasion
Based on the output of the first radiation thermometer and the output of the second radiation thermometer, a correction coefficient for correcting a temperature measurement error due to the shake of the plate to be measured is determined, and based on the determined correction coefficient, A method for correcting a measured temperature, wherein outputs of the first radiation thermometer and the second radiation thermometer are corrected.
JP2012118791A 2012-05-24 2012-05-24 Temperature measuring device for measuring plate and measuring temperature correction method Active JP5767606B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012118791A JP5767606B2 (en) 2012-05-24 2012-05-24 Temperature measuring device for measuring plate and measuring temperature correction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012118791A JP5767606B2 (en) 2012-05-24 2012-05-24 Temperature measuring device for measuring plate and measuring temperature correction method

Publications (2)

Publication Number Publication Date
JP2013246002A true JP2013246002A (en) 2013-12-09
JP5767606B2 JP5767606B2 (en) 2015-08-19

Family

ID=49845905

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012118791A Active JP5767606B2 (en) 2012-05-24 2012-05-24 Temperature measuring device for measuring plate and measuring temperature correction method

Country Status (1)

Country Link
JP (1) JP5767606B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108151887A (en) * 2017-12-25 2018-06-12 湖南航天诚远精密机械有限公司 A kind of microwave experiment stove

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5282375A (en) * 1975-12-29 1977-07-09 Chino Works Ltd Temperature measuring method
JPS63259427A (en) * 1987-04-15 1988-10-26 Kawasaki Steel Corp Emissivity and temperature measuring apparatus
JPH02245624A (en) * 1989-03-20 1990-10-01 Chino Corp Radiation temperature measuring apparatus
JPH0372333U (en) * 1989-11-17 1991-07-22
JPH10185693A (en) * 1996-12-26 1998-07-14 Nkk Corp Method for measuring emissivity and temperature of object, and device therefor
JP2010038562A (en) * 2008-07-31 2010-02-18 Kobe Steel Ltd Apparatus for measuring temperature in steel plate
JP2011007730A (en) * 2009-06-29 2011-01-13 Kobe Steel Ltd Method and apparatus for measuring temperature by radiation

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5282375A (en) * 1975-12-29 1977-07-09 Chino Works Ltd Temperature measuring method
JPS63259427A (en) * 1987-04-15 1988-10-26 Kawasaki Steel Corp Emissivity and temperature measuring apparatus
JPH02245624A (en) * 1989-03-20 1990-10-01 Chino Corp Radiation temperature measuring apparatus
JPH0372333U (en) * 1989-11-17 1991-07-22
JPH10185693A (en) * 1996-12-26 1998-07-14 Nkk Corp Method for measuring emissivity and temperature of object, and device therefor
JP2010038562A (en) * 2008-07-31 2010-02-18 Kobe Steel Ltd Apparatus for measuring temperature in steel plate
JP2011007730A (en) * 2009-06-29 2011-01-13 Kobe Steel Ltd Method and apparatus for measuring temperature by radiation

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108151887A (en) * 2017-12-25 2018-06-12 湖南航天诚远精密机械有限公司 A kind of microwave experiment stove

Also Published As

Publication number Publication date
JP5767606B2 (en) 2015-08-19

Similar Documents

Publication Publication Date Title
US20200346264A1 (en) Shape measurement apparatus, warpage correction apparatus, and continuous plating facility for metal strip, and warpage correction method for metal strip
JP5476189B2 (en) Metal plate temperature measuring device
KR101057237B1 (en) Temperature measuring method and temperature measuring apparatus of steel sheet, and temperature control method of steel sheet
JP5767606B2 (en) Temperature measuring device for measuring plate and measuring temperature correction method
JP2007010476A (en) Method and apparatus for measuring temperature of sheet steel
CN100381784C (en) Distance estimation apparatus, abnormality detection apparatus, temperature regulator and thermal treatment apparatus
JP6658977B1 (en) Induction heating method for metal strip and its induction heating equipment
EP3729026A1 (en) Measurement system for metal strip production line
JP6381858B1 (en) Metal plate warpage straightening device and metal plate continuous plating equipment
JP2011173153A (en) Cooling controller for thick steel plate, cooling control method, and manufacturing method
CA3112039A1 (en) Method for controlling a coating weight uniformity in industrial galvanizing lines
JP5510787B2 (en) Heating furnace plate temperature control method by radiant heating of cold-rolled steel sheet continuous annealing equipment
JP4923644B2 (en) Direct-fired furnace
JP2019014953A (en) Temperature prediction method for steel material
JP2014130074A (en) Temperature measuring apparatus of plate to be measured
JP5134466B2 (en) Steel plate temperature measuring device
JP2005233790A (en) Method and apparatus for measuring temperature of sheet steel
KR20100020523A (en) Process, and apparatus utilizing the same, for manufacturing steel sheet
JP5421840B2 (en) Temperature control method for reference plate in metal plate temperature measuring device
JPWO2019180961A1 (en) Heat treatment furnace operation support device and operation support method, heat treatment equipment and its operation method
JP4878234B2 (en) Steel plate temperature measuring method and temperature measuring device, and steel plate temperature control method
JP5403041B2 (en) Alloying equipment for hot-dip galvanized steel sheet
JP7444125B2 (en) Metal plate surface temperature measuring device, annealing equipment, and surface temperature measuring method
JP5600452B2 (en) Hot dipping equipment
JPS61292528A (en) Correction in temperature measurement for steel material in furnace

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150526

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150619

R150 Certificate of patent or registration of utility model

Ref document number: 5767606

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150